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ABSTRACT

The emerging machine learning paradigm of decentralized feder-
ated learning (DFL) has the promise of greatly boosting the de-
ployment of arti�cial intelligence (AI) by directly learning across
distributed agents without centralized coordination. Despite signif-
icant e�orts on improving the communication e�ciency of DFL,
most existing solutions were based on the simplistic assumption
that neighboring agents are physically adjacent in the underlying
communication network, which fails to correctly capture the com-
munication cost when learning over a general bandwidth-limited
network, as encountered in many edge networks. In this work, we
address this gap by leveraging recent advances in network tomog-
raphy to jointly design the communication demands and the com-
munication schedule for overlay-based DFL in bandwidth-limited
networks without requiring explicit cooperation from the under-
lying network. By carefully analyzing the structure of our problem,
we decompose it into a series of optimization problems that can each
be solved e�ciently, to collectively minimize the total training time.
Extensive data-driven simulations show that our solution can signif-
icantly accelerate DFL in comparison with state-of-the-art designs.

CCS CONCEPTS

•Computingmethodologies→Machine learning; •Networks

→ Overlay and other logical network structures.

KEYWORDS

Decentralized federated learning, network tomography, overlay
routing, mixing matrix design.

ACM Reference Format:

Yudi Huang, Tingyang Sun, and Ting He. 2024. Overlay-based Decen-

tralized Federated Learning in Bandwidth-limited Networks . In Interna-

tional Symposium on Theory, Algorithmic Foundations, and Protocol De-

sign for Mobile Networks and Mobile Computing (MobiHoc ’24), October

∗Both authors contributed equally to the paper. This work was supported by the
National Science Foundation under award CNS-2106294 and CNS-1946022, and has
also received funding from The Pennsylvania State University, USA, and the Indian
Institute of Science, India.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

MobiHoc ’24, October 14–17, 2024, Athens, Greece

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0521-2/24/10. . . $15.00
https://doi.org/10.1145/3641512.3686364
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1 INTRODUCTION

As a new machine learning paradigm, decentralized federated learn-
ing (DFL) [20] allows multiple learning agents to collaboratively
learn a shared model from the union of their local data without
directly sharing the data. To achieve this goal, the agents repeatedly
exchange model updates with their neighbors through peer-to-peer
connections, which are then aggregated locally [16]. Since its intro-
duction, DFL has attracted signi�cant attention, because compared
to centralized federated learning (FL) [25], DFL can avoid a single
point of failure and reduce the communication complexity at the
busiest node without increasing the computational complexity [20].

Meanwhile, FL including DFL faces signi�cant performance chal-
lenges due to the extensive data transfer. Although the training
data stay local, the agents still need to communicate frequently
to exchange local model updates, which often incurs a nontrivial
communication cost due to the large model size. Such communi-
cation cost can dominate the total cost of the learning task, e.g.,
accounting for up to 90% of time in cloud-based FL [23], and the
problem is exacerbated in other networks that are more bandwidth-
limited (e.g., wireless mesh networks [4]). This issue has attracted
tremendous interests in reducing the communication cost, includ-
ing compression-based methods for reducing the amount of data
per communication such as [17] and methods for reducing the num-
ber of communications through hyperparameter optimization such
as [5, 32, 33] or adaptive communications such as [30].

However, most existing works made the simplistic assumption
that each pair of logically adjacent agents are also physically ad-
jacent in the underlying communication network. This is not true
in overlay-based DFL, where the connections between logically
adjacent agents (i.e., overlay links) can map to arbitrary routing
paths in the underlying communication network that may share
links (i.e., underlay links). For example, a set of learning agents
{�, �,�, �} may have the physical connectivity in Fig. 1a and the
logical connectivity in Fig. 1b. Although connections (�, �) and
(�, �) appear disjoint in the overlay, they actually map to paths
sharing link (ℎ1, ℎ2) in the underlay. Ignoring such link sharing
can cause incorrect prediction of the communication time, because
concurrent communications over connections with shared links can
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take longer than stand-alone communication on each of them, and
the problem can be exacerbated by heterogeneous capacities and
background loads at underlay links. Most existing works ignored
such complications by assuming the communication time to be
proportional to the maximum number of neighbors an agent com-
municates with [5, 9, 19, 32], which generally leads to suboptimal
designs in the case of overlay-based DFL.

We want to address this gapwithout requiring explicit cooperation
from the underlay network, i.e., the agents can neither directly ob-
serve the internal state of the underlay (e.g., routing topology, link
capacities) nor control its internal behavior. Such scenarios arise
naturally when the agents are interconnected by a public network.
In particular, we are interested in running DFL over bandwidth-
limited networks, which models many application scenarios such
as HetNets [4], device-to-device networks [34], IoT networks [28],
underwater networks [27], and power line communication net-
works [13]. In contrast to high-bandwidth networks such as inter-
datacenter networks [24], bandwidth-limited networks are more
sensitive to communication demands generated by DFL and are
thus in greater needs of proper designs. To this end, we propose
an optimization framework for overlay-based DFL that jointly de-
signs the communication demands and the communication schedule

within the overlay, without explicit cooperation from the underlay.
Building upon recent advances in network tomography [10] and
mixing matrix design [5], we cast the problem into a set of tractable
optimizations that collectively minimize the total time in achieving
a given level of convergence.

1.1 Related Work

Decentralized federated learning. Initially proposed under a cen-
tralized architecture [25], FL was later extended to a fully decentral-
ized architecture [20], which was shown to achieve the same compu-
tational complexity but a lower communication complexity. Since
then a number of improvements such as [21] have been developed,
but these works only focused on reducing the number of iterations.

Communication cost reduction. There are two general
approaches for reducing the communication cost in FL: reducing
the amount of data per communication through compression,
e.g., [17], and reducing the number of communications,
e.g., [33]. The two approaches can be combined for further
improvement [30]. Instead of either activating all the links
or activating none, it has been recognized that better e�ciency
can be achieved by activating subsets of links. To this end, [30]
proposed an event-triggered mechanism and [5, 32] proposed to
activate links with predetermined probabilities. In this regard, our
work designs predetermined link activation as in [5, 32], which
provides more predictable performance than event-triggered
mechanisms, but we consider a cost model tailored to overlay-based

DFL: instead of measuring the communication time by the number
of matchings [5, 32] or the maximum degree [9, 19], we evaluate
the minimum time to complete all the activated agent-to-agent
communications over a bandwidth-limited underlay, while taking
into account heterogeneous capacities and possibly shared links.

Topology design in DFL. The logical topology de�ning the
neighborhoods of learning agents is an important design parameter
in DFL that controls the communication demands during training.

The impact of this topology on the convergence rate of DFL has been
mostly captured through the spectral gap of the mixing matrix [15,
20, 26] or equivalent parameters [32]. Although recent works have
identi�ed other parameters that can impact the convergence rate,
such as the e�ective number of neighbors [31] and the neighbor-
hood heterogeneity [19], these results just pointed out additional
factors and did not invalidate the impact of spectral gap. Based on
the identi�ed convergence parameters, several solutions have been
proposed to design the logical topology to balance the convergence
rate and the cost per communication round [5, 19, 32], and some
solutions combined topology design with other optimizations (e.g.,
model pruning [15]) for further improvement. In this regard, our
work also includes topology design based on a parameter related to
the spectral gap, but we explicitly consider the communication sched-

ule to serve the demands triggered by the designed topology over a

bandwidth-limited underlay to optimize the overall wall-clock time
of overlay-based DFL. To our knowledge, the only existing work
addressing overlay-based DFL is [24]. However, it assumed a special
underlay where the paths connecting learning agents only share
links at the �rst and the last hops, whose capacities are assumed to
be known. While this model may suit high-bandwidth underlays
such as inter-datacenter networks, it fails to capture the communica-
tion cost in bandwidth-limited underlays as addressed in our work.

Network-aware distributed computing. It was known that
awareness to the state of the communication underlay is important
for data-intensive distributed computing tasks [23]. Several works
attempted to solve this problem in the context of cloud networks,
assuming either a black-box network [23] or a white-box network
[3]. In this regard, our work assumes a black-box underlay as in
[23], but unlike the simple heuristics used in these works, we lever-
age state-of-the-art techniques from network tomography [10] to
estimate the necessary parameters about the underlay.

1.2 Summary of Contributions

We jointly design the communication demands and the com-
munication schedule for overlay-based DFL in a bandwidth-limited
uncooperative underlay, with the following contributions:

(1) We consider, for the �rst time, communication optimization
in DFL on top of a bandwidth-limited underlay network with
arbitrary topology. To this end, we propose a general frame-
work for jointly designing the communication demands and
the communication schedule (e.g., routing, rates) among the
learning agents, without cooperation from the underlay.

(2) We tackle the complexity challenge by decomposing the
overall problem into a series of smaller subproblems, that
are collectively designed to minimize the total training time
to achieve a given level of convergence. Through carefully
designed relaxations, we convert each subproblem into a
tractable optimization to develop e�cient solutions.

(3) We evaluate the proposed solution in comparisonwith bench-
marks based on real network topologies and datasets. Our
results show that (i) our design of the communication de-
mands can already reduce the training time substantially
without compromising the quality of the trained model, (ii)
our design of the communication schedule further increases
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the improvement, and (iii) the observations remain valid
under realistic inference errors about the underlay.

Roadmap. Section 2 describes our overall problem, Section 3
presents our solution and analysis, Section 4 presents our perfor-
mance evaluation, and Section 5 concludes the paper. All the

proofs can be found in [12, Appendix A].

2 PROBLEM FORMULATION

2.1 Notations

Let a ∈ R< denote a vector and G ∈ R<×< a matrix. We
use ∥a∥ to denote the ℓ-2 norm, ∥G∥ to denote the spectral norm,
and ∥G∥� to denote the Frobenius norm. We use diag(a) to denote
a diagonal matrix with the entries in a on the main diagonal, and
diag(G) to denote a vector formed by the diagonal entries of G. We
use _8 (G) (8 = 1, . . . ,<) to denote the 8-th smallest eigenvalue of G.

2.2 Network Model

Consider a network of < learning agents connected through a
logical base topology � = (+ , �) (|+ | = <), that forms an overlay
on top of a communication underlay� = (+ , �). Unless otherwise
stated, both overlay and underlay links are considered directed.
Each underlay link 4 ∈ � has a �nite capacity�4 . Each overlay link
4 = (8, 9) ∈ � indicates that agent 8 is allowed to communicate to
agent 9 during learning, and is implemented via a routing path ?

8, 9

from the node running agent 8 to the node running agent 9 in the
underlay. We assume that if (8, 9) ∈ �, then ( 9, 8) ∈ � (agents 8 and 9
are allowed to exchange results). The routing paths are determined
by the topology and the routing protocol in the underlay. Let ;8, 9
denote the propagation delay on ?

8, 9
. We assume that neither the

routing paths nor the link capacities in the underlay are observable
by the overlay, but the propagation delays between overlay nodes
(e.g., ;8, 9 ) are observable

1.

2.3 Decentralized Federated Learning (DFL)

Consider a DFL task, where each agent 8 ∈ + has a possibly
non-convex objective function �8 (x) that depends on

the parameter vector x ∈ R
3 and the local dataset D8 ,

and the goal is to �nd the parameter vector x that minimizes
the global objective function � (x), de�ned as

� (x) := 1

<

<∑

8=1

�8 (x) . (1)

For example, we can model the objective of empirical
risk minimization by de�ning the local objective
as �8 (x) :=

∑
s∈Dğ

ℓ (x, s), where ℓ (x, s) is the loss function
for sample s under model x , and the corresponding global
objective is proportional to the empirical risk over all the samples.

We consider a standard decentralized training algorithm
called D-PSGD [20], where each agent repeatedly updates
its own parameter vector and aggregates it with the parameter
vectors of its neighbors to minimize the global objective

function. Speci�cally, let x
(: )
8 (: g 1) denote the parameter vector

at agent 8 after : − 1 iterations and 6(x (: )8 ; b
(: )
8 ) the stochastic

1This can be obtained by measuring the delays of small probing packets.

gradient computed by agent 8 in iteration : (where b
(: )
8 is the

mini-batch). In iteration : , agent 8 updates its parameter vector by

x
(:+1)
8 =

<∑

9=1

,
(: )
8 9 x

(: )
9 − [6(x (: )8 ; b

(: )
8 ), (2)

where] (: ) = (, (: )8 9 )
<
8,9=1 is the< ×< mixing matrix in iteration

: , and [ > 0 is the learning rate. To be consistent with the base

topology,,
(: )
8 9 ≠ 0 only if (8, 9) ∈ �. The update rule in (2) has the

same convergence performance as x
(:+1)
8 =

∑<
9=1,

(: )
8 9 (x

(: )
9 −

[6(x (: )9 ; b
(: )
9 )) [20], but (2) allows each agent to parallelize the

parameter exchange with neighbors and the gradient computation.

The mixing matrix] (: ) plays an important role in controlling
the communication cost, as agent 9 needs to send its parameter

vector to agent 8 in iteration : if and only if,
(: )
8 9 ≠ 0. According to

[20], the mixing matrix should be symmetric with each row/column

summing up to one2 in order to ensure convergence for D-PSGD.
The symmetry implies a one-one correspondence between distinct

(possibly) non-zero entries in] (: ) and the undirected overlay links,
denoted by �̃ (i.e., each (8, 9) ∈ �̃ represents a pair of directed links

{(8, 9), ( 9, 8)} ∈ �), and thus,
(: )
8 9 can be interpreted as the link

weight of the undirected overlay link (8, 9) ∈ �̃. The requirement

of each row summing to one further implies that ,
(: )
88 = 1 −

∑<
9=1,

(: )
8 9 . In the vector form, the above implies the following

decomposition of the mixing matrix

] (: ) := O − H diag(" (: ) )H¦, (3)

where O is the< ×< identity matrix, H is the |+ | × |�̃ | incidence
matrix3 for the base topology � , and " (: ) := (U (: )8 9 ) (8, 9 ) ∈�̃ is the

vector of link weights. It is easy to verify that,
(: )
8 9 = U

(: )
8 9 . This

decomposition reduces the design of mixing matrix to the design

of link weights " (: ) in the overlay, where agents 8 and 9 need to

exchange parameter vectors in iteration : if and only if U
(: )
8 9 ≠ 0.

Thus, we say that the (undirected) overlay link (8, 9) is activated in

iteration : (i.e., both (8, 9) and ( 9, 8) are activated) if U (: )8 9 ≠ 0.

2.4 Design Objective

Our goal is to jointly design the communication demands between

the agents and the communication schedule about how to service

these demands so as to minimize the total (wall-clock) time for the
learning task to reach a given level of convergence. The challenges
are two-fold: (i) the design of communication demands faces the
tradeo� between communicating more per iteration and converg-
ing in fewer iterations versus communicating less per iteration
and converging in more iterations, and (ii) the design of communi-
cation schedule faces the lack of observability and controllability
within the underlay network. Below, we will tackle these challenges

2In [20], the mixing matrix was assumed to be symmetric and doubly stochastic with
entries constrained to [0, 1], but we �nd this requirement unnecessary for the conver-
gence bound we use from [18, Theorem 2], which only requires the mixing matrix to
be symmetric with each row/column summing up to one.
3This is de�ned under an arbitrary orientation of each link 4 Ġ ∈ �̃ as �ğ Ġ = +1 if 4 Ġ
starts from 8 , −1 if 4 Ġ ends at 8 , and 0 otherwise.
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Figure 2: Underlay-aware communication schedule optimization

(learning agents: {�, �,�, � }; underlay nodes: {ℎ1, ℎ2}).

by combining techniques from network tomography and mixing
matrix design.

3 PROPOSED SOLUTION

Our approach is to �rst characterize the total training time as an
explicit function of the set of activated links in the overlay, and
then optimize this set. We will focus on a deterministic design that
can give a predictable training time, and thus the iteration index :
will be omitted. For ease of presentation, we will consider the set of

activated overlay links, denoted by�0 ¦ �̃, as undirected links, as the
pair of links between two agents must be activated at the same time.

3.1 Communication Schedule Optimization

Given a set of overlay links �0 ¦ �̃ activated in an iteration, each
(8, 9) ∈ �0 triggers two communications, one for agent 8 to send its
parameter vector to agent 9 and the other for agent 9 to send its pa-
rameter vector to agent 8 . However, directly sending the parameter
vectors along the underlay routing paths can lead to suboptimal
performance. For example, consider Fig. 2. If �0 = {(�, �), (�, �)}
but both ?

�,�
and ?

�,�
traverse the same underlay link (ℎ1, ℎ2),

directly communicating between the activated agent pairs can take
longer than redirecting part of the tra�c through other agents (e.g.,
redirecting �→ � tra�c through the overlay path �→ � → �).
The same holds if the capacity of the direct path is low, but the
capacity through other agents is higher (e.g., if (ℎ2, �) is a slow
link, then redirecting � → � tra�c through � can bypass it to
achieve a higher rate). This observation motivates the need of opti-
mizing how to serve the demands triggered by the activated links
by routing within the overlay.

3.1.1 Demand Model. Let ^8 denote the size of the parameter vec-
tor (or its compressed version if model compression is used) at
agent 8 . A straightforward way to model the communication de-
mands triggered by a set of activated links �0 is to generate two
unicast �ows for each activated link (8, 9) ∈ �0 , one in each direc-
tion. However, this model will lead to a suboptimal communication
schedule as it ignores the fact that some �ows carry identical con-
tent. Speci�cally, all �ows originating from the same agent will
carry the latest parameter vector at this agent. Thus, the actual
communication demands is a set of multicast �ows, each for dis-
tributing the parameter vector of an activated agent (incident to at
least one activated link) to the agents it needs to share parameters
with. Let #�ė (8) := { 9 ∈ + : (8, 9) ∈ �0}. We can express the
demands triggered by the activated links �0 as

� = {(8, #�ė (8), ^8 ) : ∀8 ∈ + with #�ė (8) ≠ ∅}, (4)

where each ℎ = (Bℎ,)ℎ, ^ℎ) ∈ � represents a multicast �ow with
source Bℎ , destinations )ℎ , and data size ^ℎ .

3.1.2 Baseline Formulation. To help towards minimizing the total
training time, the communication schedule should minimize the
time for completing all the communication demands triggered by
the activated links, within the control of the overlay. To this end,
we jointly optimize the routing and the �ow rate within the overlay.

The former is represented by decision variables Iℎ8 9 ∈ {0, 1} that
indicates whether overlay link (8, 9) is traversed by the multicast

�ow ℎ and Aℎ,:8 9 ∈ {0, 1} that indicates whether (8, 9) is traversed by

the �ow from Bℎ to : ∈ )ℎ , both in the direction of 8 → 9 . The latter
is represented by decision variables 3ℎ g 0 that denotes the rate of

�ow ℎ and 5 ℎ8 9 g 0 that denotes the rate of �ow ℎ on overlay link

(8, 9) in the direction of 8 → 9 . De�ne constant 1ℎ,:8 as 1 if 8 = Bℎ , −1
if 8 = : , and 0 otherwise. We can formulate the objective of serving
all the multicast �ows in� (4) within the minimum amount of time
as the following optimization:

min
z,r,d,f

g (5a)

s.t. g g ^ℎ
3ℎ
+

∑

(8, 9 ) ∈�
;8, 9A

ℎ,:
8 9 , ∀ℎ ∈ �,: ∈ )ℎ, (5b)

∑

(8, 9 ) ∈�:4∈?
ğ,Ġ

∑

ℎ∈�
5 ℎ8 9 f �4 , ∀4 ∈ �, (5c)

∑

9∈+
Aℎ,:8 9 =

∑

9∈+
Aℎ,:98 + 1

ℎ,:
8 , ∀ℎ ∈ �,: ∈ )ℎ, 8 ∈ + , (5d)

Aℎ,:8 9 f I
ℎ
8 9 , ∀ℎ ∈ �,: ∈ )ℎ, (8, 9) ∈ �, (5e)

3ℎ −" (1 − Iℎ8 9 ) f 5
ℎ
8 9 f 3ℎ, ∀ℎ ∈ �, (8, 9) ∈ �, (5f)

5 ℎ8 9 f "I
ℎ
8 9 , ∀ℎ ∈ �, (8, 9) ∈ �, (5g)

Aℎ,:8 9 , I
ℎ
8 9 ∈ {0, 1}, 3ℎ ∈ [0, "], 5

ℎ
8 9 g 0,

∀ℎ ∈ �,: ∈ )ℎ, (8, 9) ∈ �, (5h)

where" is an upper bound on 3ℎ (∀ℎ ∈ � ). Constraint (5b) makes g
an upper bound on the completion time of the slowest �ow; (5c) en-
sures that the total tra�c rate imposed by the overlay on any under-
lay link is within its capacity; (5d)–(5e) are the Steiner arborescence

constraints [7] that guarantee the set of overlay links with Iℎ8 9 = 1

will form a Steiner arborescence (i.e., a directed Steiner tree) that is
the union of paths from Bℎ to each: ∈ )ℎ (where each path is formed

by the links with Aℎ,:8 9 = 1); (5f) implies that 5 ℎ8 9 = 3ℎ if Iℎ8 9 = 1 and

(5g) together with (5h) implies that 5 ℎ8 9 = 0 if Iℎ8 9 = 0, which allows

the capacity constraint to be formulated as a linear inequality (5c)

instead of a bilinear inequality
∑
(8, 9 ) ∈�:4∈?

ğ,Ġ

∑
ℎ∈� 3ℎI

ℎ
8 9 f �4 .

The optimal solution (z∗, r∗, d∗,f ∗) to (5) provides an overlay com-
munication schedule that minimizes the communication time in a
given iteration when the set of activated links is �0 .

Complexity: As |� | f |+ |, the optimization (5) contains
$ ( |+ |2 |� |) variables (dominated by r ), and$ ( |� | + |+ |2 ( |+ | + |� |))
constraints. Since constraints (5c)–(5f) are linear and constraint
(5b) is convex, the optimization (5) is a mixed integer convex
programming (MICP) problem and thus can be solved by existing
MICP solvers such as Pajarito [22] at a super-polynomial
complexity or approximate MICP algorithms such as convex
relaxation plus randomized rounding at a polynomial complexity.
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3.1.3 Handling Uncooperative Underlay. When learning over an
uncooperative underlay as considered in this work, the overlay can-
not directly solve (5), because the capacity constraint (5c) requires
the knowledge of the routing in the underlay and the capacities of
the underlay links. In absence of such knowledge, we leverage a
recent result from [10] to convert this constraint into an equivalent
form that can be consistently estimated by the overlay. To this
end, we introduce the following notion from [10], adapted to our
problem setting.

De�nition 1 ([10]). A category of underlay links �� for a set
of overlay links � (� ¦ �) is the set of underlay links traversed by

and only by the underlay routing paths for the overlay links in �
out of all the paths for �, i.e,4

�� B

( ⋂

(8, 9 ) ∈�
?
8, 9

)
\
( ⋃

(8, 9 ) ∈�\�
?
8, 9

)
. (6)

The key observation is that since all the underlay links in the
same category are traversed by the same set of overlay links, they
must carry the same tra�c load from the overlay. Therefore, we
can reduce the per-link capacity constraint (5c) into the following
per-category capacity constraint:

∑

(8, 9 ) ∈�

∑

ℎ∈�
5 ℎ8 9 f �� , ∀� ¦ � with �� ≠ ∅, (7)

where �� B min4∈�Ă �4 , referred to as the category capacity, is
the minimum capacity of all the links in category �� . The new
constraint (7) is equivalent to the original constraint (5c), as an
overlay communication schedule satis�es one of these constraints
if and only if it satis�es the other. However, instead of requiring
detailed internal information about the underlay (i.e., (?

8, 9
) (8, 9 ) ∈�

and (�4 )4∈� ), constraint (7) only requires the knowledge of the
nonempty categories and the corresponding category capacities.

Under the assumption that every underlay link introduces a
nontrivial performance impact (e.g., non-zero loss/queueing proba-
bility), [10] provided an algorithm that can consistently infer the
nonempty categories from losses/delays of packets sent concur-
rently through the overlay links, under the assumption that con-
currently sent packets will experience the same performance when
traversing a shared underlay link. Moreover, by leveraging state-
of-the-art single-path residual capacity estimation methods, [10]
gave a simple algorithm that can accurately estimate the e�ective

category capacity �̃� for each detected nonempty category, that
can be used in place of �� in (7) without changing the feasible

region. Given the indices of inferred nonempty categories F̂ and

their inferred e�ective capacities (�̂� )� ∈ F̂ , we can construct the

per-category capacity constraint as
∑

(8, 9 ) ∈�

∑

ℎ∈�
5 ℎ8 9 f �̂� , ∀� ∈ F̂ , (8)

which can then be used in place of (5c) in (5) to compute an opti-
mized overlay communication schedule.

Remark: First, the traversal of overlay paths through the overlay
links is directional, and the traversal of underlay routing paths
through the underlay links is also directional. Correspondingly, the

4Here ? is interpreted as the set of underlay links traversed by path ? .

Figure 3: Challenge for in-overlay aggregation (learning agents:

{�, �,�, �, �}; underlay nodes: {ℎ1, ℎ2}).

overlay links in a category index � should be treated as directed
links (i.e., (8, 9) ∈ � only implies that the underlay links in �� are
traversed by the path ?

8, 9
). This is not to be confused with treating

the activated links in �0 as undirected links, because each (8, 9) ∈ �0
stands for a parameter exchange between agents 8 and 9 . Moreover,
we only use the activated links �0 to determine the �ow demands
� , but any overlay link in � can be used in serving these �ows.

3.1.4 Additional Optimization Opportunities and Challenges.

The formulation (5) treats each overlay node that is neither
the source nor one of the destinations of a multicast �ow
as a pure relay, but this node is actually a learning agent
capable of aggregating the parameter vectors. This observation
raises two questions: (i) Can an agent include parameter vectors
relayed through it in its own parameter aggregation? (ii) If an
agent relays multiple parameter vectors for di�erent sources, can
it forward the aggregated vector instead of the individual vectors?

To answer the �rst question, consider the case in Fig. 2 when �
sends its parameter vector x� to � through the overlay path �→
� → � . If � includes x� in its own parameter aggregation with a
non-zero weight,�� , then by the symmetry of the mixing matrix,
� must also include x� in its parameter aggregation with weight
,�� = ,�� , which is equivalent to activating the overlay link
(�,�). As we have left the optimization of the activated links �0 to
another subproblem (Section 3.3), there is no need to include relayed
parameter vectors in parameter aggregation when optimizing the
communication schedule for a given set of activated links.

To answer the second question, consider the case in Fig. 3 when
the overlay routes the multicast from� to {�, �} (for disseminating
x�) over � → � → � → �, and the multicast from � to {�, �}
(for disseminating x� ) over � → � → � → �. Although instead of
separately forwarding x� and x� , � could aggregate them before
forwarding, the aggregation will not save bandwidth for � , as �
needs,��x� +,��x� but � needs,��x� +,��x� , which are
generally not the same. Another issue with in-network aggregation
(within the overlay) is the synchronization delay introduced at the
point of aggregation, and thus in-network aggregation may not
reduce the completion time even when it can save bandwidth, e.g.,
at � . We thus choose not to consider in-network aggregation in our
formulation (5). Further optimizations exploiting such capabilities
are left to future work.

3.2 Link Weight Optimization

Given the set of activated links �0 ¦ �̃, the communication time
per iteration has been determined as explained in Section 3.1, but
the number of iterations has not, and is heavily a�ected by the
weights of the activated links. This leads to the question of how to
minimize the number of iterations for achieving a desired level of
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convergence, under the constraint that only the activated links can
have non-zero weights.

To answer this question, we leverage a state-of-the-art conver-
gence bound for D-PSGD under the following assumptions:

(1) Each local objective function �8 (x) is ;-Lipschitz smooth, i.e.,
∥∇�8 (x) − ∇�8 (x′)∥ f ; ∥x − x′∥, ∀8 ∈ + .

(2) There exist constants "1, f̂ such that 1
<

∑
8∈+ IE[∥6(x8 ; b8 ) −

∇�8 (x8 )∥2] f f̂2 + "1
<

∑
8∈+ ∥∇� (x8 )∥2, ∀x1, . . . , x< ∈ R3 .

(3) There exist constants "2, Ẑ such that 1
<

∑
8∈+ ∥∇�8 (x)∥2 f

Ẑ 2 +"2∥∇� (x)∥2,∀x ∈ R3 .
Let P := 1

< 11
¦ denote an ideal<×< mixing matrix with all entries

being 1
< .

Theorem 3.1. [18, Theorem 2] Under assumptions (1)–(3), if there
exist constants ? ∈ (0, 1] and integer C g 1 such that the mixing

matrices {] (: ) } 
:=1

, each being symmetric with each row/column

summing to one5, satisfy

IE[∥^
(: ′+1)C∏

:=: ′C+1
] (: ) − ^P ∥2� ] f (1 − ?)∥^ − ^P ∥2� (9)

for all ^ := [x1, . . . , x<] and integer :′ g 0, then D-PSGD can

achieve 1
 

∑ 
:=1

IE[∥∇� (x: )∥2] f n0 for any given n0 > 0 (x (: ) :=
1
<

∑<
8=1 x

(: )
8 ) when the number of iterations reaches

 (?, C) := ; (� (x (1) ) − �inf )

·$
(
f̂2

<n20
+
Ẑ C
√
"1 + 1 + f̂

√
?C

?n
3/2
0

+
C
√
("2 + 1) ("1 + 1)

?n0

)
, (10)

where x (1) is the initial parameter vector, and �inf is a lower bound
on � (·).

For tractability, we will focus on the case of i.i.d. mixing matrices.
In this case, to achieve n0-convergence, it su�ces for the number
of iterations to reach  (?, C) as in (10) for C = 1. We note that
 (?, 1) depends on the mixing matrix only through the parameter
?: the larger ? , the smaller  (?, 1). Recall that as explained in
Section 2.3, the mixing matrix] is related to the link weights " as
] = O − H diag(" )H¦. To restrict the activated links to �0 , we set
U8 9 = 0 for all (8, 9) ∉ �0 . Below, we will show that the following
optimization gives a good design of the link weights:

min
"

d (11a)

s.t. − dO ¯ O − H diag(" )H¦ − P ¯ dO , (11b)

U8 9 = 0, ∀(8, 9) ∉ �0 . (11c)

Corollary 3.2. Under assumptions (1)–(3) and i.i.d. mixing matri-

ces] (: )
3
=] that is symmetric with each row/column summing

to one, D-PSGD achieves n0-convergence as in Theorem 3.1 when
the number of iterations reaches

 (1 − IE[∥] − P ∥2], 1) . (12)

Moreover, conditioned on the set of activated links being �0 , (12)

g  (1 − d∗2, 1), where d∗ is the optimal value of (11), with “=”

5Originally, [18, Theorem 2] had a stronger assumption that each mixing matrix
is doubly stochastic, but we have veri�ed that it su�ces to have each row/column
summing to one.

achieved at ]∗ = O − H diag(" ∗)H¦ for " ∗ being the optimal
solution to (11).

Corollary 3.2 implies that given the set of activated links, we
can design the corresponding link weights by solving (11), which
will minimize an upper bound (12) on the number of iterations
to achieve n0-convergence. Optimization (11) is a semi-de�nite
programming (SDP) problem that can be solved in polynomial time
by existing algorithms [14].

Remark: When] satis�es the additional property of O ° ] °
−O , the largest singular value of] is 1 [9], and thus ∥] − P ∥ is the
second largest singular value of] . In this case, minimizing d in (11)
(which equals ∥] − P ∥ under the optimal solution) is equivalent
to maximizing W (] ) := 1 − ∥] − P ∥, which is the spectral gap of
the mixing matrix ] [26]. The spectral gap is the most widely-
used parameter to capture the impact of the mixing matrix on
the convergence rate [15, 20, 26]. In this sense, our Corollary 3.2
extends the relationship between the spectral gap and the number
of iterations to the case of random mixing matrices. As W (] ) → 0

(in probability), the number of iterations according to (12) grows at

 
(
1 − IE[(1 − W (] ))2], 1

)
= $

(
1

IE[W (] )]

)
, (13)

which is consistent with the existing result of $ (1/W (] )) in the
case of deterministic mixing matrix [26]. While other parameters af-
fecting the convergence rate have been identi�ed, e.g., the e�ective
number of neighbors [31] and the neighborhood heterogeneity [19],
these parameters are just additional factors instead of replacements
of the spectral gap. We thus leave the optimization of these other
objectives to future work.

3.3 Link Activation Optimization

Given how to optimize the communication schedule and the link
weights for a given set �0 of activated links as in Sections 3.1–
3.2, what remains is to optimize �0 itself, which is also known as
“topology design” [24] as (+ , �0) depicts a subgraph of the base
topology (of the overlay) that is used to determine which agents
will exchange parameter vectors during DFL. The set �0 a�ects
both the communication demands (and hence the time per iter-
ation) and the sparsity pattern of the mixing matrix (and hence
the number of iterations required). As mentioned in Section 2.4,
our goal is to minimize the total training time. For learning over
bandwidth-limited networks, the training time is dominated by the
communication time [23]. We thus model the total training time by

g (�0) ·  (�0), (14)

where we have used g (�0) to denote the communication time per
iteration according to (5) (with (5c) replaced by (8)), and  (�0) :=
 (1 − d∗2, 1) to denote the number of iterations to achieve a given
level of convergence. Our goal is to minimize (14) over all the

candidate values of �0 ¦ �̃.
Directly solving this optimization is intractable because

its solution space is exponentially large and its objective
function (14) is not given explicitly. Our approach to address
this challenge is to: (i) relax g (�0) and  (�0) into upper bounds
that are explicit functions of �0 , (ii) decompose the optimization
to separate the impacts of g (�0) and  (�0), and (iii) develop
e�cient solutions by identifying linkages to known problems.
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3.3.1 Relaxed Objective Function. We �rst upper-bound
g (�0) by considering a suboptimal but analyzable communication

schedule. Consider a solution to (5) with Iℎ8 9 = 1 if 8 = Bℎ, 9 ∈ )ℎ
and 0 otherwise, and Aℎ,:8 9 = 1 if 8 = Bℎ, 9 = : and 0 otherwise,

i.e., each parameter exchange corresponding to (8, 9) ∈ �0
is performed directly along the underlay routing paths
?
8, 9

and ?
9,8
. To achieve a per-iteration communication

time of g , the rate 38, 9 of sending the parameter vector
of agent 8 to its activated neighbor 9 must satisfy 38, 9 g ^ğ

g−;ğ,Ġ .

This is feasible for (5) (with (5c) replaced by (8)) if and only if

∑

(8, 9 ) ∈�ė

(
^8

g − ;8, 9
1(8, 9 ) ∈� +

^ 9

g − ; 9,8
1( 9,8 ) ∈�

)
f �̂� , ∀� ∈ F̂ , (15)

where 1· denotes the indicator function. The minimum
value of g satisfying (15), denoted by g (�0), thus provides
an upper bound on the minimum per-iteration time g (�0)
under the set of activated links in �0 .

We then upper-bound  (�0) by upper-bounding the optimal
value d∗ of (11). Consider any predetermined link weight assign-

ment " (0) , and let " (0) (�0) be the corresponding feasible solution
to (11) (i.e., (U (0) (�0))8 9 = U (0)8 9 if (8, 9) ∈ �0 and 0 otherwise). Let

R(�0) := H diag(" (0) (�0))H¦ denote the Laplacian matrix for the
activated graph. Under this solution, the objective value of (11) is

d := ∥O − R(�0) − P ∥ (16)

= max(1 − _2 (R(�0)), _< (R(�0)) − 1), (17)

where (16) is from the proof of Corollary 3.2, and (17) is by [5,
Lemma IV.2] (where _8 (R(�0)) denotes the 8-th smallest eigenvalue
of R(�0)). Since  (1 − d2, 1) is an increasing function of d and
d∗ f d , we have

 (�0) :=  
(
1 − d∗2, 1

)
f  

(
1 − d2, 1

)
=:  (�0). (18)

3.3.2 Bi-level Decomposition. Relaxing (14) into its upper bound

g (�0) ·  (�0) provides an objective function that can be easily
evaluated for any candidate �0 . However, we still face the exponen-

tially large solution space of �0 ¦ �̃. To address this complexity
challenge, we decompose the relaxed optimization into a bi-level
optimization as follows.

Lemma 3.3. Let V be the maximum time per iteration. Then

min
�ė¦�̃

g (�0) ·  (�0) = min
Vg0

V ·
(

min
g (�ė )fV

 (�0)
)
, (19)

and the optimal solution �∗0 to the RHS of (19) is also
optimal for the LHS of (19).

The bi-level decomposition in (19) allows us to focus on the
lower-level optimization

min
g (�ė )fV

 (�0), (20)

as the upper-level optimization only has a scalar variable V that can
be optimized numerically once we have an e�cient solution to (20).

Algorithm 1: Topology Design via SCA

input : Initial link weights " (0) , candidate links �̃, threshold n .
output :Set of activated links �ė .

1 initialize �ĩ ← ∅ and �ĥ ← ∅;
2 while True do

3 obtain ~∗ by solving the SDP relaxation of (22) with additional

constraints that ~ě̃ = 0, ∀4̃ ∈ �ĥ and ~ě̃ = 1, ∀4̃ ∈ �ĩ ;
4 if (22c) is satis�ed by ~ such that ~ě̃ = 1 i� ~∗

ě̃
g n then

5 Break;

6 else

7 Find 4̃ĩ = argmax{~∗
ě̃
: 4̃ ∈ �̃ \ (�ĩ ∪

�ĥ ), (22c) is satis�ed by ~ corresponding to �ĩ ∪ {4̃ }};
8 �ĩ ← �ĩ ∪ {4̃ĩ };
9 Find 4̃ĥ = argmin{~∗

ě̃
: 4̃ ∈ �̃ \ (�ĩ ∪ �ĥ ) };

10 �ĥ ← �ĥ ∪ {4̃ĥ };
11 return �ė ← {4̃ ∈ �̃ : ~∗

ě̃
g n };

3.3.3 Algorithms. To solve (20), we encode �0 by binary variables
~ := (~8 9 ) (8, 9 ) ∈�̃ , where ~8 9 = 1 if (8, 9) ∈ �0 and 0 otherwise. By

(15), ~ is feasible for (20) if and only if ∀� ∈ F̂ ,
∑

(8, 9 ) ∈�̃
~8 9

(
^8

V − ;8, 9
1(8, 9 ) ∈� +

^ 9

V − ; 9,8
1( 9,8 ) ∈�

)
f �̂� . (21)

Exact solution: We can directly try to solve the lower-level
optimization (20) as a convex programming problem with integer

variables. Due to the monotone relationship between  (�0) and d ,
we can equivalently minimize d as de�ned in (16) by solving

min
~

d (22a)

s.t. − dO ¯ O −
∑

(8, 9 ) ∈�̃
~8 9R8 9 − P ¯ dO , (22b)

(21), ∀� ∈ F̂ , (22c)

~8 9 ∈ {0, 1}, ∀(8, 9) ∈ �̃, (22d)

where R8 9 is the Laplacian matrix representation of link (8, 9) with
weight U

(0)
8 9 , i.e., entries (8, 9) and ( 9, 8) are −U (0)8 9 and entries (8, 8)

and ( 9, 9) areU (0)8 9 (rest are zero), and (22b) ensures that the auxiliary

variable d = d as in (16) under the optimal solution.
The optimization (22) is an integer convex programming (ICP)

problem, and thus in theory can be solved by ICP solvers such
as [22]. In practice, however, ICP solvers can be slow due to their
super-polynomial complexity, and in contrast to the communi-
cation schedule optimization (5) that only needs to be solved once,
(22) has to be solved many times to optimize the variable V in the
upper-level optimization. Thus, we need more e�cient algorithms.

E�cient heuristics: To improve the computational e�ciency,
we have explored two approaches: (i) developing heuristics for (22),
and (ii) further simplifying the objective function.
• Heuristics for (22): Once we relax the integer constraint (22d)

into ~8 9 ∈ [0, 1], (22) becomes an SDP that can be solved in poly-
nomial time [14]. We can thus round the fractional solution into
a feasible solution. However, we observe that simple rounding
schemes such as greedily activating links with the largest fractional
~-values do not yield a good solution (see results for ‘Relaxation-d’
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in Section 4). Thus, we propose an iterative rounding algorithm
based on successive convex approximation (SCA) as in Algorithm 1.
The algorithm gradually rounds the ~-values for a subset of links
�B to 1 and those for another subset of links �> to 0 to satisfy fea-
sibility. In each iteration, it solves the SDP relaxation of (22) with
rounding constraints according to the previously computed �B and
�> (line 3), and then adds the link with the largest fractional~-value
to �B (lines 7–8) and the link with the smallest fractional ~-value
to �> (lines 9–10). The iteration repeats until the integer solution
rounded according to a given threshold n is feasible for (22) (line 4).
• Heuristics based on algebraic connectivity: Another approach is

to simplify the objective based on the following observation.

Lemma 3.4. Minimizing d in (17) is equivalent to maximizing

_2 (R(�0)) (the second smallest eigenvalue) if " (0) satis�es

max
8∈+

∑

9 :(8, 9 ) ∈�̃
U
(0)
8 9 +< · max

(8, 9 ) ∈�̃
|U (0)8 9 | f 1. (23)

Remark: We can satisfy (23) by making U
(0)
8 9 ’s su�ciently small,

e.g., U
(0)
8 9 ≡ 1/(2< − 1), ∀(8, 9) ∈ �̃.

Under condition (23), we can convert the minimization of d into
a maximization of _2 (R(�0)), known as the algebraic connectivity:

max
~

_2 (
∑

(8, 9 ) ∈�̃
~8 9R8 9 ) (24a)

s.t. (21), ∀� ∈ F̂ , (24b)

~8 9 ∈ {0, 1}, ∀(8, 9) ∈ �̃, (24c)

which selects links to maximize the algebraic connectivity under
the linear constraints (24b). A similar problem of maximizing the
algebraic connectivity of unweighted graphs under cardinality con-

straint (i.e.,
∑
(8, 9 ) ∈�̃ ~8 9 f :) has been studied with some e�cient

heuristics [6, 8]. Although our problem (24) addresses a weighted
graph and more general linear constraints, the existing heuristics
can still be adapted for our problem.

Speci�cally, as _2 (
∑
(8, 9 ) ∈�̃ ~8 9R8 9 ) is a concave function of~ [6],

relaxing the integer constraint (24c) into ~8 9 ∈ [0, 1] turns (24)
into a convex optimization that can be solved in polynomial time,
based on which we can extract an integer solution via rounding. We
can also adapt the greedy perturbation heuristic in [6] as follows.
Let v (�0) denote the Fiedler vector of R(�0) (i.e., the unit-norm
eigenvector corresponding to _2 (R(�0))). It is easy to extend [6,
(10)] into

_2 (R(�0 ∪ {(8, 9)})) − _2 (R(�0)) f U (0)8 9
(
E (�0)8 − E (�0) 9

)2
. (25)

Based on this bound, we can apply the greedy heuristic to (24) by
repeatedly: (i) computing the Fiedler vector v (�0) based on the

current �0 , and (ii) augmenting �0 with the link (8, 9) ∈ �̃ \ �0 that

maximizes U
(0)
8 9

(
E (�0)8 − E (�0) 9

)2
subject to (21).

Remark: Even if we can enforce the condition in Lemma 3.4
by suitably setting the initial link weights " (0) , the �nal
link weights are determined by the optimization (11) and
thus cannot guarantee the equivalence between d minimization
and algebraic connectivity maximization. As a result, our
evaluation shows that �0 ’s designed by the above heuristics based
on the algebraic connectivity are less e�ective than those designed

෠ℱ, ( መ��)�∈ ෠ℱ 
�(0) �� �

�, �,�, �
Figure 4: Work�ow of overall solution.

based on d (see Section 4). However, connecting our problem
with algebraic connectivity maximization opens the possibility
of leveraging a rich set of existing results, for which the above is
just a starting point. In this regard, our contribution is to formally
establish this connection and the corresponding condition.

3.4 Overall Solution

Fig. 4 illustrates the overall proposed solution as deployed
on a centralized orchestrator when initializing DFL tasks,
which starts by inferring the necessary information about
the underlay using network tomography [10], and then
selects the links to activate based on predetermined weights

" (0) as in Section 3.3, based on which the link weights
are optimized as in Section 3.2 and the communication schedule
is optimized as in Section 3.1. Our solution is suitable for the
centralized deployment as it only uses predetermined information.

The performance of this solution is guaranteed as follows.

Theorem 3.5. Under the assumption of F̂ § F and �̂� f ��
(∀� ∈ F ), if the proposed solution activates a set of links �∗0 , then
D-PSGD under the corresponding design is guaranteed to achieve

n0-convergence as de�ned in Theorem 3.1 within time g (�∗0) · (�∗0)
for g (·) and  (·) de�ned in Section 3.3.1.

Remark: Theorem 3.5 upper-bounds the total training time un-
der our design if network tomography detects all the nonempty
categories and does not overestimate the category capacities. Ac-
cording to [10], the second assumption holds approximately as the
estimation of category capacities is highly accurate, but the �rst
assumption may not hold due to misses in detecting nonempty
categories. However, in underlays following symmetric tree-based
routing as commonly encountered in edge networks, a new al-
gorithm in [11] can detect nearly all the nonempty categories in
networks of moderate sizes. We will empirically evaluate the impact
of inference errors on the �nal performance of DFL in Section 4.

4 PERFORMANCE EVALUATION

We evaluate the proposed algorithms against benchmarks
through realistic data-driven simulations in the context of
bandwidth-limited wireless edge networks.

4.1 Simulation Setup

4.1.1 Dataset and ML Model. We train a ResNet-50 model with
23,616,394 parameters and a model size of 90.09 MB for image
classi�cation on the CIFAR-10 dataset, which consists of 60,000
color images divided into 10 classes. We use 50,000 images for
training and the remaining 10,000 images for testing. The dataset
undergoes standard preprocessing, including normalization and
one-hot encoding of the labels. We set the learning rate to 0.02

and the mini-batch size to 64 for each agent. These settings are
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su�cient for D-PSGD to achieve convergence under all evaluated
designs. As a sanity check, we also train a 4-layer CNNmodel based
on [25], which has 582,026 parameters and a model size of 2.22 MB,
for digit recognition on the MNIST dataset, which comprises 60,000
training images and 10,000 testing images. In both cases, we evenly
divide the training data among all the agents after a random shu�e.

4.1.2 Network Topology. We simulate the underlay based on the
topologies and link attributes of real wireless edge networks. We
consider two important types of networks: (i) WiFi-based wireless
mesh networks represented by the Roofnet [2], which has 33 nodes,
187 links, and a data rate of 1 Mbps, and (ii) millimeter-wave-based
Integrated Access and Backhaul (IAB) networks used to extend the
coverage of 5G networks [1], represented by a hexagon topology
with 19 nodes, 56 links, and a data rate of 0.4 Gbps [29]. In each
topology, we select 10 low-degree nodes as learning agents (i.e.,
overlay nodes). We assume the base topology to be a clique among
the agents (i.e., any two agents are allowed to communicate), and
use the shortest paths (based on hop count) between the agents as
the underlay routing paths. See [12] for the simulated topologies.

4.1.3 Benchmarks. We compare the proposed Algorithm 1 (‘SCA’)
against the following benchmarks:

• the baseline of activating all the (overlay) links (‘Clique’);
• the ring topology (‘Ring’) commonly adopted by industry;
• the minimum spanning tree computed by Prim’s algorithm
(‘Prim’), proposed by [24] as the state of the art for overlay-
based DFL;
• the simplistic heuristic for (22) based on SDP relaxation plus
greedy rounding (‘Relaxation-d’);
• the heuristics for (24) based on convex relaxation plus round-
ing (‘Relaxation-_’) or greedy perturbation [6] (‘Greedy’).

We will �rst evaluate a basic setting where we provide accurate
information about the underlay to all the algorithms, use (11) to
optimize the link weights under each topology design, and let all the
communications occur directly over the underlay routing paths (i.e.,
without overlay routing). We will separately evaluate the impact of
overlay routing, inference errors, and weight design.

4.2 Simulation Results

Due to space limitation, we will only present the results based on
CIFAR-10 and Roofnet, and defer the other results to [12].

4.2.1 Results without Overlay Routing. As the most di�cult part
of our problem is topology design (i.e., optimization of �0), we �rst
compare the topology design solutions without overlay routing. As
shown in Fig. 5, (i) using sparse topologies rather than the clique
can e�ectively reduce the training time without compromising the
performance at convergence, (ii) di�erent topology designs only
slightly di�er in terms of the convergence rate over epochs, but can
di�er signi�cantly in terms of the convergence rate over the actual
(wall-clock) time, and (iii) the proposed design by ‘SCA’ notably
outperforms the others in terms of training time, while achieving
the same loss/accuracy at convergence. Note that the time axis is
in log scale. A closer examination further shows that the existing
topology designs (‘Prim’, ‘Ring’) work relatively well in that they
not only converge much faster than the baseline (‘Clique’) but also
outperform the other heuristics based on the optimizations we
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Figure 5: CIFAR-10 over Roofnet: without overlay routing.

SCA Relaxation-d Relaxation-_ Greedy

MNIST 21.31 5.96 6.71 55.84

CIFAR-10 19.55 6.12 6.35 51.74

Table 1: Running times of the proposed algorithms relative

to ‘Prim’ (as ratios) for Roofnet.
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Figure 6: CIFAR-10 over Roofnet: with overlay routing.

formulate (‘Relaxation-d’, ‘Relaxation-_’, ‘Greedy’). Nevertheless,
‘SCA’ is able to converge even faster by better approximating the
optimal solution to (22). Note that although we have not optimized
overlay routing, the proposed algorithm still bene�ts from the
knowledge of how links are shared by routing paths within the
underlay (via constraint (21)), which allows it to better balance
the convergence rate and the communication time per iteration,
while the state-of-the-art design (‘Prim’) ignores such link sharing.
This result highlights the importance of underlay-aware design for
overlay-based DFL.

Meanwhile, we note that the simpler heuristics ‘Relaxation-d’
and ‘Relaxation-_’ outperform ‘SCA’ in terms of running time, as
shown in Table 1, and all the algorithms based on our optimizations
are slower than ‘Prim’. This indicates further room for improvement
for future work in terms of the tradeo� between the quality of
design and the computational e�ciency.

4.2.2 Results with Overlay Routing. Fig. 6 shows the results after
optimizing the communication schedule under each design by the
overlay routing optimization (5). Compared with Fig. 5 (second
row), we see that the training time is further reduced for all the
topology designs. However, the improvement is only prominent
for the dense topology (‘Clique’) with a reduction of 28%, while
the improvement for the other topologies is incremental (2–4%).
Intuitively, this is because these sparse topologies generate much
less load on the underlay network, and hence leave less room for
improvement for overlay routing.
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4.2.3 Results with Inference Errors. While the above results are
obtained under the perfect knowledge of the nonempty categories
F and the category capacities (�� )� ∈F , the observations therein
remain valid under the inferred values of these parameters, as
our inference algorithms proposed in [11] are able to infer these
parameters with su�cient accuracy. We thus defer the detailed
results to [12] due to space limitation.

4.2.4 Results under Other Weight Design. Instead of solving the
SDP (11), one could use alternative designs for link weights. To
assess the impact of di�erent weight designs, we conducted addi-
tional simulations for the case of Fig. 5–6 using the widely-adopted
Metropolis-Hasting weights. The results, provided in [12], show
that the Metropolis-Hasting weights introduce a noticeable delay
in convergence compared to our proposed weight design.

5 CONCLUSION

We considered, for the �rst time, communication optimization for
running DFL on top of a bandwidth-limited underlay network. To
this end, we formulated a framework for jointly optimizing the
hyperparameters controlling the communication demands between
learning agents and the communication schedule (including rout-
ing and �ow rates) to ful�ll such demands, without cooperation
from the underlay. We showed that the resulting problem can be
decomposed into a set of interrelated subproblems, and developed
e�cient algorithms through carefully designed convex relaxations.
Our evaluations based on real topologies and datasets validated the
e�cacy of the proposed solution in signi�cantly reducing the train-
ing time without compromising the quality of the trained model.
Our results highlight the need of network-application co-design in
supporting DFL over bandwidth-limited networks, and our overlay-
based approach facilitates the deployment of our solution in existing
networks without changing their internal operations.
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