
1 

Accurate allocation of multi-mapped reads enables regulatory element analysis at repeats 

Alexis Morrissey1, Jeffrey Shi1, Daniela Q. James1, and Shaun Mahony1* 

1 Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania 
State University, University Park, PA, USA. 

* To whom correspondence should be addressed: mahony@psu.edu

Abstract 

Transposable elements (TEs) and other repetitive regions have been shown to contain gene regulatory elements, including 
transcription factor binding sites. However, regulatory elements harbored by repeats have proven difficult to characterize 
using short-read sequencing assays such as ChIP-seq or ATAC-seq. Most regulatory genomics analysis pipelines discard 
“multi-mapped” reads that align equally well to multiple genomic locations. Since multi-mapped reads arise predominantly 
from repeats, current analysis pipelines fail to detect a substantial portion of regulatory events that occur in repetitive 
regions. To address this shortcoming, we developed Allo, a new approach to allocate multi-mapped reads in an efficient, 
accurate, and user-friendly manner. Allo combines probabilistic mapping of multi-mapped reads with a convolutional neural 
network that recognizes the read distribution features of potential peaks, offering enhanced accuracy in multi-mapping read 
assignment. Allo also provides read-level output in the form of a corrected alignment file, making it compatible with existing 
regulatory genomics analysis pipelines and downstream peak-finders. In a demonstration application on CTCF ChIP-seq 
data, we show that Allo results in the discovery of thousands of new CTCF peaks. Many of these peaks contain the expected 
cognate motif and/or serve as TAD boundaries. We additionally apply Allo to a diverse collection of ENCODE ChIP-seq 
datasets, resulting in multiple previously unidentified interactions between transcription factors and repetitive element 
families. Finally, we show that Allo may be particularly beneficial in identifying ChIP-seq peaks at centromeres, near 
segmentally duplicated genes, and in younger TEs, enabling new regulatory analyses in these regions. 
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Introduction 
 
High-throughput sequencing technologies underlie the study of various regulatory genomic phenomena, 
including gene expression (RNA-seq), protein-DNA interactions (ChIP-seq), and chromatin accessibility 
(ATAC-seq). While longer read sequencing techniques like Oxford Nanopore and PacBio have been 
established, many regulatory genomics assays continue to use short-read sequencing technologies due to the 
higher sampling rate (i.e., higher numbers of reads) and constraints with various preparation steps prior to 
sequencing. For example, the immunoprecipitation step in ChIP-seq is unlikely to allow the pull down of long 
stretches of chromatin and thus produces DNA fragments that are most compatible with short-read sequencing. 
However, repetitive regions pose problems for short-read alignment. Any sequence that is repeated in the 
genome and is longer than the sequencing read length will create multi-mapped reads (MMRs). Using the 
common read lengths (35-100bp) seen in many studies and public repositories, up to 30% of sequenced reads 
are not uniquely mappable (Derrien et al. 2012). MMRs, due to their ambiguous nature, are generally removed 
during pre-processing in most regulatory genomics pipelines, including those used by the ENCODE consortium 
(Moore et al. 2020). For these reasons, repetitive regions have been largely overlooked in most gene regulatory 
analyses.  

Several studies have demonstrated that repetitive regions contain transcription factor binding sites, suggesting 
that they play active roles in gene regulation (Sundaram et al. 2014; Imbeault et al. 2017). One study of 26 
orthologous transcription factors in mouse and human showed that around 20% of all binding sites were derived 
from transposable elements (TEs) (Sundaram et al. 2014). Transposable elements have been shown to play a 
role in evolutionary adaptation, a prominent example of which is the insertion of a transposable element within 
the cortex gene of peppered moths (Hof et al. 2016). This mutation increased transcription of the cortex gene 
which allowed for darker wing colors and better camouflage during the industrial revolution. TEs have also 
been implicated in the evolution of mammalian pregnancy development (Lynch et al. 2011), interferon response 
(Chuong et al. 2016), and pluripotency maintenance (Wang et al. 2014). Transposable element mobilization has 
also been shown to perturb gene regulation and create disease states such as breast cancer (Jiang and Upton 
2019). Most of these studies did not consider multi-mapped reads in their analyses and thus only investigated 
repetitive elements that were uniquely mappable. Therefore, the representation of transposable elements and 
other repetitive elements in regulatory processes is likely under-characterized.  

Various methods have been proposed to deal with multi-mapped reads in gene regulatory data (Shah and 
Ruthenburg 2021; Chung et al. 2011; Jin et al. 2015; Hashimoto et al. 2009; Sun et al. 2018; Almeida da Paz 
and Taher 2022; Zytnicki 2017; Schmid and Grossniklaus 2015; Consiglio et al. 2016; Zheng et al. 2019; Zeng 
et al. 2015; Kahles et al. 2016). Some of the first methods for ChIP-seq MMR analysis directly aligned reads to 
the consensus sequences of transposable elements and other repetitive regions (Sun et al. 2018; Almeida da Paz 
and Taher 2022). While consensus sequence mapping provides family-level associations, these approaches 
cannot identify regulatory events at individual repetitive elements. Another set of approaches were developed to 
specifically allocate MMRs in the genome by using uniquely mapped read (UMR) counts in the vicinity of 
possible MMR mapping locations (Hashimoto et al. 2009; Chung et al. 2011; Shah and Ruthenburg 2021). The 
intuition underlying these approaches is that a region containing UMRs is more likely to also have generated 
MMRs compared with alternate mapping locations. For example, MuMRescueLite (Hashimoto et al. 2009) used 
the UMR counts to create a simple probabilistic mapping of MMRs; MMR reads are allocated to specific 
locations based on the ratio of UMR counts at each of their possible mapping locations. Another method, 
CSEM, combined probabilistic mapping with iterative reweighting using expectation maximization (Chung et 
al. 2011). Partial read counts were assigned based on this mapping in each iteration. Unfortunately, both CSEM 
and MuMRescueLite are, at time of writing, unusable due to uncompilable code and execution errors, 
respectively. The recent SmartMap method revived the probabilistic MMR mapping approach using a Bayesian 
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model (Shah and Ruthenburg 2021). Due to the use of a Bayesian model over the entire genome, even fully 
mappable regions are modeled and thus UMR counts can be affected, introducing unnecessary error in the read 
coverage landscapes output by SmartMap. Additionally, SmartMap cannot be applied to single-end sequencing 
data without modifying the source code as it relies on the insertion sizes of paired-end reads to make allocation 
predictions (Shah and Ruthenburg 2021). 

Finally, all probabilistic MMR mapping methods to date have outputs that are not easily integrated into most 
regulatory genomics pipelines as they output custom file types (Hashimoto et al. 2009) or files types not 
accepted by commonly-used peak-callers (Chung et al. 2011; Shah and Ruthenburg 2021). In this work, we 
address the drawbacks of current approaches while also increasing the accuracy of MMR allocation. Our 
method, Allo, combines probabilistic mapping based on UMR counts with a convolutional neural network 
(CNN) that has been trained to identify the appearance of peak-containing regions. Allo is applicable to both 
single-end and paired-end sequencing data, and its SAM/BAM format output is easily integrated into any 
analysis pipeline.  

 

Results 

Allo: multi-mapped read allocation combining probabilistic read allocation and image-based peak detection 

Regulatory genomics datasets contain substantial proportions of MMRs; for example, up to 30% of mappable 
reads in ENCODE ChIP-seq experiments are MMRs (Figure 1A, Supplemental Figure 1A). Previous methods 
to allocate multi-mapped reads focused solely on leveraging UMR counts in regions around MMRs, as 
illustrated in Figure 1B. Our method, Allo, implements a probabilistic MMR mapping approach similar to that 
deployed by MuMRescueLite (Hashimoto et al. 2009) wherein regions with more UMRs will have a higher 

probability of being allocated 
an MMR. However, Allo 
combines probabilistic MMR 
mapping with a separate 
neural network module that 
predicts whether each 
possible MMR mapping 
location has read 
distributions consistent with a 
ChIP-seq peak (Figure 1C). 
The intuition behind this 
second module is that ChIP-
seq reads are more likely to 
be generated from peak 
regions than from alternative 
non-peak locations on the 
genome.  

Allo’s neural network takes 
the form of a convolutional 
neural network (CNN) that is 
trained on images of UMR 
distributions at peaks 
(Supplemental Figure 1B). 

Figure 1: Overview of the prevalence of multi-mapped reads in ChIP-seq datasets and Allo’s 
algorithm for rescuing multi-mapped reads. A) Proportions of reads that are multi-mapped 
across 481 K562 ENCODE TF ChIP-seq datasets. B) Overview of probabilistic multi-mapped 
read allocation by proximal uniquely mapped read count. C) Overview of the Allo algorithm 
combining uniquely mapped read counts and image classification of read distribution. 
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The CNN examines each possible mapping location of a given MMR and outputs scores for each ranging from 
0 to 1, with higher values corresponding to CNN predictions that a region contains a UMR distribution 
consistent with ChIP-seq peaks. The total UMR count in each region is then multiplied by the corresponding 
CNN output score. Thus, areas with more UMRs and a more peak-like distribution of reads will have higher 
combined scores. Allo normalizes across the scores for each possible MMR mapping location to create a 
relative probability vector. The MMR is then allocated to a single possible mapping location by rolling a dice 
weighted according to the probability vector; i.e., locations with higher normalized scores are more likely to be 
allocated the MMR. A summary of Allo’s algorithm is shown in Figure 1C. 

 
Training a neural network to predict partially mappable peaks based on images of uniquely mapped read 
distributions 

ChIP-seq reads are distributed around protein-DNA binding events according to a characteristic shape, which is 
apparent at individual binding sites in successful ChIP-seq experiments given high enough sequencing 
coverage. Image-based classification approaches that leverage the shape properties have been previously used in 
multiple ChIP-seq peak calling applications (Hentges et al. 2022; Strino and Lappe 2016). We hypothesized that 
adding a measure of peak potential based on UMR distribution would increase the accuracy of MMR allocation 

within ChIP datasets. To train a 
neural network to predict peak 
potential, we obtained 10 human 
transcription factor ChIP-seq 
datasets and 9 human histone 
ChIP-seq datasets from ENCODE 
(Supplemental Table 1). The 
former were used to train a neural 
network on narrow peaks and the 
latter were used to train a neural 
network on mixed peaks. 
Switching between narrow peak 
and mixed peak mode is a simple 
one argument option in Allo. 

To create a training set with 
known labels, we needed MMR-
containing regions in which the 
peak status (i.e., peak versus not 
peak) is known. We achieved this 
by artificially shortening 
ENCODE ChIP-seq reads to 
create MMRs. The starting and 
shortened read lengths of the 
datasets varied and can be found 
in Supplemental Table 1. The 
ground truth peak regions were 
defined as 500bp windows 
centered on MACS2 peak 
midpoints that were called from 

Figure 2: Allo’s neural network training process and accuracy testing. A) Overview of 
Allo’s neural network training process on ENCODE datasets. B) auROC of Allo’s neural 
networks compared with the FRiP (fraction of reads in peaks) score of the full-length 
datasets. Color of points indicates the assay type analyzed. 
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the full-length dataset. The 5’ read count distributions of artificially shortened UMRs in these peak windows 
were used to create 100 pixel by 100 pixel images for CNN training. Treating the ChIP-seq data as images 
allows the CNN’s convolutional layer to find shape-related features at peaks without dependence on ChIP-seq 
signal levels. To make images for the negative set, we used an equivalent number of randomly selected MMR-
containing regions from the background. A summary of the CNN training set generation process is shown in 
Figure 2A. 

To evaluate our neural networks’ abilities to classify peaks in MMR-containing regions, we gathered 40 
datasets with diverse properties (You et al. 2021; Zheng et al. 2023; Chen et al. 2023; Shang et al. 2022; Abay-
Nørgaard et al. 2023; Delaney et al. 2022; Sanchez et al. 2023; Kaushal et al. 2021; Cusanovich et al. 2018; Shi 
et al. 2019; Zhao et al. 2023; Zhang et al. 2020; Li et al. 2018; Ellison et al. 2023). While the training sets only 
included human samples, the test sets included data from human, mouse, Arabidopsis thaliana, Drosophila 
melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae (Supplemental Table 2). We also 
included ATAC-seq and DNase-seq datasets in the test set, reasoning that our peak shape detection approach 
would also be applicable to these data types. Note that we initially trained additional CNNs to specifically 
recognize ATAC-seq and DNase-seq peaks, but the performance of these specialized models had mixed results 
when compared with the performance of the mixed peak CNN (Supplemental Table 3). Consequently, as the 
mixed peak CNN showed high performance on most DNase-seq and ATAC-seq datasets, we applied the narrow 
peak CNN to the TF ChIP-seq test datasets and the mixed peak CNN to the histone ChIP-seq, ATAC-seq, and 
DNase-seq datasets. The specialized DNase-seq and ATAC-seq CNNs remain available for use within Allo and 
users can test their datasets with the various CNNs if desired. 

Figure 2B summarizes the performance of the CNNs in classifying peaks from non-peaks in MMR-containing 
regions; the auROC values are well above random classification for most tested datasets. The handful of 
datasets with CNN auROC scores lower than 0.70 contain more dispersed read distributions at peaks, 
potentially making it more difficult for the CNNs to make accurate classifications. Additionally, CNN 
classification performance does not appear to strongly depend on the fraction of reads in peak (FRiP) score in 
the relevant test dataset (Figure 2B), or on the source species of each test dataset (Supplemental Figure 1C). 
Finally, we investigated whether the test set read length has an impact on CNN classification performance. We 
found only a minimal effect on peak classification performance in datasets with progressively shortened read 
lengths (Supplemental Figure 1D, Supplemental Table 4); some decay in performance is to be expected as 
the read length gets shorter, since the CNN has fewer UMRs available to enable predictions for proximal 
MMRs.  

A CNN trained on read count distribution features increases accuracy of multi-mapped read allocation 

To test the overall accuracy of Allo’s MMR allocation against other methods, we developed an approach that 
provided knowledge of ground-truth locations for a subset of MMRs in real ChIP-seq, ATAC-seq, and DNase-
seq datasets. Briefly, we used a standard UMR-based pipeline to align reads and perform peak calling on a 
series of publicly available datasets. We then artificially shortened the reads to 30bp (Figure 3B) and realigned 
them to the genome. Some of the reads that were uniquely mappable at full length then became multi-mapped at 
this new shortened length. For reads in this category, we had a ground truth location. Following alignment of 
the shortened reads, we used three separate methods to allocate MMRs: random allocation, read count only 
(similar to MuMRescueLite and also an option in Allo), and Allo using read count information and the CNN. 
We were unable to test CSEM (Chung et al. 2011), as the software was no longer executable. We were also 
unable to test SmartMap (Shah and Ruthenburg 2021) using this methodology, as it only outputs a bedGraph 
file which would not enable us to calculate accuracy on a per-read basis. 
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To ensure Allo is applicable across datasets, the set of transcription factors used in training was excluded from 
the training set and we also chose datasets from different species as explained above (Supplemental Table 2). 
We included datasets of various transcription factors known to bind to repetitive elements. Examples included 
EDM2 in Arabidopsis (Tsuchiya and Eulgem 2013), YY1 in humans (Becker et al. 1993), ZFP57 in mice (Shi 
et al. 2019), and Dot1l in mice (Zhao et al. 2023). Additionally, we included CTCF datasets from mouse, 
human, and Drosophila, as CTCF has been previously shown to bind TEs (Sundaram et al. 2014). Allo 
outperforms random allocation and the read count only method on every dataset tested (Figure 3A and 
Supplemental Figure 2A). Allo allocation accuracy does not appear to strongly depend on the dataset species 
or the proportion of MMRs (Supplemental Figure 2B). Allo appears to offer higher benefits when analyzing 
transcription factor ChIP-seq datasets compared with the other data types tested (Figure 3A). TF ChIP-seq 
datasets have more punctate peaks with more concentrated read distributions and a stronger characteristic shape. 

Thus, Allo’s incorporation of peak 
detection may offer higher benefits 
than read count based allocation alone 
in cases where the peak shape is more 
clearly detectable. Indeed, while the 
primary determinant of Allo’s overall 
allocation accuracy is the accuracy of 
the read count only module, the 
accuracy of the CNN’s ability to 
predict peaks is a driver of increased 
performance (Figure 3C).  

Allo’s allocation accuracy and 
performance is competitive with that 
of SmartMap 

As previously noted, we were unable 
to directly compare the read allocation 
accuracies of Allo and SmartMap, as 
it was not feasible to extract 
individual read mapping locations 
from the bedGraph files output by 
SmartMap. We were also unable to 
compare the two methods on a peak 
level basis, as MACS2 was unable to 
properly call peaks on SmartMap 
bedGraph files. Applying the MACS2 
bdgbroadcall function to the 
SmartMap bedGraph files, as 
suggested in the SmartMap 
manuscript, resulted in over a million 

peaks called for each dataset tested. Even if MACS2 had functioned properly, the bdgbroadcall function does 
not allow input of a control file and thus is not ideal for statistically valid analysis of ChIP-seq datasets.  

To compare the performance of Allo and SmartMap, we instead relied on our method of shortening full-length 
datasets and compared the average read depth resulting from each method across MMR-containing peaks. We 
first removed all MMRs in the shortened datasets that were not UMRs in the full-length datasets, meaning all 

 

Figure 3: Allo outcompetes other methods for multi-mapped read allocation. A) 
Accuracy of multi-mapped read assignment within testing dataset peaks using Allo or 
read count only methods. The color denotes the fraction of reads in peaks from the 
uniquely mapped read peak calls and the shape denotes the assay being tested. B) An 
overview of how the test datasets were generated by artificially shortening full length 
datasets. C) The accuracy of Allo’s read allocation algorithm when compared to the 
read count only algorithm. Color denotes the CNN’s auROC score when detecting 
peaks in each dataset.   
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MMRs should have a ground truth location. We then ran SmartMap and Allo on these filtered alignment files. 
The BEDTools map function was then used to calculate the average read depth at peaks, analogous to the 
comparison procedure performed in the SmartMap manuscript (see Methods). We note that SmartMap only 
functions on paired-end datasets at time of writing, so we can only compare performances on the subset of test 
datasets that are paired-end sequenced (38 datasets). We were unsuccessful in our attempts to rewrite 
SmartMap’s processing script to allow single-end data processing. 

 

As shown in Figure 4A, Allo had similar or lower percent error in allocated read depth at peaks on all but 3 of 
the 38 tested datasets tested. As in the comparisons with the read count only approach, Allo appears to offer 
particular improvements over SmartMap in TF ChIP-seq datasets with lower FRiP scores (Figure 4A).  Since 
both Allo and SmartMap rely on probabilistic assignment using UMR counts, we reasoned that peaks 
containing fewer UMRs would be under-allocated multi-mapping reads. In Figure 4B,C, we show the percent 

 

Figure 4: Allo outcompetes SmartMap in overall multi-mapped read allocation. A) Allo’s median 
percent allocation error versus SmartMap’s median percent allocation error across peaks in 38 testing 
datasets. The shape indicates dataset assay and the color indicates the FRiP (fraction of reads in 
peaks) score. B) Log2 of Allo read counts divided by ground truth read counts within peaks when 
compared to the log2 of UMR counts in those regions. C) Log2 of SmartMap read counts divided by 
ground truth read counts within peaks when compared to the log2 of UMR counts in those regions.  
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error at each peak (combining all target samples used above) as a function of the total UMR count at each peak. 
As expected, regions with fewer UMRs are more likely to be under-allocated MMRs by both methods. 
However, this effect dissipates more quickly in Allo compared with SmartMap. It also appears that Allo is more 
likely to over-allocate reads overall whereas SmartMap is more likely to under-allocate reads. The over-
allocation by Allo within peaks may be a result of Allo’s focus on adding reads to peak regions specifically 
through the use of its neural networks. Nevertheless, Allo displays reduced error across the tested peaks as seen 
by the overall lower discrepancy from the ground truth values.  

We next employed a ChIP-seq simulator to compare the performance of Allo and SmartMap more 
comprehensively. In a simulated dataset, we have a true location for every read, and we can more accurately 
study the effects of noise level, read length, and MMR rates on overall allocation accuracy. Allo retains lower 
read allocation error at all tested levels of simulated noise and at all simulated read lengths (Supplemental 
Figure 2C,D). We found that the level of noise in the simulated datasets had more of an impact on median 
percent error than did read length or MMR proportion (Supplemental Figure 2C,D, Supplemental Table 5), 
with both Allo and SmartMap’s error rate increasing at around 96% noise. Additionally, we found an inverse 
correlation between the percentage of MMRs and allocation error rates of both Allo and SmartMap 
(Supplemental Table 5). As the read length increased, the percentage of MMRs decreased as expected. The 
areas that contained MMRs in these longer read datasets are more likely to be completely non-uniquely 
mappable over a larger span and thus pose a more difficult problem for both methods, since there are few to no 
surrounding UMRs to enable allocation. To investigate further, we calculated the median length of contiguous 
non-uniquely mappable regions in hg38 at different k-mer lengths using GenMap (Pockrandt et al. 2020). We 
found that the length of non-uniquely mappable windows in hg38 was highly positively correlated with the 
length of the k-mers used (Supplemental Figure 2E). Thus, the longer non-uniquely mappable windows 
observed at longer read lengths leads to difficulty in assigning MMRs. 

Finally, we compared the computational requirements of the two methods using the simulated datasets 
described above. As shown in Supplemental Figure 2F, Allo uses more CPU time than SmartMap per 1 
million reads allocated. This is likely because Allo is implemented in Python while SmartMap is implemented 
in C/C++. To mitigate the performance disparity, we implemented a multi-threading approach in Allo. Across 
the datasets tested above, Allo has a lower execution wall-time compared to SmartMap when using 6 processes. 
We also found that Allo uses significantly less memory than SmartMap. Allo uses a seventh of the memory 
used by SmartMap on average at 6 processes. It is important to note that we ran SmartMap with default settings 
which includes only one algorithm iteration. We would expect that including more reweighting iterations would 
increase the execution time of SmartMap and possibly also the RAM usage. Together, these results suggest that 
Allo is competitive with SmartMap in allocation accuracy as well as computational performance. 

Allo peaks have similar characteristics to peaks derived from UMRs, reinforcing their validity 

To demonstrate the utility of Allo and MMR-inclusive ChIP-seq pipelines, we focused on the properties of 
K562 CTCF peaks that are discoverable with the incorporation of Allo but are not detected using a traditional 
UMR-only ChIP-seq analysis pipeline. Allo’s inclusion of MMRs uncovered 3,114 CTCF peaks in addition to 
the 54,677 found using UMRs alone (Figure 5A). Peaks only found using Allo are labeled as “Allo-only” 
peaks. The CTCF cognate motif was the highest ranked motif found by MEME-ChIP (Machanick and Bailey 
2011) in both the UMR-derived peaks (Figure 5B) and the Allo-only peaks (Figure 5C), suggesting that these 
peaks are characteristic of true CTCF binding sites. The Allo-only peaks contained CTCF motif instances 58% 
of the time, compared with 72% of UMR-derived peaks. The cognate motif was identified as similarly centrally 
enriched in both Allo-only and UMR-derived peaks using Centrimo (Bailey and Machanick 2012) (Figure 5D). 
Allo also increased the read depth significantly in Allo-only peak regions (Figure 5E).  
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We next examined the overlap between UMR-derived peaks and Allo-only peaks at Topologically Associating 
Domain (TAD) boundaries using TAD calls from the 3D Genome Browser (Rao et al. 2014). A TAD boundary 
was defined as being within 2.5kb of the beginning or end of an annotated TAD. We found that there was a 
similar overlap between peak sets and TAD boundaries; 22.4% for the UMR-derived peaks and 19.1% for the 
Allo-only peaks. Figure 6A shows an example of two Allo-only CTCF peaks at TAD boundaries near the 
THOC3 gene. In this case, the MMRs present are a result of a duplicate pseudogene of THOC3.  

 

 

Figure 5: Allo results in the discovery of 3,114 additional peaks in a CTCF ChIP-seq dataset. A) ChIP-seq 
heatmaps comparing K562 CTCF peaks called by MACS2 using UMRs only or UMRs plus Allo-mapped reads. 
B) and C) Top-ranked motifs from MEME-ChIP in the UMR-derived and Allo-only peaks, respectively. D) 
Position of the CTCF motif with respect to the peak summit for UMR-derived peaks and Allo-only peaks. E) 
Read depth at Allo-only peaks using UMR BAM files versus using Allo output. F) Position of the CTCF motif 
with respect to the peak summit before and after the inclusion of Allo at UMR-derived peaks.  
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Furthermore, we investigated the effects of Allo on peaks that were discoverable using the standard UMR-only 
pipeline, as some of these peaks additionally contain MMRs. Figure 6B and Figure 6C show the total read 
counts before and after using Allo, at UMR-derived peaks and Allo-only peaks, respectively. It is evident that 
many UMR-derived peaks gain substantial numbers of reads with the inclusion of MMRs. We also found that 
Allo slightly improved the precision of peak finding at UMR peaks, as the addition of the Allo reads resulted in 
tighter distribution of distances between peak summits and the CTCF motif (Figure 5F).  Therefore, Allo can 

 

Figure 6: Allo increases the overall read counts at multi-mapped CTCF peaks and improves the resolution of 
uniquely mappable peaks. A) Hi-C interaction heatmap showing two TAD boundaries on Chromosome 5 near the 
THOC3 gene. K562 CTCF read counts are also plotted for the UMR-only analysis and the Allo analysis. Bottom 
sections show the zoomed in version of two Allo-only peaks at these at these TAD boundaries. B) Density scatterplot 
showing the total read count before and after the incorporation of Allo within CTCF UMR-derived peaks. C) Density 
scatterplot showing the total read count before and after the incorporation of Allo within CTCF Allo-only peaks. Note 
that Allo was run using default settings which allocates MMRs even in cases where there are no nearby UMRs. This 
results in peaks called in regions with 0 starting UMR counts as seen in panel C. The user can shut off this 
functionality using the argument “--remove-zeros” to have more stringent criteria for MMR allocation. 
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increase peak resolution and ChIP-seq enrichment quantification accuracy at many peaks, even those that were 
already discoverable using UMR-only pipelines. Supplemental Figure 3A provides examples of the increased 
resolution at selected CTCF UMR-derived peaks after MMR inclusion. 

Schmidt, et al., previously demonstrated that many rodent-specific CTCF binding sites are associated with an 
expansion of SINE B2 elements in the rodent lineage (Schmidt et al. 2012). Since transposable elements are a 
common source of multi-mapped reads, we might expect Allo will lead to the discovery of additional SINE-
associated CTCF binding sites. We thus deployed Allo on the Schmidt, et al., CTCF ChIP-seq datasets from 
human and mouse liver samples. Analysis of Allo-only CTCF peaks shows an enrichment of SINE B2 class 
elements, consistent with the observations of Schmidt, et al. (Supplemental Figure 3B,C). While the pattern of 
SINE binding remained similar between UMR and Allo-only peaks, the use of Allo resulted in 1,652 new 
mouse and 691 new human CTCF binding sites within SINE elements. 

Allo supports the discovery of associations between TFs and repeat families in large scale ChIP-seq analyses 

To broadly survey how an MMR-inclusive pipeline might enable the discovery of additional protein-DNA 
binding events, we re-analyzed 481 ENCODE K562 TF ChIP-seq datasets using Allo. The use of Allo resulted 
in a median increase of 5.86% additional peaks compared with the standard UMR-only pipeline (Figure 7A, 
Supplemental Table 6), yielding the discovery of 385,563 new TF binding sites over the entire collection.  
There were no datasets in which the inclusion of Allo did not result in additional peaks. To evaluate the quality 
of the new peak calls within these datasets, we plotted the distribution of reads at Allo-only peaks in a random 
subset of datasets (Supplemental Figure 4), finding distributions that are characteristic of ChIP-seq peaks. Allo 
leads to an increase in peak read counts across many of the ENCODE datasets (Supplemental Figure 5A). We 
also observed that the Allo-only peaks were widely distributed across the genome (Supplemental Figure 5B), 
suggesting that they are not artefacts of specific chromosomal regions. 

Next, we evaluated the repetitive element content of the newly discovered Allo-only peaks by comparing with 
RepeatMasker (Tarailo-Graovac and Chen 2009) annotated repetitive regions (Supplemental Figure 5C). Allo-
only peaks overlap many repeat element classes at similar rates to UMR-derived peaks. Two exceptions are the 
satellite repeat and retroposon classes, which display higher enrichment rates in Allo-only peaks compared with 
UMR-derived peaks. Satellite repeats are commonly found within centromeric and telomeric regions (Thakur et 
al. 2021) and have been shown to regulate gene expression in eukaryotic organisms (Arunkumar and Melters 
2020; Shatskikh et al. 2020; Horton et al. 2023). To further investigate the association with satellite regions, we 
compared the rates of overlap between Allo-only and UMR-derived peaks and centromeric or telomeric regions 
(Figure 7B, each dot represents the overlap rate of one transcription factor dataset with each annotation type). 
Allo is especially beneficial for finding peaks in centromeres. For many examined TFs, centromeric peaks are 
only discoverable using Allo (Figure 7B, Supplemental Figure 6, Supplemental Figure 7).  

Another possible source of MMRs are segmentally duplicated genes. Roughly 70% of genes in the human 
genome have at least one paralog (Ibn-Salem et al. 2017), and more recent duplications are likely to retain high 
similarity and thus may produce MMRs. As with centromeres, Allo-only peaks are generally more likely than 
UMR-derived peaks to lie nearby or within segmentally duplicated genes (Figure 7B, Supplemental Figure 6, 
Supplemental Figure 7). Thus, Allo may enable new insights into the regulation of recently duplicated genes.  
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Figure 7: The use of Allo results in the discovery of additional peaks in 481 K562 datasets. A) Percentage increase in peaks 
between the Allo-inclusive pipeline and the UMR-only pipeline across 481 ENCODE K562 ChIP-seq datasets. The dotted line 
represents the median increase in peaks (5.8%). B) Percentage overlaps between Allo-only peaks and centromeres, telomeres, 
segmentally duplicated genes, and transposable elements. C) The ratio between Allo-only peak overlap rates and UMR-derived 
peak overlap rates for each transposable element family. D) Log2 read length of each transposable element insertion in hg38, 
grouped according to its respective repeat family.  E) Percentage of insertions within each transposable element subfamily that 
belong to each most recent ancestor. From left to right the overall age increases. F)  Mappability score (UMAP K10069) of 
transposable element insertion sites, grouped according to their respective transposable element family. Mappability values 
equal to one (i.e., fully uniquely mappable) are not included. 
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While Allo-only peaks generally don’t have a higher rate of overlap with transposable elements compared with 
UMR-derived peaks (Figure 7B), two notable outlier families are SVA retroposons and ERVK LTR elements 
(Figure 7C). We saw a similar increase in peaks at LTR elements using the Schmidt, et al., CTCF datasets in 
mouse and human liver samples (Supplemental Figure 3D,E). The top 5 transcription factors within the K562 
datasets that show the highest gains in SVA-overlapping peaks are TAL1, ZNF740, TCF3, CBFA2T2, and 
TCF12 (Supplemental Table 7). Of these, only CBFA2T2 has been previously shown to bind to SVA elements 
(Smallegan et al. 2021). The top 5 transcription factors that show the highest gains in ERVK-overlapping peaks 
are TAL1, TFE3, ZBTB7A, RFX5, and KLF16, none of which have a previous association with ERVK 
elements. To understand why Allo-only peaks are particularly enriched in SVA and ERVK elements, we note 
that these element types are generally longer than members of other transposable element families (Figure 7D). 
They are also among the youngest families of transposable elements (Figure 7E). Longer transposable elements 
are generally less mappable as read lengths are less likely to extend past them into neighboring non-repetitive 
DNA. Likewise, newer insertions should be less mappable as they have had less time to gain mutations with 
respect to their parent copy. Indeed, SVA and ERVK repeats are less mappable than other repeat families 
according to UMAP K100 scores (Figure 7F). Thus, it appears that Allo is particularly useful for finding peaks 
in longer and/or younger transposable elements. 

 

Discussion 

While repetitive elements have long been recognized to play a role in gene regulation (Britten 2010), and 
despite previous efforts to develop MMR allocation tools (Hashimoto et al. 2009; Chung et al. 2011; Shah and 
Ruthenburg 2021), MMRs have not been consistently included in standard regulatory genomics analysis 
pipelines. As a result, many regulatory elements within repeats remain ignored by regulatory genomics 
analyses. A major reason for this exclusion is that existing methods to allocate multi-mapped reads are not 
easily integrated into established analysis pipelines. For instance, the recent SmartMap method produces a 
bedGraph file, making it incompatible with standard pipelines such as those used by ENCODE (Moore et al. 
2020). Older methods, such as MuMRescueLite and CSEM have not been maintained and are no longer 
functional, and they also lacked read-level output. Allo addresses these shortcomings by producing a 
SAM/BAM format alignment file, ensuring compatibility with various downstream analyses. 

Besides increasing basic usability, Allo also outcompetes previous approaches. Random allocation is used 
frequently in pipelines as it is the easiest method to implement; both BWA and Bowtie perform random 
allocation by default. Allo significantly outcompetes random allocation as shown in Supplemental Figure 2A. 
Allo also has greater read assignment accuracy compared with a strategy based entirely on UMR-weighted 
probabilistic mapping of MMRs (similar to the method implemented in MuMRescueLite; Figure 3A), and 
compared with the Bayesian mapping approach implemented in SmartMap (Figure 4A). These comparative 
results demonstrate the advantages of Allo’s integrated neural network peak classifier, which aims to take 
advantage of UMR distribution shapes in alternate mapping locations.  

To emphasize the importance of including multi-mapped reads in ChIP-seq analyses, we analyzed 481 
ENCODE datasets using Allo. The average total peak number increase was 15.7% (Figure 7A), resulting in the 
identification of thousands of additional peaks in many of the samples. Five datasets in this sample actually 
doubled their peak numbers after the inclusion of Allo, including BRCA1, a well-known tumor suppressor gene 
(Fu et al. 2022) (Supplemental Table 6). In analyzing specific repeat element family associations (Figure 7C), 
we also identified several other TFs involved in cancer progression, including TAL1 (Sanda and Leong 2017), 
TCF3 (Gui et al. 2021), CBFA2T2 (Chen et al. 2017), TCF12 (Yang et al. 2019), ZBTB7A (Singh et al. 2021), 
RFX5 (Guo and Liu 2022), and KLF16 (Bang et al. 2020) (Supplemental Table 7). We additionally found that 
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Allo was especially important for the discovery of binding sites in longer and younger transposable elements 
(Figure 7C,D,E). Previous studies have identified primate-specific enhancers that may have contributed to the 
evolutionary development of humans (Uebbing et al. 2021; Klein et al. 2018). Enhancers that arose from 
repetitive elements are less likely to be categorized in these types of studies due to issues with multi-mapped 
read inclusion. Thus, Allo could be used to further study the regulatory contributions of transposable elements 
in an evolutionary context.  

Finally, we highlight the importance of including multi-mapped reads in the context of centromeric satellite 
repeats and recently duplicated genes (Figure 7B). One caveat that applies to our analyses of satellite repeats is 
related to the limitations of genome assemblies. If satellite repeats were not sufficiently represented on the hg38 
genome assembly, annotated copies could become a “sink” for allocated reads, thereby producing artefactual 
peak signals. While we are confident that the Allo-only peaks discovered at centromeres display the shape 
properties of valid ChIP-seq peaks (e.g., Supplemental Figure 6, Supplemental Figure 7), this issue remains a 
potential concern. The new Telomere-to-Telomere (T2T) genome assembly (Vollger et al. 2022) has more 
accurately sequenced and annotated satellite repeats, segmental duplications, and repetitive regions more 
broadly. In combination with Allo’s allocation of MMRs, the T2T genome may thus provide even greater 
abilities to map regulatory elements at repetitive regions of the genome. 

Together, the results of this work suggest that rescuing multi-mapped reads with Allo should be employed in the 
analysis of all regulatory genomics datasets, even those without prior hypotheses tied to repetitive regions. The 
inclusion of MMRs in future analyses will provide greater insight into regulatory activities at these overlooked 
areas of the genome. 

 

Methods 

Datasets 

All ChIP-seq and ATAC-seq training and testing datasets were obtained from publicly available databases 
including ENCODE and NCBI. Supplemental Table 1 lists the IDs for datasets used in training Allo’s CNN. 
Supplemental Table 2 lists the IDs of all datasets used for testing. Supplemental Table 6 lists the IDs of all 
K562 datasets extracted from ENCODE in our large exploratory analysis.  

Percentage of multi-mapped reads 

To find the percentage of multi-mapped reads in ENCODE datasets, all FASTQ files were aligned using Bowtie 
2 (Langmead and Salzberg 2012) v2.5.0 and multi-mapping rates were extracted from the output of Bowtie 2 
upon alignment. Paired and single-end datasets were separated and plotted with ggplot2 (Valero-Mora 2010).  

Convolutional neural network training and testing set generation 

To train and test the neural networks, we first obtained 59 datasets from both ENCODE and NCBI from a 
mixture of assay types including ChIP-seq, ATAC-seq, and DNase-seq. 19 of the human ChIP-seq datasets 
were used to train the narrow and mixed peak neural networks (Supplemental Table 1). The remaining 40 
datasets were used for testing the neural networks as well as testing the allocation accuracy (Supplemental 
Table 2). The datasets were aligned to hg38 for human datasets, mm10 for mouse datasets, dm6 for D. 
melanogaster datasets, TAIR10 for A. thaliana datasets, ce10 for C. elegans datasets, and sacCer3 for S. 
cerevisiae datasets using Bowtie (Langmead et al. 2009) v1.0.0 with the arguments “--best --strata -m 1 -k 1 --
chunkmbs 1024”. These alignments represent our full-length read set and MACS2 (Zhang et al. 2008) v2.2.7.1 
was used to call peaks with all default parameters, generating our ground truth peaks. We next artificially 
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shortened these reads from the 3’ end using cutadapt (Martin 2011) v.4.2 with the parameters “-l 30” for testing 
datasets and we used a mixture of cut sizes for the training set (Supplemental Table 1).  

In the case of testing different trimming lengths, we used cutadapt with the same “-l” parameter but adjusted the 
value based on the total length of the read and our desired trimming percentage. We chose a random subset of 
datasets, two from each organism tested, to analyze in this way. For alignment, we used Bowtie instead of 
Bowtie 2 due to Bowtie’s ability to align very short reads more accurately after this artificial trimming. Next, 
we aligned the artificially shortened reads to each respective genome. For the UMR samples, we used the 
following arguments “--best --strata -m 1 -k 1 --chunkmbs 1024”. For the MMR samples, the arguments were: 
“--best --strata -m 25 -k 25 --chunkmbs 1024”. We then used Allo’s parser utility (argument --parser) to 
separate out the UMRs and MMRs in the shortened samples.  

To find the 5’ read counts within these peaks and background regions, we created a custom script named 
“cnn_training_gen.py” (available in the Allo GitHub repository and the Supplemental Code). The user must 
supply the script with four arguments: the alignment (SAM) file; a BED file of peak regions; a BED file of 
background regions; and the output name. To make the positive and negative BED files, we first took the MMR 
only artificially shortened SAM file (output of Allo’s parser utility) and converted it into a BED file. We then 
overlapped this BED file using BEDTools (Quinlan and Hall 2010) v2.27.1 intersect -u with the ground truth 
peak file. This gave us the positive regions. For the negative regions, we used BEDTools intersect -v to find 
areas with MMRs that did not overlap ground truth peak regions. These regions have different lengths but this is 
corrected to +/-250bp from the midpoint within the Python script. Additionally, the Python script also corrects 
the negative set size by only outputting an equal number to the positive set. The output is a text file with comma 
separated arrays of 5’ read counts in 500bp windows around the positive and negative regions. To obtain the 
auROC of each dataset, “metrics.roc_auc_score” from scikit-learn (Pedregosa et al. 2018) was used. The bash 
script for this entire pipeline can be found in the Allo GitHub repository and the Supplemental Code named 
“cnn_training_examples.sh”. The same script was used to generate the testing sets.  

Convolutional neural network architecture and training 

The two neural networks used in Allo’s allocation algorithm are image based CNNs. To convert the 5’ read 
count text files explained in the above section into images, we used a custom Python function. This function can 
be found on the Allo GitHub repository and the supplemental code folder within the first code block of the 
Python markdown file “Narrow_train.ipynb”. Both neural networks have similar architectures (Supplemental 
Figure 1B) and were trained using Tensorflow (Abadi et al.) v2.11.0. The optimizer used was Adam, the batch 
size was 500, and the loss function used was binary crossentropy. The specific code used to train the neural 
networks can be found on the Allo GitHub repository and the Supplemental Code under files named 
“Narrow_train.ipynb” and “Mixed_train.ipynb”.  

Allo allocation algorithm 

Allo’s algorithm has two main phases. The first phase is the pileup of uniquely-mapped reads within the 
genome. To do this, Allo first loops through the alignment file and parses uniquely mapped and multi-mapped 
reads. Depending on the aligner used, alignment files can contain locations that do not have the highest 
alignment score and thus require extra parsing. In addition, Allo identifies the correct pairs when using paired-
end sequencing data. When Allo encounters a uniquely-mapped read, it adds it to a Python dictionary. The keys 
are the locations on the genome and the values are the 5’ read counts in that specific location. A dictionary was 
used to increase the speed of data acquisition to create images of various regions on the genome in phase II. For 
paired-end reads, only the first read in each pair is used to construct this dictionary. The second in pair can be 
used instead through the argument “--r2”. Also, during this phase, temporary files are constructed from multi-
mapped reads. 
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In phase II, the multi-mapped reads in the temporary files are allocated. Allo analyzes one read at a time by 
grouping it with its possible locations. Two vectors are constructed. The first vector contains the total read 
count in 500bp windows (+/- 250bp) around each location. In this vector, a pseudocount of 1 is added to all 
location UMR counts so that locations without UMRs are still considered. The second vector contains the 
output of the sigmoid function from Allo’s neural network. The 5’ read counts in 500bp windows around each 
read location are converted to a 100´100 bitmap matrix (representing the peak “image”) using the dictionary 
described above and a custom script to bin the counts. This script can be found on the Allo GitHub repository 
and the Supplemental Code within the file “Narrow_train.ipynb”. After constructing the image matrix, it is fed 
through the neural network and the results are stored in the vector above. The result is two vectors with each 
index corresponding to a mapping location of the read being analyzed. These vectors are then multiplied 
together to get a final score vector. The final score vector is then normalized by dividing all entries by the 
vector sum, giving the final probabilities. The choice function in Python is then used to select the location based 
on the final probabilities. 

To increase the speed of Allo’s algorithm, a few extra steps were employed. Firstly, Allo stores previously 
analyzed regions in a dictionary as reanalysis slowed down Allo considerably. In addition, Allo does not create 
an image matrix for regions with 0 read counts as the result will be consistent across these regions. Rather, it 
stores the value for 0 count regions once. These regions are stored as NULL in the dictionary above. Finally, 
Allo also does not create an image matrix for regions containing fewer than 3 reads. The reasoning behind this 
was similar as described for 0 count regions. When we created 1 million randomized regions with 3 reads in a 
500bp window, the results were very similar from the neural network across the many images. We believe this 
is because low read depth regions do not have sufficient resolution that enables Allo’s neural network to make 
useful predictions. The average score across 1 million random 3-count regions was 0.0062 with a standard 
deviation of 0.00211 from the final sigmoid function. This average value is thus pre-defined as the neural 
network output for all regions with 3 or fewer total read counts. 

Read allocation accuracy 

To measure the allocation accuracy of various methods, we needed to create a peak set that contained multi-
mapped reads but had a ground truth read count. FASTQ files were downloaded from ENCODE for 40 
experiments (Supplemental Table 2). To avoid problems with mixing single and paired-end data, experiments 
that were paired-end were treated as single-end by only utilizing the first read file (this is only for the purposes 
of accuracy testing; Allo can properly handle paired-end data as described above). All files were aligned using 
Bowtie v1.0.0 with the parameters “--best --strata -m 1 -k 1 --chunkmbs 1024”. Bowtie v1 was used because of 
its higher accuracy in aligning very short reads. The reads were then artificially shortened from the 3’ end using 
cutadapt v4.2 with the parameters “-u -LENGTH”. Read lengths for all testing datasets were trimmed to 30bp. 
The shortened reads were then aligned with Bowtie v1.0.0 using the same parameters as above. The full-length 
alignments were used to call peaks using MACS2 v2.7.1 on all default parameters. This became the ground 
truth peak set. Using BEDTools v2.27.1 intersect, we extracted the reads in the full-length dataset that fell 
within the ground truth peaks. This gave us our final ground truth alignment file needed for comparisons. 

Allo (default), Allo (--read-count) and Allo (--random) were then used to allocate the reads in the artificially 
shortened samples. The locations of these allocations were compared to the alignment file from the full-length 
dataset. Accuracy percentages were simply calculated from the total number of correctly allocated reads divided 
by the total number of MMRs in the sample. The full script for this calculation, including an example from 
ENCODE, is available on the Allo GitHub and the Supplemental Code named “read_acc.sh”. Complete 
accuracy results are shown in Supplemental Table 8. 
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SmartMap comparison 

Read depth percent error 

The subset of testing datasets that used paired-end sequencing were used to compare accuracy with SmartMap 
(Supplemental Table 2). Paired-end reads were aligned with Bowtie 2 v2.5.0 to hg38 using the arguments “-k 
25 --no-mixed --no-discordant”. UMRs were extracted from the resulting alignment files using the parser utility 
in Allo (--parser). These UMRs were then used to get ground truth peak locations using MACS2 v2.7.1 with the 
“-f BAMPE” argument. We next artificially shortened these reads from the 3’ end using cutadapt v4.2 with the 
parameters “-l 30”. The use of Bowtie 2 in this section was due to its ability to more accurately map paired-end 
reads even with the pitfall of it being less accurate for short read lengths. We then used the bash join function to 
extract MMRs from the shortened sample that had a ground truth in the full-length sample. Many of the MMRs 
in the shortened samples were also MMRs in our ground truth full-length sample and we wanted to avoid using 
these in our final calculations. The resulting alignment files were then analyzed by both SmartMap and Allo. To 
use an alignment file with SmartMap’s prep script, we had to make some modifications. The modified version 
of this script can be found on the Allo GitHub and the Supplemental Code under the name “sm_prep.sh”. To 
convert the Allo output to a bedGraph file, we used BEDTools v2.27.1 bamtobed -bedpe and then BEDTools 
genomecov -bga. We used this same conversion on the ground truth full-length alignment file.  

To get the read depth within peaks, we used BEDTools map with the arguments “-c 4 -o mean -null "0"”, where 
the counts were generated over the peaks identified by MACS2 in the full-length datasets. The percentage 
mapping error was then calculated for each peak and the average was taken for each sample. An example script 
of this pipeline is available on the Allo GitHub and the Supplemental Code named “smartmap_compare.sh”. 

FRiP score calculation 

To calculate the FRiP scores, BEDTools v2.27.1 intersect -u was used to find the overlap between peaks called 
by MACS2 in the sample and the associated alignment files. SAMtools (Li et al. 2009) v1.16.1 view -c was 
then used to get the number of reads within this overlap. This number of reads was then divided by the total 
number of reads to calculate the FRiP score for each specific sample.  

Performance metrics 

CPU usage, execution time, and RAM usage were all tested on Intel Xeon Gold 6226R CPUs with a processing 
speed of 2.90GHz. We ran Allo using various numbers of processes (1, 2, 4, and 6) as well as SmartMap using 
the simulated datasets from the above section. We normalized values to get the metrics per 1 million reads, 
making the performance metrics comparable across datasets. The mean was calculated from all simulated 
datasets and is shown in Figure 4D.  

ChIP-seq simulations 

Paired-end human ChIP-seq data was simulated using the ChIPOverlapReadSimulator module in ChExMix 
v0.5 (Yamada et al. 2020). Peak strengths were taken from an ENCODE K562 CTCF dataset (experiment ID: 
ENCSR000EGM). The peak distribution file used was that of CTCF and can be acquired at the following URL: 
https://lugh.bmb.psu.edu/software/multigps/support/ctcf_chipseq.distrib.txt. BEDTools v2.27.1 random was 
used to get random locations within the hg38 genome to simulate peaks. In order to increase the number of 
multi-mapped reads in peaks, we used BEDTools intersect with the hg38 RepeatMasker (Tarailo-Graovac and 
Chen 2009) annotation to further select peak locations. The arguments used for the simulator were “--c 1 --r 1 --
a 0.0 --up 0.0 --down 0.0 --frags 5000000 --reads 10000000 --paired”. We varied both the read length and noise 
in the simulation. Following simulation, reads were aligned with Bowtie 2 v2.5.0 to hg38 using the arguments 
“-k 25 --no-mixed --no-discordant”. This allowed us to get alternative locations for all simulated reads. 
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Following this, both Allo and SmartMap were deployed on the resulting alignment file. The procedure to 
compare median percent error is identical to that described in the above section “Read depth percent error”. 
Simulations were performed 10 times for each noise and read length shown in the text and the median percent 
error was calculated. 

Mappability calculations 

GenMap v1.3.0 was used to find the uniquely mappable regions in hg38 (Pockrandt et al. 2020). Various k-mer 
sizes were tested, matchin those used in the ChIP-seq simulations (20, 30, 70, 90, 110, and 150bp). To find the 
unmappable regions, BEDTools v2.27.1 complement was used on the resulting bedGraph file. The median 
value for each k-mer length was calculated using the length of each unmappable window in the genome based 
on the bedGraph output plus the k-mer length. 

CTCF analysis 

Alignment and peak calling 

FASTQ files for CTCF in K562 were downloaded from ENCODE. Samples files were ENCFF000YLW and 
ENCFF000YLY. The control file used was ENCFF000YRB. Reads were aligned using Bowtie v1.0.0 to hg38 
with the arguments “--best --strata -m 25 -k 25 --chunkmbs 1024”. Reads were allocated using Allo with default 
parameters. We extracted the UMRs using grep against the ZA and ZZ tags from Allo. We then called peaks on 
the UMR alignment file as well as the Allo alignment files using MACS2 v2.7.1 with default parameters. Peaks 
were called on the replicates separately and overlapping peaks between the replicates found using BEDTools 
v2.27.1 intersect -u were used as the peak sets. BEDTools intersect -v was used to identify peaks only 
discovered via Allo.  

Heatmap and profile plot 

Both the heatmap and the profile plot were created using deepTools (Ramírez et al. 2016) v3.5.1. The 
bamCoverage function was used to create bigWigs from each of the alignment files. We used the RPKM 
normalization argument. To check that this normalization was valid for our specific datasets, we plotted profile 
plots of random regions using BEDTools v2.27.1 random. We used the computeMatrix function with the 
arguments “--referencePoint center -a 1000 -b 1000” before plotting.  

Motif identification and scanning 

Using BEDTools v2.27.1 getFasta with hg38, we extracted sequences for all peaks represented in the UMR 
sample as well as Allo-only peaks. We then input these sequences into MEME-ChIP v5.3.3 with the arguments 
“-meme-nmotifs 5 -minw 5 -maxw 20”. The motifs in Figure 5B,C were those with the lowest p-values. 
Centrimo (Bailey and Machanick 2012) in MEME-ChIP was used to create probability plots for the CTCF 
motif in each region.  

TAD overlap 

The locations of TADS were downloaded from the 3D Genome Browser for K562, specifically the dataset from 
Rao et al. (2014) (Rao et al. 2014). We then used these TAD locations to create a BED file of TAD boundaries 
which we considered as within 50kb of either end of each TAD. This file was then intersected with UMR peak 
calls and Allo-only peak calls using BEDTools v2.27.1 intersect -u. Figures were constructed using 
pyGenomeTracks (Lopez-Delisle et al. 2021) v3.8. 

UMR and MMR count comparison 
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BEDTools v2.27.1 multicov was used to calculate read counts at Allo-only peaks and UMR peaks. The BAM 
files used were concatenated files from both CTCF biological replicates. The data was then plotted using 
ggplot2 with geom_bin2d and a continuous scale with a log2 transformation. 

CTCF analysis in mouse and liver samples 

ChIP-seq datasets for CTCF in mouse and liver samples were taken from the Schmidt, et al., study under the 
ArrayExpress accession numbers E-MTAB-437 and E-MTAB-424 (Schmidt et al. 2012). Bowtie 2 v.2.5.1 was 
used to align the datasets with the parameter “-k 25”. The human dataset was aligned to hg38 and the mouse 
dataset was aligned to mm10. Multi-mapped reads were allocated with Allo using the default settings. Peaks 
were called with MACS2 v2.7.1 with default settings. BEDTools v2.27.1 intersect -u was used to find the 
fraction overlaps between each dataset and their corresponding RepeatMasker v4.1.3 annotation file.  

ENCODE K562 analysis 

Alignment and peak calling 

We analyzed the ENCODE public database, focusing specifically on ChIP-seq experiments in K562 cells. From 
774 qualifying experiments (retrieval date Feb. 2023), we selected 481 based on the criteria that the dataset had 
at least one replicate, had a control file, no major audits from ENCODE, and resulted in non-zero peak calls in 
the UMR sample using our pipeline. We also only analyzed one dataset per transcription factor, which was 
randomly selected from the selection of those available. We retrieved FASTQ files for both single- and paired-
end experiments. Replicates were concatenated and aligned using Bowtie 2 v.2.5.1, reporting 25 valid 
alignments per read with parameters “--no-mixed --no-discordant” for paired-end reads. The alignments were 
sorted using SAMtools v1.16.1 collate. We employed Allo on the sorted alignments to obtain rescued reads. For 
control experiments, reads were randomly assigned during Allo processing (--random). Following alignment 
and rescue, peaks were subsequently identified using MACS2 v2.7.1, with the argument “-f BAMPE” for 
paired-end experiments. ENCODE blacklist regions were excluded using BEDTools v2.27.1 intersect -v. A list 
of all ENCODE datasets used can be found in Supplemental Table 6. 

Read depth at peak summits 

Peak summit depths were summed across all peaks after MACS2 peak-calling on UMR and Allo data. Each dot 
in Supplemental Figure 5A represents one dataset. 

Chromosomal locations of Allo-only peaks 

The Allo-only peaks were concatenated together for all K562 datasets tested. We removed peaks located in 
regions outside of the canonical chromosomes. Next, we created a matrix in which the columns corresponded to 
the chromosomes and the rows corresponded to bins the size of 1 million base pairs along the chromosomes. All 
peaks within these bins across all K562 datasets were added together to get a total value of peaks within each 
bin. This matrix was normalized to Z-scores using the scale function in R. Finally, the bins were plotted as a 
heatmap using pheatmap (Kolde 2019) v1.0.11, filling in regions outside of chromosomes with NA values. 

Profile plots and genome browser images 

15 transcription factors were randomly selected as well as 5 transcription factors with the highest increase in 
overlap for each annotation we analyzed (transposable elements, centromeres, and segmentally duplicated 
genes). Thus, there were 30 datasets total. Datasets in which there were fewer than 50 total peak calls were not 
included in this analysis. For the randomly selected transcription factors, we plotted read counts at all Allo-only 
peaks. For the transcription factors that overlapped a specific region type, we only plotted read counts at Allo-
only peaks that overlapped those regions. The profile plots were created using deepTools v3.5.1. The 
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bamCoverage function was used to create bigWigs from each of the alignment files. We used the RPKM 
normalization argument. We used the computeMatrix function with the arguments “--referencePoint center -a 
1000 -b 1000” before plotting. 

For the genome browser images, we selected two datasets from each annotation group for viewing. We plotted 
random Allo-only peaks within the enriched annotation using PyGenomeTracks v3.8 and the bigWigs we 
created using deepTools above.  

Overlap with transposable elements classes and families 

The RepeatMasker annotation file v4.1.3 was used to define locations of repetitive element classes and families 
in hg38. Centromere and telomere annotations were extracted from the UCSC Genome Browser hg38 
annotations using the tracks “centromeres” and “gap” respectively (retrieved April 2024). From the “gap” track, 
telomeres were extracted specifically. The Telomere-to-Telomere (T2T) genome (Vollger et al. 2022) 
annotations were used to define genes that are contained in segmental duplications, and their coordinates in 
hg38 were found by using their Ensembl IDs against the hg38 GENCODE GFF3 file (v29). BEDTools v2.27.1 
intersect -u was used to find the overlaps between each ENCODE peak dataset and each repeat type. Overlaps 
with segmentally duplicated genes were defined as directly overlapping or within 1 kbp of the gene body. The 
fraction overlaps were then plotted as a boxplot using ggplot2.  

Transposable element dating 

We used data from Simonti et al. (Simonti et al. 2017), which identified the most recent common ancestor for 
each transposable element subfamily. We used the RepeatMasker hg38 file to identify the locations of the 
transposable elements. BEDTools v2.27.1 intersect -u was used to find the fraction overlap between Allo-only 
peaks and UMR-derived peaks for each common ancestor. 

Transposable element mappability scores and lengths 

A bedGraph file containing UMAP100 (Karimzadeh et al. 2018) uni-read scores for hg38 was downloaded from 
the Hoffman laboratory website found at “https://bismap.hoffmanlab.org/” To get the average score across each 
transposable element insertion, BEDTools v2.27.1 coverage was used. The UMAP K100 bedGraph file contains 
regions of the genome in which at least one k-mer is uniquely mappable. The fraction of base pairs that 
intersected the UMAP100 bedGraph file for each insertion site was used as a measure of mappability. 
Mappability scores were then binned in 0.1 length intervals in order to see the striation of the data better. These 
mappability bins along with the subfamilies were subsequently plotted using ggplot2. The lengths of the 
repetitive elements were calculated for each insertion by subtracting the stop coordinate of the RepeatMasker 
BED file from the start coordinate. These values were grouped by repetitive element family and plotted using 
ggplot2.  

 

Software Availability 

Allo is available under an open-source license (MIT license) from https://github.com/seqcode/allo. Allo can 
also be installed from PyPI using "pip install bio-allo" at the command line. Allo is also available as a bioconda 
package: https://anaconda.org/bioconda/allo. Instructions on usage can be found in the above GitHub 
repository. The version of Allo used in this study is archived as Supplemental Code. 
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Data Availability  

Datasets used in this manuscript were extracted from publicly available sources. Information on the datasets 
downloaded can be found in Supplemental Table 1, Supplemental Table 2, and Supplemental Table 6. 
MACS2 peak calls (both UMR and Allo pipelines) can be found for all K562 datasets under the following DOI: 
https://doi.org/10.6084/m9.figshare.25977160 
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Supplemental Figures 

 

 
Supplemental Figure 1: A) Percentage of multi-mapped reads in 481 K562 ChIP-seq datasets, given read length and 
sequencing type (paired-end or single-end). Sequencing type is indicated by color. B) Architecture of Allo’s convolutional 
neural network. The structure is the same for both the narrow and mixed peak CNNs. C) auROC values of Allo’s neural 
networks across various species. D) auROC values from a selection of the testing datasets at different lengths after 
artificial trimming. There are two transcription factors represented per organism tested. The read length of the original 
dataset is listed in parentheses beside the name of the transcription factor.  

  



 

Supplemental Figure 2: A) Comparison between Allo’s read allocation accuracy and random read allocation accuracy. 
Color indicates the FRiP score of the full-length dataset. Shapes indicate the assay examined in each sample. B) 
Comparison between Allo’s read allocation accuracy and the proportional increase read counts due to multi-mapped reads 
(when datasets are trimmed to 30bp). The size of the dots indicate the starting read length of the datasets before trimming. 
The color indicates source species. C) Median percent error of Allo and SmartMap compared with the simulated noise 
level used during ChIP-seq data simulation. Color indicates software used for allocation. D) Median percent error of Allo 
and SmartMap compared with the simulated read length in basepairs. Color incudes software used for allocation. E) 
Median length of unmappable regions in hg38 at different lengths of k-mers. F) Computational performance comparisons 
between Allo using various numbers of processes and SmartMap. Values given are per 1 million reads allocated. 



 

Supplemental Figure 3: A) Genome browser screenshots at locations of K562 CTCF UMR-derived peaks that increased 
in resolution after the inclusion of Allo-allocated multi-mapped reads. “UMR” tracks display only uniquely-mapped reads, 
while “Allo” tracks display both uniquely-mapped and Allo-allocated multi-mapped reads. B,C) Fraction of overlap with 
repetitive element subfamilies in UMR CTCF peaks and Allo-only CTCF peaks in mouse (B) and human (C) datasets. 
Top 10 subfamilies with the highest overlaps are shown. Color indicates Allo-only or UMR peak sets.   



 

Supplemental Figure 4: Profile plots before and after the inclusion of Allo within Allo-only peaks in 15 randomly chosen 
K562 TF ChIP-seq datasets. Grey lines represent uniquely mapped read counts only and blue lines represent the inclusion 
of Allo-allocated MMRs. 

 

 



 

Supplemental Figure 5: A) Comparison between the total read pileup count at peaks before and after the inclusion of 
Allo on 481 K562 ChIP-seq datasets. B) Locations of Allo-only peaks across 481 K562 ChIP-seq samples, normalized by 
Z-score. Each bin represents a 1 million base pair window. Color indicates the magnitude of the Z-score after 
normalization. C) The fraction of overlap of Allo-only peaks with specific repetitive element classes divided by the 
fraction of overlap of UMR-derived peaks at the same repetitive element classes. D,C) The fraction of overlap in Allo-
only CTCF peaks versus UMR CTCF peaks in repetitive element subfamilies in mouse and human datasets. Top 10 
subfamilies with the highest ratio are shown. Color indicates the repetitive element class.   



 

Supplemental Figure 6: Profile plots before and after the inclusion of Allo within Allo-only peaks that overlap: A) 
transposable elements; B) centromeric satellite repeats; and C) segmentally duplicated genes. Grey lines represent 
uniquely mapped read counts only and blue lines represent the inclusion of Allo-allocated MMRs. 

  



 
Supplemental Figure 7: Genome browser screenshots at randomly selected Allo-only peaks that overlapped various 
genomic regions including: A) transposable elements; B) segmentally duplicated genes; and C) centromeric satellite 
repeats. Grey tracks represent uniquely mapped read counts only and purple tracks represent the inclusion of Allo-
allocated MMRs.  
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