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Abstract

Knowledge of locations and activities of cis-regulatory elements (CRESs) is needed to decipher
basic mechanisms of gene regulation and to understand the impact of genetic variants on
complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in
one species, making comparisons difficult between species. In contrast, we conducted an
interspecies study defining epigenetic states and identifying cCREs in blood cell types to
generate regulatory maps that are comparable between species, using integrative modeling of
eight epigenetic features jointly in human and mouse in our Validated Systematic Integration
(VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of
gene regulation in blood cells, indicated by high overlap with known functional elements and
strong enrichment for human genetic variants associated with blood cell phenotypes. The
contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate
regression, was used to estimate epigenetic state Regulatory Potential (esRP) scores for each
cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of
cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained
by joint clustering on esRP scores, harbored distinctive transcription factor binding motifs that
were similar between species. An interspecies comparison of cCCREs revealed both conserved
and species-specific patterns of epigenetic evolution. Finally, we showed that comparisons of
the epigenetic landscape between species can reveal elements with similar roles in regulation,

even in the absence of genomic sequence alignment.
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Introduction

The morphology and functions of different cell types are determined by the expression of
distinctive sets of genes in each. This differential gene expression is regulated by the interplay
of transcription factors (TFs) binding to cis-regulatory elements (CREs) in the genomic DNA,
such as promoters and enhancers, forging interactions among the CREs and components of
transcriptional apparatus and ultimately leading to patterns of gene activation and repression
characteristic of each cell type (Maston et al. 2006; Hamamoto and Fukaya 2022). Epigenetic
features such as accessibility of DNA and modifications of histone tails in chromatin have
pronounced impacts on the ability of TFs to bind to CREs, and furthermore, they serve as a
molecular memory of transcription and repression (Strahl and Allis 2000; Ringrose and Paro
2004). Frequently co-occurring sets of chromatin features define epigenetic states, which are
associated with gene regulation and expression (Ernst and Kellis 2010; Hoffman et al. 2013;
Zhang et al. 2016). Genome-wide assignment of DNA intervals to epigenetic states (annotation)
provides a view of the regulatory landscape that can be compared across cell types, which in

turn leads to insights into the processes regulating gene expression (Libbrecht et al. 2021).

Comprehensive mapping of CREs within the context of the regulatory landscape in different cell
types is needed to achieve a broad understanding of differential gene expression. Maps of
candidate CREs (cCREs) provide guidance in understanding how changes in cCREs, including
single nucleotide variants and indels, can lead to altered expression (Hardison 2012), and they
can inform approaches for activation or repression of specific genes in potential strategies for
therapies (Bauer et al. 2013). Indeed, most human genetic variants associated with common
traits and diseases are localized in or near cCREs (Hindorff et al. 2009; Maurano et al. 2012;

The ENCODE Project Consortium 2012). Thus, knowledge of the activity and epigenetic state of
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cCREs in each cell type can facilitate understanding the impact of trait-associated genetic
variants on specific phenotypes. Furthermore, genome editing approaches in somatic cells have
recently been demonstrated to have promise as therapeutic modalities (Frangoul et al. 2021),

and a full set of cCREs annotated by activity and state can help advance similar applications.

The different types of blood cells in humans and mice are particularly tractable systems for
studying many aspects of gene regulation during differentiation. The striking differences among
mature cell types result from progressive differentiation starting from a common hematopoietic
stem cell (HSC) (Kondo et al. 2003). While single cell analyses reveal a pattern of ostensibly
continuous expression change along each hematopoietic lineage (Laurenti and Goéttgens 2018),
intermediate populations of multi-lineage progenitor cells with decreasing differentiation
potential have been defined, which provide an overall summary and nomenclature for major
stages in differentiation. These stem, progenitor, and mature cell populations can be isolated
using characteristic cell surface markers (Spangrude et al. 1988; Payne and Crooks 2002),
albeit with many fewer cells in progenitor populations. In addition to the primary blood cells,
several immortalized cell lines provide amenable systems for intensive study of various aspects

of gene regulation during differentiation and maturation of blood cells (Weiss et al. 1997).

The VISION project aims to produce a Validated Systematic Integration of hematopoietic
epigenomes, harvesting extensive epigenetic and transcriptomic datasets from many
investigators and large consortia into concise, systematically integrated summaries of regulatory
landscapes and cCREs (Hardison et al. 2020). We previously published the results of these
analyses for progenitor and mature blood cell types from mouse (Xiang et al. 2020). In the
current study, we generated additional epigenetic datasets and compiled data from human
blood cells to expand the integrative analyses to include data from both human and mouse. The

systematic integrative analysis of epigenetic features across blood cell types was conducted
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jointly in both species to learn epigenetic states, generate concise views of epigenetic
landscapes, and predict regulatory elements that are comparable in both species. This joint
modeling enabled further comparisons using approaches that were not dependent on DNA
sequence alignments between species, including a demonstration of the role of orthologous
transcription factors in cell type-specific regulation in both species. An exploration of
comparisons of epigenetic landscapes between species showed that they were informative for
inferring regulatory roles of elements in lineage-specific (i.e., non-aligning) DNA. Together, this
work provides valuable community resources that enable researchers to leverage the extensive
existing epigenomic data into further mechanistic regulatory studies of both individual loci and

genome-wide trends in human and mouse blood cells.

Results

Extracting and annotating epigenetic states by modeling epigenomic information jointly
in human and mouse

A large number of data sets of epigenetic features related to gene regulation and expression
(404 data sets, 216 in human and 188 in mouse; Fig. 1A-B, Supplemental Material “Data
generation and collection”, Supplemental Tables S1 and S2) served as the input for our joint
integrative analysis of human and mouse regulatory landscapes across progenitor and mature
blood cell types. The features included chromatin accessibility, which is a hallmark of almost all
regulatory elements, occupancy by the structural protein CTCF, and histone modifications
associated with gene activation or repression. After normalizing and denoising these diverse
data sets (Supplemental Fig. S1), we conducted an iterative joint modeling to discover
epigenetic states, i.e., sets of epigenetic features commonly found together, in a consistent

manner for both human and mouse blood cells (Fig. 2). The joint modeling took advantage of
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the Bayesian framework of the Integrative and Discriminative Epigenomic Annotation System, or
IDEAS (Zhang et al. 2016; Zhang and Hardison 2017), to iteratively learn states in both species.
The joint modeling proceeded in four steps: initial training on randomly selected regions in both
species, retaining the 27 epigenetic states that exhibit similar combinatorial patterns of features
in both human and mouse, using these 27 states as prior information to sequentially run the
IDEAS genome segmentation on the human and mouse data sets, and removal of two
heterogenous states (Fig. 2A and Supplemental Figs. S2, S3, S4, and S5). This procedure
ensured that the same set of epigenetic states was learned and applied for both species.
Previously, the segmentation and genome annotation (Libbrecht et al. 2021) method
ChromHMM (Ernst and Kellis 2012) was used to combine data between species by
concatenating the datasets for both human and mouse cell types (Yue et al. 2014). This earlier
approach produced common states between species, but it did not benefit from the positional

information and automated approach to handling missing data that are embedded in IDEAS.

The resulting model with 25 epigenetic states (Fig. 2B) was similar to that obtained from mouse
blood cell data (Xiang et al. 2020). The states captured combinations of epigenetic features
characteristic of regulatory elements such as promoters and enhancers, transcribed regions,
repressed regions marked by either Polycomb (H3K27me3) or heterochromatin (H3K9me3),
including states that differ quantitatively in the contribution of specific features to each state. For
example, H3K4me1 is the predominant component of states E1 and E, but E1 has a lower
contribution of that histone modification. Similar proportions of the genomes of human and

mouse were covered by each state (Fig. 2B).

Assigning all genomic bins in human and mouse to one of the 25 states in each hematopoietic
cell type produced an annotation of blood cell epigenomes that gave a concise view of the

epigenetic landscape and how it changes across cell types, using labels and color conventions



178  consistently for human and mouse. The value of this concise view can be illustrated in

179  orthologous genomic intervals containing genes expressed preferentially in different cell

180 lineages as well as genes that are uniformly expressed (Fig. 2C, D). For example, the gene

181  SLC4A1/Sic4a1, encoding the anion transporter in the erythrocyte plasma membrane, is

182  expressed in the later stages of erythroid maturation (Dore and Crispino 2011). The epigenetic
183  state assignments across cell types matched the differential expression pattern, with genomic
184 intervals in the gene and its flanking regions, including a non-coding gene located upstream (to
185 its right, Bloodlinc in mouse), assigned to states indicative of enhancers (yellow and orange)
186  and promoters (red) only in erythroid cell types, with indications of stronger activation in the

187  more mature erythroblasts (region boxed and labeled E in Fig. 2 C, D). A similar pattern was
188  obtained in both human and mouse. Those genomic intervals assigned to the enhancer- or

189  promoter-like states contain candidates for regulatory elements, an inference that was

190 supported by chromatin binding data including occupancy by the transcription factor GATA1 (Xu
191  etal. 2012; Pimkin et al. 2014) and the co-activator EP300 (ENCODE datasets ENCSRO00EGE
192 and ENCSR982LJQ) in erythroid cells. Similarly, the gene and flanking regions for GRN/Grn,
193  encoding the granulin precursor protein that is produced at high levels in granulocytes and

194  monocytes (Jian et al. 2013), and ITGA2B]/Itga2b, encoding the alpha 2b subunit of integrin that
195 is abundant in mature megakaryocytes (van Pampus et al. 1992; Pimkin et al. 2014), were

196  assigned to epigenetic states indicative of enhancers and promoters in the expressing cell types
197  (boxed regions labeled G and MK, respectively). In contrast, genes expressed in all the blood
198 cell types, such as UBTF/Ubtf, were assigned to active promoter states and transcribed states
199  across the cell types. We conclude that these concise summaries of the epigenetic landscapes
200 across cell types showed the chromatin signatures for differential or uniform gene expression
201 and revealed discrete intervals as potential regulatory elements, with the consistent state

202  assignments often revealing similar epigenetic landscapes of orthologous genes in human and

203 mouse.
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While these resources are useful, some limitations should be kept in mind. For example, IDEAS
used data from similar cell types to improve state assignments in cell types with missing data,
but the effectiveness of this approach may be impacted by the pattern of missing data. In
particular, the epigenetic data on human stem and progenitor cell types were largely limited to
ATAC-seq data, whereas histone modification data and CTCF occupancy were available for the
analogous cell types in mouse (Fig. 1). Thus, the state assignments for epigenomes in human
stem and progenitor cells may be less robust compared to those for similar cell types in mouse.
Another limitation is the broad range of quality in the data sets that cannot be completely
adjusted by normalization, which leads to over- or under-representation of some epigenetic
signals in specific cell types (Supplemental Fig. S5). Despite these limitations, the annotation of
blood cell epigenomes after normalization and joint modeling of epigenetic states produced a
highly informative painting of the activity and regulatory landscapes across the genomes of

human and mouse blood cells.

Candidate cis-regulatory elements in human and mouse

We define a candidate cis-regulatory element, or cCRE, as a DNA interval with a high signal for
chromatin accessibility in any cell type (Xiang et al. 2020). We utilized a version of the IDEAS
methodology to combine peaks of accessibility across different cell types, running it in the signal
intensity state (IS) mode only on chromatin accessibility signals (Xiang et al. 2021), which helps

counteract excessive expansion of peak calls when combining them (Supplemental Fig. S6).

Employing the same peak-calling procedure to data from human and mouse resulted in 200,342
peaks of chromatin accessibility for human and 96,084 peaks for mouse blood cell types
(Supplemental Table S3). Applying the peak caller MACS3 (Zhang et al. 2008) on the same

human ATAC-seq data generated a larger number of peaks, but those additional peaks tended
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to have low signal and less enrichment for overlap with other function-related genomic datasets

(Supplemental Fig. S7).

The ENCODE Project released regulatory element predictions in a broad spectrum of cell types
in the Index of DHSs (Meuleman et al. 2020) and the SCREEN cCRE catalog (The ENCODE
Project Consortium et al. 2020), using data that were largely different from those utilized for the
VISION analyses. Almost all the VISION cCRE calls in human blood cells were included in the
regulatory element predictions from ENCODE (Supplemental Fig. S8A), supporting the quality
of the VISION cCRE calls. Furthermore, as expected from its focus on blood cell types, the
VISION cCRE catalog shows stronger enrichment for regulatory elements active in blood cells

(Supplemental Fig. S8B, Supplemental Table S4).

Enrichment of the cCRE catalog for function-related elements and trait-associated
genetic variants

Having generated catalogs of cCREs along with an assignment of their epigenetic states in
each cell type, we characterized the human cCREs further by connecting them to orthogonal
(not included in VISION predictions) datasets of DNA elements implicated in gene regulation or
in chromatin structure and architecture (termed structure-related) (Fig. 3A, Supplemental Fig.
S9, Supplemental Table S5). About two-thirds (136,664 or 68%) of the VISION human cCREs
overlapped with elements in the broad groups of CRE-related (97,361 cCREs overlapped) and
structure-related (83,327 cCREs overlapped) elements, with 44,024 cCREs overlapping
elements in both categories (Fig. 3A, B). In contrast, ten sets of randomly chosen DNA intervals,
matched in length and GC-content with the human cCRE list, showed much less overlap with
the orthogonal sets of elements (Fig. 3B). Of the CRE-related superset, the enhancer-related
group of datasets contributed the most overlap with VISION cCREs, followed by SURE peaks,

which measure promoter activity in a massively parallel reporter assay (van Arensbergen et al.
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2017), and CpG islands (Fig. 3C). Compared to overlaps with the random matched intervals, the
VISION cCREs were highly enriched for overlap with each group of CRE-related datasets (Fig.
3C). Of the structure-related superset, the set of CTCF occupied segments (OSs) contributed
the most overlap, followed by chromatin loop anchors, again with high enrichment relative to
overlaps with random matched sets (Fig. 3D). Considering the VISION cCREs that intersected
with both structure- and CRE-related elements, major contributors were the cCREs that overlap
with enhancers and CTCF OSs or loop anchors (Supplemental Fig. S10). Furthermore, the
VISION cCREs captured known blood cell CREs (Supplemental Table S4) and CREs
demonstrated to impact a specific target gene in a high throughput analysis (Gasperini et al.
2019) (Fig. 3E). We conclude that the intersections with orthogonal, function- or structure-
related elements lent strong support for the biological significance of the VISION cCRE calls

and added to the annotation of potential functions for each cCRE.

The catalog of VISION human blood cell cCREs showed a remarkable enrichment for genetic
variants associated with blood cell traits, further supporting the utility of the catalog. We initially
observed a strong enrichment by overlap with variants from the NHGRI-EBI GWAS Catalog
(Buniello et al. 2019) associated with blood cell traits (Supplemental Fig. S11). We then
analyzed the enrichments while considering the haplotype structure of human genomes,
whereby association signals measured at assayed genetic markers likely reflect an indirect
effect driven by linkage disequilibrium (LD) with a causal variant (that may or may not have
been genotyped). We employed stratified linkage disequilibrium score regression (sLDSC,
Finucane et al. 2015) to account for LD structure and estimate the proportion of heritability of
each trait explained by a given genomic annotation, quantifying the enrichment of heritability in
587 traits from the UK Biobank (UKBB) GWAS (Ge et al. 2017 and http://www.nealelab.is/uk-
biobank/) within the VISION cCREs relative to the rest of the genome (Supplemental Material

section “Stratified linkage disequilibrium score regression”). These traits encompassed 54
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“blood count” traits that measure properties including size and counts of specific blood cell
types, 60 “blood biochemistry” traits that measure lipid, enzyme, and other molecular
concentrations within whole blood samples, and 473 non-blood-related traits, allowing us to
assess the specific relevance of the cCREs to regulation of blood-related versus other
phenotypes. At a 5% FDR threshold, we discovered 53 traits for which cCREs were significantly
enriched in heritability (Fig. 3F). Of these traits, 52 (98%) were blood-related and 50 were blood
count traits, representing 93% of all UKBB blood count traits included in our analysis. The
remaining 2 significant traits pertained to blood biochemistry, specifically, the male and female
glycated hemoglobin concentrations. These metrics and observations together lend support to
the VISION cCRE annotation being composed of informative genomic regions associated with

regulation of genes involved in development of blood cell traits.

Estimates of regulatory impact of cCREs during differentiation

The epigenetic states assigned to cCREs can reveal those that show changes in apparent
activity during differentiation. Inferences about the activity of a cCRE in one or more cell types
are based on whether the cCRE was actuated, i.e., was found in a peak of chromatin
accessibility, and which epigenetic state was assigned to the actuated cCRE. Those states can
be associated with activation (e.g., enhancer-like or promoter-like) or repression (e.g.,
associated with polycomb or heterochromatin). In addition to these categorical state
assignments, quantitative estimates of the impact of epigenetic states on expression of target
genes are useful, e.g., to provide an estimate of differences in inferred activity when the states
change. Previous work used signals from single or multiple individual features such as
chromatin accessibility or histone modifications in regression modeling to explain gene
expression (e.g., Karli¢ et al. 2010; Dong et al. 2012), and we applied a similar regression
modeling using epigenetic states as predictor variables to infer estimates of regulatory impact of

each state on gene expression (Xiang et al. 2020).
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We used state assignments of cCREs across cell types in a multivariate regression model to
estimate the impact of each state on the expression of local genes (Supplemental Material,
“Estimation of the impact of epigenetic states and cCREs on gene expression”). That impact
was captured as B coefficients, which showed the expected strong positive impact for promoter
and enhancer associated states and negative impacts from heterochromatin and polycomb
states (Fig. 4A). The B coefficients were then used in further analysis, such as estimating the
change in regulatory impact as a cCRE shifts between states during differentiation (difference
matrix to the left of the B coefficient values in Fig. 4A). The B coefficient values also were used
to generate an epigenetic state Regulatory Potential (esRP) score for each cCRE in each cell
type, calculated as the B coefficient values for the epigenetic states assigned to the cCRE
weighted by the coverage of the cCRE by each state (Fig. 4B). These esRP scores were the
basis for visualizing the collection of cCREs and how their regulatory impact changed across
differentiation (Supplemental Fig. S12 and Supplemental movie S1). Comparison of the
integrative esRP scores with signal intensities for single features (ATAC-seq and H3K27ac)
showed all were informative for visualizations, and esRP performed slightly better than the
single features in differentiating cCREs based on locations within gene bodies (Supplemental

Fig. S13).

In addition, we explored the utility of the esRP scores for clustering the cCREs into groups with
similar activity profiles across blood cell types in both human and mouse. Focusing on the esRP
scores in 12 cell types shared between human and mouse along with the average across cell
types, we identified clusters jointly in both species. The clustering proceeded in three steps,
specifically finding robust k-means clusters for the combined human and mouse cCREs,
identifying the clusters shared by cCREs in both species, and then further grouping those

shared k-means clusters hierarchically to define fifteen joint metaclusters (JmCs) (Supplemental

13
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Fig. S14). Each cCRE in both mouse and human was assigned to one of the fifteen JmCs, and

each JmC was populated with cCREs from both mouse and human.

These JmCs established discrete categories for the cCREs based on the cell type distribution of
their inferred regulatory impact (Fig. 4C). The clusters of cCREs with high esRP scores across
cell types were highly enriched for promoter elements (Supplemental Fig. S15A). The cell type-
restricted clusters of cCREs showed enrichment both for selected enhancer catalogs and for
functional terms associated with those cell types (Supplemental Fig. S15A and B). Furthermore,
clustering of human genes by the JmC assignments of cCREs in a 100kb interval centered on
their TSS (Supplemental Material section “Enrichment of JMCs assigned to cCREs in gene
loci”) revealed a strong enrichment for JmCs with high activity in the cell type(s) in which the
genes are expressed (Fig. 4D). Examples include IFNG showing enrichment for JmC 12, which
has high esRP scores in T and NK cells, CSF1R showing enrichment for JImC 15, which has
high scores in monocytes, and GATA 1 showing enrichment for JmC 10, which has high scores
in erythroid cells and megakaryocytes. Moreover, running sLDSC on cCREs in individual JmCs
showed enrichment for heritability of blood cell-related traits in some specific JmCs

(Supplemental Fig. S16).

As expected from previous work (e.g., Heintzman et al. 2009; Meuleman et al. 2020), similar
metaclusters of cCCREs were generated based on single signals from the histone modification
H3K27ac or chromatin accessibility across cell types (Supplemental Fig. S17). Clustering based
on any of the three features better resolved individual cell types when larger numbers of clusters
were considered, prior to collapsing the shared robust clusters into JmCs (Supplemental Fig.

S18).
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In summary, we show that the B coefficients and esRP scores provide valuable estimates of
regulatory impacts of states and cCREs, respectively. The esRP-driven joint metaclusters
provide refined subsets of cCREs that should be informative for investigating cell type-specific
and general functions of cCREs. We also built self-organizing maps as a complementary
approach to systematic integration of epigenetic features and RNA data across cell types

(Supplemental Fig. S19, Jansen et al. 2019).

Motif enrichment in joint metaclusters of human and mouse cCREs

We examined the sets of cCREs in each JmC to ascertain enrichment for transcription factor
binding site (TFBS) motifs because these enriched motifs suggest the families of transcription
factors that play a major role in regulation by each category of cCREs. Furthermore, having sets
of cCREs determined and clustered for comparable blood cell types in human and mouse
provided the opportunity to discover which TFBS motifs were shared between species and

whether any were predominant in only one species.

To find TFBS motifs associated with each JmC, we calculated enrichment for all non-redundant
motifs in the Cis-BP database (Weirauch et al. 2014) using Maelstrom from GimmeMotifs
(Bruse and van Heeringen 2018) (Supplemental Material “Enrichment for transcription factor
binding site motifs in joint metaclusters of cCREs”). The results confirmed previously
established roles of specific TFs in cell lineages and showed little evidence for novel motifs (Fig.
4E). For example, TFBS motifs for the GATA family of transcription factors were enriched in
JmCs 2 and 10, which have high esRP scores in progenitor and mature cells in the erythroid
and megakaryocytic lineages, as expected for the known roles of GATA1 and GATAZ2 in this
lineage (Blobel and Weiss 2009; Fujiwara et al. 2009). The GATA motif was also enriched in
JmC 14, as expected for the role of GATAS in natural killer (NK) and T cells (Rothenberg and

Taghon 2005). Furthermore, motifs for the known lymphoid transcription factors TBX21,
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TCF7L1, and LEF1 (Chi et al. 2009) were enriched in cCREs with high esRP scores in NK and
T cells (JmCs 9 and 12), and motifs for myeloid-determining transcription factors CEBPA and
CEBPB (Graf and Enver 2009) and the myeloid transcription factor PU.1 (also known as SPI1)
(Tenen et al. 1997) were enriched in cCREs that are active in progenitor cells and monocytes
(JmCs 3 and 15). TFBS motifs for promoter-associated transcription factors such as E2F2 and
SP1 (Dynan and Tjian 1983; Kaczynski et al. 2003) were enriched in broadly active cCREs
(JmCs 1 and 4). These patterns of motif enrichments in the JmCs fit well with the expectations
from previous studies of transcription factor activity across lineages of blood cells, and thus,
they lend further credence to the value of the cCRE calls and the JmC groupings for further

studies of regulation in the blood cell types.

The genome-wide collection of cCREs across many blood cell types in human and mouse
provided an opportunity for an unbiased and large-scale search for indications of transcription
factors that may be active specifically in one species for a shared cell type. Prior studies of
transcription factors have shown homologous transcription factors used in analogous cell types
across species (e.g., Carroll 2008; Noyes et al. 2008; Schmidt et al. 2010; Cheng et al. 2014;
Villar et al. 2014), but it is not clear if there are significant exceptions. In our study, we found that
for the most part, the motif enrichments were quite similar between the human and mouse
cCREs in each JmC. Note that these similarities were not forced by requiring sequence
matches between species; the cCREs were grouped into JmCs based on their pattern of
activity, as reflected in the esRP scores, across cell types, not by requiring homologous
sequences. This similarity between species indicates that the same transcription factors tend to
be active in similar groups of cell types in both mouse and human. An intriguing potential
exception to the sharing of motifs between species was the enrichment of TFBS motifs for
CTCF and ZBTB7A in some JmCs, suggestive of some species selectivity in their binding in the

context of other TFs (Supplemental Figs. S20 and S21). These indications of conditional,
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411 preferential usage of these TFs in human or mouse could serve as the basis for more detailed
412  studies in the future.

413

414  In summary, after grouping the cCREs in both human and mouse by their inferred regulatory
415 impact across blood cell in a manner agnostic to DNA sequence or occupancy by TFs, the
416  enrichment for TFBS motifs within those groups recapitulated known activities of TFs both
417  broadly and in specific cell lineages. The results also showed considerable sharing of inferred
418  TF activity in both human and mouse.

419

420 Evolution of sequence and inferred function of cCREs

421  The human and mouse cCREs from blood cells were assigned to three distinct evolutionary
422  categories (Fig. 5A). About one-third of the cCREs were present only in the reference species
423  (39% for human, 28% for mouse), as inferred from the failure to find a matching orthologous
424  sequence in whole-genome alignments with the other species. We refer to these as

425 nonconserved (N) cCREs. Of the two-thirds of cCREs with an orthologous sequence in the
426 second species, slightly over 30,000 were also identified as cCREs in the second species. The
427 latter cCREs comprise the set of cCREs conserved in both sequence and inferred function,
428  which we call SF conserved (SF) cCREs. Almost the same number of cCREs in both species
429 fall into the SF category; the small difference resulted from interval splits during the search for
430 orthologous sequences (Supplemental Fig. S22). The degree of chromatin accessibility in

431  orthologous SF cCREs was positively correlated between the two species (Supplemental Fig.
432  S23). The remaining cCREs (91,000 in human and 36,000 in mouse) were conserved in

433  sequence but not in an inferred function as a regulatory element, and we call them S conserved
434  (S) cCREs. The latter group could result from turnover of regulatory motifs or acquisition of
435 different functions in the second species.

436
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The distributions of epigenetic states assigned to the blood cell cCREs in each of the three
evolutionary categories were similar between human and mouse, but those distributions differed
among evolutionary categories, with significantly more SF cCREs assigned to promoter-like
states than were S or N cCREs (Supplemental Fig. S24). Indeed, the SF cCREs tended to be
close to or encompass the TSSs of genes, showing a substantial enrichment in overlap with
TSSs compared to the overlap observed for all cCREs (Fig. 5B). Many of the S and N cCREs
were assigned to enhancer-like states (Supplemental Fig. S24D), giving a level of enrichment
for overlap with enhancer datasets comparable to that observed for the full set of cCREs (Fig.

5B).

For both human and mouse, the level of sequence conservation, estimated by the maximum
phyloP score (Pollard et al. 2010), was higher in the collection of cCREs than in sets of
randomly chosen genomic intervals matching the cCREs in length and G+C content (Fig. 5C).
Among the evolutionary categories of cCREs, the distribution of phyloP scores for SF cCREs
was significantly higher than the distribution for S cCREs, which in turn was higher than that for
N cCREs, for both species (Fig. 5C). The whole genome alignments underlying the phyloP
scores are influenced by proximity to the highly conserved coding exons (King et al. 2007), and
the high phyloP scores of the promoter-enriched SF cCREs could reflect both this effect as well
as strong constraint on conserved function (Supplemental Fig. S25). In all three evolutionary
categories, the distribution of phyloP scores was higher for promoter-proximal cCREs than for
distal ones, but the relative levels of inferred conservation were the same for both, i.e., SF>S>N

(Supplemental Fig. S26).

In summary, this partitioning of the cCRE catalogs by conservation of sequence and inferred
function revealed informative categories that differed both in evolutionary trajectories and in

types of functional enrichment.
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Conservation of non-coding genomic DNA sequences among species has been used
extensively to predict regulatory elements (Gumucio et al. 1992; Hardison 2000; Pennacchio
and Rubin 2001), but the observation that predicted regulatory elements fall into distinct
evolutionary categories (SF, S, and N) raised the question of whether inter-species DNA
sequence alignments or annotation of epigenetic states would be more effective in finding
elements that were experimentally determined to be active in gene regulation. Recent advances
in massively parallel reporter assays have enabled the testing of large sets of candidate
elements, approaching comprehensive assessment of the predicted elements (Agarwal et al.
2023). We used the set of over 57,000 human genomic elements shown to be active in K562
cells to address this question (Supplemental Material), and we found that requiring alignment to
the mouse genome would miss about 40% of the active elements, whereas requiring presence
in a non-quiescent epigenetic state or one associated with gene activation would cover 87% or
82.5%, respectively, of the active elements (Fig. 5D). Thus, the epigenetic state annotation can
enable a more comprehensive prediction and examination or gene regulatory elements. This
realization motivated a comparison of epigenetic states between human and mouse, as

described in the next section.

Comparison of epigenetic states around orthologous genes in human and mouse

The consistent state assignments from the joint modeling facilitated epigenetic comparisons
between species. Such comparisons are particularly informative for orthologous genes with
similar expression patterns but some differences in their regulatory landscapes. For example,
the orthologous genes GATA1 in human and Gata? in mouse each encode a transcription factor
with a major role in regulating gene expression in erythroid cells, megakaryocytes, and
eosinophils (Ferreira et al. 2005), with a similar pattern of gene expression across blood cell

types in both species (Supplemental Fig. S27). The human and mouse genomic DNA
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sequences aligned around these orthologous genes, including their promoters and proximal
enhancers; the alignments continued through the genes downstream of GATA1/Gata1 (Fig. 6A).
An additional, distal regulatory element located upstream of the mouse Gata? gene, which was
bound by GATA1 and EP300 (Fig. 6A), was found only in mouse (Valverde-Garduno et al.
2004). The DNA sequences of the upstream interval harboring the mouse regulatory element
did not align between mouse and human except in portions of the GLODS5/Glod5 genes (Fig.
6A). Thus, the interspecies sequence alignments provide limited information about this distal

regulatory element.

This limitation to sequence alignments led us to explore whether comparisons of epigenetic
information would be more informative, utilizing the consistent assignment of epigenetic states
in both human and mouse, which do not rely on DNA sequence alignment. In the large genomic
regions (76kb and 101kb in the two species) encompassing the orthologous human GATA1 and
mouse Gata1 genes and surrounding genes, we computed the correlation for each genomic bin
between the epigenetic state assignments across cell types in one species and that in the other
species for all the bins (Supplemental Fig. S28). This local, all-versus-all comparison of the two
loci yielded a matrix of correlation values showing similarities and differences in profiles of
epigenetic states in the two species (Fig. 6B). The conserved promoter and proximal enhancers
of the GATA1/Gata1 genes were highly correlated in epigenetic states across cell types
between the two species, in a region of the matrix that encompassed the aligning DNA
sequences (labeled Px in Fig. 6B). In contrast, whereas the mouse-specific distal regulatory
element did not align with the human DNA sequence, the epigenetic states annotating it
presented high correlations with active epigenetic states in the human GATA1 locus (labeled D

in Fig. 6B).
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The complexity of the correlation matrix (Fig. 6B) indicated that multiple epigenetic trends could
be contributing to the patterns. To systematically reduce the high dimensionality of the matrix to
a set of simpler matrices, we employed nonnegative matrix factorization (NMF) because of its
interpretability (Stein-O'Brien et al. 2018; Lee and Roy 2021). The decomposed matrices from
NMF revealed a set of factors, each of which (represented by each column in the mouse matrix
and each row in the human matrix in Fig. 6C) captures a group of highly correlated elements in
the original matrix that show a pattern distinct from the rest of the elements. The complex
correlation matrix was decomposed into six distinct factors, as determined by the number of
factors at which an “elbow” was found in the BIC score (Supplemental Fig. S29). Each factor
encapsulated a specific epigenetic regulatory machinery or process exhibiting consistent cross-
cell type patterns in both humans and mice (Supplemental Fig. S30). For example, the
correlation matrices reconstructed by using signals from factor 3 exclusively highlighted the cell
type-specific positive regulators for the GATA1/Gata1 gene loci; these regulatory elements were
evident in reconstructed correlation matrices between species (Fig. 6D) and within individual
species (Fig. 6E). By applying a Z-score approach to identify peak regions in the factor 3 signal
vector (with FDR < 0.1; Supplemental Material), we pinpointed regions in both species showing
an epigenetic regulatory machinery exhibiting positive regulatory dynamics for the orthologous
GATA1/Gata1 gene loci, particularly in the ERY and MK cell types. In contrast, the correlation
matrices reconstructed from the signals for factor 6 (Fig. 6F and G) highlighted regions marked
by the transcription elongation modification H3K36me3 (epigenetic states colored green, Fig.
6G). The correlations in the factor 6 elongation signature were observed, as expected, between
the human/mouse orthologous gene pairs GATAT and Gata1 as well as between human
HDACG6 and mouse Hdac6 (green rectangles in Fig. 6F). The factor 6 correlations were also
observed between the GATA1/Gata1 and HDACG6/Hdac6 genes (black rectangles in Fig. 6F and
G), showing a common process, specifically transcriptional elongation, at both loci. A similar

analysis for other factors revealed distinct regulatory processes or elements, such as active
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promoters (factor 2), exhibiting unique cross-cell type patterns (Supplemental Fig. 30). The
genomic bins with high scores for a given NMF factor in human showed high correlation with
bins with high scores for that same factor in mouse, indicating that the NMF factors capture a
similar set of epigenetic state patterns in each species (Supplemental Fig. S31). The patterns
captured by NMF factors 3 and 6 were robust to the choice of k in the NMF (Supplemental Fig.
S32). Overall, these results underscore this method's capability to objectively highlight
regulatory regions with analogous epigenetic patterns across cell types in both species. This
method could aid in extracting additional information about similar epigenetic patterns between
human and model organisms such as mice, for which only a portion of their genome aligns with

human.

Because some of the NMF factors reflected processes in gene expression and regulation that
occur in many genes, some of the highly correlated regions across species could reflect false
positives. Thus, it is prudent to restrict the current approach to genomic intervals around
orthologous genes to reduce the impact of false discovery. We examined patterns of epigenetic
state correlations across cell types between the human GATA1 gene locus and three non-
orthologous loci in mouse to investigate the scope of this issue (Supplemental Material). While
genomic bins of high epigenetic state correlation were observed between non-orthologous loci,
the discovery of bins implicated in a cell type-specific process, such as erythroid or
megakaryocytic regulation, could be enhanced by utilizing a broader background model for
computing peaks of NMF signal (Supplemental Fig. S33). With this refined approach to peak
identification, the false discovery rate estimated for epigenetic state comparison between the
human GATA1 locus and the mouse Cd4 locus was reduced to 0.1 or less (Supplemental Fig.
S33R). Furthermore, the epigenetic state comparisons between the human GATA1 locus and
the mouse Rps19 locus revealed a previously unreported region with hallmarks of erythroid

regulatory elements (Supplemental Fig. S34). These initial results suggest that the genomic
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scale of the epigenetic state correlations could be expanded in future work with judicious
attention to reducing false discovery, e.g., by linking the discovered elements to evidence of

conserved synteny between species.

Examination of human genomic elements shown to be active in a lentiMPRA assay (Agarwal et
al. 2023) at 30 loci (Supplemental Table S6) revealed that the active elements were enriched in
genomic bins with high cross cell-type epigenetic state correlation between species
(Supplemental Fig. S35). The enrichment for active elements was further increased in bins with
both high epigenetic state correlation and interspecies sequence conservation, while enrichment
was reduced or comparable (depending on approaches used for false discovery thresholds) in
bins with only sequence conservation. These results further support the value of the cross cell-
type epigenetic state correlation between species in predicting and interpreting cCREs

(Supplemental Fig. S36).

The comparison of epigenetic state profiles across cell types also provided a means to
categorize cCREs between species that did not require a match in the underlying genomic DNA
sequence (Supplemental Figs. S37 and S38). Results from that approach indicated that certain
cCREs were potentially involved in regulation of orthologous genes, even for cCREs with DNA

sequences that did not align between species.

In summary, the IDEAS joint modeling on the input data compiled here and the consistent state
assignments in both mouse and human confirmed and extended previous observations on
known regulatory elements, and they revealed both shared and distinctive candidate regulatory
elements and states between species. Correlations of state profiles between species provided a
comparison of chromatin landscapes even in regions with DNA sequences that were not

conserved between species. Our initial results reported here support continuing the
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development of this approach of comparing cross cell-type epigenetic state profiles between

species for functional prediction and interpretation of cCREs.

Discussion

In this paper, the VISION consortium introduces a set of resources describing the regulatory
landscapes of both human and mouse blood cell epigenomes. A key, novel aspect of our work
is that the systematic integrative modeling that generated these resources was conducted jointly
across the data from both species, which enabled robust comparisons between species without
being limited by sequence alignments, allowing comparisons in non-conserved and lineage-

specific genomic regions.

One major resource is the annotation of the epigenetic states across the genomes of progenitor
and mature blood cells of both species. These state maps show the epigenetic landscape in a
compact form, capturing information from the input data on multiple histone modifications, CTCF
occupancy, and chromatin accessibility, and they use a common set of epigenetic states to
reveal the patterns of epigenetic activity associated with gene expression and regulation both
across cell types and between species. A second major resource is a catalog of cCREs
actuated in one or more of the blood cell types in each species. The cCREs are predictions of
discrete DNA segments likely involved in gene regulation, based on the patterns of chromatin
accessibility across cell types, and the epigenetic state annotations suggest the type of activity
for each cCRE in each cell type, such as serving as a promoter or enhancer, participating in
repression, or inactivity. A third major resource is a quantitative estimate of the regulatory
impact of human and mouse cCREs on gene expression in each cell type, i.e., an esRP score,

derived from multivariate regression modeling of the epigenetic states in cCREs as predictors of
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gene expression. The esRP scores are a continuous variable capturing not only the integration
of the input epigenetic data, but also the inferred impacts on gene expression. Those impacts
may be manifested as activation or repression during regulation or as transcriptional elongation.
They are useful for many downstream analyses, such as determining informative groups of
cCREs by clustering analysis. These resources along with browsers for visualization and tools

for analysis are provided at our project website, http://usevision.org. Among these tools is

cCRE_db, which records the several dimensions of annotation of the cCREs and provides a

query interface to support custom queries from users.

Our human blood cell cCRE catalog should be valuable for mechanistic interpretations of trait-

related human genetic variants. Human genetic variants associated with traits intrinsic to blood
cells were significantly enriched in the VISION cCRE catalog, whereas variants associated with
a broad diversity of other traits were not enriched. We expect that the extensive annotations in
our cCRE catalog combined with information about TFBS motifs and TF occupancy should lead
to specific, refined hypotheses for mechanisms by which a variant impacts expression, such as

alterations in TF binding, which can be tested experimentally in further work.

The jointly learned state maps and cCRE predictions allowed us to extend previous work on the
evolution of regulatory elements between mouse and human. Several previous studies focused
on transcription factor (TF) occupancy, e.g. examining key TFs in one tissue across multiple
species (Schmidt et al. 2010; Ballester et al. 2014; Villar et al. 2014) or a diverse set of TFs in
multiple cell types and in mouse and human (Cheng et al. 2014; Yue et al. 2014; Denas et al.
2015). Other studies focused on discrete regions of high chromatin accessibility in multiple cell
types and tissues between mouse and human (Stergachis et al. 2014; Vierstra et al. 2014).
These previous studies revealed that only a small fraction of elements was conserved both in

genomic sequence and in inferred function. A notable fraction of elements changed
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considerably during mammalian diversification, including turnover of TF binding site motifs and
repurposing of elements (Schmidt et al. 2010; Cheng et al. 2014; Stergachis et al. 2014; Denas
et al. 2015). These prior studies focused primarily on regions of the genome with sequences
that aligned between human and mouse, with the non-aligning regions used to infer that some
elements were lineage-specific and that many were derived from transposable elements and
endogenous retroviruses (Bourque 2009; Rebollo et al. 2012; Jacques et al. 2013; Sundaram et
al. 2014). Our evolutionary analyses confirmed the previous observations, e.g., finding about
one-third of cCREs are conserved in both sequence and inferred function between human and
mouse, and further showing that this evolutionary category was highly enriched for proximal

regulatory elements.

Going beyond the prior comparative epigenetic studies, our jointly learned epigenetic state
maps generated a representation of multiple epigenetic features, not just TF occupancy or
chromatin accessibility, and they are continuous in bins across genomes of both species. Using
the same set of epigenetic states for annotation of both the human and mouse genomes gave a
common “alphabet” (set of states) for both species, which enabled comparisons of the
epigenetic profiles between species. In the current work, we explored the utility of these
epigenetic comparisons in several ways. For example, the joint clusterings of cCREs between
species by esRP scores (derived from the epigenetic state annotations) enabled an analysis
that was agnostic to DNA sequence or occupancy by TFs to show considerable sharing of
inferred TF activity in both human and mouse. Furthermore, the common alphabet of states
allowed us to compare the cross-cell type epigenetic state patterns in large genomic intervals of
both species containing orthologous genes, again in a manner agnostic to underlying DNA
sequence similarities or differences. These epigenetic comparisons were a strong complement
to genomic sequence alignments, revealing regulatory elements with similar epigenetic profiles

even in genomic regions in which the DNA sequence does not align between species. Our
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detection, even in segments of DNA that do not align between species, of epigenetic similarity
indicative of a common role in gene regulation suggests that processes or structures, such as
chromatin interactions, chromatin complexes, or molecular condensates, may be maintained
between species in a manner that is not fully revealed by comparisons of genome sequences.
Hence, further studies of this apparent epigenetic dimension of regulatory conservation may be
productive. For example, the complex interspecies epigenetic state correlation matrices were
decomposed into NMF factors that represented major types of regulatory mechanisms, some
that were common across cell types and others that were specific to certain cell types. Further
investigation indicated the potential for judicious use of the cell type specific NMF factors in a
context of conserved synteny for expanding the scale of the state correlation analysis in future

studies.

Previous work compared epigenetic profiles across species, such as the phylo-HMGP method
to find different evolutionary states in multi-species epigenomic data (Yang et al. 2018) and the
LECIF scores to find evidence of conservation from functional genomic data (Kwon and Ernst
2021). These approaches are powerful but limited to the genomic regions with DNA sequences
that align between the species, and thus they will miss the approximately 40% of experimentally
demonstrated CREs that are not in aligning regions (Fig. 5D). In contrast, our approach of
correlating epigenetic states included both DNA segments that align between human and
mouse and those that do not, and it captures more of the experimentally verified cCREs. For
comparisons between species, both genomic sequence alignment and epigenetic state
annotation across cell types provide important sources of information. Combining both types of
data into joint models for predicting CREs could be a productive avenue for future work, not only
for improved accuracy but also to allow the contributions of each type of information to

determined systematically.
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Several innovations were developed to produce the resources introduced here. A major
innovation was to extend the IDEAS framework (Zhang et al. 2016) to jointly learn epigenetic
states and assign them to annotate the epigenomes in human and mouse blood cells. The
IDEAS method employs a Bayesian approach to the modeling to learn the states, which we
utilized to bring in states learned from the data in one species as priors for learning states in the
data from the second species. Another extension of the IDEAS framework was to learn states
based on one feature, specifically ATAC-seq data, defining discrete signal intensity states. This
approach was used for calling cCREs, implemented as the IDEAS-IS method (Xiang et al.
2021). The approach is relatively simple and benefits from joint modeling across the input
datasets. Other methods for predicting cCREs based on chromatin accessibility across many
cell types prevented excessive expansion of the summary calls for overlapping peaks by
employing a centroid determination for the DNase hypersensitive sites (DHS) index (Meuleman
et al. 2020) or by choosing the highest signal peak for the ENCODE cCRE catalog (The
ENCODE Project Consortium et al. 2020). The ENCODE cCRE catalog paired DHS peaks with
individual chromatin modifications or CTCF occupancy, which led to complications when data
on diagnostic features were missing from some cell types. The IDEAS framework used for the

VISION cCRE sets leveraged data in related cell types to ameliorate the impact of missing data.

While the resources introduced here are valuable for many applications, it is prudent to
acknowledge their limitations. First, the quality of the products of integrated analyses are limited
by the quality and completeness of the input, raw data. We endeavored to reduce the impact of
variances in the input data by normalization. The S3V2 procedure (Xiang et al. 2021)
systematically normalized the input data to adjust for differences in signal-to-noise and variance
in signal across the datasets. Some epigenetic features were not determined in some cell types,
and we used the IDEAS method in part because it is able to assign an epigenetic state even in

the context of missing data by learning patterns from local similarities in cell types for which the
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data are present (Zhang and Mahony 2019). However, these approaches cannot completely
overcome all issues with variance in input data, and further developments in these directions
(such as Shahraki et al. 2023; Xiang et al. 2024) may help to improve integrative resources.
Second, the resolution of both the epigenetic state assignments and the cCRE inference is
limited to 200 bp, which is the window size we utilized in the IDEAS analyses. Other resources,
such as DHS calls (Meuleman et al. 2020), DNase footprints (Vierstra et al. 2020), and motif
instances (Weirauch et al. 2014), achieve a higher resolution. Indeed, one can use these higher
resolution datasets to derive further information about cCREs, such as families of TFs that are
likely to be binding to them. Regarding esRP scores, a third limitation is that we do not make
explicit assignments for target genes of cCREs. Predictions of a large number of target gene-
cCRE pairs were made in our prior work (Xiang et al. 2020); these assignments cover large
genomic intervals around each gene and are most useful when used with further filtering, such
as restricting cCREs and target genes to the same topologically associated domains. On-going
work is examining other models and approaches for assigning likely target genes to cCREs. A
fourth limitation is that our inference of repression-related cCREs applies only to those with
stable histone modifications. Elements that had been involved in initiation of repression but
eventually were packaged into quiescent chromatin, e.g., via a hit-and-run mechanism (Shah et
al. 2019), would not be detected. A fifth limitation concerns the scale of the studies of epigenetic
conservation by correlations of epigenetic states. Our current approach is limited to individual
examination of specific genetic loci since we used orthologous genes as the initial anchors.
Exploring ways to expand the scale of the analytical approach is a goal of future research.
Finally, the work presented here was restricted to blood cell types. In future work, extension of
the approaches developed in this study to a broader spectrum of cell types would expand the

utility of the resulting resources.
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In conclusion, we present several important new resources to enable further and more detailed
studies of gene regulation in human and mouse blood cells both during normal differentiation
and in pathological contexts. The patterns of epigenetic states in cCREs across cell types show
value in developing an understanding of how genetic variants impact blood cell traits and
diseases. Furthermore, the joint modeling between species opens avenues for further
exploration of comparisons of epigenetic landscapes in addition to sequence alignments for

insights into evolution and function of regulatory elements between species.

Methods

Data generation, collation, normalization, and integration

The data sets used as input, including the ones generated for the work reported here (with
methods), are described in Supplemental Material section “Data generation and collection” and
Supplemental Tables S1 and S2. The S3V2 approach (Xiang et al. 2021) was used for
normalization and denoising the data sets prior to integration. The data sets were integrated to
find and assign epigenetic states using IDEAS (Zhang et al. 2016; Zhang and Hardison 2017);
the extension of this approach to joint learning and annotation between species is described in
Supplemental Material sections “Data normalization” and “Joint systematic integration of human

and mouse blood cell epigenomes by IDEAS”.

Prediction, annotation, and estimation of regulatory impact of cCREs

The identification of cCREs as peaks of chromatin accessibility employed IDEAS in the signal
intensity state (IS) mode (Xiang et al. 2021). This approach and comparisons with MACS peaks
(Zhang et al. 2008) are described in Supplemental Material section “Prediction of VISION

cCREs using IDEAS-IS”. The cCREs are provided in Supplemental Table S3. Annotation of
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potential cCRE functions used intersections with orthogonal data sets of elements implicated in
regulation or chromatin structure (Supplemental Table S5). Enrichment of genetic variants
associated with blood cell traits used stratified linkage disequilibrium score regression (sLDSC,
Finucane et al. 2015). The impact of epigenetic states in cCREs on regulation of gene
expression used a multivariate linear regression approach like one described previously (Xiang
et al. 2020). Methods and supplementary results on these analyses are presented in detail in

the Supplemental Material.

Identification of clusters of cCREs based on epigenetic regulatory potential scores

The sets of human and mouse cCREs were placed jointly into groups based on their epigenetic
regulatory potential (esRP) scores using a series of k-means clustering steps, as described in
detail in Supplemental Material and Supplementary Fig. S14. Methods and results for
enrichment of the resulting joint meta-clusters (JmCs) for orthogonal sets of regulatory elements
and SNPs associated with blood cell traits, along with comparisons of clusters based on
chromatin accessibility and H3K27ac signal, are described in Supplemental Material and
Supplementary Figs. S15 - S18. Motifs that were differentially enriched across JmCs were
identified using the Maelstrom tool in the GimmeMotifs suite (v0.17.1) (Bruse and van
Heeringen 2018) and SeqUnwinder (Kakumanu et al. 2017), as described in detail in

Supplemental Material and Supplementary Fig. S21.

Partitioning cCREs to evolutionary categories based on DNA sequence alignments and
cCRE calls between species

The human and mouse cCREs were assigned to three evolutionary categories using the
following procedure. The set of human cCREs was mapped to mouse genome assembly mm10
using the liftOver tool at the UCSC Genome Browser (Hinrichs et al. 2006). Human cCREs that

failed to map to mm10 were grouped as N cCREs. Matches to mouse cCREs for the human
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cCREs that could be mapped by liftOver to mm10 were determined using the intersect tool in
BEDTools (Quinlan and Hall 2010). Human cCREs that overlapped with mouse cCREs were
labeled as SF cCREs, while human cCREs that mapped to mm10 but did not match mouse
cCREs were labeled as S cCREs. A similar process was performed on the set of mouse cCREs

using liftOver to map to human genome build GRCh38

Calculation of pairwise correlation coefficients for epigenetic landscapes between
human and mouse

A bin-to-bin pairwise correlation analysis was used to quantify the similarity of epigenetic
landscapes between two DNA regions in human and mouse. For each 200bp bin in one cell
type in one species, the assigned epigenetic state was replaced by a vector of mean signals of
8 epigenetic features in the IDEAS state model. After replacing the states in all 15 matched cell
types (14 analogous cell types and one pseudo-cell type with average values for all cell types)
in the two species, the original two categorical state vectors with 15 elements were converted
into two numeric vectors with 120 numbers (Supplemental Fig. S28). The similarity of cross-cell
type epigenetic landscape between two bins in the two species was defined as the correlation
coefficient between each pair of numeric vectors with 120 numbers. When calculating the
correlation coefficients, we added random noise (mean=0, sd=0.2) to the raw values to avoid
high correlation coefficients created between regions with states that have low signals. The
complex correlation matrix was decomposed into distinctive factors using Nonnegative Matrix
Factorization (Lee and Seung 1999). Methods and supplementary results on these analyses are

presented in detail in the Supplemental Material.

Data access
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All raw and processed sequencing data generated in this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession
number GSE229101 and the NCBI BioProject database

(https://www.ncbi.nlm.nih.gov/bioproject/) under accession number PRINA952902. Resources

developed in the VISION project are available at the website https://usevision.org; the data can

be viewed via a track hub at the UCSC Genome Browser or any compatible browser by using

this URL: https://usevision.org/data/trackHub/hub.txt or by clicking the track hubs link at

usevision.org. The database cCRE db supports flexible user queries on extensive annotation of
the cCREs, including epigenetic states and esRP scores across cell types, chromatin
accessibility scores across cell types, membership in JmCs, and evolutionary categories. Code
developed for this study is provided as two zipped directories in the Supplemental Material:
Supplemental Code 1or the joint IDEAS modeling and most other analyses, and Supplemental
Code 2 for the sLDSC analysis. The code is also available at these GitHub repositories:

https://github.com/guanjue/Joint Human_Mouse IDEAS_State for the joint human-mouse

IDEAS pipeline and https://github.com/usevision/cre_heritability for the sLDSC analysis.
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Figure Legends
Figure 1. Cell types and data sets used for systematic integration of epigenetic features

of blood cells. (A) The tree on the left shows the populations of stem, progenitor, and mature
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blood cells and cell lines in human. The diagram on the right indicates the epigenetic features
and transcriptomes for which genome-wide data sets were generated or collected, with
distinctive icons for the major sources of data, specifically the Blueprint project (Martens and
Stunnenberg 2013; Stunnenberg et al. 2016), Corces et al. (2016), abbreviated CMB, and St.
Jude Children’s Research Hospital (SJCRH, Cheng et al. 2021; Qi et al. 2021). (B) Cell types
and epigenetic data sets in mouse, diagrammed as for panel A. Sources were described in
Xiang et al. (2020) and Supplemental Table S1. Abbreviations for blood cells and lines are: HSC
= hematopoietic stem cell, MPP = multipotent progenitor cell, LMPP = lymphoid-myeloid primed
progenitor cell, CMP = common myeloid progenitor cell, MEP = megakaryocyte-erythrocyte
progenitor cell, K562 = a human cancer cell line with some features of early megakaryocytic and
erythroid cells, HUDEP = immortalized human umbilical cord blood-derived erythroid progenitor
cell lines expressing fetal globin genes (HUDEP1) or adult globin genes (HUDEP2), CD34_E =
human erythroid cells generated by differentiation from CD34+ blood cells, ERY = erythroblast,
RBC = mature red blood cell, MK = megakaryocyte, GMP = granulocyte monocyte progenitor
cell, EOS = eosinophil, MON = monocyte, MONp = primary monocyte, MONc = classical
monocyte, NEU = neutrophil, CLP = common lymphoid progenitor cell, B = B cell, NK = natural
killer cell, TCD4 = CD4+ T cell, TCD8 = CD8+ T cell, LSK = Lin-Sca1+Kit+ cells from mouse
bone marrow containing hematopoietic stem and progenitor cells, HPC7 = immortalized mouse
cell line capable of differentiation in vitro into more mature myeloid cells, G1E = immortalized
mouse cell line blocked in erythroid maturation by a knockout of the Gata? gene and its subline
ER4 that will further differentiate after restoration of Gata? function in an estrogen inducible
manner (Weiss et al. 1997), MEL = murine erythroleukemia cell line that can undergo further
maturation upon induction (designated iMEL), CFUE = colony forming unit erythroid, FL =
designates ERY derived from fetal liver, BM = designates ERY derived from adult bone marrow,
CFUMK = colony forming unit megakaryocyte, iMK = immature megakaryocyte, MK_fl =

megakaryocyte derived from fetal liver.
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Figure. 2. Genome segmentation and annotation jointly between human and mouse using
IDEAS. (A) Workflow for joint modeling. (1) Initial epigenetic states from 100 randomly selected
regions separately in human and mouse hematopoietic cell types were identified in IDEAS runs.
(2) States that were reproducible and shared in both species were retained. (3a and 3b) The
profile of epigenetic feature contribution to each of the reproducible states was sequentially
refined by applying IDEAS across the full genomes of human and of mouse, updating the state
model after each IDEAS run. (4) Two heterogeneous states were removed to generate the final
joint epigenetic states in the two species. (B) The 25 joint epigenetic states for human and
mouse hematopoietic cell types. The average signal of the epigenetic features for each state
are shown in the heatmap. The corresponding state colors, the state labels based on the
function, and the average proportions of the genome covered by each state across cell types
are listed on the right-side of the heatmap. (C) Annotation of epigenetic states in a large
genomic interval containing SLC4A1 and surrounding genes across human blood cell types.
The genomic interval is 210kb, GRCh38 Chr17:44,192,001-44,402,000, with gene annotations
from GENCODE V38. Binding patterns for selected transcription factors are from the VISION
project ChiP-seq tracks (CTCF and GATA1 in adult erythroblasts, signal tracks from MACS,
track heights 100 and 80, respectively) or from the ENCODE data portal (EP300 in K562 cells,
experiment ENCSROOOEGE, signal track is fold change over background, track height is 50).
The epigenetic state assigned to each genomic bin in the different cell types is designated by
the color coding shown in panel (B). The replicates in each cell type examined in Blueprint are
labeled by the id for the donor of biosamples. Genes and regulatory regions active primarily in
erythroid (E), granulocytes (G), and megakaryocytes (MK) are marked by gray rectangles. (D)
Annotation of epigenetic states in a large genomic interval containing Slc4a7 and surrounding
genes across mouse blood cell types. The genomic interval is 198kb, mm10

Chr11:102,290,001-102,488,000, with gene annotations from GENCODE VM23. Binding
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patterns for selected transcription factors are from the VISION project ChIP-seq tracks (CTCF in
adult erythroblasts, GATA1 and EP300 from the highly erythroid fetal liver, signal tracks from
MACS, track heights 200, 200, and 150, respectively; the EP300 track was made by re-mapping
reads from ENCODE experiment ENCSR982LJQ). The tracks of epigenetic states and

highlighted regions are indicated as in panel (C).

Figure. 3. Overlaps of VISION cCREs with other catalogs and enrichment for variants
associated with blood cell traits. (A) Venn diagram showing intersections of human VISION
cCREs with a combined superset of elements associated with nuclear structure (CTCF OSs,
loop anchors, and TAD boundaries) and with a combined superset of DNA intervals associated
with cis-regulatory elements (CREs), including TSSs, CpG islands, peaks from a massively
parallel promoter and enhancer assay, and enhancers predicted from enhancer RNAs, peaks of
binding by EP300, and histone modifications in erythroblasts (see Supplemental Material,
Supplemental Fig. S9, and Supplemental Table S5). (B) The proportions of cCREs and
randomly selected, matched sets of intervals in the overlap categories are compared in the bar
graph. For the random sets, the bar shows the mean, and the dots show the values for each of
ten random sets. (C) The UpSet plot provides a higher resolution view of intersections of
VISION cCREs with the four groups of CRE-related elements, specifically enhancer-related
(Enh), transcription start sites (TSS), Survey of Regulatory Elements (SURE), and CpG islands
(CpG). The enrichment for the cCRE overlaps compared to those in randomly selected,
matched sets of intervals are shown in the boxplots below each overlap subset, with dots for the
enrichment relative to individual random sets. (D) Overlaps and enrichments of VISION cCREs
for three sets of structure-related elements, specifically CTCF OSs (CT), loop anchors (LA), and
TAD boundary elements. (E) Overlaps of VISION cCREs with two sets of experimentally
determined blood cell cCREs. (F) Enrichment of SNPs associated with blood cell traits from UK

Biobank in VISION cCREs. Results of the sLDSC analysis of all cCREs are plotted with
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enrichment of the cCRE annotation in heritability of each trait on the x-axis, and the significance
of the enrichment on the y-axis. The analysis covers 292 unique traits with GWAS results from
both males and females and 3 traits with results only from males. The vertical dotted line
indicates an enrichment of 1, and the horizontal dotted line delineates the 5% FDR significance
threshold. Points and labels in red represent traits for which there was significant enrichment of
SNPs associated with the VISION cCREs. Traits with a negative enrichment were assigned an
arbitrary enrichment of 0.1 for plotting and appear as the column of points at the bottom left of
the plot. The shape of the point indicates the sex in which the GWAS analysis was performed

for each trait.

Figure 4. Beta coefficients of states, esRP scores of cCREs, joint human-mouse
metaclusters of cCREs based on esRP scores, and enrichment for TFBS motifs. (A) Beta
coefficients and the difference of beta coefficients of the 25 epigenetic states. The vertical
columns on the right show the beta coefficients along with the ID, color, and labels for the 25
joint epigenetic states. The triangular heatmap shows the difference of the beta coefficients
between two states in the right columns. Each value in the triangle heatmap shows the
difference in beta coefficients between the state on top and the state below based on the order
of states in the right columns. (B) An example of calculating esRP score for a cCRE in a cell
type based on the beta coefficients of states. For a cCRE covering more than one 200bp bin,
the esRP equals the weighted sum of beta coefficients of states that covers the cCRE, where
the weights are the region covered by different states. (C) The average esRP score of all
cCREs in JmCs across blood cell types shared by human and mouse. The right column shows
the number of human cCREs in each JmC. (D) The average enrichment of JNCs in 15
homologous gene clusters. The genes are clustered based on the JmCs’ enrichments by k-
means. (E) Motifs enriched in joint metaclusters. The top heatmap shows the enrichment of

motifs in the cCREs in each JmC in human (H) and mouse (M) as a Z-score. The logo for each
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motif is given to the right of the heat map, labeled by the family of transcription factors that
recognize that motif. The heatmap below is aligned with the motif enrichment heatmap, showing
the mean esRP score for the cCREs in each JmC for all the common cell types examined
between human and mouse. A summary description of the cell types in which the cCREs in

each JmC are more active is given at the bottom.

Figure. 5. Evolutionary and epigenetic comparisons of cCREs. (A) Workflow to partition
blood cell cCREs in human and mouse into three evolutionary categories. N=nonconserved,
S=conserved in sequence but not inferred function, SF=conserved in both sequence and
inferred function as a cCRE, y=yes, n=no. (B) Enrichment of SF-conserved human cCREs for
TSSs. The number of elements in seven sets of function-related DNA intervals that overlap with
the 32,422 SF human cCREs was determined, along with the number that overlap with three
subsets (32,422 each) randomly selected from the full set of 200,342 human cCREs. The ratio
of the number of function-related elements overlapping SF-cCREs to the number overlapping a
randomly chosen subset of all cCREs gave the estimate of enrichment plotted in the graph. The
mean for the three determinations of enrichment is indicated by the horizontal line for each set.
Results are also shown for a similar analysis for the S and N cCREs. (C) Distribution of phyloP
scores for three evolutionary categories of cCREs in human and mouse. The maximum phyloP
score for each genomic interval was used to represent the score for each cCRE, using genome
sequence alignments of 100 species with human as the reference (phyloP100) and alignments
of 60 species with mouse as the reference (phyloP60). The distribution of phyloP scores for
each group are displayed as a violin plot. All ten random sets had distributions similar to the one
shown. The asterisk (*) over brackets indicates comparison for which the P values for Welch’s t-
test is less than 2.2x107°. (D) Proportion of human genomic elements active in a massively
parallel reporter assay (MPRA) that align with mouse or are in a state reflecting dynamic

chromatin. A set of 57,061 genomic elements found to be active in a lentivirus MPRA that tested
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a close to comprehensive set of predicted regulatory elements in K562 cells (Agarwal et al.
2023) were assessed for their ability to align with the mouse genome (blue bar) or whether the
IDEAS epigenetic state assigned in K562 cells was not quiescent or was in a set of states
associated with gene activation (magenta bars). The results are plotted as percentages of the

total number of MPRA-active elements.

Figure. 6. Epigenetic comparisons of regulatory landscapes and cCREs. (A and B) DNA
sequence alignments and correlations of epigenetic states in human GATA7 and mouse Gata1
genes and flanking genes. (A) Dot-plot view of chained blastZ alignments by PipMaker
(Schwartz et al. 2000) between genomic intervals encompassing and surrounding the human
GATA1 (GRCh38 ChrX:48,760,001-48,836,000; 76kb) and mouse Gata? (mm10
ChrX:7,919,401-8,020,800; 101.4kb, reverse complement of reference genome) genes. The
axes are annotated with gene locations (GENCODE), predicted cis-regulatory elements
(cCREs), and binding patterns for GATA1 and EP300 in erythroid cells. (B) Matrix of Pearson’s
correlation values between epigenetic states (quantitative contributions of each epigenetic
feature to the assigned state) across 15 cell types analogous for human and mouse. The
correlation is shown for each 200bp bin in one species with all the bins in the other species,
using a red-blue heat map to indicate the value of the correlation. Axes are annotated with
genes and cCREs in each species. (C) Decomposition of the correlation matrix (panel B) into
six component parts or factors using nonnegative matrix factorization. (D-G) Correlation
matrices for genomic intervals encompassing GATA1/Gata1 and flanking genes, reconstructed
using values from NMF factors. (D and E) Correlation matrices using values of NMF factor 3
between human and mouse (panel D) or within human and within mouse (panel E). The red
rectangles highlight the positive regulatory patterns in the GATA1/Gata1 genes (labeled Px),
which exhibit conservation of both DNA sequence and epigenetic state pattern. The orange

rectangles denote the distal positive regulatory region present only in mouse (labeled D), which
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shows conservation of epigenetic state pattern without corresponding sequence conservation.
Beneath the correlation matrices in panel E are maps of IDEAS epigenetic states across 15 cell
types, followed by a graph of the score and peak calls for NMF factor 3 and annotation of
cCREs (thin black rectangles) and genes. (F and G) Correlation matrices using values of NMF
factor 6 between human and mouse (panel F) or within human and within mouse (panel G). The
green rectangles highlight the correlation of epigenetic state patterns within the same gene,
both across the two species and within each species individually, while the black rectangles

highlight the high correlation observed between the two genes GATA1 and HDACE6.
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