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Abstract—In the era of pervasive sensing and data-driven
decision-making, the Internet of Things (IoT) has become ubiq-
uitous, with sensors serving as the fundamental building blocks
of IoT devices. However, sensor readings may contain sensitive
personal information or be used to infer such information, raising
significant privacy concerns. Local Differential Privacy (LDP)
has become the de facto standard for numerical data privacy
protection. To safeguard sensor readings in IoT systems, existing
LDP solutions distribute the privacy budget evenly across multiple
sensors for random perturbation. Unfortunately, this approach
inevitably introduces excessive noise, significantly reducing the
quality of IoT services.

To address this deficiency, we propose impact-aware multi-
sensor data privacy protection (IMapp) to provide rigorous privacy
protection for sensor readings while maintaining high-quality IoT
services. IMapp leverages the fact that sensor readings from
different types of sensors have varied impacts on IoT services,
adaptively distributing the privacy budget across multiple sensors
according to their impacts. This approach enhances the quality
of IoT services while ensuring guaranteed privacy protection.
Additionally, IMapp incorporates a novel LDP mechanism that
ensures rigorous privacy protection for sensors with arbitrary
bounded domains. Theoretical analysis and evaluation results from
three collected real datasets demonstrate that IMapp achieves the
same level of multi-sensor data privacy as the existing solution
while improving data fusion accuracy by up to two orders of
magnitude.

Index Terms—Multi-sensor Data privacy, Local Differential
Privacy, IoT Systems

I. INTRODUCTION

The Internet of Things (IoT) has become omnipresent
and widely adopted across various applications, including
smart cities, smart homes, vehicle automation, and wearable
computing [1], fundamentally altering how people interact with
the physical world. At the core of this transformation are sensors,
which serve as the foundational components of IoT devices.
However, sensor readings often contain, or can be used to
infer sensitive personal information, raising significant privacy
concerns [2], [3]. In particular, even zero-permission motion
sensors, such as accelerometers, gyroscopes, and magnetometers,
can be exploited to infer users’ sensitive information [3], [4],
[5], highlighting the inadequacy of traditional access control
methods in securing sensor data privacy. Examples of privacy
risks associated with releasing data from zero-permission motion
sensors include location inference [4], user input inference in
health applications [5], and unauthorized access to permission-
protected private information [6]. These situations underscore

the critical need for effective mechanisms to ensure privacy
protection for sensor data immediately after generation (i.e.,
before being released to anyone), particularly for data generated
by zero-permission motion sensors.

Efforts to protect raw sensor data privacy can be broadly
categorized into three approaches. First, cryptographic methods
are commonly employed for secure sensor data protection
[7], [8], [9], [10]. While these solutions offer robust privacy
guarantees, they involve complexities in key management and
incur higher computational costs. For instance, homomorphic
cryptosystems (e.g., [7], [8], [10]) can be particularly costly for
data aggregation, which may reduce their practicality. Further-
more, this paper focuses more on motion sensor data, which
does not directly contain sensitive personal information and is
thus less sensitive, making cryptographic approaches less cost-
effective in this specific context. The second category involves
sensor data anonymization techniques, including traditional k-
anonymity, l-diversity, and emerging machine learning-based
methods [11], [12], [13], [14], [15]. Despite their utility, these
techniques remain vulnerable to re-identification attacks and
do not guarantee rigorous privacy. The third line of solutions
embraces Differential Privacy (DP) [16], a de facto paradigm
for numerical data privacy. These solutions (e.g., [3]) adapt
existing DP mechanisms, originally designed for numerical
data, to achieve multi-sensor privacy protection. However, these
approaches assume the existence of a trusted platform (e.g., data
collector or server) for individual data privacy protection. This
assumption renders the solution impractical, as the platform
cannot be fully trusted, and immediate privacy protection is
required before the data release.

More recently, Local Differential Privacy (LDP) mechanisms
have been adopted to guarantee multi-sensor data privacy
without the need for a trusted platform by distributing the
privacy budget evenly for random perturbation, such as [17],
[18]. Unfortunately, these approaches inevitably introduce
excessive noise. As more sensors are added to an IoT system,
each sensor receives a smaller portion of the privacy budget,
resulting in increased noise and reduced quality of IoT services.
Additionally, these solutions often directly apply existing
LDP mechanisms initially designed for numerical data with
unbounded or specific bounded domains, which makes them
ineffective or even inapplicable for multi-sensor data privacy
across various domains. Thus, there is a pressing need to design
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advanced mechanisms to guarantee multi-sensor data privacy
while maintaining the high quality of IoT services.

In this paper, we propose impact-aware multi-sensor data
privacy protection (IMapp) to provide rigorous privacy protec-
tion while maintaining high-quality IoT services. We observe
that sensor readings from different sensors have varied impacts
on IoT services, meaning that changes in these readings affect
service quality differently. Moreover, for a specific IoT service,
the impact of sensor readings from a particular sensor on
service quality remains consistent. For example, gyroscope
data consistently has a more significant impact on orientation-
based IoT services than accelerometer data. IMapp leverages
these observations to estimate the heterogeneous impacts on a
given IoT service in advance and then adaptively allocate the
privacy budget across multiple sensors based on these impacts,
thereby improving IoT service quality. Additionally, by adhering
to the composition rule of the LDP mechanism [16], IMapp
provides the same level of multi-sensor privacy protection for
IoT systems as existing solutions like those in [17], [18]. IMapp
operates in two phases: offline impact estimation, performed as
a preliminary step, and online impact-aware data perturbation,
which introduces noise to raw data during processing (see
Fig. 1). Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to provide
rigorous data privacy protection under LDP for IoT systems
involving multiple sensors with different domains.

• We propose the IMapp, a novel mechanism that maintains
high-quality IoT services while ensuring LDP for multiple
sensor data by adaptively distributing privacy budget
based on their impact on IoT services. IMapp contains
an efficient offline impact estimation method that enables
adaptive assignment of the privacy budget. IMapp also
incorporates a perturbation mechanism to guarantee privacy
for numerical sensor data with various domains.

• We theoretically analyze IMapp’s data privacy and thor-
oughly evaluate it using real datasets collected from three
mobile devices. The results demonstrate that our solution
outperforms the existing approach by reducing the service
quality loss by up to two orders of magnitude.

The remainder of this paper is organized as follows: related
work is discussed in Section II. Section III formulates the
target problem and introduces background knowledge. Proposed
IMapp is introduced in Section IV. We evaluate our solution
and report the experimental results in Section V. We conclude
our work in Section VI.

II. RELATED WORK

A. Sensor Data Privacy Protection

Our work on multi-sensor data privacy in IoT systems is
closely related to sensor data privacy protection, which can
be categorized into three lines of approaches: cryptography,
anonymization, and perturbation.

Cryptography is widely applied to protect mobile sensor data
privacy, especially in crowdsensing systems [7], [8], [9], [10].
For instance, Miao et al. [7], [8] and Xiong et al. [10] applied

homomorphic cryptosystems to achieve privacy-preserving data
aggregation, while Xu et al. [9] utilized symmetric encryption
for secure communication with cloud servers. Cryptography
is primarily focused on protecting data sharing and can
maintain high accuracy and security. However, it has several
limitations. Encryption methods require robust key management
and depend on the security of the chosen algorithm. Even
though homomorphic cryptosystems support computation over
encrypted data, their computational cost is relatively high.

Anonymization methods have also been employed to protect
sensor data privacy. Liu et al. [19] proposed a k-anonymity
method that clusters the records with similar quasi-identifiers.
Many current approaches apply machine learning techniques
to encode the data into a time-frequency domain and filter out
sensitive features from the domain [11], [12], [13], [14], [15].
Introducing machine learning into traditional anonymization
methods significantly decreases the risks of re-identification
attacks. However, it also increases computational complexity
due to the need for training models. Additionally, a major
challenge with anonymization methods is that it is difficult to
fully eliminate re-identification attacks while maintaining high
utility, especially as the volume of data increases [20].

Perturbation techniques are another commonly employed
way to enhance privacy protection. Abdallah et al. [3] analyzed
privacy vulnerabilities and applied differential privacy (DP) at
the hardware level to sensor data, adding a layer of protection
to raw sensor data. Zheng et al. [17] introduced a method that
aggregates similar fog-based IoT data subsets and applies LDP
to these grouped subsets for enhanced privacy. Marchioro et
al. [18] used LDP on IoT data within crowdsourcing platforms,
where each privacy budget is allocated specifically to individual
users to conserve the overall privacy budget. Zhao et al. [21]
developed new LDP mechanisms and integrated them with
federated learning to mitigate privacy threats while reducing
communication costs between vehicles and cloud servers in
crowdsourcing Internet of Vehicles (IoV) applications. Gao et al.
[22] demonstrated another application of LDP-based federated
learning over IoT sensing data. These perturbation techniques
add noise to raw data, preventing the compromise of sensitive
information. However, current approaches often treat all sensors
as a single unit, applying the same level of perturbation across
the board. This uniform approach can lead to excessive noise
and diminished data utility, as individual sensors may contribute
differently to the application.

B. Multi-Dimensional Numerical Data Perturbation

Our work is also closely related to protecting multi-
dimensional numerical data privacy in DP. The first line of
work aims to enable privacy-preserving multi-dimensional data
release using DP [16]. For example, Xu et al. [23] present a
differentially private algorithm, DPPro, for high-dimensional
data release via random projection. In particular, DPPro projects
data from a high-dimensional space to a randomly chosen lower-
dimensional subspace to suppress the introduced noise and
significantly improve data utility. Zhu et al. [24] highlighted the

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on March 03,2025 at 03:40:44 UTC from IEEE Xplore.  Restrictions apply. 



Adversary

Pre-defined IoT Service

Sensor Data

Devices

Sensor Data

Offline Impact Analysis Impact-aware Perturbation

IMapp

Non-private

Figure 1: Overview of IMapp for multi-sensor privacy protection

importance of understanding correlated sensitivity in datasets
and leveraged the correlation among different dimensions to
identify the sensitivity for more effective privacy budgets across
multi-dimensions, thereby reducing unnecessary noise addition
and preserving data utility. Other examples include [25], [26]
for numerical data privacy using DP. However, all the work
assumes that a trusted data collector can be responsible for
providing data privacy protection. In contrast, in our problem,
we assume that the data collector, i.e., the platform, cannot be
fully trusted, making this work inapplicable.

Another line of work focuses on LDP mechanisms for
multi-dimensional privacy protection without needing a trusted
platform. Wang et al. [27] propose the Piecewise Mechanism
to provide rigorous privacy protection for numerical data with
domain [−1, 1] and then extend it for multi-dimension numerical
data privacy protection by carefully selecting part of the multi-
dimensional data for obfuscation and reports. However, an IoT
system with multiple sensors has various data domains, and all
sensor readings are required for services to function effectively.
These two facts make the perturbation mechanism for a specific
data domain inadequate, and selectively obfuscating only part
of the multi-dimensional data is not feasible.

III. PRELIMINARIES

This section first formulates the problem and then reviews
the notion of LDP and Piecewise Mechanism for numerical
privacy protection.

A. Problem Formulation

We consider an IoT system (e.g., AR/VR system or fitness
monitoring system) that involves a user and an IoT service
platform (e.g., Apps in mobile devices) provided by the third-
party service provider. The user is equipped with multiple
sensors, such as an accelerometer, gyroscope, and magnetometer.
Let S = {S1, S2, · · · , Sd} be the sensors involved in the system,
where d is the number of sensors. Each sensor Si generates
a numerical value xi ∈ Xi at a specific time, where Xi is the
domain of data from Si, e.g. [0, 2π] for gyroscope. When an
IoT user wants to enjoy the IoT service, the user must provide
the platform with sensor readings. However, directly sharing

the sensor data would pose significant privacy and/or security
risks [5], [6]. As a result, instead of submitting the original
sensor readings x = {x1, x2, · · · , xd}, the user would randomly
perturb his/her sensor readings using a random perturbation
mechanism, denoted as M, and submits the perturbed sensor
readings, y =M(x), to the platform.

Upon receiving the perturbed sensor readings, y, the platform
would analyze the received y to provide specific IoT services.
Let f(·) be a specific mechanism/procedure adopted by the
platform to provide IoT service. The quality loss of the IoT
services is indicated by δ = dis(f(y), f(x)), where dis(·) is a
distance function. In particular, considering that sensor fusion
for sensor readings combination is a building block for many
specific IoT services, such as sensor fusion in AR and VR
systems for precise tracking of head and body movements. To
ease the presentation, we use f(·) as a specific sensor fusion
function hereafter.

We assume the platform is honest but curious: It faithfully
carries out system operations to provide IoT services but is
interested in inferring the original sensor readings. We also
assume that the sensor readings generated by the equipment
sensors are correct and stable without spoofing. We seek to
design a novel randomized mechanism M to provide rigorous
privacy protection while maintaining high-quality IoT services.
In particular, the designed mechanism, M, is expected to have
the following nice properties:

• Guaranteed privacy protection: The designed randomized
perturbation mechanism M should satisfy ϵ-LDP to
provide guaranteed privacy protection. In particular, the
probability of any particular output is nearly the same
regardless of a possible sensor reading, making it difficult
for the platform to infer true sensor reading from the
reported obfuscated sensor reading.

• High-quality of IoT services: The platform can still provide
IoT services with high quality. In particular, the quality
loss of the IoT services δ is not very large.

• Computation efficiency: Our approach must be computa-
tionally efficient, only incurring low computation costs.
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B. Local Differential Privacy

Definition 1 (Local Differential Privacy (LDP) [28]). A
randomized mechanism M : X → Range(M) satisfies ε-LDP
if and only if

P (M(x) = y)

P (M(x′) = y)
≤ eϵ, (1)

for any inputs x, x′ ∈ X and any output y ∈ Range(M), where
Range(M) is the output range of M.

When Range(M) is a continuous domain, the probability
P (·) is replaced by probability density pdf(·). Here ϵ is a
parameter controlling the level of privacy protection commonly
referred to as privacy budget. The smaller the ϵ, the stronger the
privacy protection, and vice versa. Intuitively, ϵ-LDP means that
by observing the output y, the data collector (e.g., a platform)
cannot infer whether the input is x or x′ with high confidence,
which provides users submitting sensitive data with plausible
deniability. For example, ϵ = 0 requires M maps two arbitrary
inputs to any output y with the same probability, thus the output
contains no distribution information of the input, making any
inference from y powerless.

LDP has a nice composition property, which is detailed as
follows:

Theorem 1 (Composition Rule [16]). Suppose that M1,
M2...,Md is a set of randomization mechanisms. Each Mi :
Xi → Range(Mi) satisfies ϵi-LDP for all i ∈ {1, 2, . . . d}.
Their sequential combination M = (M1,M2, ..., Md) :
X d

i → Range(Mi)
d, satisfies

∑d
i=1 ϵi-LDP.

The composition rule indicates that the privacy level of a
multi-sensor system is the sum of the privacy budgets of all
sensors.

C. Review of Piecewise Mechanism

Piecewise Mechanism (PM) is a state-of-the-art LDP method
for numerical data privacy protection [27]. Specifically, denote
C = eϵ/2+1

eϵ/2−1
, for any numerical value ti ∈ [−1, 1], PM outputs

the perturbed value t∗i ∈ [−C,C] according to the following
probability density function:

pdf(t∗i = x|ti) =

{
p, if x ∈ [l, r]

pe−ϵi , if x ∈ [−C, l) ∪ (r, C]
(2)

where p = eϵ−eϵ/2

2eϵ/2+2
, l = C+1

2 · ti − C−1
2 , and r = l + C − 1.

PM can be easily extended to multi-dimensional privacy
protection by perturbing each dimension value with privacy
ϵ
d , where d is the number of dimensions that need to be
perturbed [27].

IV. PERTURBATION MECHANISM DESIGN

In this section, we first introduce a baseline approach for
rigorous privacy protection, followed by an overview of our
solution for improving IoT service while providing the same
level of privacy protection. Finally, we detail the design of our
solution.

A. A Baseline Approach

We first introduce a baseline approach, a state-of-the-art multi-
sensor data privacy protection mechanism under LDP [18]. Let
x = {x1, · · · , xd} be the d sensor readings, with ϵ as the total
privacy budget. The baseline solution mainly consists of two
primary steps. Firstly, the privacy budget ϵ is evenly divided
across the d sensor readings. Next, each sensor reading xi is
randomly perturbed using a privacy budget of ϵ

d by applying
an existing LDP mechanism initially designed for numerical
data privacy protection, such as the representative Piecewise
Mechanism [27] adopted in [18].

The baseline approach could provide rigorous privacy pro-
tection for multiple privacy protections. Specifically, if the
randomized perturbation mechanism used for privacy protection
for each specific sensor reading satisfies ϵ

d -LDP, the mechanism
satisfies ϵ-LDP according to the composition rule. However, the
strong privacy guarantee comes from the sacrifice of the data
utility. In particular, for a large d, the privacy budget assigned
to each sensor reading would be pretty small and inevitably
introduce a lot of noise for each sensor reading.

B. Design Rationale and Overview

Providing d sensor readings is essential to enhancing privacy
in IoT systems. We propose an impact-aware multi-sensor data
privacy protection (IMapp) method to generate obfuscated d
sensor readings. This approach guarantees privacy protection
while significantly improving the quality of the resulting
IoT services. IMapp is designed based on the following key
observations:

First, we observe that data from different types of sensors
have varying impacts on IoT service quality. For example, slight
alterations to gyroscope data can significantly affect orientation-
based IoT services, such as the view angle in a VR system,
while changing accelerometer values have less impact.

According to the Local Differential Privacy (LDP) composi-
tion rule, we also observed that a mechanism could provide a
consistent overall privacy guarantee regardless of the specific
privacy budget assigned to each sensor reading as long as the
total privacy budget remains constant. As a result, we can
allocate larger privacy budgets to sensor readings with a more
significant impact while assigning smaller budgets to those with
a lesser impact. This approach improves IoT service quality
while maintaining the same level of privacy protection as the
baseline approach.

Additionally, we observe that the procedure for analyzing
multiple sensor readings, denoted by f(·), to support IoT
services is predetermined and remains constant for a specific
platform. Consequently, the impact of each sensor reading on
IoT service quality is also constant, allowing us to compute
their impacts before system use. As illustrated in Fig. 1, our
solution works in two phases: sensor impact estimation and
randomized perturbation design.

In what follows, we first introduce the method for calculating
the impact of heterogeneous sensors on a specific predefined
IoT service. Next, we detail how to distribute the privacy
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budget across multiple sensor readings according to their
impacts. Finally, we present a comprehensive design for privacy-
preserving sensor data protection, incorporating adaptive privacy
budgets.

C. Sensor Impact Estimation

Note that methods for analyzing multi-sensor readings in
IoT services are often proprietary and predefined. We treat the
entire analysis procedure as a black-box function, denoted by
f(·). For example, in data fusion, f(·) takes multi-sensor data
as inputs and outputs the sensor fusion results.

Let x−i represent a possible combination of sensor readings
from all sensors, excluding those from sensor Si. We define
the impact of the data from Si on f(·) as:

∆i = max
xi,x′

i,x−i

dis(f(xi,x−i), f(x
′
i,x−i))

xi − x′
i

, (3)

where xi and x′
i are two possible sensor readings from Si. The

function dis(·) represents a distance metric, with Euclidean
distance used as an example in this paper.

Intuitively, a brute-force approach can calculate ∆i for
each i ∈ {1, 2, . . . , d}. Specifically, this method involves
discretizing the continuous numerical domain into numerous
possible points for each sensor. Subsequently, for each sensor
Si, we enumerate all possible combinations of (xi, x

′
i,x−i) to

determine the impact ∆i. Although this brute-force method
can provide an accurate impact estimation for each sensor, it
is computationally expensive and impractical for real-world
applications, particularly when a system involves many sensors
and each sensor’s domain is large. To address these challenges,
we propose a more efficient approach for ∆i estimation by 1)
reducing the continuous numerical domains, and 2) designing
a distribution-aware sampling method instead of relying on
discretization-based enumeration.

1) Reducing Continuous Domains: We observe that certain
ranges of sensor readings rarely occur in real-world scenarios.
For example, the accelerometers in phones are designed to mea-
sure a wide range of accelerations, including those far beyond
what humans can naturally produce without external forces
or mechanical assistance. Thus, although the accelerometer’s
domain is large, e.g., [−157, 157], actual readings during typical
human activities are limited. We leverage the observation to
narrow the domain of interest for impact calculation.

Let Di = [li, ri] be the domain of sensor readings from sensor
Si. We reduce the original domain Di to a new sub-range D′

i by
focusing on the values typically generated by human activities.
Specifically, we conduct various human activities offline to
simulate typical usage of the IoT system and collect a large
number of sensor readings, denoted as Doff. Let l′i and r′i be
the minimal and maximal sensor readings from sensor Si in
the collected dataset. We then define the reduced domain D′

i

as [l′i, r
′
i] for impact calculation.

2) Distribution-aware Sampling: Ideally, given the Doff

within the subdomains
⋃d

i=1 D
′
i, we could estimate a multi-

dimensional data distribution across the d sensor readings

and then repeatedly generate random samples from the multi-
dimensional data distribution for impact estimation. However,
obtaining the d-dimensional distribution with enough accuracy is
difficult, especially when d is large. Fortunately, given the large
Doff, it is relatively easy to obtain the marginal probability
distribution of sensor readings for each sensor as well as
the conditional probability distributions P (Xj |Xi) for any
two sensors Si and Sj , where i, j ∈ {1, · · · , d} and i ̸= j.
We then use those marginal and conditional distributions to
generate sample points sequentially for d sensors. Specifically,
we randomly generate a sample x1 from P (X1) for the first
sensor S1. Next, the subsequent samples xi (i > 1) are added to
the sequence based on the conditional probability distribution.

Distribution estimation. We first estimate the marginal
distribution of sensor readings, denoted by P (Xi), for each
sensor Si. We split the focused subdomain D′

i into ni intervals
with equal size, {pi,1, pi,2, · · · , pi,ni}. Next, we count the
number of samples in Doff for each interval. Finally, we convert
those counts to frequencies to roughly estimate the marginal
distribution P (Xi).

Similarly, we also estimate the joint probability distribution
for the pair of sensor readings from any two sensors Si

and Sj . Let {pj,1, pj,2, · · · , pj,nj} be the nj intervals from
D′

j . We first count the number of samples for each pair of
intervals (pi,k, pj,τ ) in Doff, where k ∈ {1, 2, · · ·ni} and
τ ∈ {1, 2, · · ·nj}, and then covert those counts to frequencies
to have the joint probability distribution P (Xi, Xj). Then the
conditional probability distributions can be calculated by

P (Xi = xi|Xj = xj) =
P (Xi = xi, Xj = xj)

P (Xj = xj)
(4)

for i, j ∈ {1, · · · , d} and i ̸= j.
Sequential sampling. We randomly shuffle the d sensors

and individually generate a sample for each sensor. Without
loss of generality, we assume the sampling order is from S1

to Sd. We randomly draw a sample x1 from the distribution
P (X1) for the first sensor S1. For the subsequent sensor St,
where t > 1, we randomly draw its sample according to the
conditional distribution P (Xi|xj), where xj is the previously
added sample. Algorithm 1 shows this sampling procedure.

Algorithm 1: Distribution-aware Sampling

1 Input: {P (X1), · · · , P (Xd)}, and {P (Xi|Xj) : i, j ∈
{1, . . . , d}, i ̸= j};

2 Output: Sampled results Y ;
3 Y ← ∅; ▷ Initialize the sampled results
4 Randomly draw x1 from P (X1);
5 Y ← Y ∪ x1;
6 while 1 < t ≤ d do
7 Randomly draw xt based from P (Xt|xt−1);
8 Y ← Y ∪ xt;
9 t← t+ 1; ▷ The next sensor

10 end while
11 return Y ;
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3) Impact Estimation: We now estimate the impact ∆i for
each sensor Si. Suppose we have repeatedly sampled n sets of
points from the distribution-aware sampling, in which each set
contains sensor readings {x1, · · · , xd}.

Algorithm 2: Sensor Impact Estimation

1 Input: Offline sensor readings Doff
2 Output: Sensor impact ∆1,∆2, · · ·∆d

3 for i in {1, . . . , d} do
4 Redefine D′

i based on Doff and divide it into
intervals {pi,1 , pi,2 , ..., pi,ni

};
5 Estimate P (Xi) from Doff via counting;
6 for j in {i+ 1, · · · , d} do
7 Estimate P (Xi, Xj) from Doff via counting;
8 Calculate P (Xi|Xj) using Eq. (4);
9 end for

10 end for
11 while repeat n times do
12 Y ← Algorithm 1; ▷ Disttibution-aware sampling
13 for i in {1, . . . , d} do
14 while repeat r times do
15 Randomly draw x′

i from P (Xi);
16 Compute EIi,i′ using Eq. (5) with Y ;
17 end while
18 Compute EIi using Eq. (6);
19 end for
20 end while
21 Calculate each ∆i using Eq. (7);
22 return ∆1,∆2, . . .∆d;

For each data point consisting of d sensor readings, the
following process is iterated r times. First, a perturbed value x′

i

is randomly drawn from the marginal distribution P (Xi). For
each x′

i selected, the corresponding element impact is calculated
using the formula:

EIi,i′ =
dis(f(xi,x−i), f(x

′
i,x−i))

xi − x′
i

, (5)

where (xi,x−i) denotes the selected point from the distribution-
aware sampling, and x−i = {x1, · · · , xi, · · · , xd} \ xi repre-
sents all sensor readings excluding xi. The term (x′

i,x−i) refers
to the point after replacing xi with x′

i.
For each data point xi, the element impact EIi,i′ is estimated

r times, and the average element impact EIi is computed as
follows:

EIi =

∑r
j=1 EIi,i′

r
. (6)

Note that we have n sets of sensor readings, thus n data
points of xi. To estimate the impact in Eq. (3), we need to take
the maximum among them. Formally, let EI

k

i (1 ≤ k ≤ n) be
the averaged element impact from Eq. (6), the impact of sensor
Si is then determined by:

∆i = max{EI
1

i , EI
2

i , . . . EI
n

i }. (7)

We summarize the above procedure in Algorithm 2.
Computation Complexity. We now analyze the computation

complexity of the proposed impact estimation algorithm. As
we can see in Algorithm 2, generating sampling Y (line 12)
and computing the element impact EIi,i′ (line 16) have
the highest computation cost, which is O(nd) and O(nmr),
respectively. Thus, the overall computation cost of Algorithm 2
is max{O(nd), O(nmr)}, which is affordable. Notably, the
impact estimation could be done offline, which makes our
solution very practical.

D. Impact-aware Perturbation

This subsection details the procedures of impact-aware
perturbation, comprising two online phases: Budget Allocation
and Data Perturbation with the assigned budget.

1) Budget Allocation: Given a privacy budget ϵ, we now
allocate the ϵ according to the computed sensor impacts ∆i.
Specifically, we first normalize those impacts, ∆1,∆2, · · · ,∆d,
from Algorithm 2, which is given by

∆′
i =

∆i∑d
j=1 ∆j

(8)

Next, we compute the assigned privacy budget ϵi for the sensor
reading from sensor Si by

ϵi = ϵ×∆′
i . (9)

2) Data perturbation: Then, we perturb each sensor reading
xi with the assigned privacy budget ϵi. We employ the Piecewise
Mechanism [27], which was particularly designed for local
differential privacy protection on a bounded numerical domain.
However, the original Piecewise Mechanism takes the input
within domain [−1, 1]. We extend it to arbitrary bounded domain
Di by a mapping-perturbation-remapping procedure.

Mapping. This step maps the sensor reading’s domain Di to
[−1, 1]. Denote Di = [li, ri] and g(xi) : Di → [−1, 1] is the
domain mapping function, then

g(xi) =
2

ri − li
· xi −

li + ri
ri − li

(10)

linearly maps each xi ∈ Di to [−1, 1]. Then, we can perturb
g(xi) using the Piecewise Mechanism.

Perturbation. Given privacy budget ϵi, Piecewise Mechanism
perturbs the mapped data g(xi) to yi according to the following
sampling distribution:

pdf(yi = t|g(xi)) =

{
p, if t ∈ [l, r]

pe−ϵi , if t ∈ [−C, l) ∪ (r, C]
(11)

where C = eϵi/2+1
eϵi/2−1

and

p =
eϵi − eϵi/2

2eϵi/2 + 2
,

l =
C + 1

2
· g(xi)−

C − 1

2
,

r = l + C − 1.

(12)
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This mechanism outputs perturbed yi ∈ [−C,C]. We then map
it back to the sensor’s reading domain Di by remapping.

Remapping. Similar to the mapping procedure, domain
[−C,C] can be remapped to Di via h(yi) : [−C,C]→ Di

h(yi) =
ri − li
2C

· yi +
li + ri

2
. (13)

Then, each perturbed data h(yi) is sent to perform the multi-
sensor fusion.

Theorem 2. Denote Mi by the Piecewise Mechanism with pri-
vacy budget ϵi, the mapping-perturbation-remapping procedure
M+

i = h ◦Mi ◦ g satisfies ϵi-LDP.

Proof. We prove the theorem according to the definition of
ϵ-LDP. Specifically, we need to prove

pdf(M+
i (xi) = v)

pdf(M+
i (x

′
i) = v)

≤ eϵi (14)

holds for any xi, x
′
i pair and any v. Note that g, h are linear

and invertible functions having no randomness, then

pdf(M+
i (xi) = v) = pdf(h ◦Mi ◦ g(xi) = v)

= pdf(Mi ◦ g(xi) = h−1(v)),
(15)

which reduces the proof to considering Mi : [−1, 1] →
[−C,C]. Piecewise Mechanism Mi with privacy budget ϵi
satisfies ϵi-LDP [27], so M+

i also satisfies ϵi-LDP.

Theorem 3. The proposed IMapp satisfies ϵ-LDP

Proof. According to Theorem 2. The random perturbation
mechanismM+

i satisfies ϵi-LDP for each sensor reading privacy
protection. Next, according to the composition rule introduced
in Theorem 1, IMapp satisfies

∑d
i=1 ϵi-LDP. Also, note that

according to the budget allocation strategies introduced in Eqs.
(8) and (9), we have

∑d
i=1 ϵi = ϵ. As a result, IMapp satisfies

ϵ-LDP, and the theorem is proved.

V. EVALUATION

In this section, we evaluate the performance of the proposed
IMapp using a collected real dataset.

A. Datasets

We evaluated our method by collecting three real multi-sensor
datasets from three distinct smartphone models: the Samsung
Galaxy S10 (SG 10), Google Pixel 6 (GP 6), and OnePlus 10
Pro (OP 10).

We first developed a user interface using Flutter [29] to collect
data from the built-in sensors of mobile phones efficiently.
This interface recorded sensor data during user movements
while the application was in use, facilitating data collection for
various IoT applications, such as motion tracking, navigation,
and orientation estimation. Our dataset comprises measurements
from the accelerometer, gyroscope, and magnetometer sensors.
These zero-permission sensors were selected to provide a broad
spectrum of hardware capabilities and sensor specifications,
ensuring a thorough evaluation of our proposed privacy-
preserving sensor fusion mechanism.

We summarize the collected datasets, including their sizes N
and the domains for each sensor, in Table I. These values
represent the number of multidimensional sensor readings
collected and the range of sensor readings, respectively.

B. Experimental Settings

In this experiment, we consider two different data fusion
functions as case studies: the Revised Madgwick Algorithm [30]
and the Complementary Filter [31].

The first fusion function, Madgwick’s algorithm, is designed
to estimate orientation efficiently using inertial measurement
units (IMUs). The revised version of this algorithm further
improves accuracy by incorporating a gradient descent method
to minimize the error between the measured and estimated
orientations [30], [32]. The second, the Complementary Filter,
is also widely used, especially in IMUs. It combines high-
frequency data from gyroscopes with low-frequency data
from accelerometers to produce more accurate orientation
estimations [33].

To evaluate the impact of different sensors on these fusion
functions, we performed 100,000 repetitions for each fusion
function on each dataset during the impact analysis phase. We
mainly consider 9 sensor variables in the experiments, with
privacy budgets allocated based on the calculated impact from
Algorithm 2.

We compare our solution, IMapp, with the baseline approach
presented in [18]. We omit comparison with the existing solution
in [17] because it employs the Laplacian mechanism, which
[18] has already demonstrated to be less effective than the
Piecewise Mechanism used in this paper.

We use the Mean Square Error (MSE) metric to quantitatively
evaluate the performance of the IMapp mechanism. Specifically,
we randomly select T = 1, 000 entries as the ground truth set
x. Let y be the corresponding perturbed sensor reading vectors.
The experimental MSE is given by

MSE =
1

T

T∑
i=1

(f(y)− f(x))2, (16)

where f(·) is a specific data fusion function, such as the Revised
Madgwick algorithm or the Complementary Filter used in this
paper.

C. Experimental Results

1) Accuracy: Figs. 2a to 2c compare the MSE between
the baseline and IMapp methods for the Revised Madgwick
Algorithm [30] as the total privacy budget ϵ increases from 0.9 to
90. As ϵ increases, the MSE under both mechanisms decreases.

Table I: Dataset sizes and sensor domains for different devices

N Accelerometer Gyroscope Magnetometer

SG 10 3, 506 [−78, 78] [−17.5, 17.5] [−2, 000, 2, 000]

GP 6 3, 571 [−157, 157] [−34.9, 34.9] [−3, 198, 3, 198]

OP 10 8, 496 [−157, 157] [−34.9, 34.9] [−3, 000, 3, 000]
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(a) SG 10 (b) GP 6 (c) OP 10

Figure 2: MSE of two mechanisms for Revised Madgwick Algorithm across three datasets

(a) SG 10 (b) GP 6 (c) OP 10

Figure 3: MSE of two mechanisms for Complementary Filter across three datasets

This outcome is expected because a higher privacy budget
results in obfuscated sensor readings closer to the original ones,
thereby improving the accuracy of the fusion function when
ϵ ≤ 4.5, the MSEs of the baseline and IMapp methods are
comparable. However, as ϵ increases beyond 4.5, the MSE for
IMapp declines rapidly, achieving more than ten times better
results than those of the baseline approach. This is because, with
a small ϵ (e.g., 0.9), the assigned privacy budget to each sensor
reading is very low, making the obfuscated sensor readings very
noisy and reducing the impact of different sensors on the fusion
results. Conversely, with a larger ϵ, allocating a larger privacy
budget to the sensor readings with higher impact significantly
improves the accuracy of data fusion results, allowing IMapp
to outperform the baseline approach by a large margin. Notably,
from Fig. 2c for the dataset OP 10, we can see that when ϵ
is large, e.g., ϵ = 90, the proposed IMapp outperforms the
baseline approach by reducing the MSE by up to two orders
of magnitude.

Figs. 3a to 3c illustrate the MSE under the two approaches
when the Complementary Filter is used for multi-sensor fusion.
We can see that the MSEs under both schemes decrease as ϵ
increases from 0.9 to 90 due to the same reason discussed in
Fig. 2. We can also see that IMapp consistently outperforms the
baseline approach with a smaller MSE for different data fusion
functions and privacy budgets across three datasets. Moreover,
IMapp can improve the accuracy of data fusion by up to two
orders of magnitude with a relatively large privacy budget,

demonstrating its superior performance.

These results demonstrate that IMapp can achieve a signifi-
cantly reduced MSE while providing the same level of privacy
protection as the baseline.

2) Efficiency: We evaluated the running time for impact
evaluations across the three datasets and two fusion functions
in Fig. 4, where each result is the accumulated running time
after 100, 000 repetitions. The running time varies significantly
between different fusion functions. For example, the Revised
Madgwick Algorithm has a faster processing time, resulting in
a significantly shorter running time for its impact evaluation
than the Complementary Filter. This discrepancy is due to the
computational complexity inherent in each fusion algorithm.
Moreover, we would like to point out that even for the
complementary filter, we can complete the varied sensor impact
estimation within several minutes for 100, 000 repeated testing,
which is very affordable. Additionally, it is also worth noting
that sensor impact estimation can be conducted offline during
the pre-processing stage. Since this process is carried out before
real-time operations, its high computational cost does not affect
the online multi-sensor data perturbation needed for real-time
IoT services. This offline nature ensures that the efficiency of
the impact evaluation process does not adversely impact overall
system performance during operation.
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Figure 4: Running Time for two fusion functions across three
datasets.

VI. CONCLUSION AND FUTURE WORKS

Theoretical analysis and thorough performance evaluations
confirm that IMapp can guarantee privacy protection, provide
high-quality IoT services, and improve computation efficiency.

There are many directions to extend this work. Firstly, we
aim to apply IMapp to support machine-learning-based IoT
services with a balanced utility-privacy trade-off. Additionally,
we plan to expand our solution to encompass multi-sensor data
privacy protection over extended periods by leveraging temporal
correlations.
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