
Journal of Machine Learning for Modeling and Computing, 6(2):1–11 (2025)

NEURAL NETWORKS WITH TRAINABLE

MATRIX ACTIVATION FUNCTIONS

Zhengqi Liu,1 Shuhao Cao,2 Yuwen Li,3 &
Ludmil Zikatanov4,∗

1Department of Mathematics, The Pennsylvania State University, University
Park, PA 16802, USA

2School of Science and Engineering, University of Missouri–Kansas City,
Kansas City, MO 64110, USA

3School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang
310058, China

4National Science Foundation, Alexandria, VA 22314, USA

*Address all correspondence to: Ludmil Zikatanov, National Science Foundation,
Alexandria, VA, USA, E-mail: lzikatan@nsf.gov

The training process of neural networks usually optimizes weights and bias parameters of linear

transformations, while nonlinear activation functions are prespecified and fixed. This work develops

a systematic approach to constructing matrix-valued activation functions whose entries are gener-

alized from rectified linear unit (ReLU). The activation is based on matrix-vector multiplications

using only scalar multiplications and comparisons. The proposed activation functions depend on

parameters that are trained along with the weights and bias vectors. Neural networks based on this

approach are simple and efficient and are shown to be robust in numerical experiments.

KEY WORDS: machine learning, ReLU, ParaReLU, trainable activation

1. INTRODUCTION

In recent decades, deep neural networks (DNNs) have achieved significant success in many

fields such as computer vision and natural language processing (Otter et al., 2018; Voulodimos

et al., 2018). The DNN surrogate model is constructed using recursive composition of linear

transformations and nonlinear activation functions. The nonlinear activation functions are essen-

tial in providing universal approximation, and problem-appropriate choices of them are vital to

the model’s performance.

In the original universal approximation (Cybenko, 1989; Funahashi, 1989), sigmoid is used

due to its property converging to 1 and 0 as the input goes to ± ∞ and continuously changing

within. However, in the modern application where the neural network layers are composed to

be deeper and deeper while the whole community shifted from fp64 to fp32, sigmoid activation

suffers from the “vanishing gradient” (Kolen and Kremer, 2001) during the training process, as

the chain rule multiplies multiple small gradients resulting from sigmoid and eventually causes

numerical underflow (You et al., 2017).

In practice, the rectified linear unit (ReLU) is one of the most popular activation functions

due to its simplicity and efficiency. Moreover, it resolves the vanishing gradient problem com-

pletely, allowing a large DNN stacked with up to hundreds of layers such as the ones in He

Submitted: 10/28/24; Accepted: 10/28/24; Online: 12/4/24

https://doi/10.1615/JMachLearnModelComput.2024056966

2689–3967/25/$35.00 © 2025 by Begell House, Inc. www.begellhouse.com 1

2 Liu et al.

et al. (2015a). Nevertheless, a key drawback of ReLU is the “dying ReLU” problem (Lu et al.,

2020) where, if during training a neuron’s ReLU activation becomes 0, then under certain cir-

cumstances it may never get activated again to output a nonzero value.

Several simple modifications have been proposed to address this problem and have achieved

a certain level of success, e.g., the simple leaky ReLU, and piecewise linear unit (PLU) (Nicolae,

2018), Softplus (Glorot et al., 2011), exponential linear unit (ELU) (Clevert et al., 2016), scaled

exponential linear unit (SELU) (Klambauer et al., 2017), and Gaussian error linear unit (GELU)

(Hendrycks and Gimpel, 2016).

Although the aforementioned activation functions are shown to be competitive in benchmark

tests, they are still fixed nonlinear functions. In a DNN structure, it is often hard to determine

a priori the optimal activation function for a specific application. Empirically, there has been

a community effort in search for a better activation (Ramachandran et al., 2017), and currently

the consensus is that GELU works well in large models such as GPT (Radford et al., 2019)

as it avoids the vanishing gradient, dying ReLU, and the shattered gradient problem (Balduzzi

et al., 2017). In general, GELU-like activations provide a gradient in the negative regime to stop

neurons “dying” while bounding how far into the negative regime activations are able to have an

effect, and this allows for a better cross-layer training procedure.

However, all the activations mentioned above are pointwise, where this pointwiseness refers

to the fact that the activations are scalar functions that only use a single componentwise value

to determine its output, given a tensorial input. In this paper, we shall generalize these activa-

tion functions and introduce a mechanism to create matrix-valued activation functions, which is

trainable to control the gradient magnitude in a data-adaptive fashion. The effectiveness of the

proposed method is validated using function approximation examples and well-known bench-

mark datasets such as MNIST and CIFAR-10. There are a few classical works on adaptively

tuning parameters in the training process, e.g., the parametric ReLU (He et al., 2015b). However,

our adaptive matrix-valued activation functions are shown to be competitive and more robust in

those experiments.

1.1 Preliminaries

For the simplicity of presentation, we consider a simple model data-fitting problem, given a

training set containing {(xn, fn)}
N
n=1, where the coordinates {xn}

N
n=1 ⊂ R

d are the inputs

and {fn}
N
n=1 ⊂ R

J are the output. They are implicitly related via an unknown target function

f : Rd → R
J with the assumption that fn = f(xn). The ReLU activation function is a piecewise

linear function given by

σ(t) = max{t, 0}, for t ∈ R.

In the literature σ is acting componentwise on an input vector. In a DNN, let L be the number

of layers and nℓ denote the number of neurons at the ℓth layer for 0 ≤ ℓ ≤ L with n0 = d and

nL = J . Let W = (W1,W2, . . . ,WL) ∈
∏L

ℓ=1 R
nℓ×nℓ−1 denote the tuple of admissible weight

matrices and B = (b1, b2, . . . , bL) ∈
∏L

ℓ=1 R
nℓ the tuple of admissible bias vectors. The ReLU

DNN approximation to f at the ℓth layer is recursively defined as

ηℓ(x) := σ(Wℓηℓ−1(x) + bℓ) ∈ R
nℓ , η0(x) = x ∈ R

d. (1)

The traditional training process for such a DNN is to find optimal W∗ ∈
∏L

ℓ=1 R
nℓ×nℓ−1 , B∗ ∈

∏L

ℓ=1 R
nℓ (and thus optimal ηL = ηL,W∗,B∗

) such that

Journal of Machine Learning for Modeling and Computing

Neural Networks with Trainable Matrix Activation Functions 3

(W∗,B∗) = arg minW,BE(W,B), where E(W,B) =

N
∑

n=1

|fn − ηL,W,B(xn)|
2
. (2)

In other words, ηL,W∗,B∗
best fits the data with respect to the discrete ℓ2-norm within the func-

tion class {ηL,W,B}. In practice, the sum of squares norm in E could be replaced with more

convenient norms.

2. TRAINABLE MATRIX-VALUED ACTIVATION FUNCTION

Having a closer look at ReLU σ, we have a simple but quite useful observation that the acti-

vation σ(ξℓ(x)) with ξℓ := Wℓηℓ−1 + bℓ could be written as a matrix-vector multiplication

σ(ξℓ(x)) = Dℓ(ξℓ(x))ξℓ(x), where Dℓ is a diagonal matrix-valued function mapping from

R
nℓ to R

nℓ×nℓ with diagonal being 1{(0,∞)}(s), thus taking values from the discrete set {0, 1}.

There is no reason to restrict on {0, 1} and we thus look for a larger set of values over which the

diagonal entries of Dℓ are running or sampled. With a slight abuse of notation, our new DNN

approximation to f is calculated using the following recurrence relation:

η0(x) = x ∈ R
d, ξℓ(x) = Wℓηℓ−1(x) + bℓ, ηℓ = (Dℓ ◦ ξℓ)ξℓ, ℓ = 1, . . . , L. (3)

Here each Dℓ is diagonal and is of the form

Dℓ(y) = diag(αℓ,1(y1),αℓ,2(y2), . . . ,αℓ,nℓ
(ynℓ

)), y ∈ R
nℓ , (4)

where αℓ,i(yi) is a nonlinear function to be determined. Since piecewise constant functions

can approximate a continuous function within arbitrarily high accuracy, we specify αℓ,i with

1 ≤ i ≤ nℓ as

αℓ,i(s) =











































tℓ,i,0, s ∈ (−∞, sℓ,i,1],

tℓ,i,1, s ∈ (sℓ,i,1, sℓ,i,2],

...

tℓ,i,mℓ,i−1, s ∈ (sℓ,i,mℓ,i−1, sℓ,i,mℓ,i
],

tℓ,i,mℓ,i
, s ∈ (sℓ,i,mℓ,i

,∞),

(5)

where mℓ,i is a positive integer and {tℓ,i,j}
mℓ,i

j=0 and {sℓ,i,j}
mℓ,i

j=1 are constants. We may suppress

the indices ℓ, i in αℓ,i, mℓ,i, tℓ,i,j , sℓ,i,j and write them as α, m, tj , sj when those quantities are

uniform across layers and neurons. If m = 1, s1 = 0, t0 = 0, t1 = 1, then the DNN [Eq. (3)]

is exactly the ReLU DNN. If m = 1, s1 = 0, t1 = 1 and t0 is a fixed small negative number,

Eq. (3) reduces to the DNN based on leaky ReLU. If m = 2, s1 = 0, s2 = 1, t0 = t2 = 0, t1 = 1,

then α = αℓ,i actually represents a discontinuous activation function.

In our case, we shall fix some parameters from∪L
ℓ=1∪

nℓ

i=1{tℓ,i,j}
mℓ,i

j=0 and∪L
ℓ=1∪

nℓ

i=1{sℓ,i,j}
mℓ,i

j=1

and let the rest of them vary in the training process. When the diagonal cutoffs are fixed while

making the slopes learnable, this replicates the layerwise adaptive rate scaling in You et al.

(2017). Heuristically speaking, the activation functions among different layers in the resulting

DNN may adapt to the target function f . Since the nonparametric ReLU and a 1-parameter leaky

ReLU are special cases of the new activation functions, the proposed DNN with the new acti-

vations theoretically should bear at least the same approximation property. If the optimization

Volume 6, Issue 2, 2025

4 Liu et al.

problem is solved exactly, in practice the training error should be no worse than before. In the

following, the activation function in Eq. (5) with trainable parameters in Eq. (3) is named as the

“trainable matrix-valued activation function (TMAF).”

Starting from the diagonal activation Dℓ, one can step further to construct more general acti-

vation matrices. First we note that Dℓ could be viewed as a nonlinear operator Tℓ : [C(Rd)]nℓ →
[C(Rd)]nℓ , where

[Tℓ(g)](x) = Dℓ(g(x))g(x), g ∈ [C(Rd)]nℓ , x ∈ R
d.

With this observation, one can parametrize a trainable nonlinear activation operator determined

by more general matrices, e.g., the following tridiagonal operator:

[Tℓ(g)](x) =



















αℓ,1 βℓ,2 0 · · · 0

γℓ,1 αℓ,2 βℓ,3 · · · 0

...
. . .

. . .
. . .

...

0 0 · · · αℓ,nℓ−1 βℓ,nℓ

0 0 · · · γℓ,nℓ−1 αℓ,nℓ



















g(x), x ∈ R
d. (6)

The diagonal {αℓ,i} is given in Eq. (5) while the off-diagonals βℓ,i, γℓ,i are piecewise constant

functions in the ith coordinate yi of y ∈ R
nℓ defined in a fashion similar to αℓ,i. Theoretically

speaking, even trainable full matrix activation is possible despite potentially increased training

cost. In summary, the corresponding DNN based on trainable nonlinear activation operators

{Tℓ}
L
ℓ=1 reads

η0(x) = x ∈ R
d, ξℓ(x) = Wℓηℓ−1(x) + bℓ, ηℓ := Tℓ(ξℓ), ℓ = 1, . . . , L. (7)

The evaluations of Dℓ and Tℓ are cheap because they require only scalar multiplications and

comparisons. When calling a general-purpose package such as PyTorch in the training process,

it is observed that the computational time of Dℓ and Tℓ is comparable to the classical ReLU.

Remark 1. Our observation also applies to an activation function σ other than ReLU. For example,

we may rescale σ(x) to obtain σ(ωi,ℓx) for constants {ωi,ℓ} varying layer by layer and neuron

by neuron. Then σ(ωi,ℓx) are used to form a matrix activation function and a TMAF DNN,

where {ωi,ℓ} are trained according to given data and are adapted to the target function. This

observation may be useful for specific applications.

Remark 2. We also note that the diagonal activation with a fixed bandwidth bears similarity with

the piecewise-linear activation after the convolution layer in a so-called alternating direction

method of multipliers (ADMM)-net (Yang et al., 2017), yet is designed with a fundamentally

different philosophy. In Yang et al. (2017), an activation matrix with the size of the filter is

composed of the convolution operation. If one views the convolution operation as a diagonal

matrix-valued operator, for a p× p convolution filter, the activation is a n2 ×n2 diagonal matrix

with the bandwidth being p2. The nonlinearity in ADMM couples neighboring pixels in an image,

while here TMAF performs a nonlinear mixing in the channel dimension.

3. NUMERICAL RESULTS

In this section, we demonstrate the feasibility and efficiency of TMAF by comparing it with the

traditional ReLU-type activation functions. In principle, all parameters in Eq. (5) are allowed to

Journal of Machine Learning for Modeling and Computing

Neural Networks with Trainable Matrix Activation Functions 5

be trained while we shall fix the intervals in Eq. (5) and only let function values {tj} vary for

simplicity in the following. In each experiment, we use the same neural network structure, as

well as the same learning rates, stochastic gradient descent (SGD) optimization, and number of

epochs (NE) (SGD iterations). In particular, the learning rate 1e–4 is used for epochs 1 to NE/2

and 1e–5 is used for epochs NE/2 + 1 to NE.

3.1 Function Approximation (Regression) Problem

For the first class of examples we use the ℓ2-loss function as defined in Eq. (2). For the classifi-

cation problems we consider the cross-entropy that is widely used as a loss function in classifica-

tion models. The cross-entropy is defined using a training set which consists of p images, each

with N pixels. Thus, we have a matrix Z ∈ R
N×p and each column corresponds to an image

with N pixels. Each image belongs to a fixed class cj from the set of image classes {ck}
p
k=1,

where cj ∈ {1, . . . ,M}. The network structure maps Z ∈ R
N×p to X ∈ R

M×p, and each

column xj of X is an output of the network evaluation at the corresponding column zj of Z.

More precisely,

Z = (z1, . . . , zp), X = (x1, . . . , xp), cj = class(zj),

xj := ηL,W,B(zj), xj ∈ R
M , zj ∈ R

N , j = 1, . . . , p.

The cross-entropy loss function then is defined by

C(W,B) =

p
∑

k=1

− log

(

exp(xck,k)
∑M

j=1 exp(xj,k)

)

,

(W∗,B∗) = arg minW,BC(W,B).

To evaluate the loss function at a given image z ∈ R
N , we first evaluate the network at z with

the given (W,B) = (W∗,B∗). We then define the class c(z) of z and the loss loss(z) at z as

follows:

c(z) = arg min1≤j≤M{exp(aj)}, where a = ηL,W∗,B∗
(z),

loss(z) = − log

(

exp(ac(z))
∑M

j=1 exp(aj)

)

.

3.1.1 Approximation of a Smooth Function

As our first example, we use neural networks to approximate

f(x1, · · · , xn) = sin(πx1 + · · ·+ πxn), xk ∈ [−2, 2], k = 1, . . . , n.

The training datasets are 20,000 input-output data pairs where the input data are randomly sam-

pled from the hypercube [−2, 2]n. The networks [Eqs. (1) and (3)] have single or double hidden

layers with 20 neurons per layer. For TMAF Dℓ in Eq. (4), the function α = αℓ,i in Eq. (5)

uses intervals (−∞,−5), (−5 + k,−4 + k], (5,∞), 0 ≤ k ≤ 9. The approximation results

are shown in Table 1 and Figs. 1–3. It is observed that TMAF is the most accurate activation

approach. Moreover, the parametric ReLU does not approximate sin(πx1 + . . .+ πx6) well; see

Fig. 3(b).

Volume 6, Issue 2, 2025

6 Liu et al.

TABLE 1: Approximation errors for sin(πx1 + · · ·+ πxn) by neural networks

Approximation Error

Single Hidden Layer Two Hidden Layers

n 1 2 3 4 5 6 7 8

ReLU 0.089 0.34 0.39 0.41 0.14 0.21 0.25 0.31

TMAF 0.015 0.016 0.13 0.18 0.07 0.105 0.153 0.17

(a) (b)

FIG. 1: Training errors for sin(πx1 + · · ·+ πxn), single hidden layer: (a) n = 1 and (b) n = 2

(a) (b)

FIG. 2: Neural network approximations to sin(πx), single hidden layer: (a) ReLU and (b) TMAF

3.1.2 Approximation of an Oscillatory Multifrequency Function

The next example is of approximating the following function having high- and low-frequency

components

f(x) = sin(100πx) + cos(50πx) + sin(πx), (8)

see Fig. 4 for an illustration. The function in Eq. (8) is notoriously difficult to capture by numer-

ical methods in scientific computing. In the context of approximation using NNs, it is observed

Journal of Machine Learning for Modeling and Computing

Neural Networks with Trainable Matrix Activation Functions 7

(a) (b)

FIG. 3: Training errors for sin(πx1 + · · ·+ πxn), two hidden layers: (a) n = 5 and (b) n = 6

(a) (b)

FIG. 4: (a) Plot of f(x) = sin(100πx)+ cos(50πx)+ sin(πx), exact oscillating function, and (b) training

loss comparison

in Hong et al. (2022) that ReLU-based NN cannot resolve the high-frequency oscillatory feature

of this function at all. The training datasets are 20,000 input-output data pairs where the input

data are randomly sampled from the interval [−1, 1]. We test the diagonal TMAF [Eq. (4)] and

the function α = αℓ,i [Eq. (5)] uses intervals (−∞,−5), (−5 + kh,−5 + (k + 1)h], (5,∞)
with h = 0.1, 0 ≤ k ≤ 99. We also consider the tridiagonal TMAF [Eq. (6)], where {αℓ,i}
is the same as the diagonal TMAF, {βℓ,i} and {γℓ,i} are all piecewise constants based on in-

tervals (−∞,−5 + h), (−5 + kh + h,−5 + (k + 1)h + h], (5 + h,∞) and (−∞,−5 + 2h),
(−5 + kh + 2h,−5 + (k + 1)h + 2h], (5 + 2h,∞) with h = 0.1/3, 0 ≤ k ≤ 99, respectively.

Numerical results can be found in Figs. 4 and 5 and Table 2.

For this challenging problem, we note that the diagonal TMAF and tridiagonal TMAF pro-

duce high-quality approximations while ReLU and parametric ReLU are not able to approximate

the highly oscillating function within reasonable accuracy. It is observed from Fig. 5 that ReLU

actually approximates the low-frequency part of Eq. (8). To capture the high-frequency, part

ReLU clearly has to use more neurons and thus much more weight and bias parameters. On

the other hand, increasing the number of intervals in TMAF only leads to a few more training

parameters.

Volume 6, Issue 2, 2025

8 Liu et al.

(a) (b)

FIG. 5: Approximations to f(x) = sin(100πx) + cos(50πx) + sin(πx) by neural networks: (a) ReLU

approximation and (b) TMAF approximation

TABLE 2: Error comparison for f(x) =
sin(100πx) + cos(50πx) + sin(πx)

Error

RELU 0.97

Diag-TMAF 0.033

Tri-diag TMAF 0.029

3.2 Classification Problem of MNIST and CIFAR-10 Datasets

We now test TMAF by classifying images in the MNIST and CIFAR-10 datasets. For TMAF

Dℓ in Eq. (4), the function α = αℓ,i [Eq. (5)] uses intervals (−∞,−5), (−5+k,−4+k], (5,∞)
with 0 ≤ k ≤ 9.

For the MNIST set, we implement single and double layer fully connected networks [Eqs.

(1) and (3)] with 10 neurons per layer (except at the first layer n0 = 764), and ReLU or diagonal

TMAF [Eq. (4)] activation. Numerical results are shown in Figs. 6 and 7 and Table 3. We note

(a) (b)

FIG. 6: MNIST: single hidden layer. (a) Training loss comparison and (b) classification accuracy.

Journal of Machine Learning for Modeling and Computing

Neural Networks with Trainable Matrix Activation Functions 9

(a) (b)

FIG. 7: MNIST: two hidden layers. (a) Training loss and (b) classification accuracy

TABLE 3: Evaluation accuracy for the MNIST and

CIFAR-10

Dataset
Evaluation Accuracy

ReLU TMAF

MNIST (1 hidden layer) 86.1% 92.1%

MNIST (2 hidden layers) 91.8% 92.2%

CIFAR-10 (Resnet18) 92.8% 93.2%

that the TMAF with a single hidden layer ensures higher evaluation accuracy than ReLU; see

Table 3.

For the CIFAR-10 dataset, we use the ResNet18 network structure with 18 layers and

number of neurons provided by He et al. (2015a). The activation functions are still ReLU and

the diagonal TMAF [Eq. (4)]. Numerical results are presented in Fig. 8 and Table 3. Those

(a) (b)

FIG. 8: Comparison between ReLU and TMAF for CIFAR-10: (a) training loss and (b) classification

accuracy

Volume 6, Issue 2, 2025

10 Liu et al.

parameters given in Paszke et al. (2017) are already tuned well with respect to ReLU. Neverthe-

less, TMAF still produces smaller errors in the training process and returns better classification

results in the evaluation stage.

It is possible to improve the performance of TMAF applied to those benchmark datasets. The

key point is to select suitable intervals in αℓ,i to optimize the performance. A simple strategy

is to let those intervals in Eq. (5) be varying and adjusted in the training process, which will be

investigated in our future research.

ACKNOWLEDGMENTS

The research of Ludmil Zikatanov is based upon work supported by and while serving at the

National Science Foundation. Any opinion, findings, and conclusions or recommendations ex-

pressed in this material are those of the author and do not necessarily reflect the views of the

National Science Foundation.

The research of Shuhao Cao is supported partially by the National Science Foundation award

DMS-2309778.

REFERENCES

Balduzzi, D., Frean, M., Leary, L., Lewis, J., Ma, K.W.-D., and McWilliams, B., The Shattered Gradients

Problem: If Resnets Are the Answer, Then What Is the Question?, in Int. Conf. on Machine Learning,

Sydney, Australia, pp. 342–350, 2017.

Clevert, D., Unterthiner, T., and Hochreiter, S., Fast and Accurate Deep Network Learning by Exponential

Linear Units (ELUs), in 4th Int. Conf. on Learning Representations, ICLR 2016, San Juan, Puerto Rico,

May 2–4, 2016.

Cybenko, G., Approximation by Superpositions of a Sigmoidal Function, Math. Control Signals Syst., vol.

2, no. 4, pp. 303–314, 1989.

Funahashi, K.-I., On the Approximate Realization of Continuous Mappings by Neural Networks, Neural

Networks, vol. 2, no. 3, pp. 183–192, 1989.

Glorot, X., Bordes, A., and Bengio, Y., Deep Sparse Rectifier Neural Networks, in Proc. of the Fourteenth

Int. Conf. on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, FL, pp. 315–323,

April 11–13, 2011.

He, K., Zhang, X., Ren, S., and Sun, J., Deep Residual Learning for Image Recognition, arXiv Preprint

arXiv: 1512.03385, 2015a.

He, K., Zhang, X., Ren, S., and Sun, J., Delving Deep into Rectifiers: Surpassing Human-Level Perfor-

mance on ImageNet Classification, in 2015 IEEE Int. Conf. on Computer Vision (ICCV), Los Alamitos,

CA, pp. 1026–1034, 2015b.

Hendrycks, D. and Gimpel, K., Bridging Nonlinearities and Stochastic Regularizers with Gaussian Error

Linear Units, arXiv Preprint arXiv: 1606.08415, 2016.

Hong, Q., Siegel, J.W., Tan, Q., and Xu, J., On the Activation Function Dependence of the Spectral Bias of

Neural Networks, arXiv Preprint arXiv:2208.04924, 2022.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S., Self-Normalizing Neural Networks, in Ad-

vances in Neural Information Processing Systems 30: Annual Conf. on Neural Information Processing

Systems 2017, Long Beach, CA, pp. 971–980, December 4–9, 2017.

Kolen, J.F. and Kremer, S.C., Gradient Flow in Recurrent Nets: The Difficulty of Learning Long-Term

Dependencies, A Field Guide to Dynamical Recurrent Networks, Hoboken, NJ: Wiley, pp. 237–243,

2001.

Journal of Machine Learning for Modeling and Computing

Neural Networks with Trainable Matrix Activation Functions 11

Lu, L., Shin, Y., Su, Y., and Karniadakis, G.E., Dying ReLU and Initialization: Theory and Numerical

Examples, Commun. Comput. Phys., vol. 28, no. 5, pp. 1671–1706, 2020.

Nicolae, A., PLU: The Piecewise Linear Unit Activation Function, arXiv Preprint arXiv: 1809.09534, 2018.

Otter, D.W., Medina, J.R., and Kalita, J.K., A Survey of the Usages of Deep Learning in Natural Language

Processing, arXiv Preprint arXiv: 1807.10854, 2018.

Paszke, A., Gross, S., and Chintal, S., PyTorch, accessed from https://github.com/pytorch/pytorch, 2017.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I., Language Models are Unsupervised

Multitask Learners, OpenAI Blog, vol. 1, no. 8, p. 9, 2019.

Ramachandran, P., Zoph, B., and Le, Q.V., Searching for Activation Functions, arXiv Preprint

arXiv:1710.05941, 2017.

Voulodimos, A., Doulamis, N., Doulamis, A., and Protopapadakis, E., Deep Learning for Computer Vision:

A Brief Review, Comput. Intell. Neurosci., vol. 2018, pp. 1–13, 2018.

Yang, Y., Sun, J., Li, H., and Xu, Z., ADMM-Net: A Deep Learning Approach for Compressive Sensing

MRI, arXiv Preprint arXiv:1705.06869, 2017.

You, Y., Gitman, I., and Ginsburg, B., Large Batch Training of Convolutional Networks, arXiv Preprint

arXiv:1708.03888, 2017.

Volume 6, Issue 2, 2025

