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ABSTRACT
Quantification of information leakage is crucial, especially
for privacy-preserving systems such as location-based ser-
vices (LBS) with integrated privacy mechanisms. Existing
quantification mainly utilized two approaches: i) the white-
box approach, precise but impractical for complex systems,
and ii) the black-box approach, practical but struggles with
scalability for large output spaces. Recently, Machine Learn-
ing (ML) algorithms have been integrated into the black-box
approach to effectively approximate information leakage for
independent observations with better scalability. However,
this method does not provide precise estimates for dependent
observations. Intuitively, once a correlated secret is discov-
ered, it becomes easier for an attacker to predict related
secrets, leading to an underestimation of information leak-
age. This paper introduces an ML-based black-box approach
to improve the accuracy of information leakage estimation
for systems with correlated data, particularly in trace-based
scenarios. Our solution uses an ML model for rough esti-
mation and leverages data correlations to refine inferences
for more accurate quantification. Evaluation results from
three real-world datasets and one collected dataset confirm
our solution’s effectiveness in accurately and cost-effectively
quantifying system leakage for correlated observations.
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1 INTRODUCTION
The measurement of information leakage of a system is
a fundamental aspect of security, particularly for privacy-
preserving systems. For example, in LBS with privacy pro-
tection mechanisms [2], measuring the amount of sensitive
information an adversary can obtain is of utmost importance
to understand whether such leakage can be tolerated or must
be considered a major security flaw. It can also serve as a
guide for the selection of advanced privacy techniques and to
enhance overall system security. Unfortunately, accurately
quantifying information leakage remains challenging due to
the system’s inherent complexity.
Existing solutions for quantification of information leak-

age mainly include two categories: white-box approaches
and black-box approaches. Specifically, white-box techniques
compute the desired leakage measures with the assumption
that the system channel, including the conditional proba-
bilities of the outputs (e.g., observations) given the inputs
(e.g., secrets), is known [1]. However, this assumption is of-
ten impractical due to the unknown nature of the system
channel. Even if these conditional probabilities are known,
analytic computation can be challenging for complex sys-
tems such as privacy-preserving LBS systems that require
detailed analysis among numerous pairs of inputs and out-
puts. In contrast, black-box approaches [4, 5] assume that
the system’s internals are unknown. They are based on col-
lecting extensive datasets of input-output pairs and using
the relative frequencies of these pairs to approximate the
joint probability distribution to measure information leakage.
However, these methods face scalability issues in applica-
tions with large output spaces, requiring sample sizes much
larger than the product of possible inputs and outputs for
reliable estimates. Additionally, they struggle with novel
observations that are not present in the training data.
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Recently, Machine Learning (ML) algorithms have increas-
ingly been integrated into the black-box approach due to
their scalability and ability to generalize beyond the training
data. In particular, Cherubin et al. [8] leverage ML algo-
rithms to calculate the Bayes risk, which is the smallest error
achievable by an adversary in predicting a secret input from
the observable output. This approach is effective for assess-
ing information leakage in privacy-preserving LBS, where
an adversary infers a user’s real location (i.e., secret) from
the released obfuscated location (i.e., observation). However,
extending this method may not be suitable for trace-based
attacks, where the attacker predicts subsequent secrets based
on subsequent observations. This type of attack involves se-
quences of location points that are linked by spatio-temporal
correlations, meaning that predicting one point in the se-
quence provides insights that facilitate the prediction of sub-
sequent points. Consequently, any attack model that over-
looks the interdependencies among sequential observations
will likely underestimate the extent of information leakage
(i.e., the Bayes risk). Thus, there is a pressing need to design
a more sophisticated approach to accurately measure infor-
mation leakage for systems with correlated observations.
This paper introduces an ML-based black-box approach

to accurately measure information leakage for systems with
correlated data, such as a trace. In particular, we propose
an advanced model utilizing the 𝑘-Nearest Neighbors (𝑘-
NN) algorithm that harnesses the spatio-temporal relation in
sequential observations to predict subsequent secrets within
a trace. Our key contributions are summarized below.

• This paper addresses a critical gap in accurately quanti-
fying information leakage for systems with correlated
data, particularly for LBS with trace-based data.

• We introduce an ML-based black-box approach that
leverages spatio-temporal relationships between con-
secutive location points to accurately assess informa-
tion leakage, quantified through Bayes risk.

• We evaluated our proposed solution on four real-world
datasets, including onewe collected. Our results demon-
strate that the strawman approach underestimates in-
formation leakage in LBS with trace-based data, while
our solution accurately quantifies this leakage.

We release the code1 to replicate the experiments.

2 RELATED WORKS
The initial methodologies for quantifying information leak-
age were based on probabilistic measures that required a pre-
cise understanding of the system’s behavior [16, 18]. These
"white-box" approaches require detailed formal definitions
and specific assumptions [6] about the systems, making them
impractical for modeling trace-based distributions, where
1https://github.com/shafizurRseeam/BBoxPicasso

such precise knowledge is often unattainable. The frequen-
tist (i.e., black-box) paradigm gained prominence because
it can quickly quantify approximate information leakage in
real-world scenarios [5, 9, 11, 15]. This approach has been
further refined to include the calculation of confidence inter-
vals for the estimated leakage [10]. However, it faces signifi-
cant scalability issues, particularly when the output space
is prohibitively large or involves continuous distributions.
For example, LeakWatch [12] necessitates a sample size that
vastly exceeds the product of input and output space sizes.
Moreover, this approach also struggles with continuous out-
put spaces, such as those in trace-based distributions.

Cherubin et al. [8] introduced an innovative approach us-
ing ML algorithms that utilize a metric on the output space
to achieve faster convergence than the frequentist methods.
This ML-based approach proves advantageous even when
faced with i) a large output space, and ii) observations not
in the training set. However, this model primarily approxi-
mates the leakage for independent observations and does not
address the complexities of correlated observations, which
are crucial in trace-based distributions. This gap underscores
the need for advanced ML-based approaches to measure
information leakage in systems with correlated data.

3 PRELIMINARIES
3.1 Location Privacy Mechanism
Planar Laplace mechanism (𝑃𝐿𝜖 ) [2] ensures that an individ-
ual’s location is indistinguishable within a certain radius 𝑟
by reporting a location 𝑧 ∈ R2 instead of the actual location
𝑥 ∈ R2, generated randomly according to the noise function:

D𝜖 (𝑥) (𝑧) =
𝜖2

2𝜋
𝑒−𝜖𝑑 (𝑥,𝑧 ) (1)

where 𝜖 is the privacy budget, 𝜖2

2𝜋 is a normalization factor,
𝑑 (𝑥, 𝑧) is the Euclidean distance between 𝑥 and 𝑧.

3.2 Leakage Measure
The Bayes risk R∗ quantifies the minimum expected error of
an optimal adversary [7, 8, 19] , who knows the true distri-
bution 𝜇 (𝑜, 𝑠), when predicting confidential data (i.e., actual
locations) from observed outputs (i.e., perturbed locations).
It is defined with respect to a loss function L, typically a
loss of 0-1, where L(𝑠, 𝑠′) = I(𝑠 ≠ 𝑠′), taking the value 1
if 𝑠 ≠ 𝑠′, 0 otherwise. For a finite set of secrets 𝑠 ∈ S and
observed outputs 𝑜 ∈ O, the Bayes risk is given by:

R∗ := 1 −
∑︁
𝑜∈𝑂

max
𝑠∈𝑆

𝜇 (𝑜, 𝑠) (2)

The true Bayes risk R∗ is difficult to determine analyti-
cally because the actual distribution is often unknown. In-
stead, an estimate R̂𝑛 is calculated based on 𝑛 examples,

https://github.com/shafizurRseeam/BBoxPicasso
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{(𝑜1, 𝑠1), . . . , (𝑜𝑛, 𝑠𝑛)}, sampled from the joint distribution
S × O. Specifically, let 𝑓𝑛 be a decision rule learned by an
adversary from 𝑛 examples. The estimated Bayes risk [8] is:

R̂𝑓𝑛 = 1 −
∑︁
𝑜∈O

max
𝑠∈S

Pr(𝑓 (𝑜), 𝑠) (3)

where 𝑓𝑛 (𝑜) is the secret predicted for object 𝑜 , Pr(𝑓𝑛 (𝑜), 𝑠) =
Pr(𝑜 |𝑠) × 𝜋 (𝑠), and 𝜋 (𝑠) is a prior probability of having a
secret 𝑠 , obtained via the frequentist [5].

3.3 ML Estimation of the Bayes Risk
In ML, 𝑓𝑛 : O → S is a classifier that maps observations in
O to predictions in S. Let F = {𝑓𝑛 | 𝑓𝑛 : O → S} denote
the set of classifiers, and let 𝜇 be a distribution on S × O.
A learning rule uses a training set {(𝑜1, 𝑠1), . . . , (𝑜𝑛, 𝑠𝑛)} to
select a classifier 𝑓𝑛 from F aiming to minimize expected
loss E[L(𝑓𝑛 (𝑜), 𝑠)] for new example (𝑜, 𝑠) sampled from 𝜇.

Definition 3.1. (Universally Consistent (UC) Learning Rule).
Let A be a learning rule, 𝑓𝑛 ∈ F be a classifier selected by
A trained from sample 𝜇, and R̂𝑓𝑛 be the expected error of
𝑓𝑛 . A is consistent if R̂𝑓𝑛 → R∗ as 𝑛 → ∞. A is universally
consistent if it is consistent for all distributions 𝜇.

𝑘-Nearest Neighbor (𝑘-NN) is a simple yet efficient ML
algorithm that predicts the output by taking a majority vote
from the secrets of its 𝑘 nearest neighbors.

Definition 3.2 (𝑘𝑛-NN rule [8]). Given a training set of 𝑛
examples, the 𝑘𝑛-NN rule selects a 𝑘-NN classifier, where 𝑘
is chosen so that 𝑘𝑛 → ∞ and 𝑘𝑛/𝑛 → 0 as 𝑛 → ∞.

𝑘𝑛-NN rule is universally consistent [20], which means
that the expected error of the 𝑘𝑛-NN rule converges to R∗

as 𝑛 → ∞, where 𝑛 is the size of the training sample.
For more on UC learning rule, see Devroye et al. [14].

3.4 Problem Formulation
Consider a privacy-preserving system that obfuscates a user’s
real location by a location privacy mechanism, such as 𝑃𝐿𝜖 .
The obfuscated locations are then submitted to a third-party
service provider for an LBS. LetS denote a set of users’ possi-
ble true locations (i.e., secrets), and O denote the obfuscated
location (i.e., observations) generated by M. As of time𝑚,
a user that records continuous real locations forms a trace
T𝑠 = {𝑠1, 𝑠2, . . . , 𝑠𝑚}, where 𝑠𝑖 ∈ S, and T𝑜 = {𝑜1, 𝑜2, . . . , 𝑜𝑚}
denotes the corresponding obfuscated locations generated
byM, where 𝑜𝑖 = M(𝑠𝑖 ) and 𝑜𝑖 ∈ O. Assume that we have
multiple such pairs of traces (T𝑜 ,T𝑠 ) in any given LBS system.
We aim to estimate Bayes risk, R̂𝑓𝑛 as in Eq. 3 that is close
to the real Bayes risk as in Eq. 2, for this LBS system with
traces to quantify the accurate information leakage using an
ML-based decision rule 𝑓𝑛 .

4 ML-BASED TRACE INFERENCE
This section outlines the rationale behind our design and
provides an overview of our solution.

4.1 Design Rationale and Overview
Strawman Approach: We form a training set of 𝑛 sam-
ples {(𝑜1, 𝑠1), · · · , (𝑜𝑛, 𝑠𝑛)} from pairs of traces (T𝑜 ,T𝑠 ) to
train an ML classifier (e.g., 𝑘-NN classifier) by minimizing
the expected loss [21]. Next, for any observed trace T ′

𝑜 =

{𝑜1, 𝑜2, · · · , 𝑜𝑚}, we independently adopted the trained clas-
sifier to infer the true location. In particular, for any 𝑜𝑖 ,
1 ≤ 𝑖 ≤ 𝑚, we infer the most probable location 𝑠𝑖 as:

𝑠𝑖 = argmax
𝑠∈𝑆

𝑃𝑟 (𝑠 |𝑜𝑖 ) (4)

where 𝑃𝑟 (𝑠 |𝑜𝑖 ) is the probability of the secret 𝑠 given the
observation 𝑜𝑖 . We finally compute the estimated Bayes risk
R̂𝑓𝑛 according to Eq. (3), where 𝑠𝑖 is regarded as the secret
achieving the highest joint probability, i.e., 𝑃𝑟 (𝑓𝑛 (𝑜𝑖 ), 𝑠𝑖 ) for
observed location 𝑜𝑖 in the trace T ′

𝑜 .
Design Rationale: Although the strawman approach can
efficiently estimate the Bayes risk in a black-box manner, it
tends to underestimate the Bayes risk within the locations
in the traces due to its disregard for the inherent spatio-
temporal correlations.We extend themachine learningmodel
from single-point predictions to trace-based predictions by
capitalizing on the inherent correlations within sequential
location data. This extension involves integrating a higher-
order transition probability matrix to model movements be-
tween successive locations in a trace effectively.

4.2 Proposed Framework
We first train an ML classifier as in the strawman approach
and formulate spatio-temporal correlations among locations
as a transition probability matrix, which is obtained by count-
ing the number of transitions from each location to every
other location and converting the counts to probabilities.
Next, for any observed trace T ′

𝑜 = {𝑜1, 𝑜2, · · · , 𝑜𝑚} with𝑚

sequential locations, we infer the corresponding real loca-
tions 𝑠𝑡 , 𝑡 ∈ {1, · · · ,𝑚} as follows.

For the initial location 𝑜1 on the observed trace, as in the
strawman approach, we directly adopt the trained classifier
to predict the most probable location 𝑠1 using Eq. 4 with the
initial observation 𝑜1.
For each subsequent point 𝑜𝑡 , where 𝑡 = {2, · · · ,𝑚}, the

prediction 𝑠𝑡 is determined not only by the current obser-
vation 𝑜𝑡 but also by the most recent 𝑟 previous predictions
forming the historical context H𝑡 = {𝑠𝑡−1, 𝑠𝑡−2, · · · , 𝑠𝑡−𝑟 }.
Denote by 𝑃 (𝑠 |𝑜𝑡 ,H𝑡 ) the inference procedure that naturally
integrates the spatio-temporal correlation among locations
in a trace into the ML-based classification considering both
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Figure 1: 6 × 6 𝑘𝑚2 area centered around Beijing, China
from Geolife dataset.

Table 1: Characteristics of Preprocessed Datasets

Dataset 𝐷𝑖𝑠T (km) 𝐷𝑖𝑠(m) 𝑆𝑅(s) 𝐿𝑜𝑐

Geolife [23] 1,320 29 2 124,570
T-drive [22] 48,660 1,011 181 70,762
GPS [13] 408 46 6 11,122
Collected 312 6 1 63,771

H𝑡 and 𝑜𝑡 simultaneously. We infer the most probable loca-
tion 𝑠𝑡 as:

𝑠𝑡 = argmax
𝑠∈𝑆

𝑃 (𝑠 |𝑜𝑡 ,H𝑡 ) (5)

The corresponding estimated Bayes Risk could be obtained
according to Eq. 3, where 𝑓𝑛 (𝑜) is estimated by Eq. 5.
Now a practical procedure to compute 𝑃 (𝑠 |𝑜𝑡 ,H𝑡 ) is de-

fined by:

𝑃 (𝑠 |𝑜𝑡 ,H𝑡 ) = 𝑃𝑟 (𝑠 |𝑜𝑡 ) × 𝑃𝑟 (𝑠 |H𝑡 ) (6)

where 𝑃𝑟 (𝑠 |𝑜𝑡 ) is the probability of having 𝑠 predicted by
the trained classifier with input 𝑜𝑡 . 𝑃𝑟 (𝑠 |H𝑡 ) is the transition
probability that represents the conditional probability of
transition to state 𝑠 given a historical contextH𝑡 .

The computation of 𝑃 (𝑠 |H𝑡 ) is facilitated through a Mar-
kovian model, which can accommodate longer dependencies
and more sophisticated state transition dynamics. Specifi-
cally, this model weights the transitions from previous states
to the current state, where more recent states are given
higher weights in a decaying fashion:

𝑃 (𝑠 |H𝑡 ) =
𝑟∑︁
𝑗=1

𝑤 𝑗𝑃𝑟 (𝑠 |𝑠𝑡− 𝑗 ) (7)

where𝑤 𝑗 are the weights that sum to 1 and decrease expo-
nentially for older states in the historyH𝑡 . 𝑃𝑟 (𝑠 |𝑠𝑡− 𝑗 ) could
be obtained by looking for the transition probability matrix.

Algorithm 1: Grid-Based Location Encoding
Input: L = {(𝜙1, 𝜆1), . . . , (𝜙𝑛, 𝜆𝑛)}, Grid size 𝑁
Output: Encoded Locations S = {𝑠1, . . . , 𝑠𝑛}

1 for each (𝜙, 𝜆) in L do
2 Δ𝜙 =

𝜙max−𝜙min
𝑁

, Δ𝜆 =
𝜆max−𝜆min

𝑁

3 𝑗 =

⌊
𝜙−𝜙min

Δ𝜙

⌋
, 𝑖 =

⌊
𝜆−𝜆min
Δ𝜆

⌋
4 if j < N then
5 𝑗 = 𝑁 − 1
6 if i < N then
7 𝑖 = 𝑁 − 1
8 𝑠 = 𝑖 · 𝑁 + 𝑗

9 Append 𝑠 to S

5 EVALUATION
5.1 Datasets Preprocessing
We conducted experiments using four datasets: three public
datasets and one proprietary dataset. Our data preprocessing
workflow includes subsampling, perturbation, and encoding.

5.1.1 Subsampling: Initially, we randomly select a subset
of each dataset for computational efficiency. They are sum-
marized in Table. 1, where 𝐷𝑖𝑠(m) is the median distance in
meters between two adjacent locations in a trace, 𝐷𝑖𝑠T (km)
is the total distance traveled in kilometers, 𝑆𝑅(s) is the me-
dian sampling rate in seconds, and 𝐿𝑜𝑐 is the total number
of locations. Next, we define a 6 × 6 𝑘𝑚2 area with sufficient
examples from each dataset and discretize it into 20 × 20
cells, each 300 × 300 𝑚2. The secret space for the Geolife
dataset is shown in Fig. 1, plotted using Mapbox [17]. Each
trace has multiple adjacent locations, where each location
consists of a pair of latitude (𝜙) and longitude (𝜆).

5.1.2 Perturbation: Assume that there are𝑚 traces or sub-
traces in the 6×6𝑘𝑚2 subarea, i.e., all locations in those traces
are in the subarea. For each trace, we distorted the locations
using 𝑃𝐿𝜖 [2] with privacy budget 𝜖 = 1. Specifically, let 𝑜𝑖 =
(𝜙𝑖 , 𝜆𝑖 ) be an 𝑖𝑡ℎ original location in the trace, where𝜙𝑖 and 𝜆𝑖
are latitude and longitude, respectively. The corresponding
obfuscated location generated by the 𝑃𝐿𝜖 is 𝑜 ′𝑖 = (𝜙 ′

𝑖 , 𝜆
′
𝑖 ).

These coordinates define the observation space O, which is
accessible to the attacker. It is worth mentioning that the
output domain of 𝑃𝐿𝜖 is infinite and the perturbed outputs
(𝜙 ′

𝑖 , 𝜆
′
𝑖 ) may extend beyond the 6 × 6 𝑘𝑚2 square region.

5.1.3 Encoding: We employ a grid-based encoding method
thatmaps each real location (𝜙𝑖 , 𝜆𝑖 ) in a trace to a correspond-
ing one-dimensional value 𝑠 ∈ S, to facilitate the training of
the machine learning model. The encoding method is sum-
marized in Algorithm 1, where 𝜙max, 𝜙min, 𝜆max, and 𝜆min on
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(a) T-drive (b) Geolife (c) GPS (d) Collected

Figure 2: Estimated Bayes risk across four datasets with varied trace length

line 2 are the maximal and minimal latitude and longitude in
the selected area. Each 𝑠 is the index of a cell after encoding,
and the machine learning model predicts the encoded values
𝑠 ∈ S from the perturbed observation space 𝑜 ∈ O.

5.2 Experimental Setting
We employ𝑘-NN classifier as theMLmodel to estimate Bayes
risk. First, we split dataset D = {(𝑜1, 𝑠1), · · · , (𝑜𝑛, 𝑠𝑛)} into
two distinct subsets: a training set D𝑡 , and a validation set
D𝑣 . Next, we train the 𝑘-NN classifier following the same
setting in [8] e.g., 𝑘 = log(𝑛) using the training set D𝑡 .

Next, we compute the estimated Bayes risk R̂𝑓𝑛 across the
validation set D𝑣 that includes 𝜏 pairs of traces and each
trace consists of 𝑛 𝑗 observation-secret pairs.

R̂𝑓𝑛 =
1
𝜏

𝜏∑︁
𝑗=1

(
1
𝑛 𝑗

𝑛 𝑗∑︁
𝑖=1

𝐼 (𝑓 (𝑜 𝑗𝑖 ) ≠ 𝑠 𝑗𝑖 )
)

(8)

where 𝐼 (·) is 0-1 loss function, and 𝑠 𝑗𝑖 is predicted location.
This estimate is usually biased with respect to a particular

(D𝑡 ,D𝑣), and thus we compute this repeatedly using differ-
ent train-validation splits and then average their estimates.
We set 𝑟 as the trace length, that is, we consider all historical
predictions to infer the location at the current time slot.

While we used 𝑘-NN classifier, it is important to evaluate
various classifier with particular settings as certain classifiers
may underperform in specific contexts [3]. All experiments
carried out were performed on a MacBook Pro with an M2
chip and 16GB RAM. All experiments were carried out 100
times, and only the average was reported.

5.3 Results on Information Leakage
Fig. 2 show the estimated Bayes risks under strawman and
our solution with trace lengths increasing from 2 to 10 across
four datasets. We can see that the Bayes risk under the Straw-
man approach remains consistent as the trace length in-
creases across all datasets, which is expected. This stability
arises because the adversary treats each observation 𝑜𝑖 in the
observed trace T𝑜 as independent, not incorporating the cor-
relation in the inference of the true trace T̂𝑠 = {𝑠1, 𝑠2, . . . , 𝑠𝑚}.
In contrast, our proposed method exhibits a clear trend: the

Bayes risk decreases as the trace length increases. The reason
is that for a trace with a longer trace length, the adversary
could effectively utilize the increased side information,H𝑡 ,
to predict secrets 𝑠𝑖 in T𝑠 with greater accuracy. We can also
see that the rate of decrease in Bayes risk is pronounced
in Figs. 2b and 2d, compared to Figs. 2a and 2c. The me-
dian distance between two consecutive points on a trace,
denoted as 𝐷𝑖𝑠 , is notably shorter in the Geolife and our col-
lected datasets, at 29 meters and 6 meters, respectively. These
datasets also contain a relatively higher number of locations,
with 124,570 and 63,771 points. These characteristics enable
Geolife and our collected datasets to have more samples in
each grid on average, allowing adversaries to estimate the
transition probability matrix more accurately. This leads to
more precise calculations of 𝑃𝑟 (𝑠 |H𝑡 ) and 𝑃 (𝑠 |𝑜𝑡 ,H𝑡 ), result-
ing in accurate predictions and a smaller Bayes risk.
The results demonstrate that traditional black-box ap-

proaches significantly underestimate the extent of informa-
tion leakage, while ours provides a more accurate estimate.

6 CONCLUSION
This paper addresses a critical gap in accurately quantify-
ing information leakage for systems with correlated data,
particularly for an LBS in trace-based scenarios. Existing
ML-based black-box approaches, though theoretically robust,
often underestimate information leakage when dealing with
correlated data in trace-based scenarios. We propose an ML-
based black-box mechanism that leverages spatio-temporal
correlations among locations in traces to accurately esti-
mate Bayes risk, a key metric for assessing vulnerabilities in
LBS. Thorough testing on real-world datasets confirms our
model’s superior accuracy and effectiveness in quantifying
information leakage for LBS systems.
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