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The training process of neural networks usually optimizes weights and bias parameters of linear
transformations, while nonlinear activation functions are prespecified and fixed. This work develops
a systematic approach to constructing matrix-valued activation functions whose entries are gener-
alized from rectified linear unit (ReLU). The activation is based on matrix-vector multiplications
using only scalar multiplications and comparisons. The proposed activation functions depend on
parameters that are trained along with the weights and bias vectors. Neural networks based on this
approach are simple and efficient and are shown to be robust in numerical experiments.
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1. INTRODUCTION

In recent decades, deep neural networks (DNNs) have achieved significant success in many
fields such as computer vision and natural language processing (Otter et al., 2018; Voulodimos
et al., 2018). The DNN surrogate model is constructed using recursive composition of linear
transformations and nonlinear activation functions. The nonlinear activation functions are essen-
tial in providing universal approximation, and problem-appropriate choices of them are vital to
the model’s performance.

In the original universal approximation (Cybenko, 1989; Funahashi, 1989), sigmoid is used
due to its property converging to 1 and O as the input goes to + oo and continuously changing
within. However, in the modern application where the neural network layers are composed to
be deeper and deeper while the whole community shifted from fp64 to fp32, sigmoid activation
suffers from the “vanishing gradient” (Kolen and Kremer, 2001) during the training process, as
the chain rule multiplies multiple small gradients resulting from sigmoid and eventually causes
numerical underflow (You et al., 2017).

In practice, the rectified linear unit (ReLU) is one of the most popular activation functions
due to its simplicity and efficiency. Moreover, it resolves the vanishing gradient problem com-
pletely, allowing a large DNN stacked with up to hundreds of layers such as the ones in He
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et al. (2015a). Nevertheless, a key drawback of ReLU is the “dying ReLU” problem (Lu et al.,
2020) where, if during training a neuron’s ReLU activation becomes 0, then under certain cir-
cumstances it may never get activated again to output a nonzero value.

Several simple modifications have been proposed to address this problem and have achieved
a certain level of success, e.g., the simple leaky ReLU, and piecewise linear unit (PLU) (Nicolae,
2018), Softplus (Glorot et al., 2011), exponential linear unit (ELU) (Clevert et al., 2016), scaled
exponential linear unit (SELU) (Klambauer et al., 2017), and Gaussian error linear unit (GELU)
(Hendrycks and Gimpel, 2016).

Although the aforementioned activation functions are shown to be competitive in benchmark
tests, they are still fixed nonlinear functions. In a DNN structure, it is often hard to determine
a priori the optimal activation function for a specific application. Empirically, there has been
a community effort in search for a better activation (Ramachandran et al., 2017), and currently
the consensus is that GELU works well in large models such as GPT (Radford et al., 2019)
as it avoids the vanishing gradient, dying ReLU, and the shattered gradient problem (Balduzzi
et al., 2017). In general, GELU-like activations provide a gradient in the negative regime to stop
neurons “dying” while bounding how far into the negative regime activations are able to have an
effect, and this allows for a better cross-layer training procedure.

However, all the activations mentioned above are pointwise, where this pointwiseness refers
to the fact that the activations are scalar functions that only use a single componentwise value
to determine its output, given a tensorial input. In this paper, we shall generalize these activa-
tion functions and introduce a mechanism to create matrix-valued activation functions, which is
trainable to control the gradient magnitude in a data-adaptive fashion. The effectiveness of the
proposed method is validated using function approximation examples and well-known bench-
mark datasets such as MNIST and CIFAR-10. There are a few classical works on adaptively
tuning parameters in the training process, e.g., the parametric ReLU (He et al., 2015b). However,
our adaptive matrix-valued activation functions are shown to be competitive and more robust in
those experiments.

1.1 Preliminaries

For the simplicity of presentation, we consider a simple model data-fitting problem, given a
training set containing {(z,, f,,)}2\_,, where the coordinates {z,,})_, C R? are the inputs
and { fn}f:r:l C R are the output. They are implicitly related via an unknown target function
f : R — R’ with the assumption that f,, = f(z,,). The ReLU activation function is a piecewise
linear function given by

o(t) = max{t,0}, for teR.

In the literature o is acting componentwise on an input vector. In a DNN, let L be the number
of layers and n, denote the number of neurons at the ¢th layer for 0 < ¢ < L with ny = d and
np=J. Let W= (W, W,,..., W) € HEL:1 R™*™e-1 denote the tuple of admissible weight
matrices and B = (by, b,,...,b1) € Hngl R™ the tuple of admissible bias vectors. The ReLLU
DNN approximation to f at the ¢th layer is recursively defined as

ne(z) == o(Wme—1(z) + be) €R™, mo(z) =2 € R%. ey

The traditional training process for such a DNN is to find optimal W, € HéLzl Rrexne-1 B, €
HEL:  R™ (and thus optimal Nz =1z w, B,) such that
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N
(Wi, B,.) = argminyy g E(W,B), where E(W,B) = Z|fn - nL,W7B(zn)|2. 2)

n=1

In other words, Nz, 5, best fits the data with respect to the discrete £2-norm within the func-
tion class {n. v g}. In practice, the sum of squares norm in E could be replaced with more
convenient norms.

2. TRAINABLE MATRIX-VALUED ACTIVATION FUNCTION

Having a closer look at ReLU o, we have a simple but quite useful observation that the acti-
vation o(&(xz)) with &, := Wyny_; + by could be written as a matrix-vector multiplication
0(&e(z)) = Dy(&p(x))Ee(x), where Dy is a diagonal matrix-valued function mapping from
R™ to R™*™ with diagonal being 19 )} (s), thus taking values from the discrete set {0, 1}.
There is no reason to restrict on {0, 1} and we thus look for a larger set of values over which the
diagonal entries of D, are running or sampled. With a slight abuse of notation, our new DNN
approximation to f is calculated using the following recurrence relation:

no(z) =z € RY &(x) = Wime—1(2) + b, me=(Deo&p)éy, £=1,....L. (3)
Here each Dy is diagonal and is of the form

D(y) = diag(axe,1(y1), %e2(Y2)s - - s %0, (Uny))s Yy € R™, 4)

where o ;(y;) is a nonlinear function to be determined. Since piecewise constant functions
can approximate a continuous function within arbitrarily high accuracy, we specify o ; with
1 <71 <nyas

t6,i,05 8 € (=00, 84,i,1],

teil, 5 € (50,4,1,50,i,2)
i) = %)

tf,i,mgﬂ;flv s € (Sf,i,meﬂ;fla Sl,i,ml,i]a

tl-,i-,mz,w s € (Sl-,i-,mz,woo)v

where 1my ; is a positive integer and {ts; ;},— and {s ;};—; are constants. We may suppress

the indices £, 4 in o ;, My i, te,i.5, Se,i,; and write them as o, m, t;, s; when those quantities are
uniform across layers and neurons. If m =1, s; =0, ty =0, t; = 1, then the DNN [Eq. (3)]
is exactly the ReLU DNN. If m =1, s; =0, ¢; = 1 and ¢, is a fixed small negative number,
Eq. (3) reduces to the DNN based on leaky ReLU. If m =2,s5; =0, =1,tg0 =t =0,%; =1,
then o« = & ; actually represents a discontinuous activation function.

In our case, we shall fix some parameters from Ug_ Uit {t,; ;}7—5 and Uf_ U7 {sp 5} 57
and let the rest of them vary in the training process. When the diagonal cutoffs are fixed while
making the slopes learnable, this replicates the layerwise adaptive rate scaling in You et al.
(2017). Heuristically speaking, the activation functions among different layers in the resulting
DNN may adapt to the target function f. Since the nonparametric ReLU and a 1-parameter leaky
ReLU are special cases of the new activation functions, the proposed DNN with the new acti-
vations theoretically should bear at least the same approximation property. If the optimization
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problem is solved exactly, in practice the training error should be no worse than before. In the
following, the activation function in Eq. (5) with trainable parameters in Eq. (3) is named as the
“trainable matrix-valued activation function (TMAF).”

Starting from the diagonal activation Dy, one can step further to construct more general acti-
vation matrices. First we note that D, could be viewed as a nonlinear operator T} : [C'(R%)]™¢ —
[C(R)]™, where

[Te(9))(z) = De(g(x))g(z), g€ [CRN™, zeR™

With this observation, one can parametrize a trainable nonlinear activation operator determined
by more general matrices, e.g., the following tridiagonal operator:

g1 Pe2 O 0
Yei 2 PBes - 0
Te((z)=| + - - o |g(x), = eR% (6)
0 0 - yme1 PBrm
0 0 o Yene—1 %,

The diagonal {ot; } is given in Eq. (5) while the off-diagonals (3;;, ye,; are piecewise constant
functions in the 7th coordinate y; of y € R™ defined in a fashion similar to ot ;. Theoretically
speaking, even trainable full matrix activation is possible despite potentially increased training
cost. In summary, the corresponding DNN based on trainable nonlinear activation operators
{Ty}L_, reads

No(z) =2z €RY, &(z) = Wime—i(x) + by, me=Ty(&), £=1,....,L. (]

The evaluations of D, and T} are cheap because they require only scalar multiplications and
comparisons. When calling a general-purpose package such as PyTorch in the training process,
it is observed that the computational time of D, and T} is comparable to the classical ReLU.

Remark 1. Our observation also applies to an activation function o other than ReLU. For example,
we may rescale o(z) to obtain o(w, ¢x) for constants {w; ¢} varying layer by layer and neuron
by neuron. Then o(w; ¢z) are used to form a matrix activation function and a TMAF DNN,
where {w; ¢} are trained according to given data and are adapted to the target function. This
observation may be useful for specific applications.

Remark 2. We also note that the diagonal activation with a fixed bandwidth bears similarity with
the piecewise-linear activation after the convolution layer in a so-called alternating direction
method of multipliers (ADMM)-net (Yang et al., 2017), yet is designed with a fundamentally
different philosophy. In Yang et al. (2017), an activation matrix with the size of the filter is
composed of the convolution operation. If one views the convolution operation as a diagonal
matrix-valued operator, for a p X p convolution filter, the activation is a n? x n? diagonal matrix
with the bandwidth being p?. The nonlinearity in ADMM couples neighboring pixels in an image,
while here TMAF performs a nonlinear mixing in the channel dimension.

3. NUMERICAL RESULTS

In this section, we demonstrate the feasibility and efficiency of TMAF by comparing it with the
traditional ReL.U-type activation functions. In principle, all parameters in Eq. (5) are allowed to
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be trained while we shall fix the intervals in Eq. (5) and only let function values {t;} vary for
simplicity in the following. In each experiment, we use the same neural network structure, as
well as the same learning rates, stochastic gradient descent (SGD) optimization, and number of
epochs (NE) (SGD iterations). In particular, the learning rate 1e—4 is used for epochs 1 to NE/2
and le-5 is used for epochs NE/2 + 1 to NE.

3.1 Function Approximation (Regression) Problem

For the first class of examples we use the £>-loss function as defined in Eq. (2). For the classifi-
cation problems we consider the cross-entropy that is widely used as a loss function in classifica-
tion models. The cross-entropy is defined using a training set which consists of p images, each
with IV pixels. Thus, we have a matrix Z € R™*? and each column corresponds to an image
with N pixels. Each image belongs to a fixed class ¢; from the set of image classes {c };_,,
where ¢; € {1,..., M}. The network structure maps Z € RV*P to X € RM*P, and each
column z; of X is an output of the network evaluation at the corresponding column z; of Z.
More precisely,

Z=(z1,.-..,2p), X =(x1,...,2p), c¢;=class(z;),

xj :=Nrw.B(25), :cjeRM, zjeRN, ji=1,...,p.

The cross-entropy loss function then is defined by

COV. B) = fj—log<zjjﬂ#>k>>,

k=1 j=1 exp(@; k)

(W, B,) = arg minyy sgC(W, B).

To evaluate the loss function at a given image z € R, we first evaluate the network at z with
the given (W, B) = (W, B..). We then define the class c¢(z) of z and the loss loss(z) at z as
follows:

c(z) = argmin << {exp(a;)}, where a=mnrw, 5, (2),

loss(z) = — 1%(726:;;(:;;);)).

3.1.1 Approximation of a Smooth Function

As our first example, we use neural networks to approximate
flxy, - xy) =sin(rxy + -+ 7xy), xx €[-2,2], k=1,...,n.

The training datasets are 20,000 input-output data pairs where the input data are randomly sam-
pled from the hypercube [—2,2]™. The networks [Egs. (1) and (3)] have single or double hidden
layers with 20 neurons per layer. For TMAF D, in Eq. (4), the function @ = o ; in Eq. (5)
uses intervals (—oo, —5), (=5 + k,—4 + k|, (5,00), 0 < k < 9. The approximation results
are shown in Table 1 and Figs. 1-3. It is observed that TMAF is the most accurate activation
approach. Moreover, the parametric ReLU does not approximate sin(wz; + . . . + wzg) well; see
Fig. 3(b).
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TABLE 1: Approximation errors for sin(7x; + - - - + 7a,,) by neural networks

Approximation Error
Single Hidden Layer Two Hidden Layers
n 1 2 3 4 5 6 7 8
ReLU 0.089 034 039 041 0.14 021 0.25 0.31
TMAF 0.015 0.016 0.13 0.18 0.07 0.105 0.153 0.17
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FIG. 1: Training errors for sin(wz; + - - - + wxy), single hidden layer: (a) n = 1 and (b) n =2
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FIG. 2: Neural network approximations to sin(7x), single hidden layer: (a) ReLU and (b) TMAF

3.1.2 Approximation of an Oscillatory Multifrequency Function

The next example is of approximating the following function having high- and low-frequency
components

f(z) = sin(1007x) 4 cos(50mz) + sin(wx), (8)

see Fig. 4 for an illustration. The function in Eq. (8) is notoriously difficult to capture by numer-
ical methods in scientific computing. In the context of approximation using NN, it is observed
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FIG. 3: Training errors for sin(7z; + - - - + 7y ), two hidden layers: (a) n = 5 and (b) n = 6
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FIG. 4: (a) Plot of f(z) = sin(1007z) + cos(507z) + sin(wz), exact oscillating function, and (b) training
loss comparison

in Hong et al. (2022) that ReLU-based NN cannot resolve the high-frequency oscillatory feature
of this function at all. The training datasets are 20,000 input-output data pairs where the input
data are randomly sampled from the interval [—1, 1]. We test the diagonal TMAF [Eq. (4)] and
the function « = o ; [Eq. (5)] uses intervals (—oo, —5), (=5 + kh, =5 + (k + 1)h], (5, 00)
with . = 0.1, 0 < k£ < 99. We also consider the tridiagonal TMAF [Eq. (6)], where {ot;}
is the same as the diagonal TMAF, {f,,} and {v,;} are all piecewise constants based on in-
tervals (—oo, =5 + h), (=5 4+ kh + h, =5 + (k + 1)h + h], (5 4 h,0) and (—o0, —5 + 2h),
(=5+kh+2h,—54 (k4 1)h + 2h], (5 + 2h,00) with h = 0.1/3, 0 < k < 99, respectively.
Numerical results can be found in Figs. 4 and 5 and Table 2.

For this challenging problem, we note that the diagonal TMAF and tridiagonal TMAF pro-
duce high-quality approximations while ReLU and parametric ReLU are not able to approximate
the highly oscillating function within reasonable accuracy. It is observed from Fig. 5 that ReLU
actually approximates the low-frequency part of Eq. (8). To capture the high-frequency, part
ReLU clearly has to use more neurons and thus much more weight and bias parameters. On
the other hand, increasing the number of intervals in TMAF only leads to a few more training
parameters.
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FIG. 5: Approximations to f(z) = sin(1007z) + cos(507z) + sin(wz) by neural networks: (a) ReLU
approximation and (b) TMAF approximation

TABLE 2: Error comparison for f(z) =
sin(1007z) 4 cos(50mz) + sin(7x)

Error

RELU 0.97
Diag-TMAF 0.033
Tri-diag TMAF 0.029

3.2 Classification Problem of MNIST and CIFAR-10 Datasets

We now test TMAF by classifying images in the MNIST and CIFAR-10 datasets. For TMAF
Dy in Eq. (4), the function o« = o4 ; [Eq. (5)] uses intervals (—oo, —5), (=5+k, —4+k], (5,00)
with0 < k <9.

For the MNIST set, we implement single and double layer fully connected networks [Eqgs.

(1) and (3)] with 10 neurons per layer (except at the first layer ny = 764), and ReL.U or diagonal
TMAF [Eq. (4)] activation. Numerical results are shown in Figs. 6 and 7 and Table 3. We note
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FIG. 6: MNIST: single hidden layer. (a) Training loss comparison and (b) classification accuracy.
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FIG. 7: MNIST: two hidden layers. (a) Training loss and (b) classification accuracy

TABLE 3: Evaluation accuracy for the MNIST and

CIFAR-10
Dataset Evaluation Accuracy
ReL.U TMAF
MNIST (1 hidden layer) 86.1% 92.1%
MNIST (2 hidden layers) 91.8% 92.2%
CIFAR-10 (Resnetl8) 92.8% 93.2%

that the TMAF with a single hidden layer ensures higher evaluation accuracy than ReLU; see
Table 3.

For the CIFAR-10 dataset, we use the ResNet 18 network structure with 18 layers and
number of neurons provided by He et al. (2015a). The activation functions are still ReLU and
the diagonal TMAF [Eq. (4)]. Numerical results are presented in Fig. 8 and Table 3. Those
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FIG. 8: Comparison between ReLU and TMAF for CIFAR-10: (a) training loss and (b) classification
accuracy
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parameters given in Paszke et al. (2017) are already tuned well with respect to ReLU. Neverthe-
less, TMATF still produces smaller errors in the training process and returns better classification
results in the evaluation stage.

It is possible to improve the performance of TMAF applied to those benchmark datasets. The
key point is to select suitable intervals in &, ; to optimize the performance. A simple strategy
is to let those intervals in Eq. (5) be varying and adjusted in the training process, which will be
investigated in our future research.
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