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Abstract 51 

 52 

Knowledge of locations and activities of cis-regulatory elements (CREs) is needed to decipher 53 

basic mechanisms of gene regulation and to understand the impact of genetic variants on 54 

complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in 55 

one species, making comparisons difficult between species. In contrast, we conducted an 56 

interspecies study defining epigenetic states and identifying cCREs in blood cell types to 57 

generate regulatory maps that are comparable between species, using integrative modeling of 58 

eight epigenetic features jointly in human and mouse in our Validated Systematic Integration 59 

(VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of 60 

gene regulation in blood cells, indicated by high overlap with known functional elements and 61 

strong enrichment for human genetic variants associated with blood cell phenotypes. The 62 

contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate 63 

regression, was used to estimate epigenetic state Regulatory Potential (esRP) scores for each 64 

cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of 65 

cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained 66 

by joint clustering on esRP scores, harbored distinctive transcription factor binding motifs that 67 

were similar between species. An interspecies comparison of cCREs revealed both conserved 68 

and species-specific patterns of epigenetic evolution. Finally, we showed that comparisons of 69 

the epigenetic landscape between species can reveal elements with similar roles in regulation, 70 

even in the absence of genomic sequence alignment. 71 

 72 

 73 

 74 

 75 
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Introduction 76 

 77 

The morphology and functions of different cell types are determined by the expression of 78 

distinctive sets of genes in each. This differential gene expression is regulated by the interplay 79 

of transcription factors (TFs) binding to cis-regulatory elements (CREs) in the genomic DNA, 80 

such as promoters and enhancers, forging interactions among the CREs and components of 81 

transcriptional apparatus and ultimately leading to patterns of gene activation and repression 82 

characteristic of each cell type (Maston et al. 2006; Hamamoto and Fukaya 2022). Epigenetic 83 

features such as accessibility of DNA and modifications of histone tails in chromatin have 84 

pronounced impacts on the ability of TFs to bind to CREs, and furthermore, they serve as a 85 

molecular memory of transcription and repression (Strahl and Allis 2000; Ringrose and Paro 86 

2004). Frequently co-occurring sets of chromatin features define epigenetic states, which are 87 

associated with gene regulation and expression (Ernst and Kellis 2010; Hoffman et al. 2013; 88 

Zhang et al. 2016). Genome-wide assignment of DNA intervals to epigenetic states (annotation) 89 

provides a view of the regulatory landscape that can be compared across cell types, which in 90 

turn leads to insights into the processes regulating gene expression (Libbrecht et al. 2021).  91 

 92 

Comprehensive mapping of CREs within the context of the regulatory landscape in different cell 93 

types is needed to achieve a broad understanding of differential gene expression. Maps of 94 

candidate CREs (cCREs) provide guidance in understanding how changes in cCREs, including 95 

single nucleotide variants and indels, can lead to altered expression (Hardison 2012), and they 96 

can inform approaches for activation or repression of specific genes in potential strategies for 97 

therapies (Bauer et al. 2013). Indeed, most human genetic variants associated with common 98 

traits and diseases are localized in or near cCREs (Hindorff et al. 2009; Maurano et al. 2012; 99 

The ENCODE Project Consortium 2012). Thus, knowledge of the activity and epigenetic state of 100 
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cCREs in each cell type can facilitate understanding the impact of trait-associated genetic 101 

variants on specific phenotypes. Furthermore, genome editing approaches in somatic cells have 102 

recently been demonstrated to have promise as therapeutic modalities (Frangoul et al. 2021), 103 

and a full set of cCREs annotated by activity and state can help advance similar applications.  104 

 105 

The different types of blood cells in humans and mice are particularly tractable systems for 106 

studying many aspects of gene regulation during differentiation. The striking differences among 107 

mature cell types result from progressive differentiation starting from a common hematopoietic 108 

stem cell (HSC) (Kondo et al. 2003). While single cell analyses reveal a pattern of ostensibly 109 

continuous expression change along each hematopoietic lineage (Laurenti and Göttgens 2018), 110 

intermediate populations of multi-lineage progenitor cells with decreasing differentiation 111 

potential have been defined, which provide an overall summary and nomenclature for major 112 

stages in differentiation. These stem, progenitor, and mature cell populations can be isolated 113 

using characteristic cell surface markers (Spangrude et al. 1988; Payne and Crooks 2002), 114 

albeit with many fewer cells in progenitor populations. In addition to the primary blood cells, 115 

several immortalized cell lines provide amenable systems for intensive study of various aspects 116 

of gene regulation during differentiation and maturation of blood cells (Weiss et al. 1997).  117 

 118 

The VISION project aims to produce a Validated Systematic Integration of hematopoietic 119 

epigenomes, harvesting extensive epigenetic and transcriptomic datasets from many 120 

investigators and large consortia into concise, systematically integrated summaries of regulatory 121 

landscapes and cCREs (Hardison et al. 2020). We previously published the results of these 122 

analyses for progenitor and mature blood cell types from mouse (Xiang et al. 2020). In the 123 

current study, we generated additional epigenetic datasets and compiled data from human 124 

blood cells to expand the integrative analyses to include data from both human and mouse. The 125 

systematic integrative analysis of epigenetic features across blood cell types was conducted 126 
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jointly in both species to learn epigenetic states, generate concise views of epigenetic 127 

landscapes, and predict regulatory elements that are comparable in both species. This joint 128 

modeling enabled further comparisons using approaches that were not dependent on DNA 129 

sequence alignments between species, including a demonstration of the role of orthologous 130 

transcription factors in cell type-specific regulation in both species. An exploration of 131 

comparisons of epigenetic landscapes between species showed that they were informative for 132 

inferring regulatory roles of elements in lineage-specific (i.e., non-aligning) DNA. Together, this 133 

work provides valuable community resources that enable researchers to leverage the extensive 134 

existing epigenomic data into further mechanistic regulatory studies of both individual loci and 135 

genome-wide trends in human and mouse blood cells. 136 

 137 

Results 138 

 139 

Extracting and annotating epigenetic states by modeling epigenomic information jointly 140 

in human and mouse 141 

A large number of data sets of epigenetic features related to gene regulation and expression 142 

(404 data sets, 216 in human and 188 in mouse; Fig. 1A-B, Supplemental Material “Data 143 

generation and collection”, Supplemental Tables S1 and S2) served as the input for our joint 144 

integrative analysis of human and mouse regulatory landscapes across progenitor and mature 145 

blood cell types. The features included chromatin accessibility, which is a hallmark of almost all 146 

regulatory elements, occupancy by the structural protein CTCF, and histone modifications 147 

associated with gene activation or repression. After normalizing and denoising these diverse 148 

data sets (Supplemental Fig. S1), we conducted an iterative joint modeling to discover 149 

epigenetic states, i.e., sets of epigenetic features commonly found together, in a consistent 150 

manner for both human and mouse blood cells (Fig. 2). The joint modeling took advantage of 151 
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the Bayesian framework of the Integrative and Discriminative Epigenomic Annotation System, or 152 

IDEAS (Zhang et al. 2016; Zhang and Hardison 2017), to iteratively learn states in both species. 153 

The joint modeling proceeded in four steps: initial training on randomly selected regions in both 154 

species, retaining the 27 epigenetic states that exhibit similar combinatorial patterns of features 155 

in both human and mouse, using these 27 states as prior information to sequentially run the 156 

IDEAS genome segmentation on the human and mouse data sets, and removal of two 157 

heterogenous states (Fig. 2A and Supplemental Figs. S2, S3, S4, and S5). This procedure 158 

ensured that the same set of epigenetic states was learned and applied for both species. 159 

Previously, the segmentation and genome annotation (Libbrecht et al. 2021) method 160 

ChromHMM (Ernst and Kellis 2012) was used to combine data between species by 161 

concatenating the datasets for both human and mouse cell types (Yue et al. 2014). This earlier 162 

approach produced common states between species, but it did not benefit from the positional 163 

information and automated approach to handling missing data that are embedded in IDEAS. 164 

 165 

The resulting model with 25 epigenetic states (Fig. 2B) was similar to that obtained from mouse 166 

blood cell data (Xiang et al. 2020). The states captured combinations of epigenetic features 167 

characteristic of regulatory elements such as promoters and enhancers, transcribed regions, 168 

repressed regions marked by either Polycomb (H3K27me3) or heterochromatin (H3K9me3), 169 

including states that differ quantitatively in the contribution of specific features to each state. For 170 

example, H3K4me1 is the predominant component of states E1 and E, but E1 has a lower 171 

contribution of that histone modification. Similar proportions of the genomes of human and 172 

mouse were covered by each state (Fig. 2B). 173 

 174 

Assigning all genomic bins in human and mouse to one of the 25 states in each hematopoietic 175 

cell type produced an annotation of blood cell epigenomes that gave a concise view of the 176 

epigenetic landscape and how it changes across cell types, using labels and color conventions 177 
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consistently for human and mouse. The value of this concise view can be illustrated in 178 

orthologous genomic intervals containing genes expressed preferentially in different cell 179 

lineages as well as genes that are uniformly expressed (Fig. 2C, D). For example, the gene 180 

SLC4A1/Slc4a1, encoding the anion transporter in the erythrocyte plasma membrane, is 181 

expressed in the later stages of erythroid maturation (Dore and Crispino 2011). The epigenetic 182 

state assignments across cell types matched the differential expression pattern, with genomic 183 

intervals in the gene and its flanking regions, including a non-coding gene located upstream (to 184 

its right, Bloodlinc in mouse), assigned to states indicative of enhancers (yellow and orange) 185 

and promoters (red) only in erythroid cell types, with indications of stronger activation in the 186 

more mature erythroblasts (region boxed and labeled E in Fig. 2 C, D).  A similar pattern was 187 

obtained in both human and mouse. Those genomic intervals assigned to the enhancer- or 188 

promoter-like states contain candidates for regulatory elements, an inference that was 189 

supported by chromatin binding data including occupancy by the transcription factor GATA1 (Xu 190 

et al. 2012; Pimkin et al. 2014) and the co-activator EP300 (ENCODE datasets ENCSR000EGE 191 

and ENCSR982LJQ) in erythroid cells. Similarly, the gene and flanking regions for GRN/Grn, 192 

encoding the granulin precursor protein that is produced at high levels in granulocytes and 193 

monocytes (Jian et al. 2013), and ITGA2B/Itga2b, encoding the alpha 2b subunit of integrin that 194 

is abundant in mature megakaryocytes (van Pampus et al. 1992; Pimkin et al. 2014), were 195 

assigned to epigenetic states indicative of enhancers and promoters in the expressing cell types 196 

(boxed regions labeled G and MK, respectively). In contrast, genes expressed in all the blood 197 

cell types, such as UBTF/Ubtf, were assigned to active promoter states and transcribed states 198 

across the cell types. We conclude that these concise summaries of the epigenetic landscapes 199 

across cell types showed the chromatin signatures for differential or uniform gene expression 200 

and revealed discrete intervals as potential regulatory elements, with the consistent state 201 

assignments often revealing similar epigenetic landscapes of orthologous genes in human and 202 

mouse. 203 
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 204 

While these resources are useful, some limitations should be kept in mind. For example, IDEAS 205 

used data from similar cell types to improve state assignments in cell types with missing data, 206 

but the effectiveness of this approach may be impacted by the pattern of missing data. In 207 

particular, the epigenetic data on human stem and progenitor cell types were largely limited to 208 

ATAC-seq data, whereas histone modification data and CTCF occupancy were available for the 209 

analogous cell types in mouse (Fig. 1). Thus, the state assignments for epigenomes in human 210 

stem and progenitor cells may be less robust compared to those for similar cell types in mouse. 211 

Another limitation is the broad range of quality in the data sets that cannot be completely 212 

adjusted by normalization, which leads to over- or under-representation of some epigenetic 213 

signals in specific cell types (Supplemental Fig. S5). Despite these limitations, the annotation of 214 

blood cell epigenomes after normalization and joint modeling of epigenetic states produced a 215 

highly informative painting of the activity and regulatory landscapes across the genomes of 216 

human and mouse blood cells. 217 

 218 

Candidate cis-regulatory elements in human and mouse 219 

We define a candidate cis-regulatory element, or cCRE, as a DNA interval with a high signal for 220 

chromatin accessibility in any cell type (Xiang et al. 2020). We utilized a version of the IDEAS 221 

methodology to combine peaks of accessibility across different cell types, running it in the signal 222 

intensity state (IS) mode only on chromatin accessibility signals (Xiang et al. 2021), which helps 223 

counteract excessive expansion of peak calls when combining them (Supplemental Fig. S6). 224 

 225 

Employing the same peak-calling procedure to data from human and mouse resulted in 200,342 226 

peaks of chromatin accessibility for human and 96,084 peaks for mouse blood cell types 227 

(Supplemental Table S3). Applying the peak caller MACS3 (Zhang et al. 2008) on the same 228 

human ATAC-seq data generated a larger number of peaks, but those additional peaks tended 229 
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to have low signal and less enrichment for overlap with other function-related genomic datasets 230 

(Supplemental Fig. S7). 231 

 232 

The  ENCODE Project released regulatory element predictions in a broad spectrum of cell types 233 

in the Index of DHSs (Meuleman et al. 2020) and the SCREEN cCRE catalog (The ENCODE 234 

Project Consortium et al. 2020), using data that were largely different from those utilized for the 235 

VISION analyses. Almost all the VISION cCRE calls in human blood cells were included in the 236 

regulatory element predictions from ENCODE (Supplemental Fig. S8A), supporting the quality 237 

of the VISION cCRE calls. Furthermore, as expected from its focus on blood cell types, the 238 

VISION cCRE catalog shows stronger enrichment for regulatory elements active in blood cells 239 

(Supplemental Fig. S8B, Supplemental Table S4). 240 

 241 

Enrichment of the cCRE catalog for function-related elements and trait-associated 242 

genetic variants  243 

Having generated catalogs of cCREs along with an assignment of their epigenetic states in 244 

each cell type, we characterized the human cCREs further by connecting them to orthogonal 245 

(not included in VISION predictions) datasets of DNA elements implicated in gene regulation or 246 

in chromatin structure and architecture (termed structure-related) (Fig. 3A, Supplemental Fig. 247 

S9, Supplemental Table S5). About two-thirds (136,664 or 68%) of the VISION human cCREs 248 

overlapped with elements in the broad groups of CRE-related (97,361 cCREs overlapped) and 249 

structure-related (83,327 cCREs overlapped) elements, with 44,024 cCREs overlapping 250 

elements in both categories (Fig. 3A, B). In contrast, ten sets of randomly chosen DNA intervals, 251 

matched in length and GC-content with the human cCRE list, showed much less overlap with 252 

the orthogonal sets of elements (Fig. 3B). Of the CRE-related superset, the enhancer-related 253 

group of datasets contributed the most overlap with VISION cCREs, followed by SuRE peaks, 254 

which measure promoter activity in a massively parallel reporter assay (van Arensbergen et al. 255 
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2017), and CpG islands (Fig. 3C). Compared to overlaps with the random matched intervals, the 256 

VISION cCREs were highly enriched for overlap with each group of CRE-related datasets (Fig. 257 

3C). Of the structure-related superset, the set of CTCF occupied segments (OSs) contributed 258 

the most overlap, followed by chromatin loop anchors, again with high enrichment relative to 259 

overlaps with random matched sets (Fig. 3D). Considering the VISION cCREs that intersected 260 

with both structure- and CRE-related elements, major contributors were the cCREs that overlap 261 

with enhancers and CTCF OSs or loop anchors (Supplemental Fig. S10). Furthermore, the 262 

VISION cCREs captured known blood cell CREs (Supplemental Table S4) and CREs 263 

demonstrated to impact a specific target gene in a high throughput analysis (Gasperini et al. 264 

2019) (Fig. 3E). We conclude that the intersections with orthogonal, function- or structure-265 

related elements lent strong support for the biological significance of the VISION cCRE calls 266 

and added to the annotation of potential functions for each cCRE.  267 

 268 

The catalog of VISION human blood cell cCREs showed a remarkable enrichment for genetic 269 

variants associated with blood cell traits, further supporting the utility of the catalog. We initially 270 

observed a strong enrichment by overlap with variants from the NHGRI-EBI GWAS Catalog 271 

(Buniello et al. 2019) associated with blood cell traits (Supplemental Fig. S11). We then 272 

analyzed the enrichments while considering the haplotype structure of human genomes, 273 

whereby association signals measured at assayed genetic markers likely reflect an indirect 274 

effect driven by linkage disequilibrium (LD) with a causal variant (that may or may not have 275 

been genotyped). We employed stratified linkage disequilibrium score regression (sLDSC, 276 

Finucane et al. 2015) to account for LD structure and estimate the proportion of heritability of 277 

each trait explained by a given genomic annotation, quantifying the enrichment of heritability in 278 

587 traits from the UK Biobank (UKBB) GWAS (Ge et al. 2017 and http://www.nealelab.is/uk-279 

biobank/) within the VISION cCREs relative to the rest of the genome (Supplemental Material 280 

section “Stratified linkage disequilibrium score regression”). These traits encompassed 54 281 
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“blood count” traits that measure properties including size and counts of specific blood cell 282 

types, 60 “blood biochemistry” traits that measure lipid, enzyme, and other molecular 283 

concentrations within whole blood samples, and 473 non-blood-related traits, allowing us to 284 

assess the specific relevance of the cCREs to regulation of blood-related versus other 285 

phenotypes. At a 5% FDR threshold, we discovered 53 traits for which cCREs were significantly 286 

enriched in heritability (Fig. 3F). Of these traits, 52 (98%) were blood-related and 50 were blood 287 

count traits, representing 93% of all UKBB blood count traits included in our analysis. The 288 

remaining 2 significant traits pertained to blood biochemistry, specifically, the male and female 289 

glycated hemoglobin concentrations. These metrics and observations together lend support to 290 

the VISION cCRE annotation being composed of informative genomic regions associated with 291 

regulation of genes involved in development of blood cell traits. 292 

 293 

Estimates of regulatory impact of cCREs during differentiation 294 

The epigenetic states assigned to cCREs can reveal those that show changes in apparent 295 

activity during differentiation. Inferences about the activity of a cCRE in one or more cell types 296 

are based on whether the cCRE was actuated, i.e., was found in a peak of chromatin 297 

accessibility, and which epigenetic state was assigned to the actuated cCRE. Those states can 298 

be associated with activation (e.g., enhancer-like or promoter-like) or repression (e.g., 299 

associated with polycomb or heterochromatin). In addition to these categorical state 300 

assignments, quantitative estimates of the impact of epigenetic states on expression of target 301 

genes are useful, e.g., to provide an estimate of differences in inferred activity when the states 302 

change. Previous work used signals from single or multiple individual features such as 303 

chromatin accessibility or histone modifications in regression modeling to explain gene 304 

expression (e.g., Karlić et al. 2010; Dong et al. 2012), and we applied a similar regression 305 

modeling using epigenetic states as predictor variables to infer estimates of regulatory impact of 306 

each state on gene expression (Xiang et al. 2020). 307 
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 308 

We used state assignments of cCREs across cell types in a multivariate regression model to 309 

estimate the impact of each state on the expression of local genes (Supplemental Material, 310 

“Estimation of the impact of epigenetic states and cCREs on gene expression”). That impact 311 

was captured as β coefficients, which showed the expected strong positive impact for promoter 312 

and enhancer associated states and negative impacts from heterochromatin and polycomb 313 

states (Fig. 4A). The β coefficients were then used in further analysis, such as estimating the 314 

change in regulatory impact as a cCRE shifts between states during differentiation (difference 315 

matrix to the left of the β coefficient values in Fig. 4A). The β coefficient values also were used 316 

to generate an epigenetic state Regulatory Potential (esRP) score for each cCRE in each cell 317 

type, calculated as the β coefficient values for the epigenetic states assigned to the cCRE 318 

weighted by the coverage of the cCRE by each state (Fig. 4B). These esRP scores were the 319 

basis for visualizing the collection of cCREs and how their regulatory impact changed across 320 

differentiation (Supplemental Fig. S12 and Supplemental movie S1). Comparison of the 321 

integrative esRP scores with signal intensities for single features (ATAC-seq and H3K27ac) 322 

showed all were informative for visualizations, and esRP performed slightly better than the 323 

single features in differentiating cCREs based on locations within gene bodies (Supplemental 324 

Fig. S13).  325 

 326 

In addition, we explored the utility of the esRP scores for clustering the cCREs into groups with 327 

similar activity profiles across blood cell types in both human and mouse. Focusing on the esRP 328 

scores in 12 cell types shared between human and mouse along with the average across cell 329 

types, we identified clusters jointly in both species. The clustering proceeded in three steps, 330 

specifically finding robust k-means clusters for the combined human and mouse cCREs, 331 

identifying the clusters shared by cCREs in both species, and then further grouping those 332 

shared k-means clusters hierarchically to define fifteen joint metaclusters (JmCs) (Supplemental 333 
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Fig. S14). Each cCRE in both mouse and human was assigned to one of the fifteen JmCs, and 334 

each JmC was populated with cCREs from both mouse and human.  335 

 336 

These JmCs established discrete categories for the cCREs based on the cell type distribution of 337 

their inferred regulatory impact (Fig. 4C). The clusters of cCREs with high esRP scores across 338 

cell types were highly enriched for promoter elements (Supplemental Fig. S15A). The cell type-339 

restricted clusters of cCREs showed enrichment both for selected enhancer catalogs and for 340 

functional terms associated with those cell types (Supplemental Fig. S15A and B). Furthermore, 341 

clustering of human genes by the JmC assignments of cCREs in a 100kb interval centered on 342 

their TSS (Supplemental Material section “Enrichment of JmCs assigned to cCREs in gene 343 

loci”) revealed a strong enrichment for JmCs with high activity in the cell type(s) in which the 344 

genes are expressed (Fig. 4D). Examples include IFNG showing enrichment for JmC 12, which 345 

has high esRP scores in T and NK cells, CSF1R showing enrichment for JmC 15, which has 346 

high scores in monocytes, and GATA1 showing enrichment for JmC 10, which has high scores 347 

in erythroid cells and megakaryocytes. Moreover, running sLDSC on cCREs in individual JmCs 348 

showed enrichment for heritability of blood cell-related traits in some specific JmCs 349 

(Supplemental Fig. S16). 350 

 351 

As expected from previous work (e.g., Heintzman et al. 2009; Meuleman et al. 2020), similar 352 

metaclusters of cCREs were generated based on single signals from the histone modification 353 

H3K27ac or chromatin accessibility across cell types (Supplemental Fig. S17). Clustering based 354 

on any of the three features better resolved individual cell types when larger numbers of clusters 355 

were considered, prior to collapsing the shared robust clusters into JmCs (Supplemental Fig. 356 

S18).  357 

 358 
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In summary, we show that the β coefficients and esRP scores provide valuable estimates of 359 

regulatory impacts of states and cCREs, respectively. The esRP-driven joint metaclusters 360 

provide refined subsets of cCREs that should be informative for investigating cell type-specific 361 

and general functions of cCREs. We also built self-organizing maps as a complementary 362 

approach to systematic integration of epigenetic features and RNA data across cell types 363 

(Supplemental Fig. S19, Jansen et al. 2019).  364 

 365 

Motif enrichment in joint metaclusters of human and mouse cCREs  366 

We examined the sets of cCREs in each JmC to ascertain enrichment for transcription factor 367 

binding site (TFBS) motifs because these enriched motifs suggest the families of transcription 368 

factors that play a major role in regulation by each category of cCREs. Furthermore, having sets 369 

of cCREs determined and clustered for comparable blood cell types in human and mouse 370 

provided the opportunity to discover which TFBS motifs were shared between species and 371 

whether any were predominant in only one species.  372 

 373 

To find TFBS motifs associated with each JmC, we calculated enrichment for all non-redundant  374 

motifs in the Cis-BP database (Weirauch et al. 2014) using Maelstrom from GimmeMotifs 375 

(Bruse and van Heeringen 2018) (Supplemental Material “Enrichment for transcription factor 376 

binding site motifs in joint metaclusters of cCREs”). The results confirmed previously 377 

established roles of specific TFs in cell lineages and showed little evidence for novel motifs (Fig. 378 

4E). For example, TFBS motifs for the GATA family of transcription factors were enriched in 379 

JmCs 2 and 10, which have high esRP scores in progenitor and mature cells in the erythroid 380 

and megakaryocytic lineages, as expected for the known roles of GATA1 and GATA2 in this 381 

lineage (Blobel and Weiss 2009; Fujiwara et al. 2009). The GATA motif  was also enriched in 382 

JmC 14, as expected for the role of GATA3 in natural killer (NK) and T cells (Rothenberg and 383 

Taghon 2005). Furthermore, motifs for the known lymphoid transcription factors TBX21, 384 
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TCF7L1, and LEF1 (Chi et al. 2009) were enriched in cCREs with high esRP scores in NK and 385 

T cells (JmCs 9 and 12), and motifs for myeloid-determining transcription factors CEBPA and 386 

CEBPB (Graf and Enver 2009) and the myeloid transcription factor PU.1 (also known as SPI1) 387 

(Tenen et al. 1997) were enriched in cCREs that are active in progenitor cells and monocytes 388 

(JmCs 3 and 15). TFBS motifs for promoter-associated transcription factors such as E2F2 and 389 

SP1 (Dynan and Tjian 1983; Kaczynski et al. 2003) were enriched in broadly active cCREs 390 

(JmCs 1 and 4). These patterns of motif enrichments in the JmCs fit well with the expectations 391 

from previous studies of transcription factor activity across lineages of blood cells, and thus, 392 

they lend further credence to the value of the cCRE calls and the JmC groupings for further 393 

studies of regulation in the blood cell types. 394 

 395 

The genome-wide collection of cCREs across many blood cell types in human and mouse 396 

provided an opportunity for an unbiased and large-scale search for indications of transcription 397 

factors that may be active specifically in one species for a shared cell type. Prior studies of 398 

transcription factors have shown homologous transcription factors used in analogous cell types 399 

across species (e.g., Carroll 2008; Noyes et al. 2008; Schmidt et al. 2010; Cheng et al. 2014; 400 

Villar et al. 2014), but it is not clear if there are significant exceptions. In our study, we found that 401 

for the most part, the motif enrichments were quite similar between the human and mouse 402 

cCREs in each JmC. Note that these similarities were not forced by requiring sequence 403 

matches between species; the cCREs were grouped into JmCs based on their pattern of 404 

activity, as reflected in the esRP scores, across cell types, not by requiring homologous 405 

sequences. This similarity between species indicates that the same transcription factors tend to 406 

be active in similar groups of cell types in both mouse and human. An intriguing potential 407 

exception to the sharing of motifs between species was the enrichment of TFBS motifs for 408 

CTCF and ZBTB7A in some JmCs, suggestive of some species selectivity in their binding in the 409 

context of other TFs (Supplemental Figs. S20 and S21). These indications of conditional, 410 
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preferential usage of these TFs in human or mouse could serve as the basis for more detailed 411 

studies in the future. 412 

 413 

In summary, after grouping the cCREs in both human and mouse by their inferred regulatory 414 

impact across blood cell in a manner agnostic to DNA sequence or occupancy by TFs, the 415 

enrichment for TFBS motifs within those groups recapitulated known activities of TFs both 416 

broadly and in specific cell lineages. The results also showed considerable sharing of inferred 417 

TF activity in both human and mouse.  418 

 419 

Evolution of sequence and inferred function of cCREs 420 

The human and mouse cCREs from blood cells were assigned to three distinct evolutionary 421 

categories (Fig. 5A). About one-third of the cCREs were present only in the reference species 422 

(39% for human, 28% for mouse), as inferred from the failure to find a matching orthologous 423 

sequence in whole-genome alignments with the other species. We refer to these as 424 

nonconserved (N) cCREs. Of the two-thirds of cCREs with an orthologous sequence in the 425 

second species, slightly over 30,000 were also identified as cCREs in the second species. The 426 

latter cCREs comprise the set of cCREs conserved in both sequence and inferred function, 427 

which we call SF conserved (SF) cCREs. Almost the same number of cCREs in both species 428 

fall into the SF category; the small difference resulted from interval splits during the search for 429 

orthologous sequences (Supplemental Fig. S22). The degree of chromatin accessibility in 430 

orthologous SF cCREs was positively correlated between the two species (Supplemental Fig. 431 

S23). The remaining cCREs (91,000 in human and 36,000 in mouse) were conserved in 432 

sequence but not in an inferred function as a regulatory element, and we call them S conserved 433 

(S) cCREs. The latter group could result from turnover of regulatory motifs or acquisition of 434 

different functions in the second species.  435 

 436 
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The distributions of epigenetic states assigned to the blood cell cCREs in each of the three 437 

evolutionary categories were similar between human and mouse, but those distributions differed 438 

among evolutionary categories, with significantly more SF cCREs assigned to promoter-like 439 

states than were S or N cCREs (Supplemental Fig. S24). Indeed, the SF cCREs tended to be 440 

close to or encompass the TSSs of genes, showing a substantial enrichment in overlap with 441 

TSSs compared to the overlap observed for all cCREs (Fig. 5B). Many of the S and N cCREs 442 

were assigned to enhancer-like states (Supplemental Fig. S24D), giving a level of enrichment 443 

for overlap with enhancer datasets comparable to that observed for the full set of cCREs (Fig. 444 

5B).  445 

 446 

For both human and mouse, the level of sequence conservation, estimated by the maximum 447 

phyloP score (Pollard et al. 2010), was higher in the collection of cCREs than in sets of 448 

randomly chosen genomic intervals matching the cCREs in length and G+C content (Fig. 5C). 449 

Among the evolutionary categories of cCREs, the distribution of phyloP scores for SF cCREs 450 

was significantly higher than the distribution for S cCREs, which in turn was higher than that for 451 

N cCREs, for both species (Fig. 5C). The whole genome alignments underlying the phyloP 452 

scores are influenced by proximity to the highly conserved coding exons (King et al. 2007), and 453 

the high phyloP scores of the promoter-enriched SF cCREs could reflect both this effect as well 454 

as strong constraint on conserved function (Supplemental Fig. S25). In all three evolutionary 455 

categories, the distribution of phyloP scores was higher for promoter-proximal cCREs than for 456 

distal ones, but the relative levels of inferred conservation were the same for both, i.e., SF>S>N 457 

(Supplemental Fig. S26). 458 

 459 

In summary, this partitioning of the cCRE catalogs by conservation of sequence and inferred 460 

function revealed informative categories that differed both in evolutionary trajectories and in 461 

types of functional enrichment. 462 



 

19 

 463 

Conservation of non-coding genomic DNA sequences among species has been used 464 

extensively to predict regulatory elements (Gumucio et al. 1992; Hardison 2000; Pennacchio 465 

and Rubin 2001), but the observation that predicted regulatory elements fall into distinct 466 

evolutionary categories (SF, S, and N) raised the question of whether inter-species DNA 467 

sequence alignments or annotation of epigenetic states would be more effective in finding 468 

elements that were experimentally determined to be active in gene regulation. Recent advances 469 

in massively parallel reporter assays have enabled the testing of large sets of candidate 470 

elements, approaching comprehensive assessment of the predicted elements (Agarwal et al. 471 

2023). We used the set of over 57,000 human genomic elements shown to be active in K562 472 

cells to address this question (Supplemental Material), and we found that requiring alignment to 473 

the mouse genome would miss about 40% of the active elements, whereas requiring presence 474 

in a non-quiescent epigenetic state or one associated with gene activation would cover 87% or 475 

82.5%, respectively, of the active elements (Fig. 5D). Thus, the epigenetic state annotation can 476 

enable a more comprehensive prediction and examination or gene regulatory elements. This 477 

realization motivated a comparison of epigenetic states between human and mouse, as 478 

described in the next section. 479 

 480 

Comparison of epigenetic states around orthologous genes in human and mouse 481 

The consistent state assignments from the joint modeling facilitated epigenetic comparisons 482 

between species. Such comparisons are particularly informative for orthologous genes with 483 

similar expression patterns but some differences in their regulatory landscapes. For example, 484 

the orthologous genes GATA1 in human and Gata1 in mouse each encode a transcription factor 485 

with a major role in regulating gene expression in erythroid cells, megakaryocytes, and 486 

eosinophils (Ferreira et al. 2005), with a similar pattern of gene expression across blood cell 487 

types in both species (Supplemental Fig. S27). The human and mouse genomic DNA 488 
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sequences aligned around these orthologous genes, including their promoters and proximal 489 

enhancers; the alignments continued through the genes downstream of GATA1/Gata1 (Fig. 6A). 490 

An additional, distal regulatory element located upstream of the mouse Gata1 gene, which was 491 

bound by GATA1 and EP300 (Fig. 6A), was found only in mouse (Valverde-Garduno et al. 492 

2004). The DNA sequences of the upstream interval harboring the mouse regulatory element 493 

did not align between mouse and human except in portions of the GLOD5/Glod5 genes (Fig. 494 

6A). Thus, the interspecies sequence alignments provide limited information about this distal 495 

regulatory element.  496 

 497 

This limitation to sequence alignments led us to explore whether comparisons of epigenetic 498 

information would be more informative, utilizing the consistent assignment of epigenetic states 499 

in both human and mouse, which do not rely on DNA sequence alignment. In the large genomic 500 

regions (76kb and 101kb in the two species) encompassing the orthologous human GATA1 and 501 

mouse Gata1 genes and surrounding genes, we computed the correlation for each genomic bin 502 

between the epigenetic state assignments across cell types in one species and that in the other 503 

species for all the bins (Supplemental Fig. S28). This local, all-versus-all comparison of the two 504 

loci yielded a matrix of correlation values showing similarities and differences in profiles of 505 

epigenetic states in the two species (Fig. 6B). The conserved promoter and proximal enhancers 506 

of the GATA1/Gata1 genes were highly correlated in epigenetic states across cell types 507 

between the two species, in a region of the matrix that encompassed the aligning DNA 508 

sequences (labeled Px in Fig. 6B). In contrast, whereas the mouse-specific distal regulatory 509 

element did not align with the human DNA sequence, the epigenetic states annotating it 510 

presented high correlations with active epigenetic states in the human GATA1 locus (labeled D 511 

in Fig. 6B).  512 

 513 
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The complexity of the correlation matrix (Fig. 6B) indicated that multiple epigenetic trends could 514 

be contributing to the patterns. To systematically reduce the high dimensionality of the matrix to 515 

a set of simpler matrices, we employed nonnegative matrix factorization (NMF) because of its 516 

interpretability (Stein-O'Brien et al. 2018; Lee and Roy 2021). The decomposed matrices from 517 

NMF revealed a set of factors, each of which (represented by each column in the mouse matrix 518 

and each row in the human matrix in Fig. 6C) captures a group of highly correlated elements in 519 

the original matrix that show a pattern distinct from the rest of the elements. The complex 520 

correlation matrix was decomposed into six distinct factors, as determined by the number of 521 

factors at which an “elbow” was found in the BIC score (Supplemental Fig. S29). Each factor 522 

encapsulated a specific epigenetic regulatory machinery or process exhibiting consistent cross-523 

cell type patterns in both humans and mice (Supplemental Fig. S30). For example, the 524 

correlation matrices reconstructed by using signals from factor 3 exclusively highlighted the cell 525 

type-specific positive regulators for the GATA1/Gata1 gene loci; these regulatory elements were 526 

evident in reconstructed correlation matrices between species (Fig. 6D) and within individual 527 

species (Fig. 6E). By applying a Z-score approach to identify peak regions in the factor 3 signal 528 

vector (with FDR < 0.1; Supplemental Material), we pinpointed regions in both species showing 529 

an epigenetic regulatory machinery exhibiting positive regulatory dynamics for the orthologous 530 

GATA1/Gata1 gene loci, particularly in the ERY and MK cell types. In contrast, the correlation 531 

matrices reconstructed from the signals for factor 6 (Fig. 6F and G) highlighted regions marked 532 

by the transcription elongation modification H3K36me3 (epigenetic states colored green, Fig. 533 

6G). The correlations in the factor 6 elongation signature were observed, as expected, between 534 

the human/mouse orthologous gene pairs GATA1 and Gata1 as well as between human 535 

HDAC6 and mouse Hdac6 (green rectangles in Fig. 6F). The factor 6 correlations were also 536 

observed between the GATA1/Gata1 and HDAC6/Hdac6 genes (black rectangles in Fig. 6F and 537 

G), showing a common process, specifically transcriptional elongation, at both loci. A similar 538 

analysis for other factors revealed distinct regulatory processes or elements, such as active 539 
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promoters (factor 2), exhibiting unique cross-cell type patterns (Supplemental Fig. 30). The 540 

genomic bins with high scores for a given NMF factor in human showed high correlation with 541 

bins with high scores for that same factor in mouse, indicating that the NMF factors capture a 542 

similar set of epigenetic state patterns in each species (Supplemental Fig. S31). The patterns 543 

captured by NMF factors 3 and 6 were robust to the choice of k in the NMF (Supplemental Fig. 544 

S32). Overall, these results underscore this method's capability to objectively highlight 545 

regulatory regions with analogous epigenetic patterns across cell types in both species. This 546 

method could aid in extracting additional information about similar epigenetic patterns between 547 

human and model organisms such as mice, for which only a portion of their genome aligns with 548 

human.  549 

 550 

Because some of the NMF factors reflected processes in gene expression and regulation that 551 

occur in many genes, some of the highly correlated regions across species could reflect false 552 

positives. Thus, it is prudent to restrict the current approach to genomic intervals around 553 

orthologous genes to reduce the impact of false discovery. We examined patterns of epigenetic 554 

state correlations across cell types between the human GATA1 gene locus and three non-555 

orthologous loci in mouse to investigate the scope of this issue (Supplemental Material). While 556 

genomic bins of high epigenetic state correlation were observed between non-orthologous loci, 557 

the discovery of bins implicated in a cell type-specific process, such as erythroid or 558 

megakaryocytic regulation, could be enhanced by utilizing a broader background model for 559 

computing peaks of NMF signal (Supplemental Fig. S33). With this refined approach to peak 560 

identification, the false discovery rate estimated for epigenetic state comparison between the 561 

human GATA1 locus and the mouse Cd4 locus was reduced to 0.1 or less (Supplemental Fig. 562 

S33R). Furthermore, the epigenetic state comparisons between the human GATA1 locus and 563 

the mouse Rps19 locus revealed a previously unreported region with hallmarks of erythroid 564 

regulatory elements (Supplemental Fig. S34). These initial results suggest that the genomic 565 
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scale of the epigenetic state correlations could be expanded in future work with judicious 566 

attention to reducing false discovery, e.g., by linking the discovered elements to evidence of 567 

conserved synteny between species.  568 

 569 

Examination of human genomic elements shown to be active in a lentiMPRA assay (Agarwal et 570 

al. 2023) at 30 loci (Supplemental Table S6) revealed that the active elements were enriched in 571 

genomic bins with high cross cell-type epigenetic state correlation between species 572 

(Supplemental Fig. S35). The enrichment for active elements was further increased in bins with 573 

both high epigenetic state correlation and interspecies sequence conservation, while enrichment 574 

was reduced or comparable (depending on approaches used for false discovery thresholds) in 575 

bins with only sequence conservation. These results further support the value of the cross cell-576 

type epigenetic state correlation between species in predicting and interpreting cCREs 577 

(Supplemental Fig. S36). 578 

 579 

The comparison of epigenetic state profiles across cell types also provided a means to 580 

categorize cCREs between species that did not require a match in the underlying genomic DNA 581 

sequence (Supplemental Figs. S37 and S38). Results from that approach indicated that certain 582 

cCREs were potentially involved in regulation of orthologous genes, even for cCREs with DNA 583 

sequences that did not align between species. 584 

 585 

In summary, the IDEAS joint modeling on the input data compiled here and the consistent state 586 

assignments in both mouse and human confirmed and extended previous observations on 587 

known regulatory elements, and they revealed both shared and distinctive candidate regulatory 588 

elements and states between species. Correlations of state profiles between species provided a 589 

comparison of chromatin landscapes even in regions with DNA sequences that were not 590 

conserved between species. Our initial results reported here support continuing the 591 
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development of this approach of comparing cross cell-type epigenetic state profiles between 592 

species for functional prediction and interpretation of cCREs. 593 

 594 

Discussion 595 

 596 

In this paper, the VISION consortium introduces a set of resources describing the regulatory 597 

landscapes of both human and mouse blood cell epigenomes. A key, novel aspect of our work 598 

is that the systematic integrative modeling that generated these resources was conducted jointly 599 

across the data from both species, which enabled robust comparisons between species without 600 

being limited by sequence alignments, allowing comparisons in non-conserved and lineage-601 

specific genomic regions.  602 

 603 

One major resource is the annotation of the epigenetic states across the genomes of progenitor 604 

and mature blood cells of both species. These state maps show the epigenetic landscape in a 605 

compact form, capturing information from the input data on multiple histone modifications, CTCF 606 

occupancy, and chromatin accessibility, and they use a common set of epigenetic states to 607 

reveal the patterns of epigenetic activity associated with gene expression and regulation both 608 

across cell types and between species. A second major resource is a catalog of cCREs 609 

actuated in one or more of the blood cell types in each species. The cCREs are predictions of 610 

discrete DNA segments likely involved in gene regulation, based on the patterns of chromatin 611 

accessibility across cell types, and the epigenetic state annotations suggest the type of activity 612 

for each cCRE in each cell type, such as serving as a promoter or enhancer, participating in 613 

repression, or inactivity. A third major resource is a quantitative estimate of the regulatory 614 

impact of human and mouse cCREs on gene expression in each cell type, i.e., an esRP score, 615 

derived from multivariate regression modeling of the epigenetic states in cCREs as predictors of 616 
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gene expression. The esRP scores are a continuous variable capturing not only the integration 617 

of the input epigenetic data, but also the inferred impacts on gene expression. Those impacts 618 

may be manifested as activation or repression during regulation or as transcriptional elongation. 619 

They are useful for many downstream analyses, such as determining informative groups of 620 

cCREs by clustering analysis. These resources along with browsers for visualization and tools 621 

for analysis are provided at our project website, http://usevision.org. Among these tools is 622 

cCRE_db, which records the several dimensions of annotation of the cCREs and provides a 623 

query interface to support custom queries from users.  624 

 625 

Our human blood cell cCRE catalog should be valuable for mechanistic interpretations of trait-626 

related human genetic variants. Human genetic variants associated with traits intrinsic to blood 627 

cells were significantly enriched in the VISION cCRE catalog, whereas variants associated with 628 

a broad diversity of other traits were not enriched.  We expect that the extensive annotations in 629 

our cCRE catalog combined with information about TFBS motifs and TF occupancy should lead 630 

to specific, refined hypotheses for mechanisms by which a variant impacts expression, such as 631 

alterations in TF binding, which can be tested experimentally in further work. 632 

 633 

The jointly learned state maps and cCRE predictions allowed us to extend previous work on the 634 

evolution of regulatory elements between mouse and human. Several previous studies focused 635 

on transcription factor (TF) occupancy, e.g. examining key TFs in one tissue across multiple 636 

species (Schmidt et al. 2010; Ballester et al. 2014; Villar et al. 2014) or a diverse set of TFs in 637 

multiple cell types and in mouse and human (Cheng et al. 2014; Yue et al. 2014; Denas et al. 638 

2015). Other studies focused on discrete regions of high chromatin accessibility in multiple cell 639 

types and tissues between mouse and human (Stergachis et al. 2014; Vierstra et al. 2014). 640 

These previous studies revealed that only a small fraction of elements was conserved both in 641 

genomic sequence and in inferred function. A notable fraction of elements changed 642 
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considerably during mammalian diversification, including turnover of TF binding site motifs and 643 

repurposing of elements (Schmidt et al. 2010; Cheng et al. 2014; Stergachis et al. 2014; Denas 644 

et al. 2015). These prior studies focused primarily on regions of the genome with sequences 645 

that aligned between human and mouse, with the non-aligning regions used to infer that some 646 

elements were lineage-specific and that many were derived from transposable elements and 647 

endogenous retroviruses (Bourque 2009; Rebollo et al. 2012; Jacques et al. 2013; Sundaram et 648 

al. 2014). Our evolutionary analyses confirmed the previous observations, e.g., finding about 649 

one-third of cCREs are conserved in both sequence and inferred function between human and 650 

mouse, and further showing that this evolutionary category was highly enriched for proximal 651 

regulatory elements.  652 

 653 

Going beyond the prior comparative epigenetic studies, our jointly learned epigenetic state 654 

maps generated a representation of multiple epigenetic features, not just TF occupancy or 655 

chromatin accessibility, and they are continuous in bins across genomes of both species. Using 656 

the same set of epigenetic states for annotation of both the human and mouse genomes gave a 657 

common “alphabet” (set of states) for both species, which enabled comparisons of the 658 

epigenetic profiles between species. In the current work, we explored the utility of these 659 

epigenetic comparisons in several ways. For example, the joint clusterings of cCREs between 660 

species by esRP scores (derived from the epigenetic state annotations) enabled an analysis 661 

that was agnostic to DNA sequence or occupancy by TFs to show considerable sharing of 662 

inferred TF activity in both human and mouse. Furthermore, the common alphabet of states 663 

allowed us to compare the cross-cell type epigenetic state patterns in large genomic intervals of 664 

both species containing orthologous genes, again in a manner agnostic to underlying DNA 665 

sequence similarities or differences. These epigenetic comparisons were a strong complement 666 

to genomic sequence alignments, revealing regulatory elements with similar epigenetic profiles 667 

even in genomic regions in which the DNA sequence does not align between species. Our 668 
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detection, even in segments of DNA that do not align between species, of epigenetic similarity 669 

indicative of a common role in gene regulation suggests that processes or structures, such as 670 

chromatin interactions, chromatin complexes, or molecular condensates, may be maintained 671 

between species in a manner that is not fully revealed by comparisons of genome sequences. 672 

Hence, further studies of this apparent epigenetic dimension of regulatory conservation may be 673 

productive. For example, the complex interspecies epigenetic state correlation matrices were 674 

decomposed into NMF factors that represented major types of regulatory mechanisms, some 675 

that were common across cell types and others that were specific to certain cell types. Further 676 

investigation indicated the potential for judicious use of the cell type specific NMF factors in a 677 

context of conserved synteny for expanding the scale of the state correlation analysis in future 678 

studies.  679 

 680 

Previous work compared epigenetic profiles across species, such as the phylo-HMGP method 681 

to find different evolutionary states in multi-species epigenomic data (Yang et al. 2018) and the 682 

LECIF scores to find evidence of conservation from functional genomic data (Kwon and Ernst 683 

2021). These approaches are powerful but limited to the genomic regions with DNA sequences 684 

that align between the species, and thus they will miss the approximately 40% of experimentally 685 

demonstrated CREs that are not in aligning regions (Fig. 5D). In contrast, our approach of 686 

correlating epigenetic states included both DNA segments that align between human and 687 

mouse and those that do not, and it captures more of the experimentally verified cCREs.  For 688 

comparisons between species, both genomic sequence alignment and epigenetic state 689 

annotation across cell types provide important sources of information. Combining both types of 690 

data into joint models for predicting CREs could be a productive avenue for future work, not only 691 

for improved accuracy but also to allow the contributions of each type of information to 692 

determined systematically. 693 

 694 
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Several innovations were developed to produce the resources introduced here. A major 695 

innovation was to extend the IDEAS framework (Zhang et al. 2016) to jointly learn epigenetic 696 

states and assign them to annotate the epigenomes in human and mouse blood cells. The 697 

IDEAS method employs a Bayesian approach to the modeling to learn the states, which we 698 

utilized to bring in states learned from the data in one species as priors for learning states in the 699 

data from the second species. Another extension of the IDEAS framework was to learn states 700 

based on one feature, specifically ATAC-seq data, defining discrete signal intensity states. This 701 

approach was used for calling cCREs, implemented as the IDEAS-IS method (Xiang et al. 702 

2021). The approach is relatively simple and benefits from joint modeling across the input 703 

datasets. Other methods for predicting cCREs based on chromatin accessibility across many 704 

cell types prevented excessive expansion of the summary calls for overlapping peaks by 705 

employing a centroid determination for the DNase hypersensitive sites (DHS) index (Meuleman 706 

et al. 2020) or by choosing the highest signal peak for the ENCODE cCRE catalog (The 707 

ENCODE Project Consortium et al. 2020). The ENCODE cCRE catalog paired DHS peaks with 708 

individual chromatin modifications or CTCF occupancy, which led to complications when data 709 

on diagnostic features were missing from some cell types. The IDEAS framework used for the 710 

VISION cCRE sets leveraged data in related cell types to ameliorate the impact of missing data.  711 

 712 

While the resources introduced here are valuable for many applications, it is prudent to 713 

acknowledge their limitations. First, the quality of the products of integrated analyses are limited 714 

by the quality and completeness of the input, raw data. We endeavored to reduce the impact of 715 

variances in the input data by normalization. The S3V2 procedure (Xiang et al. 2021) 716 

systematically normalized the input data to adjust for differences in signal-to-noise and variance 717 

in signal across the datasets. Some epigenetic features were not determined in some cell types, 718 

and we used the IDEAS method in part because it is able to assign an epigenetic state even in 719 

the context of missing data by learning patterns from local similarities in cell types for which the 720 
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data are present (Zhang and Mahony 2019). However, these approaches cannot completely 721 

overcome all issues with variance in input data, and further developments in these directions 722 

(such as Shahraki et al. 2023; Xiang et al. 2024) may help to improve integrative resources. 723 

Second, the resolution of both the epigenetic state assignments and the cCRE inference is 724 

limited to 200 bp, which is the window size we utilized in the IDEAS analyses. Other resources, 725 

such as DHS calls (Meuleman et al. 2020), DNase footprints (Vierstra et al. 2020), and motif 726 

instances (Weirauch et al. 2014), achieve a higher resolution. Indeed, one can use these higher 727 

resolution datasets to derive further information about cCREs, such as families of TFs that are 728 

likely to be binding to them. Regarding esRP scores, a third limitation is that we do not make 729 

explicit assignments for target genes of cCREs. Predictions of a large number of target gene-730 

cCRE pairs were made in our prior work (Xiang et al. 2020); these assignments cover large 731 

genomic intervals around each gene and are most useful when used with further filtering, such 732 

as restricting cCREs and target genes to the same topologically associated domains. On-going 733 

work is examining other models and approaches for assigning likely target genes to cCREs. A 734 

fourth limitation is that our inference of repression-related cCREs applies only to those with 735 

stable histone modifications. Elements that had been involved in initiation of repression but 736 

eventually were packaged into quiescent chromatin, e.g., via a hit-and-run mechanism (Shah et 737 

al. 2019), would not be detected. A fifth limitation concerns the scale of the studies of epigenetic 738 

conservation by correlations of epigenetic states. Our current approach is limited to individual 739 

examination of specific genetic loci since we used orthologous genes as the initial anchors. 740 

Exploring ways to expand the scale of the analytical approach is a goal of future research. 741 

Finally, the work presented here was restricted to blood cell types. In future work, extension of 742 

the approaches developed in this study to a broader spectrum of cell types would expand the 743 

utility of the resulting resources. 744 

 745 
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In conclusion, we present several important new resources to enable further and more detailed 746 

studies of gene regulation in human and mouse blood cells both during normal differentiation 747 

and in pathological contexts. The patterns of epigenetic states in cCREs across cell types show 748 

value in developing an understanding of how genetic variants impact blood cell traits and 749 

diseases. Furthermore, the joint modeling between species opens avenues for further 750 

exploration of comparisons of epigenetic landscapes in addition to sequence alignments for 751 

insights into evolution and function of regulatory elements between species.   752 

 753 

Methods 754 

 755 

Data generation, collation, normalization, and integration 756 

The data sets used as input, including the ones generated for the work reported here (with 757 

methods), are described in Supplemental Material section “Data generation and collection” and 758 

Supplemental Tables S1 and S2. The S3V2 approach (Xiang et al. 2021) was used for 759 

normalization and denoising the data sets prior to integration. The data sets were integrated to 760 

find and assign epigenetic states using IDEAS (Zhang et al. 2016; Zhang and Hardison 2017); 761 

the extension of this approach to joint learning and annotation between species is described in 762 

Supplemental Material sections “Data normalization” and “Joint systematic integration of human 763 

and mouse blood cell epigenomes by IDEAS”.   764 

 765 

Prediction, annotation, and estimation of regulatory impact of cCREs 766 

The identification of cCREs as peaks of chromatin accessibility employed IDEAS in the signal 767 

intensity state (IS) mode (Xiang et al. 2021). This approach and comparisons with MACS peaks 768 

(Zhang et al. 2008) are described in Supplemental Material section “Prediction of VISION 769 

cCREs using IDEAS-IS”. The cCREs are provided in Supplemental Table S3. Annotation of 770 
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potential cCRE functions used intersections with orthogonal data sets of elements implicated in 771 

regulation or chromatin structure (Supplemental Table S5).  Enrichment of genetic variants 772 

associated with blood cell traits used stratified linkage disequilibrium score regression (sLDSC, 773 

Finucane et al. 2015). The impact of epigenetic states in cCREs on regulation of gene 774 

expression used a multivariate linear regression approach like one described previously (Xiang 775 

et al. 2020). Methods and supplementary results on these analyses are presented in detail in 776 

the Supplemental Material. 777 

 778 

Identification of clusters of cCREs based on epigenetic regulatory potential scores 779 

The sets of human and mouse cCREs were placed jointly into groups based on their epigenetic 780 

regulatory potential (esRP) scores using a series of k-means clustering steps, as described in 781 

detail in Supplemental Material and Supplementary Fig. S14. Methods and results for 782 

enrichment of the resulting joint meta-clusters (JmCs) for orthogonal sets of regulatory elements 783 

and SNPs associated with blood cell traits, along with comparisons of clusters based on 784 

chromatin accessibility and H3K27ac signal, are described in Supplemental Material and 785 

Supplementary Figs. S15 - S18. Motifs that were differentially enriched across JmCs were 786 

identified using the Maelstrom tool in the GimmeMotifs suite (v0.17.1) (Bruse and van 787 

Heeringen 2018) and SeqUnwinder (Kakumanu et al. 2017), as described in detail in 788 

Supplemental Material and Supplementary Fig. S21. 789 

 790 

Partitioning cCREs to evolutionary categories based on DNA sequence alignments and 791 

cCRE calls between species 792 

The human and mouse cCREs were assigned to three evolutionary categories using the 793 

following procedure. The set of human cCREs was mapped to mouse genome assembly mm10 794 

using the liftOver tool at the UCSC Genome Browser (Hinrichs et al. 2006). Human cCREs that 795 

failed to map to mm10 were grouped as N cCREs. Matches to mouse cCREs for the human 796 
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cCREs that could be mapped by liftOver to mm10 were determined using the intersect tool in 797 

BEDTools (Quinlan and Hall 2010). Human cCREs that overlapped with mouse cCREs were 798 

labeled as SF cCREs, while human cCREs that mapped to mm10 but did not match mouse 799 

cCREs were labeled as S cCREs. A similar process was performed on the set of mouse cCREs 800 

using liftOver to map to human genome build GRCh38  801 

 802 

Calculation of pairwise correlation coefficients for epigenetic landscapes between 803 

human and mouse 804 

A bin-to-bin pairwise correlation analysis was used to quantify the similarity of epigenetic 805 

landscapes between two DNA regions in human and mouse. For each 200bp bin in one cell 806 

type in one species, the assigned epigenetic state was replaced by a vector of mean signals of 807 

8 epigenetic features in the IDEAS state model. After replacing the states in all 15 matched cell 808 

types (14 analogous cell types and one pseudo-cell type with average values for all cell types) 809 

in the two species, the original two categorical state vectors with 15 elements were converted 810 

into two numeric vectors with 120 numbers (Supplemental Fig. S28). The similarity of cross-cell 811 

type epigenetic landscape between two bins in the two species was defined as the correlation 812 

coefficient between each pair of numeric vectors with 120 numbers. When calculating the 813 

correlation coefficients, we added random noise (mean=0, sd=0.2) to the raw values to avoid 814 

high correlation coefficients created between regions with states that have low signals. The 815 

complex correlation matrix was decomposed into distinctive factors using Nonnegative Matrix 816 

Factorization (Lee and Seung 1999). Methods and supplementary results on these analyses are 817 

presented in detail in the Supplemental Material. 818 

 819 

Data access 820 
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All raw and processed sequencing data generated in this study have been submitted to the 821 

NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession 822 

number GSE229101 and the NCBI BioProject database 823 

(https://www.ncbi.nlm.nih.gov/bioproject/) under accession number PRJNA952902. Resources 824 

developed in the VISION project are available at the website https://usevision.org; the data can 825 

be viewed via a track hub at the UCSC Genome Browser or any compatible browser by using 826 

this URL: https://usevision.org/data/trackHub/hub.txt or by clicking the track hubs link at 827 

usevision.org. The database cCRE db supports flexible user queries on extensive annotation of 828 

the cCREs, including epigenetic states and esRP scores across cell types, chromatin 829 

accessibility scores across cell types, membership in JmCs, and evolutionary categories. Code 830 

developed for this study is provided as two zipped directories in the Supplemental Material: 831 

Supplemental Code 1or the joint IDEAS modeling and most other analyses, and Supplemental 832 

Code 2 for the sLDSC analysis. The code is also available at these GitHub repositories: 833 

https://github.com/guanjue/Joint_Human_Mouse_IDEAS_State for the joint human-mouse 834 

IDEAS pipeline and https://github.com/usevision/cre_heritability for the sLDSC analysis. 835 
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 1092 

Figure Legends 1093 

Figure 1. Cell types and data sets used for systematic integration of epigenetic features 1094 

of blood cells. (A) The tree on the left shows the populations of stem, progenitor, and mature 1095 
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blood cells and cell lines in human. The diagram on the right indicates the epigenetic features 1096 

and transcriptomes for which genome-wide data sets were generated or collected, with 1097 

distinctive icons for the major sources of data, specifically the Blueprint project (Martens and 1098 

Stunnenberg 2013; Stunnenberg et al. 2016), Corces et al. (2016), abbreviated CMB, and St. 1099 

Jude Children’s Research Hospital (SJCRH, Cheng et al. 2021; Qi et al. 2021). (B) Cell types 1100 

and epigenetic data sets in mouse, diagrammed as for panel A.  Sources were described in 1101 

Xiang et al. (2020) and Supplemental Table S1. Abbreviations for blood cells and lines are: HSC 1102 

= hematopoietic stem cell, MPP = multipotent progenitor cell, LMPP = lymphoid-myeloid primed 1103 

progenitor cell, CMP = common myeloid progenitor cell, MEP =  megakaryocyte-erythrocyte 1104 

progenitor cell, K562 = a human cancer cell line with some features of early megakaryocytic and 1105 

erythroid cells, HUDEP = immortalized human umbilical cord blood-derived erythroid progenitor 1106 

cell lines expressing fetal globin genes (HUDEP1) or adult globin genes (HUDEP2), CD34_E = 1107 

human erythroid cells generated by differentiation from CD34+ blood cells, ERY = erythroblast, 1108 

RBC = mature red blood cell, MK = megakaryocyte, GMP = granulocyte monocyte progenitor 1109 

cell, EOS = eosinophil, MON = monocyte, MONp = primary monocyte, MONc = classical 1110 

monocyte, NEU = neutrophil, CLP = common lymphoid progenitor cell, B = B cell, NK = natural 1111 

killer cell, TCD4 = CD4+ T cell, TCD8 = CD8+ T cell, LSK = Lin-Sca1+Kit+ cells from mouse 1112 

bone marrow containing hematopoietic stem and progenitor cells, HPC7 = immortalized mouse 1113 

cell line capable of differentiation in vitro into more mature myeloid cells, G1E = immortalized 1114 

mouse cell line blocked in erythroid maturation by a knockout of the Gata1 gene and its subline 1115 

ER4 that will further differentiate after restoration of Gata1 function in an estrogen inducible 1116 

manner (Weiss et al. 1997), MEL = murine erythroleukemia cell line that can undergo further 1117 

maturation upon induction (designated iMEL), CFUE = colony forming unit erythroid, FL = 1118 

designates ERY derived from fetal liver, BM = designates ERY derived from adult bone marrow, 1119 

CFUMK = colony forming unit megakaryocyte, iMK = immature megakaryocyte, MK_fl = 1120 

megakaryocyte derived from fetal liver. 1121 
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 1122 

Figure. 2. Genome segmentation and annotation jointly between human and mouse using 1123 

IDEAS.  (A) Workflow for joint modeling. (1) Initial epigenetic states from 100 randomly selected 1124 

regions separately in human and mouse hematopoietic cell types were identified in IDEAS runs. 1125 

(2) States that were reproducible and shared in both species were retained. (3a and 3b) The 1126 

profile of epigenetic feature contribution to each of the reproducible states was sequentially 1127 

refined by applying IDEAS across the full genomes of human and of mouse, updating the state 1128 

model after each IDEAS run. (4) Two heterogeneous states were removed to generate the final 1129 

joint epigenetic states in the two species. (B) The 25 joint epigenetic states for human and 1130 

mouse hematopoietic cell types. The average signal of the epigenetic features for each state 1131 

are shown in the heatmap. The corresponding state colors, the state labels based on the 1132 

function, and the average proportions of the genome covered by each state across cell types 1133 

are listed on the right-side of the heatmap.  (C) Annotation of epigenetic states in a large 1134 

genomic interval containing SLC4A1 and surrounding genes across human blood cell types. 1135 

The genomic interval is 210kb, GRCh38 Chr17:44,192,001-44,402,000, with gene annotations 1136 

from GENCODE V38. Binding patterns for selected transcription factors are from the VISION 1137 

project ChIP-seq tracks (CTCF and GATA1 in adult erythroblasts, signal tracks from MACS, 1138 

track heights 100 and 80, respectively) or from the ENCODE data portal (EP300 in K562 cells, 1139 

experiment ENCSR000EGE, signal track is fold change over background, track height is 50). 1140 

The epigenetic state assigned to each genomic bin in the different cell types is designated by 1141 

the color coding shown in panel (B). The replicates in each cell type examined in Blueprint are 1142 

labeled by the id for the donor of biosamples. Genes and regulatory regions active primarily in 1143 

erythroid (E), granulocytes (G), and megakaryocytes (MK) are marked by gray rectangles. (D) 1144 

Annotation of epigenetic states in a large genomic interval containing Slc4a1 and surrounding 1145 

genes across mouse blood cell types. The genomic interval is 198kb, mm10 1146 

Chr11:102,290,001-102,488,000, with gene annotations from GENCODE VM23. Binding 1147 
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patterns for selected transcription factors are from the VISION project ChIP-seq tracks (CTCF in 1148 

adult erythroblasts, GATA1 and EP300 from the highly erythroid fetal liver, signal tracks from 1149 

MACS, track heights 200, 200, and 150, respectively; the EP300 track was made by re-mapping 1150 

reads from ENCODE experiment ENCSR982LJQ). The tracks of epigenetic states and 1151 

highlighted regions are indicated as in panel (C). 1152 

 1153 

Figure. 3. Overlaps of VISION cCREs with other catalogs and enrichment for variants 1154 

associated with blood cell traits. (A) Venn diagram showing intersections of human VISION 1155 

cCREs with a combined superset of elements associated with nuclear structure (CTCF OSs, 1156 

loop anchors, and TAD boundaries) and with a combined superset of DNA intervals associated 1157 

with cis-regulatory elements (CREs), including TSSs, CpG islands, peaks from a massively 1158 

parallel promoter and enhancer assay, and enhancers predicted from enhancer RNAs, peaks of 1159 

binding by EP300, and histone modifications in erythroblasts (see Supplemental Material, 1160 

Supplemental Fig. S9, and Supplemental Table S5). (B) The proportions of cCREs and 1161 

randomly selected, matched sets of intervals in the overlap categories are compared in the bar 1162 

graph. For the random sets, the bar shows the mean, and the dots show the values for each of 1163 

ten random sets. (C) The UpSet plot provides a higher resolution view of intersections of 1164 

VISION cCREs with the four groups of CRE-related elements, specifically enhancer-related 1165 

(Enh), transcription start sites (TSS), Survey of Regulatory Elements (SuRE), and CpG islands 1166 

(CpG). The enrichment for the cCRE overlaps compared to those in randomly selected, 1167 

matched sets of intervals are shown in the boxplots below each overlap subset, with dots for the 1168 

enrichment relative to individual random sets. (D) Overlaps and enrichments of VISION cCREs 1169 

for three sets of structure-related elements, specifically CTCF OSs (CT), loop anchors (LA), and 1170 

TAD boundary elements. (E) Overlaps of VISION cCREs with two sets of experimentally 1171 

determined blood cell cCREs.  (F) Enrichment of SNPs associated with blood cell traits from UK 1172 

Biobank in VISION cCREs. Results of the sLDSC analysis of all cCREs are plotted with 1173 
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enrichment of the cCRE annotation in heritability of each trait on the x-axis, and the significance 1174 

of the enrichment on the y-axis. The analysis covers 292 unique traits with GWAS results from 1175 

both males and females and 3 traits with results only from males. The vertical dotted line 1176 

indicates an enrichment of 1, and the horizontal dotted line delineates the 5% FDR significance 1177 

threshold. Points and labels in red represent traits for which there was significant enrichment of 1178 

SNPs associated with the VISION cCREs. Traits with a negative enrichment were assigned an 1179 

arbitrary enrichment of 0.1 for plotting and appear as the column of points at the bottom left of 1180 

the plot. The shape of the point indicates the sex in which the GWAS analysis was performed 1181 

for each trait. 1182 

 1183 

Figure 4. Beta coefficients of states, esRP scores of cCREs, joint human-mouse 1184 

metaclusters of cCREs based on esRP scores, and enrichment for TFBS motifs. (A) Beta 1185 

coefficients and the difference of beta coefficients of the 25 epigenetic states. The vertical 1186 

columns on the right show the beta coefficients along with the ID, color, and labels for the 25 1187 

joint epigenetic states. The triangular heatmap shows the difference of the beta coefficients 1188 

between two states in the right columns. Each value in the triangle heatmap shows the 1189 

difference in beta coefficients between the state on top and the state below based on the order 1190 

of states in the right columns. (B) An example of calculating esRP score for a cCRE in a cell 1191 

type based on the beta coefficients of states. For a cCRE covering more than one 200bp bin, 1192 

the esRP equals the weighted sum of beta coefficients of states that covers the cCRE, where 1193 

the weights are the region covered by different states. (C) The average esRP score of all 1194 

cCREs in JmCs across blood cell types shared by human and mouse. The right column shows 1195 

the number of human cCREs in each JmC. (D) The average enrichment of JmCs in 15 1196 

homologous gene clusters. The genes are clustered based on the JmCs’ enrichments by k-1197 

means.  (E) Motifs enriched in joint metaclusters. The top heatmap shows the enrichment of 1198 

motifs in the cCREs in each JmC in human (H) and mouse (M) as a Z-score. The logo for each 1199 
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motif is given to the right of the heat map, labeled by the family of transcription factors that 1200 

recognize that motif. The heatmap below is aligned with the motif enrichment heatmap, showing 1201 

the mean esRP score for the cCREs in each JmC for all the common cell types examined 1202 

between human and mouse. A summary description of the cell types in which the cCREs in 1203 

each JmC are more active is given at the bottom. 1204 

 1205 

Figure. 5. Evolutionary and epigenetic comparisons of cCREs. (A) Workflow to partition 1206 

blood cell cCREs in human and mouse into three evolutionary categories. N=nonconserved, 1207 

S=conserved in sequence but not inferred function, SF=conserved in both sequence and 1208 

inferred function as a cCRE, y=yes, n=no. (B) Enrichment of SF-conserved human cCREs for 1209 

TSSs. The number of elements in seven sets of function-related DNA intervals that overlap with 1210 

the 32,422 SF human cCREs was determined, along with the number that overlap with three 1211 

subsets (32,422 each) randomly selected from the full set of 200,342 human cCREs. The ratio 1212 

of the number of function-related elements overlapping SF-cCREs to the number overlapping a 1213 

randomly chosen subset of all cCREs gave the estimate of enrichment plotted in the graph. The 1214 

mean for the three determinations of enrichment is indicated by the horizontal line for each set. 1215 

Results are also shown for a similar analysis for the S and N cCREs. (C) Distribution of phyloP 1216 

scores for three evolutionary categories of cCREs in human and mouse. The maximum phyloP 1217 

score for each genomic interval was used to represent the score for each cCRE, using genome 1218 

sequence alignments of 100 species with human as the reference (phyloP100) and alignments 1219 

of 60 species with mouse as the reference (phyloP60). The distribution of phyloP scores for 1220 

each group are displayed as a violin plot. All ten random sets had distributions similar to the one 1221 

shown. The asterisk (*) over brackets indicates comparison for which the P values for Welch’s t-1222 

test is less than 2.2×10-16. (D) Proportion of human genomic elements active in a massively 1223 

parallel reporter assay (MPRA) that align with mouse or are in a state reflecting dynamic 1224 

chromatin. A set of 57,061 genomic elements found to be active in a lentivirus MPRA that tested 1225 
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a close to comprehensive set of predicted regulatory elements in K562 cells (Agarwal et al. 1226 

2023) were assessed for their ability to align with the mouse genome (blue bar) or whether the 1227 

IDEAS epigenetic state assigned in K562 cells was not quiescent or was in a set of states 1228 

associated with gene activation (magenta bars). The results are plotted as percentages of the 1229 

total number of MPRA-active elements. 1230 

 1231 

Figure. 6. Epigenetic comparisons of regulatory landscapes and cCREs. (A and B) DNA 1232 

sequence alignments and correlations of epigenetic states in human GATA1 and mouse Gata1 1233 

genes and flanking genes. (A) Dot-plot view of chained blastZ alignments by PipMaker 1234 

(Schwartz et al. 2000) between genomic intervals encompassing and surrounding the human 1235 

GATA1 (GRCh38 ChrX:48,760,001-48,836,000; 76kb) and mouse Gata1 (mm10 1236 

ChrX:7,919,401-8,020,800; 101.4kb, reverse complement of reference genome) genes. The 1237 

axes are annotated with gene locations (GENCODE), predicted cis-regulatory elements 1238 

(cCREs), and binding patterns for GATA1 and EP300 in erythroid cells. (B) Matrix of Pearson’s 1239 

correlation values between epigenetic states (quantitative contributions of each epigenetic 1240 

feature to the assigned state) across 15 cell types analogous for human and mouse. The 1241 

correlation is shown for each 200bp bin in one species with all the bins in the other species, 1242 

using a red-blue heat map to indicate the value of the correlation. Axes are annotated with 1243 

genes and cCREs in each species. (C) Decomposition of the correlation matrix (panel B) into 1244 

six component parts or factors using nonnegative matrix factorization. (D-G) Correlation 1245 

matrices for genomic intervals encompassing GATA1/Gata1 and flanking genes, reconstructed 1246 

using values from NMF factors. (D and E) Correlation matrices using values of NMF factor 3 1247 

between human and mouse (panel D) or within human and within mouse (panel E). The red 1248 

rectangles highlight the positive regulatory patterns in the GATA1/Gata1 genes (labeled Px), 1249 

which exhibit conservation of both DNA sequence and epigenetic state pattern. The orange 1250 

rectangles denote the distal positive regulatory region present only in mouse (labeled D), which 1251 
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shows conservation of epigenetic state pattern without corresponding sequence conservation. 1252 

Beneath the correlation matrices in panel E are maps of IDEAS epigenetic states across 15 cell 1253 

types, followed by a graph of the score and peak calls for NMF factor 3 and annotation of 1254 

cCREs (thin black rectangles) and genes. (F and G) Correlation matrices using values of NMF 1255 

factor 6 between human and mouse (panel F) or within human and within mouse (panel G). The 1256 

green rectangles highlight the correlation of epigenetic state patterns within the same gene, 1257 

both across the two species and within each species individually, while the black rectangles 1258 

highlight the high correlation observed between the two genes GATA1 and HDAC6. 1259 
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