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ABSTRACT 

Genome-wide nucleosome profiles are predominantly characterized using MNase-seq, which involves 
extensive MNase digestion and size selection to enrich for mono-nucleosome-sized fragments. Most 
available MNase-seq analysis packages assume that nucleosomes uniformly protect 147bp DNA 
fragments. However, some nucleosomes with atypical histone or chemical compositions protect shorter 
lengths of DNA. The rigid assumptions imposed by current nucleosome analysis packages potentially 
prevent investigators from understanding the regulatory roles played by atypical nucleosomes.  

To enable the characterization of different nucleosome types from MNase-seq data, we introduce the 
Size-based Expectation Maximization (SEM) nucleosome-calling package. SEM employs a hierarchical 
Gaussian mixture model to estimate nucleosome positions and subtypes. Nucleosome subtypes are 
automatically identified based on the distribution of protected DNA fragments. Benchmark analysis 
indicates that SEM is on par with existing packages in terms of standard nucleosome-calling accuracy 
metrics, while uniquely providing the ability to characterize nucleosome subtype identities. 

Applying SEM to a low-dose MNase-H2B-ChIP-seq dataset from mouse embryonic stem cells, we 
identified three nucleosome types: short-fragment nucleosomes; canonical nucleosomes; and di-
nucleosomes. Short-fragment nucleosomes can be divided further into two subtypes based on their 
chromatin accessibility. Interestingly, short-fragment nucleosomes in accessible regions exhibit high 
MNase sensitivity and are enriched at transcription start sites (TSSs) and CTCF peaks, similar to 
previously reported “fragile nucleosomes”. These SEM-defined accessible short-fragment nucleosomes 
are found not just in promoters, but also in distal regulatory regions. Additional analyses reveal their co-
localization with the chromatin remodelers Chd6, Chd8, and Ep400. 

In summary, SEM provides an effective platform for exploration of non-standard nucleosome subtypes. 
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INTRODUCTION 

The nucleosome is the basic packaging unit of chromatin, typically comprising ~147bp DNA wrapped 
around the histone octamer (Luger et al. 1997). Nucleosomes participate in gene regulation by both 
physically impeding access to DNA and by serving as a substrate for interactions with regulatory proteins 
(Klemm et al. 2019). Chemical modifications on histone tails, including methylation, acetylation, and 
ubiquitination, can alter DNA affinity to the octamer and can be engaged by regulatory proteins 
(Kouzarides 2007; Torres and Fujimori 2015). Several histone tail chemical modifications are well 
correlated with transcriptional activity or repression (Kim et al. 2005; Papp and Müller 2006; Wang et al. 
2008). Histone variants, such as H2A.Z and H3.3,  have also been reported to play roles in many 
important biological events, such as DNA replication and enhancer activity (Zentner and Henikoff 2013; 
Chen et al. 2013b).  

The most common technique for studying nucleosome landscapes across the genome is micrococcal 
nuclease sequencing (MNase-seq). MNase is an endo-exonuclease that preferentially digests accessible 
DNA between nucleosomes. After size selection, mono-nucleosome-sized DNA fragments are retained 
for high-throughput sequencing (Jiang and Pugh 2009; Mavrich et al. 2008). However, depending on the 
composition of the nucleosome and the factors engaging the nucleosome, not all nucleosomes protect 
the canonical 147bp of DNA. For example, nucleosomes engaged by Pol II lose one H2A-H2B dimer and 
transiently become hexamers (Ramachandran et al. 2017). Nucleosomes containing the histone variant 
H2A.Z can exhibit a distinct unwrapping state from the canonical nucleosome (Wen et al. 2020). Some 
studies employing alternative nucleosome mapping methods, including low-dose MNase-seq, 
methidiumpropyl-EDTA sequencing (MPE-seq) (Ishii et al. 2015), Cleavage Under Targets and Release 
Using Nuclease (CUT&RUN) (Brahma and Henikoff 2019), and chemical mapping (Voong et al. 2016), 
found MNase-sensitive nucleosome subtypes in yeast and mouse which protect shorter DNA fragments 
than canonical nucleosomes (Ishii et al. 2015; Voong et al. 2016; Brahma and Henikoff 2019). These 
studies have begun revealing variations in nucleosome composition across the genome. 

Despite experimental results that have characterized a wider diversity of nucleosome composition, most 
nucleosome-calling software packages still assume that nucleosomes uniformly protect ~147bp of DNA 
(Chen et al. 2013a; Zhou et al. 2016; Becker et al. 2013). Current approaches use this rigid assumption 
when estimating the locations and occupancy properties of nucleosomes, making their performance sub-
optimal when characterizing nucleosomes of non-canonical DNA length. Although some packages have 
begun incorporating the ability to detect nucleosome positioning dynamics (Zhou et al. 2016; Chen et al. 
2013a), none are yet able to distinguish various nucleosome subtypes from MNase-seq data.  

To resolve the lack of an effective method for characterizing nucleosome subtypes, we introduce a new 
nucleosome-calling package called Size-based Expectation Maximization (SEM). We evaluate the 
performance of SEM by comparing it to existing nucleosome-calling packages. We then apply SEM to 
analyze a low-dose MNase-ChIP-H2B dataset from mouse embryonic stem cells (mESCs) (Ishii et al. 
2015), thereby demonstrating SEM’s ability to characterize various nucleosome subtypes genome-wide. 

 

RESULTS	

A hierarchical Gaussian Mixture Model for characterizing nucleosome types 

SEM is a hierarchical Gaussian Mixture Model (GMM), which probabilistically models the positions, 
occupancy, fuzziness, and subtype identities of nucleosomes from MNase-seq data (Fig. 1). The 
components of the mixture model represent individual nucleosomes; the properties of each nucleosome 
are modeled based on the mapped locations and lengths of MNase-seq fragments. Specifically, each 
nucleosome component is defined by its dyad location, occupancy, fuzziness, and the probability of 
belonging to each nucleosome subtype.  
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SEM runs in two major phases: nucleosome subtype discovery and nucleosome finding. During the first 
phase, SEM fits a GMM onto the fragment size distribution of the entire MNase-seq dataset to determine 
the Gaussian distribution parameters of each nucleosome subtype (Fig. 1A, B). The number of clusters, 
corresponding to the number of nucleosome subtypes, is an essential parameter of the model. It can be 
specified by the user according to prior knowledge of the biological sample, or SEM can automatically 
determine the best fit value using a Dirichlet Process Mixture Model (DPMM). 

In the second phase, SEM uses a hierarchical GMM to compute the likelihood that each specific 
nucleosome is responsible for generating each MNase-seq fragment in the dataset. A Generalized 
Expectation Maximization (GEM) framework is used to calculate the latent assignment of MNase-seq 
fragments to nucleosomes and to estimate the various properties associated with each nucleosome (see 
Methods). Briefly, the Expectation step in the algorithm probabilistically assigns MNase-seq fragments to 
the nucleosome components that are most likely to have generated them based on their current locations 
and properties (Fig. 1C). Then the Maximization step updates the properties of the nucleosome 
components based on the best fit to the current fragment assignments (Fig. 1D). For example, a 

	

	
Figure 1: Overview of the SEM algorithm. A) SEM first calculates the global fragment size distribution from the 
MNase-seq data. B) A Gaussian Mixture Model is used to deconvolve the fragment size distribution into a set of 
nucleosome subtypes. C) In the Expectation step of the algorithm, each MNase-seq fragment is probabilistically 
assigned to nucleosome components according to the current locations, strengths, and subtype identities of the 
components. D) In the Maximization step of the algorithm, the various nucleosome properties are updated based on 
the current fragment assignments. E) Detailed illustration of how nucleosome properties are updated during EM 
iterations.  
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nucleosome component’s dyad location, occupancy, and fuzziness properties are re-estimated based on 
the mean midpoint location, weights, and variance of currently assigned MNase-seq fragments. Subtype 
identity is updated based on the size distribution of assigned fragments. The algorithm iterates through 
Expectation and Maximization steps until convergence (Fig. 1E).  

To better reflect the known biological properties of nucleosomes, several priors are integrated into the 
model. First, a sparse prior on nucleosome occupancy eliminates components that don’t have enough 
fragments assigned, thereby encouraging solutions where each nucleosome is supported by MNase-seq 
data. Another sparse prior on subtype probability encourages each component to be a member of 
individual subtypes, which improves the interpretability of nucleosome subtype assignments. The physical 
exclusion of adjacent nucleosomes is also taken into consideration to ensure that neighboring 
nucleosomes do not overlap in the model. 	

SEM accurately predicts conventional nucleosome properties 

We first evaluated the performance of SEM in predicting conventional nucleosome properties, including 
nucleosome dyad location, nucleosome occupancy, and fuzziness, on both simulated and real MNase-
seq datasets. To generate the simulated dataset, we took reference nucleosome dyad locations from 
yeast (Jiang and Pugh 2009), based on a collection of nucleosome dyad locations compiled from six 
datasets. The occupancy and fuzziness of each nucleosome were then computed using a H4 MNase-
ChIP-seq dataset against the reference nucleosome dyads (see Methods). Background “noise” reads 
following a Poisson distribution were added globally to the simulated dataset to test the robustness of 
each algorithm.  

SEM’s performance in this simulated dataset was evaluated against two other nucleosome-calling 
packages: DANPOS and PuFFIN (Chen et al. 2013a; Polishko et al. 2014). All three packages were 
executed using their default settings (see Methods). The numbers of nucleosomes predicted by each 
package was similar to the number in the reference set (i.e., ~60,000 nucleosomes). SEM and PuFFIN 
outperform DANPOS in predicting simulated nucleosome dyad locations (Fig. 2A). PuFFIN achieves the 
best estimates of simulated nucleosome occupancy, as evaluated by Pearson Correlation Coefficient 
(Fig. 2B). While SEM and DANPOS have similar correlations with the simulated occupancy, DANPOS 
has a general tendency to overestimate nucleosome occupancy (Fig. 2B, middle panel). SEM 
outperforms PuFFIN and DANPOS in estimating the simulated fuzziness levels, again evaluated by 
Pearson Correlation Coefficient (Fig. 2C). 

We further evaluated the performance of SEM using real MNase-seq data (Zhou et al. 2016). Since no 
ground truth of nucleosome occupancy or fuzziness is available, our evaluation solely focused on 
predictions of nucleosome dyad locations. The nucleosome dyad locations obtained from the chemical 
crosslinking experiment were used as the “gold standard” due to its ability to specifically break DNA 
nucleotides near the dyad location. We included a fourth nucleosome-calling package, Cplate, in this 
comparison, as predicted nucleosome dyad locations in the same dataset were available in the original 
Cplate publication (Zhou et al. 2016). Notably, although SEM, DANPOS, and PuFFIN exhibited significant 
performance disparities in simulated datasets, all four software packages exhibited comparable 
performance when evaluated on the real MNase-seq dataset (Fig. 2D). 
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Additionally, we evaluated SEM’s ability to distinguish various nucleosome subtypes. A simulated MNase-
seq dataset, where reads are sampled from three distinct nucleosome subtypes, was generated. SEM 
achieved high accuracy in correctly identifying the subtypes from which each simulated nucleosome was 
sampled (Fig. 2E).  

To summarize, our results indicate that SEM performs comparably with existing nucleosome-calling 
packages in predicting nucleosome dyad locations. Although PuFFIN displays greater accuracy in 
predicting nucleosome occupancy, SEM outperforms it in predicting nucleosome fuzziness. Overall, SEM 
yields comparable performance to other nucleosome-calling packages when it comes to conventional 
nucleosome metrics. In addition, SEM can precisely predict nucleosome subtypes in simulated data.	

Genome-wide detection of nucleosome subtypes in mouse embryonic stem cells 

To assess whether SEM can distinguish different types of nucleosomes from MNase-seq data, we 
applied it to a low-dose MNase-H2B-ChIP-seq dataset from mESCs (Ishii et al. 2015). The original study 
focused on characterizing the locations of so-called “fragile”, or MNase-sensitive, nucleosomes, which 
protect shorter DNA fragments than canonical nucleosomes under low-dose MNase digestion (Chereji et 
al. 2017; Ishii et al. 2015). While the study found evidence for MNase-sensitive nucleosomes at TSSs and 

 

 

Figure 2: Comparison of SEM to existing nucleosome calling packages on common metrics. A) Cumulative 
percentage of distances between predicted nucleosome dyads and simulated nucleosome dyads in simulated 
MNase-seq data. B) Correlation between predicted occupancy and simulated occupancy. Each simulated 
nucleosome is assigned to the closest predicted nucleosome for the purposes of comparison. C) Correlation 
between predicted fuzziness and simulated fuzziness. Each simulated nucleosome is assigned to the closest 
predicted nucleosome for the purposes of comparison. D) Cumulative percentage of distances between 
predicted nucleosome dyads and chemical crosslinking dyads in real MNase-seq data (Voong et al., 2016). E) 
Numbers of total simulated nucleosomes and correctly predicted nucleosomes of each nucleosome subtype. 
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CTCF binding sites, the overlapping fragment size distributions of canonical nucleosomes and fragile 
nucleosomes makes it difficult to distinguish between these nucleosome subtypes at individual sites. The 
original study applied hard fragment length cut-offs (50-100bp, 101-140bp, 140-190bp) to define different 
nucleosome subtypes. However, the application of these thresholds does not adequately distinguish 
between nucleosome subtypes at TSSs or CTCF binding sites, given the variations observed in the 
overall fragment size distribution (Fig. 3A,B, Supplemental Fig. S1A). Our goal here is to assess 
whether SEM can more clearly discriminate nucleosome subtypes and add additional insights into the 
nature of the MNase-sensitive nucleosomes characterized in the original study.  

 

Visual inspection of the DNA fragment size distribution suggests that there are three main modes of 
MNase-protected fragments in the MNase-H2B-ChIP dataset, and thus three distinct nucleosome 
subtypes (Fig. 3A). We confirmed that including three nucleosome subtypes in the SEM model provided 
the best fit to the data by evaluating the Bayesian Information Criterion (BIC) metric over varying numbers 

	
Figure 3: SEM characterizes three nucleosome subtypes in a low dose MNase-ChIP-seq dataset from mESCs. 
A) Fragment size distribution of the low dose MNase-ChIP-seq dataset. B) Heatmap and profile plot of MNase-
seq fragments split by fragment size (50-100bp, 100-140bp, 140-190bp, 190-300bp, 300-400bp, 400-500bp) 
around TSSs. C) Bayesian Information Criterion (BIC) computed across varying numbers of nucleosome 
subtypes. D) Fragment size distribution of each nucleosome subtype as determined by SEM. E) Heatmap and 
profile plot of each SEM-defined nucleosome subtype around TSSs.	
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of subtypes (Fig. 3C). Based on their mean fragment sizes, we refer here to each SEM-defined 
nucleosome subtype as: short-fragment nucleosomes (~115bp mean size); canonical nucleosomes 
(~185bp mean size); and di-nucleosomes (~295bp mean size) (Fig. 3A, D). Here, the larger mean size of 
DNA fragments protected by the canonical nucleosome, compared to the typically reported 147bp, likely 
results from incompletely digested linker DNA at a subset of nucleosomes under the light MNase 
digestion conditions used in the MNase-H2B-ChIP experiment. SEM discovered a total of 6,200,234 
nucleosomes along the mouse genome (Supplemental Data D1). More than half exhibit mixed 
nucleosome subtype identity, indicating the highly dynamic nature of nucleosomes across the whole 
genome (Supplemental Fig. S1C, D). In comparison with hard fragment length cut-offs, SEM’s detection 
of nucleosome subtypes more clearly separates nucleosomes belonging to each subtype at TSSs and 
CTCF sites (Fig. 3E, Supplemental Fig. S1B). Specifically, short-fragment nucleosomes are enriched at 
the centers of TSSs and CTCF sites, while canonical nucleosomes are well-positioned in the flanking 
regions (Fig. 3E, Supplemental Fig. S1B). 

The enrichment of SEM-defined short-fragment nucleosomes at TSSs and CTCF sites mirrors that of the 
MNase-sensitive nucleosomes defined in the original study. However, only a small proportion of all SEM-
defined short-fragment nucleosomes overlap TSSs or CTCF sites (Fig. 4A). We therefore asked whether 
SEM’s short-fragment nucleosome category consists of a homogenous class of MNase-sensitive 
nucleosomes or whether it encompasses multiple short-fragment nucleosome subtypes. To more clearly 
delineate the properties of each nucleosome subtype, we focus only on SEM-defined nucleosomes with 
occupancy greater than 5 reads and unambiguous subtype assignments (i.e., one of the nucleosome 
subtype probabilities >0.9).  

We first subcategorized SEM’s nucleosome subtypes according to their association with potential 
regulatory regions by overlapping with mESC ATAC-seq peaks (Ostapcuk et al. 2018). Two thirds of the 
SEM-defined accessible short-fragment nucleosomes overlap with TSSs or CTCF binding sites, while the 
non-accessible short-fragment nucleosomes are primarily located in distal regions (Fig. 4A). We then 
calculated the MNase sensitivity of each nucleosome subcategory by comparing the number of MNase-
seq fragments from the low-dose MNase-H2B-ChIP-seq dataset with the number of fragments from a 
high-dose MNase-seq dataset (Ishii et al. 2015) in the +/-50bp region surrounding each nucleosome dyad 
(Supplemental Fig. S2A). Accessible short-fragment nucleosomes display high MNase sensitivity, 
consistent with the MNase-sensitive short-fragment nucleosomes found in the original study. However, 
the non-accessible short-fragment nucleosomes do not display significantly higher MNase sensitivity than 
non-accessible canonical nucleosomes (Supplemental Fig. S2A).  

Since the non-accessible short-fragment nucleosomes do not display higher MNase sensitivity, we asked 
whether their shorter fragment lengths could be accounted for by MNase digestion biases towards A/T-
rich sequences (Dingwall et al. 1981). We therefore compared the MNase sensitivity index for each 
nucleosome to the A/T content in the +/-50bp region surrounding each nucleosome dyad (Fig. 4B). While 
higher A/T content appears to correlate with higher MNase sensitivity at non-accessible nucleosome 
categories, the A/T content properties of non-accessible short-fragment nucleosomes are again similar to 
those of non-accessible canonical nucleosomes. However, non-accessible short-fragment nucleosomes 
display significantly higher A/T content at entry and exit sites compared with non-accessible canonical 
nucleosomes (t-test statistic=45.78, p-value < 2e-308 Supplemental Fig. S2B). This suggests that the 
MNase bias towards digesting A/T-rich sequences at nucleosome flanks could be responsible for the 
shorter fragment distributions at this subset of short-fragment nucleosomes. In other words, there may not 
be any substantial difference between the non-accessible short-fragment nucleosomes and canonical 
nucleosomes as defined by SEM, other than a greater susceptibility to MNase biases at entry and exit 
sites. 

In contrast to the non-accessible short-fragment nucleosomes, the accessible short-fragment 
nucleosomes display high MNase sensitivity despite being generally G/C rich (Fig. 4B). We confirmed the 
levels of MNase sensitivity using the MNase accessibility (MACC) score (Mieczkowski et al. 2016). The 
MACC score is the slope of the fitted line between fragment counts and logarithmic scaled MNase 
concentration in titrated MNase-seq experiments, where a high MACC score represents a highly MNase 
sensitive region. The MACC score is substantially higher at accessible short-fragment nucleosomes 
compared with random nucleosome positions (Supplemental Fig. S3A). This indicates that SEM-defined 
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accessible short-fragment nucleosomes represent a subpopulation of G/C-rich, MNase-sensitive short-
fragment nucleosomes that is distinctly separated 
from the broader pool of short-fragment 
nucleosomes. 

While the analyzed MNase-ChIP-seq experiment 
incorporated a H2B ChIP pulldown, it is possible 
that our detected short-fragment nucleosome 
subcategories result from MNase protection by 
non-nucleosomal regulatory proteins that 
artefactually crosslink with neighboring 
nucleosomes. To assess this potential concern, 
we examined nucleosome centering positioning 
(NCP) scores derived from a H4S47C-mediated 
chemical crosslinking approach (Voong et al. 
2016). The accessible short-fragment 
nucleosomes display a clear peak in NCP 
scores, and nucleosome array phasing similar to 
canonical nucleosomes, providing orthogonal 
evidence for the presence of nucleosomes at the 
short-fragment nucleosome loci (Supplemental 
Fig. S3B).  

In summary, SEM identified three distinct 
nucleosome subtypes in mESCs from the low-
dose MNase H2B ChIP-seq dataset. By 
integrating chromatin accessibility data, the SEM-
defined short-fragment nucleosomes were further 
subdivided into two subcategories. Accessible 
short-fragment nucleosomes display several 
properties corresponding to the previously 
proposed fragile nucleosomes, including high 
MNase sensitivity and enrichment at TSSs and 
CTCF binding sites. 

Accessible short-fragment nucleosomes 
associate with distinct regulatory activities 

Most previous studies of fragile or MNase-
sensitive nucleosomes have focused on their 
occurrence at TSS and CTCF binding sites (Ishii 
et al. 2015; Voong et al. 2016). As shown above, 
SEM-defined accessible short-fragment 
nucleosomes are highly enriched at these 
regions (Fig. 4A). However, a substantial portion 
(33%) of SEM’s accessible short-fragment 
nucleosomes do not overlap either TSSs or 
CTCF binding sites (Fig. 4A). To investigate the 
types of locations occupied by non-TSS/CTCF 
accessible short-fragment nucleosomes, we 
overlapped these nucleosomes with candidate 
cis-regulatory elements (cCREs) from the 
ENCODE SCREEN database (The ENCODE 
Project Consortium et al. 2020) (Fig. 5A). 
Notably, 17% of the accessible short-fragment 
nucleosomes overlap with either proximal or 

 

Figure 4: Subcategorization of SEM nucleosome 
subtypes reveals a population of accessible short-
fragment nucleosomes. A) Percentages of short-
fragment nucleosome subtype and subcategories 
located at TSS regions (+/-500bp) and CTCF binding 
sites. B) 2D density plots show the relationships 
between A/T content and MNase sensitivity of each 
nucleosome subtype and subcategory, color bars 
indicate the log density of nucleosomes. Nucleosome 
subcategories were obtained by examining if the 
nucleosome is fully overlapped by ATAC-seq peak 
(ATAC-seq +) or not (ATAC-seq -).	
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distal enhancer-like signatures (pELSs, dELSs, respectively).  

The association between accessible short-fragment nucleosomes and cis-regulatory elements suggests a 
possible role in transcriptional regulation. Therefore, we investigated whether accessible short-fragment 
nucleosomes overlap the occupancy of factors involved in nucleosome composition or histone 
modifications associated with regulatory activities in mES cells.  A previous report in Drosophila 
suggested that H3.3/H2A.Z-containing nucleosomes are enriched at regulatory regions and are unstable 
under high salt conditions (Jin et al. 2009). Thus, we examined the enrichment of both histone variants 
around nucleosome subcategories. We found that H3.3 is highly enriched at regions flanking the 
accessible short-fragment nucleosomes, albeit locally depleted at dyad locations (Fig. 5B). H2A.Z also 
displays higher levels of enrichment flanking accessible short-fragment nucleosomes compared with non-
accessible nucleosome subtypes (Fig. 5B). Active histone modifications, including H3K27ac, H3K4me3, 
H3K9ac, and H4ac, were enriched at sites adjacent to accessible short-fragment nucleosomes 
(Supplemental Fig. S4), while repressive marks, including H3K27me3 and H2AK119ub, do not show 
enrichment at accessible short-fragment nucleosome sites. Finally, several chromatin remodelers are 
enriched at accessible short-fragment nucleosome dyad locations, including Smarca4, Chd4, Chd6, 
Chd8, and Ep400. Ep400 is more prominently enriched at accessible short-fragment nucleosomes 
relative to other remodelers, and is centrally enriched at accessible short-fragment nucleosome dyad 
locations (Supplemental Fig. S5). These chromatin remodelers are known to influence the contact 
between DNA and the nucleosome (Clapier et al. 2017). Ep400 has also been reported to deposit H3.3 at 
promoter and enhancer regions (Pradhan et al. 2016), which may correspond to the H3.3 enrichment 
observed at accessible short-fragment nucleosome sites. Therefore, the enrichment of chromatin 
remodelers at accessible short-fragment nucleosomes suggests a mechanism for their destabilization.	

Finally, we interrogated whether short-fragment nucleosomes are related to distinct transcription factor 
(TF) binding activities. Specifically, we performed enrichment analysis to investigate which transcription 
factors’ binding sites (sourced through ChIP-Atlas (Zou et al. 2022; Oki et al. 2018)) significantly overlap 
with each nucleosome subcategory. The ChIP-seq peaks of many TFs are heavily enriched around 
accessible nucleosomes subtypes, including peaks for the pluripotency factors Oct4, Sox2, Nanog, and 
Klf4 (Supplemental Table S1). This observation is not necessarily surprising given the general 
enrichment of TF binding sites in accessible regions. TFs generally show lower fold-enrichment levels at 
non-accessible short-fragment nucleosomes, aligning with the expectation that nucleosomes located in 
less accessible regions would naturally attract fewer binding factors (Supplemental Table S1).	

In summary, accessible short-fragment nucleosomes defined by SEM are not restricted to TSSs and 
CTCF binding sites and correspond to sites of specific chromatin remodeler enrichment. While the 
regulatory roles played by these atypical nucleosomes require further investigation, our analyses 
demonstrate the efficacy of SEM in characterizing diverse nucleosome types. 
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DISCUSSION 

In recent years, there has been 
growing interest in nucleosome 
subtypes and compositional 
variants beyond canonical 
nucleosomes (Wen et al. 2020; 
Brahma and Henikoff 2019; 
Ramachandran et al. 2017; Hsieh 
et al. 2022). Here, we introduced 
SEM, a new nucleosome-calling 
framework capable of 
distinguishing various 
nucleosome subtypes from a 
single MNase-digested 
sequencing experiment. When 
compared with other 
nucleosome-calling packages, 
SEM exhibits comparable 
performance on conventional 
nucleosome-calling metrics while 
uniquely providing an automatic 
annotation of nucleosome 
subtype identity. 

Using SEM on a low-dose 
MNase-H2B-ChIP-seq dataset 
from mESCs, we identified a 
nucleosome subtype that 
protects shorter DNA fragments 
than canonical nucleosomes. A 
further integration of ATAC-seq 
data classified the short-fragment 
nucleosomes into two 
subcategories, which we labeled 
accessible short-fragment 
nucleosomes and non-accessible 
short-fragment nucleosomes. 

Although SEM-defined non-accessible short-fragment nucleosomes may result from MNase digestion 
bias at entry and exit sites, it is worth noting that this nucleosome subcategory could be overlooked in 
traditional MNase-seq experiments conducting mono-nucleosome size selection. Thus, MNase-seq 
experiments that omit mono-nucleosome size selection, in combination with SEM analysis, could more 
accurately characterize nucleosome positions across the genome. Future versions of SEM could resolve 
the issues associated with MNase bias by incorporating the relationship between sequence content and 
DNA fragment size into the probabilistic model. 

SEM-defined accessible short-fragment nucleosomes share a similar distribution to previously reported 
fragile nucleosomes at TSS and CTCF sites. However, SEM’s ability to identify short-fragment 
nucleosomes genome-wide shows that accessible short-fragment nucleosomes are not restricted to TSS 
and CTCF sites but are also present in distal regulatory regions. Previous studies have suggested that 
histone variants H3.3 and H2A.Z regulate nucleosome stability or lead to nucleosome fragility (Wen et al. 
2020; Jin et al. 2009; Jin and Felsenfeld 2007). We find an enrichment of H3.3, and to a lesser extent 
H2A.Z, at accessible short-fragment nucleosome sites. Accessible short-fragment nucleosomes are also 
associated with active histone marks but not repressive marks. Accessible short-fragment nucleosomes in 
mESCs are co-enriched with the chromatin remodelers Smarca4, Chd4, Chd6, Chd8, and Ep400, 

 

Figure 5: Accessible short-fragment nucleosomes are associated with 
regulatory elements and histone variants. A) Pie chart summarizing the 
overlap between SEM-defined nucleosome subcategories and ENCODE 
SCREEN cCRE types. B) Heatmap displaying the enrichment of histone 
variants H2A.Z and H3.3 around nucleosome dyad locations. 
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suggesting that this nucleosome subcategory represent hotspots of chromatin remodeler activity. 
Assessing whether these chromatin remodelers play an active role in establishing short-fragment 
nucleosomes will require further experimental investigation (for example, via knock-down perturbations 
followed by MNase-seq experiments). Further work also remains to investigate whether SEM-defined 
accessible short-fragment nucleosomes play distinct regulatory roles in mESCs. However, our analyses 
demonstrate that SEM’s genome-wide probabilistic approach to nucleosome subtype calling provides 
clear advantages over the typically employed fragment length threshold approaches. 

 

METHODS	

Nucleosome subtype characterization: To model different nucleosome subtypes present in an MNase-
seq dataset, we first apply a Gaussian Mixture Model (GMM) to the overall fragment size distribution. This 
step can be processed with or without a user-defined number of subtypes. If the number of types has 
been defined, a finite GMM is used on the fragment size distribution to find the parameters of each type. 
GMM initialization is achieved using k-means clustering on the fragment sizes. Briefly, fragments are 
sorted by size and divided into percentile-based groups. The mean sizes of each group are used as 
initial centroids for k-means clustering. The final assignments from k-means serve as the starting 
point for GMM. Alternatively, if the number of subtypes has not been defined, a value can be 
automatically determined from the fragment size distribution by a Dirichlet Process Mixture Model 
(DPMM).  

SEM probabilistic model: SEM is based on a hierarchical Gaussian Mixture Model that describes the 
likelihood of observing a set of MNase-seq fragments from a set of nucleosomes. Each nucleosome 
contributes a distribution of reads surrounding its genomic position to the overall mixture of reads. We 
assume that fragment locations are independently conditioned on the dyad location, fuzziness, and 
subtype mixture probabilities of their underlying nucleosomes. 

SEM performs nucleosome discovery by finding the set of nucleosomes that maximizes the penalized 
likelihood of the observed MNase-seq fragments. First, we assume there are 𝐾 nucleosome fragment 
size subtypes, where each subtype is a Gaussian distribution with mean 𝛹 = 𝜓!, … , 𝜓", variance 𝛷 =
𝜙!, … , 𝜙", and weight 𝛺 = 𝜔!, … , 𝜔".  Thus, the expected size distribution of fragments from each 
nucleosome follows a mixture of the subtype distributions, conditioned on their subtype probabilities. 
Throughout the whole genome, we consider 𝑁 MNase-seq fragments that have been mapped to genomic 
locations 𝐸 = 𝜖!, … , 𝜖# with size 𝐻 = 𝜂!, … , 𝜂#, and 𝑀 potential nucleosomes at genomic locations 𝑈 =
𝜇!, … , 𝜇$ with fuzziness 𝛩 = 𝜃!, … , 𝜃$ and subtype mixture probabilities 𝑇 = 𝜏!, … , 𝜏$ =
7𝜏!,!, … , 𝜏!," , 8, … , 7𝜏$,!, … , 𝜏$," , 8. The locations of fragments from nucleosome 𝑚 follow a Gaussian 
distribution, where the Gaussian mean equals the nucleosome dyad location 𝜇& and the variance equals 
the fuzziness parameter 𝜃&. We represent the latent assignment of fragments to nucleosomes that 
caused them as 𝑍 = 𝑧!, … , 𝑧#, where 𝑧' = 𝑗 where 𝑗 is the index of the nucleosome whose dyad is at 
position 𝜇( that generates fragment 𝑖. 

The conditional probability of fragment 𝑟' being generated from nucleosome 𝑗 located in 𝜇( with mixture 

probability 𝜌( and fuzziness 𝜃( is:       𝑃𝑟(𝑟'|𝑗, 𝑠) = ∑ !
)!√+,

"
-.! 𝑒

/
"#$%&!'

(

()!
(

∗ 𝜏(,-𝜔-
!

0*√+,
𝑒
/
+,$%-*.

(

(/*
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where 𝜏(,- represents the probability of nucleosome 𝑗 belonging to fragment size type 𝑠. 
 

The probability of a fragment is a convex combination of possible nucleosomes: 

𝑃𝑟(𝑟'|𝑃, 𝑈, 𝑇, 𝛩) =II𝜌(

"

-.!

$

(.!

𝜏(,-𝑃𝑟(𝑟'|𝑗, 𝑠)  (2) 
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where 𝜌 represents the weighted occupancy of a nucleosome. The overall likelihood of the observed set 
of fragments is then:  

𝑃𝑟(𝐸,𝐻|𝑃, 𝑈, 𝑇, 𝛩) =JII𝜌(

"

-.!

$

(.!

#

'.!

𝜏(,-𝑃𝑟(𝑟'|𝑗, 𝑠)  (3) 

We incorporate several biological assumptions in the form of priors on the parameters. We place a 
sparseness-promoting negative Dirichlet prior 𝛼 on the nucleosome weighted occupancy 𝜋, based on the 
assumption that each nucleosome should have sufficient numbers of assigned fragments to support its 
existence in the model:     𝑃𝑟(𝜌) ∝ ∏ O𝜌(P

/1$
(.! , 𝛼 > 0  (4) 

We also incorporate an additional prior to encourage nucleosomes to choose less ambiguous subtype 
identities. To do so, we place a Dirichlet prior 𝛽 on the nucleosome type mixture probability 𝜏. 

𝑃𝑟(𝜏) ∝JJ𝜏(,-
/2

"

-.!

$

(.!

, 𝛽 > 0  (5) 

In summary, the complete-data log posterior is as follows: 

𝑙𝑜𝑔𝑃𝑟(𝑈, 𝑃, 𝑇|𝐸, 𝐻, 𝛼, 𝛽) = IWII1
"

-.!

$

(.!

(𝑧' = 𝑗) Y𝑙𝑜𝑔𝜌( + 𝑙𝑜𝑔𝜏(,- + 𝑙𝑜𝑔𝑃𝑟(𝑟'|𝑗, 𝑠)[\
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−I𝛼(
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(.!

𝜏(,- + 𝐶

  (6) 

Expectation Maximization (EM): We initialize mixing probabilities 𝜌 with uniform probabilities, 
 𝜌( = 1/𝑀, 𝑗 = 1,… ,𝑀.  At the E step, we calculate the relative responsibility of each nucleosome subtype 
per nucleosome in generating each fragment as follows:  𝐸(𝑗, 𝑠) = 3!4!,*56(6$|(,-)

∑ ∑ 51
*234

5
!234 6(6$|(;,-;)

  (7) 

The maximum posterior probability (MAP) estimation of 𝜌, 𝜏 is as follows:  

𝜌̀( =
𝑀𝑎𝑥O𝑁( − 𝛼, 0P

∑ 𝑀𝑎𝑥$
(;.! O𝑁(; − 𝛼, 0P

  (8)																											𝜏<,-d =
𝑀𝑎𝑥O𝑁(,- − 𝛽𝑁( , 0P

∑ 𝑀"
-;.! 𝑎𝑥O𝑁(,- − 𝛽𝑁( , 0P

  (9) 

where 𝑁( represents the number of fragments assigned to nucleosome 𝑗, 𝑁(,- represents the number of 
fragments assigned to nucleosome 𝑗 of type 𝑠. The value of 𝛼 is the minimum number of MNase-seq 
fragments required to support a nucleosome surviving in this round. In the first five rounds of EM, sparse 
priors are set to their minimum value (1 for 𝛼 and 0 for 𝛽) to avoid elimination of true nucleosomes due to 
poor initialization. Then sparse priors are gradually increased in the following five rounds until reaching 
the default or user-defined values. The default values of 𝛼 and 𝛽 are 1 and 0.05, respectively. 

MAP values of 𝜇(,- are determined by finding the location with the maximized probability in +/-50bp 
flanking sites of the current nucleosome dyad. If the maximization step results in two components sharing 
the same weighted positions, they are combined in the next iteration of the algorithm. 

Considering the efficiency of the algorithm, the fuzziness and the subtype mixture probabilities of each 
nucleosome are updated every two rounds. In the first several rounds, prior 𝛼 and 𝛽 is multiplied by an 
annealing factor according to the number of completed rounds to avoid too early elimination of 
nucleosomes. As EM proceeds, the log likelihood increases after each iteration, and convergence is 
defined when log likelihood increases less than 1% compared to previous iteration. 

Exclusion zone: Each nucleosome protects DNA and should sterically exclude other nucleosomes at the 
same position. For example, canonical nucleosomes protect 147bp DNA, which means the minimum 
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distance between two canonical nucleosomes should be larger than 147bp. Thus, when there is no 
nucleosome eliminated during an iteration after sparse prior fully incorporated, an extra step will be taken 
to remove nucleosomes which are too close to adjacent nucleosomes. Each time the overlapped 
nucleosome with the lowest responsibility (i.e., occupancy) will be removed, until all nucleosomes have a 
large enough spacing to each other. The exclusion zone is currently set to 127bp to avoid false removal 
of nucleosomes due to the inaccurate prediction of nucleosome dyads. 

MNase-seq data simulation: To simulate the MNase-seq dataset on the sacCer3 reference genome, we 
first took the nucleosome dyad location maps from (Jiang and Pugh 2009) as a reference. MNase H4 
ChIP-seq datasets from SRR3649286, SRR3649291 (Chereji et al. 2017) were used to infer the 
nucleosome occupancy and fuzziness for simulation. Specifically, we used the MNase-seq fragments 
within +/-73bp around each nucleosome dyad to compute the occupancy and fuzziness. Simulated 
MNase-seq fragments were then generated given the computed nucleosome metrics, distributed 
following a Gaussian with mean (nucleosome dyad), variance (nucleosome fuzziness), and weight 
(nucleosome occupancy) parameters set from the above data. Background noise fragments following a 
Poisson Distribution were added to the simulated dataset to test the robustness of each algorithm. We 
used background noise ratio 0.05 in this study. The Poisson mean 𝜆 is determined by the ratio of 
background noise among the whole dataset using the formula:  

𝜆 = (#	𝑡𝑜𝑡𝑎𝑙	𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠) ∗ 𝑟𝑎𝑡𝑖𝑜=>?@A6BCDE/𝑙AFDB&F 

Nucleosome-calling on MNase-seq datasets: On both simulated and real datasets, SEM, DANPOS, 
and PuFFIN were run under default setting. Cplate predictions on real MNase-seq dataset were taken 
from reference (Zhou et al. 2016). 

Determining nucleosome subcategories in mESCs: SEM was run on a low-dose MNase H2B ChIP-
seq dataset (SRR2034510,	SRR2034511) from (Ishii et al. 2015) under default settings with the number 
of nucleosome subtypes set to 3. Nucleosomes are then filtered such that occupancy is greater than 5 
reads and one of the nucleosome subtype probabilities > 0.9. The nucleosome subcategories were 
determined by overlapping the filtered nucleosomes with ATAC-seq peaks. To ensure the whole 
nucleosome is located within an accessible region, we required the dyad location of accessible 
nucleosome has to be at least 100bp away from the boundary of the ATAC-seq peak. The remaining 
nucleosomes are deemed non-accessible. 

Data processing: All FASTQ files were first trimmed by trimmomatic (Bolger et al. 2014) with the options 
“LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 {adapter_file}:2:30:10” using the 
corresponding adapters, then trimmed FASTQ files were mapped to the mm10 reference genome by 
Bowtie2 (Langmead and Salzberg 2012). Mapped BAM files were filtered by the criteria that MAPQ of 
both reads in a pair >=10. ATAC-seq peak calling was performed by using Genrich 
(https://github.com/jsh58/Genrich) with ATAC-seq mode enabled by “-j” option. 

ChIP-Atlas enrichment analysis: ChIP-seq peak enrichment analysis was performed through the ChIP-
Atlas website. Specifically, each nucleosome subcategory was overlapped with peaks from ChIP 
experiments targeting “TFs and Others” in “Pluripotent stem cell”. The threshold for significance was set 
to 50.  

Bayesian Information Criterion (BIC): BIC scores were computed on GMM models fitted with numbers 
of components set to 2, 3, 4, and 5. The formula is: 𝐵𝐼𝐶 = 𝑘 ∗ 𝑙𝑛(𝑛) − 2𝑙𝑛(𝐿o), where 𝐿o is the likelihood of 
the fitted model, 𝑘 is the number of the parameters, 𝑛 is the number of data points. 

Statistical test on A/T content: The ratio of A/T nucleotides at nucleosome entry and exit sites was 
computed by calculating A/T nucleotide percentages in the regions bounded by [-100bp, -50bp] and 
[+50bp, +100bp] relative to the nucleosome dyad. Then an independent t-test was performed to compare 
the percentages at non-accessible short-fragment nucleosomes to those at non-accessible canonical 
nucleosomes. 
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Software availability: The SEM software package is available on GitHub 
(https://github.com/YenLab/SEM) and Bioconda (https://anaconda.org/bioconda/sem). The version of the 
SEM code used in this manuscript is archived as Supplemental Code. 	
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