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Abstract In inland water covering lakes, reservoirs, and ponds, the gas exchange of slightly soluble gases
such as carbon dioxide, dimethyl sulfide, methane, or oxygen across a clean and nearly flat air‐water interface is
routinely described using a water‐side mean gas transfer velocity kL, where overline indicates time or ensemble
averaging. The micro‐eddy surface renewal model predicts kL à αoSc�1= 2ÖνϵÜ1= 4, where Sc is the molecular
Schmidt number, ν is the water kinematic viscosity, and ϵ is the waterside mean turbulent kinetic energy
dissipation rate at or near the interface. While αo à 0:39 � 0:46 has been reported across a number of data sets,
others report large scatter or variability around this value range. It is shown here that this scatter can be partly
explained by high temporal variability in instantaneous ϵ around ϵ, a mechanism that was not previously
considered. As the coefficient of variation ÖCVeÜ in ϵ increases, αo must be adjusted by a multiplier�1 á CV2

e��3=32 that was derived from a log‐normal model for the probability density function of ϵ. Reported
variations in αo with a macro‐scale Reynolds number can also be partly attributed to intermittency effects in ϵ.
Such intermittency is characterized by the long‐range (i.e., power‐law decay) spatial auto‐correlation function
of ϵ. That αo varies with a macro‐scale Reynolds number does not necessarily violate the micro‐eddy model.
Instead, it points to a coordination between the macro‐ and micro‐scales arising from the transfer of energy
across scales in the energy cascade.

Plain Language Summary In inland water, the movement of slightly soluble gas molecules such as
carbon dioxide, methane or oxygen across an air‐water interface is of significance to a plethora of applications in
aquatic ecology, climate sciences, and limnology. The standard model, known as the micro‐eddy model,
considers water packets ejected from deeper levels within an inland water body, making contact with a clean and
nearly flat air‐water surface, exchanging molecules with the atmosphere, and subsequently sweeping back
down. Under a set of restrictive assumptions about the statistics of contact duration and their inference from
water‐side velocity statistics near the surface, prediction of the efficiency of the exchange process can be made
and encoded in a so‐called gas transfer velocity. The work here demonstrates that this gas transfer velocity can
be derived by assuming a turnover velocity of these water packets that follows a universal form based on a
widely accepted theory of energy transfer across scales and contemporary refinements to it.

1. Introduction
The significance of air‐water gas exchange of slightly or sparingly soluble gases (e.g., carbon dioxide, dime-
thylsulfide, methane, oxygen) from inland waters (e.g., lakes, reservoirs, ponds, rivers, and streams) to a plethora
of problems is not in dispute (Bastviken et al., 2011; Butman & Raymond, 2011; Cole et al., 2010; Guseva
et al., 2021; Hondzo, 1998; Liu et al., 2016; Raymond et al., 2012, 2013; Richey et al., 2002; Tranvik et al., 2009;
Ulseth et al., 2019). However, the mechanisms describing the efficiency of this transport remains an active
research topic (Garbe et al., 2014; Jähne & Haußecker, 1998; Lorke & Peeters, 2006; J. Wang et al., 2021; Wüest
& Lorke, 2003). One approach to quantify the water‐side transport efficiency is the so‐called gas transfer velocity
kL. Its mean value kL relates the mass flux to a mean concentration difference between the water surface and a bulk
region just below the air‐water interface, where overline indicates time or ensemble averaging. The time aver-
aging interval is assumed to be much longer than the integral time scale of the flow near the interface (<10 s) but
much shorter than the time scales over which meteorological variables evolve (30–60 min). A large corpus of
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experiments and direct numerical simulations (DNS) suggest that the water‐side kL of slightly or sparingly soluble
gases can be expressed as

kL à αoSc�1=2vk; vk à ÖνϵÜ1=4, Ö1Ü

where ν is the kinematic viscosity of water, ϵ is the instantaneous waterside TKE dissipation rate at or close to the
air‐water interface and ϵ is its mean value, Sc à ν= Dm is the molecular Schmidt number Ö≫1Ü, Dm is the mo-
lecular diffusivity of the gas in water, vk is the so‐called Kolmogorov velocity selected so that vkηk=ν à 1
(Tennekes & Lumley, 1972), ηk à �ν3=ϵ�1= 4 is the Kolmogorov micro‐scale, and αo is a similarity coefficient
presumed to be constant (Lamont & Scott, 1970) and frames the scope of the work here. That kL scales with Sc�1= 2

for large Sc is well supported for clean and nearly flat air‐water interfaces (Esters et al., 2017; Magnaudet &
Calmet, 2006; Pinelli et al., 2022; Takagaki et al., 2016) and is not further explored here.

While the relation between kL and vk in Equation 1, known as the micro‐eddy model (MEM), can be derived from
multiple arguments that invoke different assumptions (Katul & Liu, 2017b; Katul et al., 2018; Lorke & Pee-
ters, 2006), the proportionality coefficient αo appears to be variable across some but not all experiments (Esters
et al., 2017; Tokoro et al., 2008; B. Wang et al., 2015). Values as low as 0.17 and as high as 0.7 have been reported
across different studies with a mean of about 0.4 (Tokoro et al., 2008; Zappa et al., 2007). More dynamically
interesting is that some trends between αo and ϵ emerged across few data sets with the most prominent being αo
exhibiting a trend with increasing logÖϵÜ (Asher & Pankow, 1986; Esters et al., 2017; B. Wang et al., 2015).
However, no universal pattern was established across studies. In general, non‐constant αo has been attributed to
multiple factors that include (a) the measurement depth (or the distance from the air‐water interface) and the
experimental method used to estimate ϵ (Vachon et al., 2010), and (b) a dependence on some macro‐scale
Reynolds number (Esters et al., 2017; Brinkerhoff et al., 2022; Moog & Jirka, 1999; Talke et al., 2013; B.
Wang et al., 2015) or, equivalently, a macro‐scale flow feature (Fortescue & Pearson, 1967; Komori et al., 1990).
Some of these trends are qualitatively supported by experiments in stirred tanks and open channels (Chu &
Jirka, 1992; A. Herlina & Jirka, 2008; H. Herlina & Wissink, 2014; McKenna & McGillis, 2004; Moog &
Jirka, 1999; Pinelli et al., 2022) that suggest αo is dependent on a macro‐scale Reynolds number. Other studies for
lakes, reservoirs, and air‐water exchange in air‐sea studies with no waves or ebullition report a near constant αo
(Vachon et al., 2010; Zappa et al., 2007). However, the scatter in the data used to infer αo is not small. Overlooked
endogenous sources of variability in αo are considered here and constitute the main novelty of the present work.
The goal is not to offer a single mechanism to explain the entire scatter in αo across all published experiments or
the scatter within a single experiment. Instead, the goal is to probe a different perspective on possible theoretical
causes of the non‐universal value of αo. In doing so, this new perspective seeks to unify the micro‐scale eddy
model with other macro‐scale approaches within the confines of surface renewal (SR) theory and recent variants
on it such as the structure function approach (Katul & Liu, 2017b; Katul et al., 2018). The basic premise is that
even in homogeneous and isotropic turbulence, instantaneous ϵÖtÜ near the air‐water interface used in the esti-
mation of ϵ varies appreciably (i.e., log‐normally distributed probability density function) in time ÖtÜ and exhibits
high intermittency (i.e., on‐off) that depends on some macro‐scale length (Gurvich & Yaglom, 1967; Kolmo-
gorov, 1962). Thus, variability in ϵÖtÜ around its mean value ϵ is expected to exhibit (a) a high coefficient of
variation CVe and (b) a spatial auto‐correlation function that decays slowly with increased separation distance
between two points near the interface. The aforementioned two effects also depend on boundary conditions and
how the macro‐scales adjust to boundary conditions. It is also shown that because kL depends on ϵn with n > 0,
both temporal variability in ϵÖtÜ and its spatial auto‐correlation function impact inferred αo and this impact leads
to an apparent αo dependency on a bulk Reynolds numbers or other macro‐scale feature. Those dependencies can
be made explicit by using a super‐statistical approach (Beck et al., 2005) that link αo and CVe theoretically for the
first time. For a similar ϵ, it is shown here that increasing CVe reduces αo predictably. A finite CVe may be
endogenous to the turbulent energy cascade as have been studied in the context of fine‐scale intermittency. Other
sources of variations can be exogenous and arise due to environmental variations. Because variances in ϵÖtÜ are
additive and vary with boundary conditions (e.g., variations in heat fluxes, water surface profile distortions,
etc….), their effect on αo can be large. Thus, the findings about the effects of increasing CVe on kL are likely to
delineate “lower‐bounds.” Moving beyond CVe, long‐range spatial auto‐correlations in ϵ (i.e., the spatial auto‐
correlation function decays as a power‐law with increasing separation distance) also play a role and form the
basis of intermittency corrections to the energy cascade. Thus, much like intermittency corrections to the energy
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cascade introduced by Kolmogorov (1962) in response to Landau's objection (Landau & Lifshitz, 2013) to the
original cascade theory (Frisch, 1995; Kolmogorov, 1941b), intermittency in ϵ is shown to impact ϵn in a pre-
dictable manner. These impacts do not alter the linear relation between kL and vk derived from the MEM in
Equation 1. However, they can lead to a dependence of αo on bulk Reynolds numbers. The strength of this
dependence will also be uncovered by the proposed theory and thus constitutes another novelty in the present
approach.

2. Theory
The problem setup deals with mass exchange of slightly or sparingly soluble gases (e.g., carbon dioxide, methane,
oxygen) between an inland water body (such as a lake, a reservoir, or a pond) and the overlying atmosphere. This
interface is presumed to be clear and nearly flat. The presence of surfactants can impact the kL relation with Sc�1= 2

as surfactants may cause the air‐water interface to behave hydrodynamically like a smooth wall (Csanady, 2001;
Esters et al., 2017)—meaning that kL may scale as Sc�2= 3. The flat interface assumption is to underscore that the
radius of curvature of the interface is sufficiently large relative to the diffusive length scale so that scalar mol-
ecules traversing this interface per unit interfacial area per unit time may still be approximated by a “flat” or
projected planar area. This restrictive scope precludes large air entraining breaking waves, ebullition events, and
Langmuir spirals that cause lines of bubbles or foam to form on the interface.

A Cartesian coordinate system is used to describe the velocity components ui (i à 1,2, and 3) with x1 or x, x2 or y
and x3 or z defining the longitudinal, lateral and vertical directions, respectively and z à 0 is set at the air‐water
interface. Meteorological and index notations are used interchangeably with the instantaneous velocity compo-
nents being u1 à u, u2 à v, and u3 à w. As common in Reynolds decomposition, the instantaneous flow variables
are decomposed into a mean state indicated by overline as before and a turbulent excursion indicated by a primed
quantity so that ui à ui á u0i and u0i à 0. The work here employs three types of averaging: time‐averaging, spatial
averaging, and ensemble averaging. Time averaging is used to describe the Eulerian flow statistics at a point on or
near the air‐water interface such as ϵ. Spatial averaging is needed because much of the turbulence theories dealing
with scales or two‐point statistics such as structure functions or correlation functions require averaging over all
positions. Ensemble averaging is used when dealing with the ensemble effects of all water parcels making contact
with the air‐water interface as required in MEM. Invoking ergodicity is akin to assuming all these three averages
converge as discussed elsewhere (Ghannam et al., 2015; Higgins et al., 2013; Monin & Yaglom, 1971).

2.1. Definitions
The MEM links the mean gas transfer velocity to the waterside mean TKE dissipation rate at or near the air‐water
interface. Thus, a logical starting point are definitions of the instantaneous and mean turbulent kinetic energies
and their dissipation rates. The instantaneous TKE can be defined as q à Ö1=2Üu0i u0i à Ö1=2ÜÖu02 á v02 á w02Ü (>0
at all times) and its mean is given by q à Ö1=2Üu0i u0i . A characteristic macro‐scale or large‐scale velocity asso-
ciated with the turbulent energetics can now be defined as vL à

ÅÅÅ
q

p
. Similarly, the instantaneous and mean TKE

dissipation rates are defined as

ϵ à 2νs0ij s0ij; ϵ à 2νs0ij s0ij; s0ij à
∂u0i
∂xj

á
∂u0j
∂xi

, Ö2Ü

where s0ij is the instantaneous fluctuating strain rate with s0ij à 0 and �s0ij s0ij�> 0 at all times ensuring that instan-
taneous ϵ > 0 at all times as well. In terms of magnitude, s0ij s0ij is much larger than its mean counterpart SijSij. To
illustrate this order of magnitude argument, the case where the mechanical production of TKE is balanced by ϵ
(Tennekes & Lumley, 1972) is considered, where Sij à Ö∂ui=∂xj á ∂uj=∂xiÜ . The ratio SijSij= s0ij s0ij scales as ν=νT ,
where νT ⇠ vLLo is a turbulent viscosity with Lo being a macro‐scale or an integral length scale of the flow. This
macro‐length scale is defined as Lo à v3

L=ϵ and is used to formulate a bulk Reynolds number given by
Reb à vLLo=ν (Tennekes & Lumley, 1972). This Reb is used in assessing large‐scale contamination of αo.

An instantaneous fluctuation in the TKE dissipation rate is given by ϵ0 à ϵ � ϵ with ϵ0 à 0. As alluded to earlier,
there are two dynamical features of ϵ that are pertinent to gas transfer at the air‐water interface: (a) its large
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variability and (b) its long‐range spatial correlation function. The study here seeks to illustrate how these two
dynamical features impact kL, or alternatively, αo in the MEM. Regarding the first point, the variability in ϵ can be
characterized by a probability density function pdÖϵÜ. A log‐normal model for pdÖϵÜ is routinely employed in
turbulence theories to describe variability in ϵ (Duman et al., 2014, 2016; Frisch, 1995; Jung & Swinney, 2005;
Pope, 2000). This log‐normal probability density function is given by (Gurvich & Yaglom, 1967)

pdÖϵÜ à
1

ϵσe
ÅÅÅÅÅ
2π

p exp"�1
2✓logÖϵÜ � μe

σe
◆2#, Ö3Ü

where μe and σe are the two parameters of pdÖϵÜ that can be linked to ϵ and some measures of its variability such as
the coefficient of variation CVe à σϵ=ϵ, where σϵ à �ϵ02�1= 2. Assumptions and limitations of the log‐normal
model have been discussed elsewhere (Gurvich & Yaglom, 1967; Lozovatsky et al., 2017) and are not
repeated here. Regarding the second point, the spatial auto‐correlation function 〈ϵ0 ÖxoÜϵ0 Öxo á rÜ〉 scales as r�μ,
where 〈:〉 is spatial averaging over all positions xo near the air‐water interface, r is a separation distance that can be
juxtaposed to eddy size or scale, and μ is an “internal” intermittency parameter that arises from the eddy
breakdown volumes not being space filling in the energy cascade (Frisch, 1995; Frisch et al., 1978). Because
〈ϵ0 ÖxoÜϵ0 Öxo á rÜ〉 ⇠ r�μ, a power‐law instead of exponential, and because μ is usually small (0.25–0.30) in
locally homogeneous and isotropic turbulence as shown experimentally elsewhere (Anselmet et al., 1984), the
TKE dissipation rate exhibits what is labeled as long‐range correlation in r. A log‐normal model for pdÖϵÜ with a
power‐law spatial correlation structure (i.e., μ > 0) proved effective at describing high‐order velocity structure
functions in Large Eddy Simulations (L.‐P. Wang et al., 1996) and in laboratory measurements where time
separation was interpreted as a spatial distance using Taylor's frozen turbulence hypothesis (Anselmet et al., 1984;
Arneodo et al., 1998; Delour et al., 2001; Naert et al., 1998). For this reason, the log‐normal model is adopted here
to expand the utility of the MEM.

A link between ϵ and another intermediate length scale is now considered as this scale is needed when assessing
contamination of the MEM by Lo. For eddy sizes commensurate to or smaller than 60ηk, isotropy is a reasonable
approximation (Saddoughi & Veeravalli, 1994) so that (Tennekes & Lumley, 1972)

✓∂u0
∂x ◆2

à ✓∂v0
∂y ◆2

à ✓∂w0
∂z ◆2

; ϵ à 2νs0ij s0ij à 15ν✓∂w0
∂z ◆2

: Ö4Ü

The relations in Equation 4 are used to define another length scale ‐ the Taylor microscale λ given by

✓∂u0
∂x ◆2

à σ2
u

λ , Ö5Ü

where σ2
u à u02 is the variance of u0. A Taylor microscale Reynolds number is defined as Reλ à σuλ=ν and is

formed from a macro‐velocity σu à �u02�1= 2 that is commensurate with vL, and λ à σu
ÅÅÅÅÅÅÅÅÅÅÅÅ
15ν=ϵ

p
(Tennekes &

Lumley, 1972). Thus, the waterside turbulence near the air‐water interface is characterized by three length scales
in increasing size (ηk, λ, and Lo) and three Reynolds numbers: Rek à vkηk=ν à 1 (i.e., turbulent and molecular
viscosity are equally significant at ηk), Reλ, and Reb. From definitions and upon assuming σ2

u à v2
L, one obtains

λ à
ÅÅÅÅÅ
15

p �Loη2
k�1= 3. This estimate will be used in the discussions of spatial intermittency and macro‐scale effects

on αo of the MEM.

Large scale eddies of size Lo are far more energetic and contribute appreciably to v2
L when compared to micro‐

eddies. However, the collision frequency between micro‐eddies and the air‐water interface far exceeds those
associated with the macro‐eddies. Thus, the frequency of access to the air‐water interface remains much larger for
the micro‐eddies. This assertion can be illustrated by considering the collision frequencies between the macro‐
eddies and the air‐water interface (à ϵ= v2

L) and comparing it to the collision frequency between the micro‐
eddies and the air‐water interface �àϵ= v2

k� . The ratio of the macro‐to‐micro scale collision frequencies with
the air‐water interface is
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ϵ=v2
L

ϵ=v2
k
à v2

k
v2

L
à ÖνϵÜ1=2

ÖLoϵÜ2=3 à ✓ηk
Lo
◆2=3

: Ö6Ü

Because ηk= Lo ≪ 1 at high Reb, micro‐eddies making contact with air‐water interface is a far more likely outcome
when compared to macro‐eddies. This argument is the “essence” of the MEM assumptions as shown later on.

Returning to scalar transport, vertical mass transport is assumed to be driven by a concentration difference
ΔC à Cb � Cs, where Cs is the waterside mean surface concentration inferred from equilibrium theories (i.e.,
Henri's law combined with an Ostwald solubility coefficient at a constant temperature), and Cb is a waterside bulk
scalar concentration at some distance away from the interface where Cb no longer varies appreciably in z. The
instantaneous scalar mass flux at the air‐water interface is FoÖtÜ (positive upward) and is used to define the mean
gas transfer velocity kL given by

Fo à kLΔC ≈ kL ΔC: Ö7Ü

It was assumed in Equation 7 that ΔC is not appreciably impacted in the turbulent exchange processes governing
kL and may be set to Cb � Cs. This assumption is also inherent to conventional MEM models and is routinely
employed when experimentally reporting kL from measured Fo. For notation simplicity, the overline from ΔC is
hereafter dropped.

2.2. Gas Transfer Using Conventional SR Analysis

To proceed to the inference of kL, it is assumed that water parcels carrying a slightly or sparingly soluble gas
molecules arrive at the interface and make contact with the interface for a random duration τ as shown in Figure 1.
During this contact duration, only molecular diffusion governs the instantaneous mass flux FoÖtÜ between the
interface and the aforementioned water parcels. Under the assumption of vertical mass exchange only, the mass
flux at the interface from the water side can be expressed by a Fickian diffusion given as

FoÖtÜ à �Dm
dC
dz , Ö8Ü

where dC=dz is evaluated at the interface. To a leading approximation, this mass flux at the end of the contact
duration τ can also be approximated as (Brutsaert, 1965)

FoÖτÜ à Dm ΔC
δcÖτÜ

� à Bo✓Dm
τ ◆1=2

ΔC, Ö9Ü

where δcÖτÜ à B�1
o

ÅÅÅÅÅÅÅÅÅ
Dmτ

p
is the mass diffusion front position within the water parcel in contact with the interface

after a contact duration τ, Bo is a proportionality coefficient. When a water parcel with concentration Cb arrives
and is then “stuck” indefinitely at the air‐water interface, τ → ∞, δc ⇠ τ1= 2 → ∞, and FoÖτÜ → 0. This mass flux
suppression is expected because at infinite waiting times, the parcel concentration changes from Cb and reaches
equilibrium with Cs. At this point, no net mass exchange between the parcel and the overlying atmosphere is
possible. However, no water parcel is stuck at the interface forever as turbulent eddies generate random τ
characterized by a probability density function pÖτÜ. Because replacing water parcels is essentially associated with
the renewal process itself, pÖτÜ can also be interpreted as the probability of occurrence of a renewal event after a
passage of time τ. The pÖτÜ satisfies the normalizing condition

Z∞

0
pÖsÜds à 1, Ö10Ü

where s is an integration variable. The ensemble‐averaged mass flux over all contact duration τ > 0 is given by
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Z∞

0
FoÖτÜpÖτÜdτ à ΔC BoZ∞

0
✓Dm

τ ◆1=2
pÖτÜdτ: Ö11Ü

For all the flow statistics earlier considered (including Fo), time‐averaging not ensemble averaging was used. The
convergence of time and ensemble‐averaging assumes that a single but sufficiently long realization of FoÖtÜ
includes all the ensemble statistics of FoÖtÜ. These ensemble statistics, in principle, may be derived from repeated
independent realizations or experiments with similar initial and boundary conditions (Ghannam et al., 2015;
Higgins et al., 2013; Monin & Yaglom, 1971) though in practice they are routinely inferred from time averaging
of a single realization. As before, the ΔC is assumed to be independent of the renewal process. This simplification
amounts to suppressing some expected local interaction between FoÖtÜ and ΔC during water parcel replacement
and elaborate models that consider their joint probability density as well as surface divergences have been
proposed (Garbe et al., 2004; Kermani & Shen, 2009; Soloviev & Schlüssel, 1994). However, the independence
between ΔC and the renewal process allows for a simplified and explicit evaluation of the ensemble‐averaged gas
transfer velocity kL given as

kL à Z∞

0
kLÖτÜpÖτÜdτ à BoZ∞

0
✓Dm

τ ◆1=2
pÖτÜdτ: Ö12Ü

To recover prior SR results, it is common to assume pÖτÜ is exponentially distributed given by

pÖτÜ à a expÖ�bτÜ Ö13Ü

Figure 1. Top left: The mass flux Fo at a nearly flat and clean air‐water interface occurs through a renewal process with random contact duration τ. Top right: The mean
concentration profile is characterized by a near‐constant surface value Cs linked to an atmospheric concentration via an Ostwald solubility coefficient and a near
constant bulk value Cb so that ΔC à Cb � Cs is presumed to be constant over an averaging period that is much longer than integral turbulence time scales. Because the
exponentially distributed τ (i.e., pÖτÜ) has parameters derived from log‐normally distributed ϵ, the gas transfer velocity kL is given by a super‐statistical distribution. The
figure also shows increases in the diffusional front position δc ÖτÜ ⇠ τ1= 2 with increasing contact duration τ as parcels of water reside longer at the air‐water interface.
Bottom left: The super‐statistical approach leads to a reduced time‐averaged gas transfer velocity with reductions depending on the coefficient of variation CVe of the
turbulent kinetic energy dissipation rate. The resulting reduction is derived for the compound distribution of exponential contact times for τ and log‐normal distribution for
ϵ (i.e., peÖϵÜ). The predicted reduction in kL relative to CVe à 0 is given by �1 á CV2

e��3=32 as shown (line) and numerically tested (symbols) for validation. Typical CVe
expected for low Reynolds number turbulent flow derived from direct numerical simulations for locally homogeneous and isotropic turbulence and inferred from
measurements in the atmospheric surface layer are shown for reference.
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as originally proposed by Danckwerts (1951) and later used by Brutsaert (1965), where a and b are the two
parameters describing pÖτÜ. The choice of an exponential pÖτÜ is based on an analogy with waiting times statistics
for a Poisson process in which events occur continuously and independently at a constant average rate (i.e.,
average number of events per unit time is constant). The normalizing condition in Equation 10 leads to a=b à 1
and pÖτÜ à a expÖ�aτÜ. The resulting kL can be expressed as

kL à hBo
ÅÅÅÅÅÅÅÅÅ
Dmπ

p i a1=2: Ö14Ü

This outcome was shown to be less sensitive to the precise shape of pÖτÜ when evaluating the mean flux (Katul &
Liu, 2017b). To determine a, a moment matching to an anticipated ensemble mean contact duration derived from
the flow statistics is used. The ensemble mean contact duration is first given as a function of a by

τ à Z∞

0
τpÖτÜdτ à a�1: Ö15Ü

In the conventional MEM, the mean contact duration is assumed to be the Kolmogorov microscale τK à
ÅÅÅÅÅÅÅ
ν=ϵ

p

(Kolmogorov, 1941a; Tennekes & Lumley, 1972) for reasons elaborated upon earlier regarding the frequent
collisions of micro‐eddies with the air‐water interface. Setting a�1 à τK (Brutsaert, 1965; Katul & Liu, 2017a),

kL à Bo
ÅÅÅ
π

p ÅÅÅÅÅÅÅ
Dm

p ✓ϵ
ν◆1=4

à �Bo
ÅÅÅ
π

p � Sc�1=2ÖϵνÜ1=4 à �Bo
ÅÅÅ
π

p � Sc�1=2vk: Ö16Ü

Equation 16 recovers Equation 1 when Bo
ÅÅÅ
π

p
à αo. Such formulations for kL have been derived using dimensional

considerations alone (Lorke & Peeters, 2006), as well as other versions of the MEM (Lamont & Scott, 1970).
While αo is assumed to be constant, the scatter in αo across and within experiments can be large (Vachon
et al., 2010; Zappa et al., 2007). This scatter may be explained by “contamination” from large scale eddies
(Fortescue & Pearson, 1967), a topic explored later on as this contamination can lead to variations in αo being
dependent on a macro‐scale Reynolds number.

Last, it is instructive to ask what is the effective δc describing the ensemble‐average diffusion front thickness into
a water parcel after the parcel makes contact with the air‐water interface for a duration τ. The δc is given by

Z∞

0

ÖDmτÜ1=2

Bo
pÖτÜdτ à π

2Bo

ÅÅÅÅÅÅÅ
Dm
a

r
à ✓π3=2

2αo
◆ lB, Ö17Ü

where lB à Sc�1= 2ηk is the Batchelor scale. The analysis here shows that the effective eddy size responsible for
much of the mass exchange is proportional to lB, which is much smaller than ηk for slightly soluble gases such as
CO2 in water. These outcomes can also be derived from an alternative formulation based on the structure function
next.

2.3. Gas Transfer From Structure Function Analysis
A phenomenological representation of eddies of size r moving mass up to the interface and down from the
interface by spinning at random velocity leads to a scale‐dependent gas transfer velocity (Katul et al., 2018)

hkLÖrÜi à
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1
2DwwÖrÜ

r
; DwwÖrÜ à ⌧âw0Öz á rÜ � w0ÖzÜä2� à 2σ2

w ⇥1 � ρwwÖrÜ⇤, Ö18Ü

where DwwÖrÜ is the second‐order structure function measuring twice the cumulative turbulent energy in the
vertical direction at scale r, w0 is the turbulent vertical velocity, ρwwÖrÜ is the spatial auto‐correlation function of
w0, and σw à Öhw02iÜ1= 2 à �w02�1= 2 is the root‐mean squared turbulent vertical velocity. Here, the spatial aver-
aging <:> is presumed to converge to the time and ensemble averaging (i.e., flow statistics are ergodic) and only
time averaging is hereafter used for consistency with prior results. The choice of the coefficient 1=2 in the kLÖrÜ
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definition is to ensure that as r → ∞, ρwwÖrÜ → 0, kLÖ∞Ü → σw. To determine DwwÖrÜ at micro‐scales
commensurate to lB, the approximated von Karman‐Howarth (VKH) equation is used. For locally homogeneous
and isotropic turbulence, the VKH reduces to (Kármán & Howarth, 1938; Monin & Yaglom, 1975)

DwwwÖrÜ|{z}
Strain amplif ication=vortex stretching

� 6ν dDwwÖrÜ
dr|ÇÇ{zÇÇ}

Viscous dif f usion

à � 4
5ϵr|{z}

Energy transf er

, Ö19Ü

where DwwwÖrÜ à âw0Öz á rÜ � w0ÖzÜä3 is the third‐order structure function. The right hand side of the VKH
equation describes the TKE dissipation effect at scale r, whereas the left hand side states that the energy transfer is
carried by two dominant mechanisms: (a) a simultaneous strain self amplification and vortex stretching effects
(Carbone & Bragg, 2020) captured by DwwwÖrÜ and (b) a viscous diffusion term captured by the second‐order
structure function term. For r=ηk ≫ 10, the viscous diffusion term can be ignored and Equation 19 recovers
the well‐known 4=5 law (Frisch, 1995) for the inertial subrange. However, for scales commensurate with lB,
DwwwÖrÜ is expected to be small compared to the viscous diffusion term (Katul et al., 2015; Monin &
Yaglom, 1975). Building on this assumption that the energy dissipating effect is primarily balanced by the viscous
diffusion term at the more frequently occurring micro‐scales and upon imposing the condition DwwÖ0Ü à 0, the
VKH equation can be solved for DwwÖrÜ to yield

DwwÖrÜ à
1

15νϵr2: Ö20Ü

At such fine scales, DwwÖrÜ scales quadratically in r and linearly in ϵ instead of ÖϵrÜ2=3 (i.e., sub‐linear) as found in
the much studied inertial subrange of the energy cascade (Kolmogorov, 1941b). From SR analysis, the most
effective mass transporting eddy with center at z from the air‐water interface must move scalars with concen-
tration Cb from z á lB (bulk region) to z � lB where the concentration is Cs (i.e., the interface) and conversely. This
necessitates an effective separation distance of at least r à 2lB if the eddy is maintaining an isotropic state.
Inserting this estimate of r à 2lB into Equation 20, taking the outcome and inserting into Equation 18, and then
simplifying yields

kL à
ÅÅÅÅÅÅ
2
15

r
Sc�1=2vk: Ö21Ü

This result suggests that αo à Ö2= 15Ü1= 2 à 0:37, which is sufficiently close to the αo à 0:4 reported in prior
experiments (Zappa et al., 2007). Interestingly, an r à 2lB is actually smaller than δc in Equation 17 when setting
αo à 0:4, again underscoring that r à 2lB is a likely lower bound. Moreover, an r= lB à 2 also agrees with the
lower bound reported from open channel experiments and simulations discussed elsewhere (Pinelli et al., 2022).

It may be dynamically interesting to inquire about the resulting formulation for kL if the inertial subrange is
extended all the way down to 2lB. This extension is analogous to ignoring the viscous diffusion term in the VKH
equation and maintaining a balance between DwwwÖrÜ and �Ö4=5Üϵr throughout. Under the assumption of a
constant structure skewness, DwwÖrÜ à Coϵ2= 3r2=3 and

kL à
ÅÅÅÅÅÅÅÅ
Co
21=3

r
Sc�1=6vK , Ö22Ü

where Co à Ö4=3ÜÖ4CEÜ is the Kolmogorov constant for the one‐dimensional vertical velocity structure function,
and CE à 0:55 is the Kolmogorov constant for the one‐dimensional kinetic energy spectrum (Hsieh &
Katul, 1997). This finding suggests that the linear relation between kL and vk is insensitive to the mode of energy
transfer across the turbulent cascade as described by the VKH. Instead, the signature of this energy transfer
appears in the kL � Sc relation (kL scaling with Sc�1= 6 instead of its usual Sc�1= 2).

As a bridge to prior formulations, Equation 21 is shown to recover the so‐called “surface divergence” model
(Banerjee et al., 2004; Turney & Banerjee, 2013) in the absence of waves. When using Equation 4 to determine
ϵ à 15νΛ2

o, the surface divergence model reduces to
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kL à csSc�1=2 ÅÅÅÅÅÅÅÅ
νΛo

p
, Ö23Ü

where Λo à hÖ∂w0=∂zÜ2i1= 2
is the surface divergence and cs à

ÅÅÅ
2

p
= �151= 4� à 0:7 (Katul et al., 2018). This value

of cs agrees with a number of experiments and DNS reviewed elsewhere (Fredriksson, Arneborg, Nilsson, &
Handler, 2016; Fredriksson, Arneborg, Nilsson, Zhang, & Handler, 2016; Katul et al., 2018). Last, the fact that
Λo > 0 implies that the air‐water interface cannot be perfectly flat due to a finite divergence in the flow field.

2.4. From Conventional‐ to Super‐Statistical MEM
For the conventional MEM, Equation 15 assumed that τ is variable with an exponential probability density
function pÖτÜ characterized by a single parameter a. From this pÖτÜ, the ensemble‐averaged contact duration τ was
determined to be a�1. The high collision frequency between micro‐eddies and the air‐water interface was used to
set a�1 proportional to τK . An alternative interpretation explored here is that pÖτÜ is no longer exponential. Instead,
pÖτÜ must be linked to another probability density function ‐ pdÖϵÜ. The rationale is that during each renewal event,
τ samples a small time fraction of the ϵÖtÜ time series (instead of ϵ). Given the large variability in ϵÖtÜ around ϵ, a
more plausible choice is to argue that each τ is better approximated by

ÅÅÅÅÅÅÅÅÅÅÅÅ
ν=ϵÖtÜ

p
instead of

ÅÅÅÅÅÅÅ
ν=ϵ

p
. It is this local τ

that is contributing to the mass flux FoÖτÜ. This interpretation is mathematically equivalent to assuming a is no
longer a constant determined from ϵ (or τK) and pÖτÜ cannot be exponential. Instead, a is treated as a random
variable whose statistics depend on the distributional properties of ϵ. This framework is hereafter labeled as super‐
statistics (Beck, 2004; Beck & Cohen, 2003; Jung & Swinney, 2005; Reynolds, 2003) because the parameters of
pÖτÜ (i.e., a) now depend on another distribution derived from the probability density function of ϵ or pdÖϵÜ. Thus,
to evaluate kL in the super‐statistical approach, the distributional properties of ϵ over all renewal events of
duration τ are needed. The super‐statistical estimate of kL is labeled as kL,s and is given by

kL,s�Bo
ÅÅÅ
π

p � Sc�1=2 à Z∞

0
ÖϵνÜ1=4pdÖϵÜdϵ à ÖϵνÜ1=4 ≠ ÖνϵÜ1=4: Ö24Ü

To proceed with the estimate of kL,s, the log‐normal pdÖϵÜ is used and yields

kL,s�Bo
ÅÅÅ
π

p � Sc�1=2 à ν1=4 exp8μe á σ2
e

32 �: Ö25Ü

The final step is to link μe and σe to ϵ and CVe. Matching the first two moments yields

ϵ à Z∞

0
ϵ pdÖϵÜdϵ à exp✓μe á

σ2
e

2 ◆, ϵ2 à Z∞

0
ϵ2 pdÖϵÜdϵ à exp⇥2�μe á σ2

e�⇤: Ö26Ü

Those expressions can be re‐arranged to predict μe and σe from ϵ and CVe using

μe à ln

0BBB@ ϵÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 á CV2

e

q
1CCCA,σ2

e à ln�1 á CV2
e�: Ö27Ü

The final outcome is given by

kL,s�Bo
ÅÅÅ
π

p � Sc�1=2 à ν1=4

26664
0BBB@ ϵÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1 á CV2
e

q
1CCCA

1=4�1 á CV2
e�1=32

37775 à ÖνϵÜ1=4�1 á CV2
e�3=32 : Ö28Ü

Comparing the conventional with the super‐statistical MEM gas transfer velocities yields
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kL,s

kL
à 1�1 á CV2

e�3=32 : Ö29Ü

Because the CVe is finite and not constant across runs, the coefficient αo à Bo
ÅÅÅ
π

p
inferred by regressing kL upon

Sc�1= 2ÖνϵÜ1= 4 may not be constant and the scatter does depend on CVe. The computed reductions in kL due to the
usage of variable ϵ instead of ϵ can be inferred from the bottom left panel of Figure 1. These reductions in kL due to
variability in ϵ can be as much 2=3 for a CVe à 10. What are typical CVe values across differing turbulent flows
are discussed later in Section 2.6.

2.5. Intermittency and Macro‐ Reynolds Number Dependencies
Up to this point, only variability in ϵ through pdÖϵÜ has been considered. The choices made about pdÖϵÜ are not
connected to the spatial auto‐correlation function of ϵ0. Long‐range spatial correlation in ϵ0 forms the basis of
intermittency correction schemes and those can introduce macro‐scale lengths (or time) scales into the averaging
(Gurvich & Yaglom, 1967). To unpack any possible macro‐scale Reynolds number dependency through spatial
intermittency corrections to ϵ, a refinement put forth by Kolmogorov, labeled as K62 (Kolmogorov, 1962), is
used. For the log‐normal model with a power‐law spatial autocorrelation, the pth moment of the dissipation rate is
related to ϵ using (Boffetta et al., 2009)

ϵp à QoÖϵÜpReβp
λ ; βp à Ö3=4Üμ�p2 � p�, Ö30Ü

for any moment p > 0, where Qo depends on external conditions generating the turbulence, βp is derived from the
log‐normal model of K62 assuming a power‐law spatial auto‐correlation with exponent μ as before. Further
discussions and experimental verification of βp can be found elsewhere (Anselmet et al., 1984; Frisch, 1995;
Katul et al., 2001). For p à 1=4, this analysis shows that

kL,s

kL
à Re�

9
64μ

λ : Ö31Ü

For locally homogeneous and isotropic turbulence within the inertial subrange at very high Reλ, the accepted
value of μ à 0:25. Thus, increases in Reλ decrease kL,s= kL, which is broadly consistent with several experiments
and simulations (Pinelli et al., 2022). To place these results in the context of a bias dependent ϵ, Equation 31 can
be arranged to yield

kL,s

kL
à ✓ ν

15
ϵ
σ4

u
◆ 9

128μ
à ✓ 1

151=4
vk
σu
◆ 9

32μ
: Ö32Ü

Equation 32 can be further re‐arranged to yield

kL,s

kL
⇠ ÖRebÜ�

9
128μ: Ö33Ü

This Reb dependency can be compared with the limiting case when the SR scheme sets the inverse hazard rate
a�1 à Lo=σu (a macro‐time scale) instead of τK (a micro‐time scale). For this limiting case, kL ⇠ Re�1= 4

b Sc�1= 2vk

or αo ⇠ Re�1= 4
b as discussed elsewhere (Fortescue & Pearson, 1967; Katul et al., 2018; Theofanous et al., 1976).

2.6. What Controls CVe?

Up to this point, the relation between kL and CVe has been analytically established for the log‐normal pdÖϵÜ. The
parameters impacting CVe are now considered using a stochastic differential equation (SDE) for ϵÖtÜ. This SDE
was derived and tested for homogeneous and isotropic turbulence calibrated with DNS runs (Pope, 1991). In this
model, the normalized variable χ à lnÖϵ=ϵÜ is defined and the associated SDE is expressed as (Pope &
Chen, 1990)
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dχ à �✓χ � 1
2σ2

χ◆ dt
Tχ|ÇÇÇÇ{zÇÇÇÇ}

Drif t

á
ÅÅÅÅÅÅÅÅ
2σ2

χ

Tχ

s
dWχ|ÇÇ{zÇÇ}

Dif f usion

, Ö34Ü

where dWχ is the Wiener increment with zero‐mean and variance dt, σ2
χ is the variance of χ, Tχ is the Lagrangian

integral time scale of χ taken as T�1
χ à Cχω, and ω à ϵ= v2

L is the mean turbulent frequency. This SDE includes
two mechanisms to model variability in dχ: a deterministic drift term that depends on σ2

χ and a stochastic diffusion
term that also depends on σ2

χ . The Fokker‐Planck equation for the time evolution of the probability density
function of χ associated with this SDE has a stationary Gaussian solution (Pope, 2000).

Sample trajectories from this SDE model are shown in Figure 2 as well as the resulting peÖϵÜ. Persistent high
dissipation rate events (or bursts) occurring on time scales much larger than τK are evident given the choice of Tχ .
Previous results have shown low sensitivity to choices of Cχ (Duman et al., 2014); therefore, it is set to Cχ à 1:6
as originally suggested from DNS studies (Pope & Chen, 1990). The σχ is the main parameter required for
modeling dissipation variation in time and is the main control variable on both intermittency and CVe here. As σχ

becomes larger, events of high dissipation rate become more frequent and more intense. Values for σχ range from
1.0 to 2.5. The σχ à 1 was first reported for a moderate Reynolds‐number DNS in homogeneous isotropic tur-
bulence (Pope, 2000). Measurements in the atmospheric surface layer and within a pine forest canopy have shown
similar PDFs for χ but with σχ ≈ 2:5 (Chen, 1971; Duman et al., 2014). In a flume experiment, the measured σχ

was ≈ 1:45 (Duman et al., 2016). When taken together, these estimates hint that σχ is non‐universal with a possible
relation between σχ and the Reynolds number of the flow. The highest σχ is for atmospheric flows, lower in the
water flume and even lower in the DNS runs. To illustrate how σχ impacts CVe, numerical solutions to the SDE
were obtained by varying σχ and computing CVe from time traces of ϵ. It is evident that increasing σχ increases
CVe non‐linearly as shown in Figure 3. An approximate linear regime with CVe à 0:9σχ emerges when σχ < 1.
However, for σχ > 1:6, significant enhancement in CVe occurs with increasing σχ . It is not entirely clear what is
the most appropriate σχ to select for the waterside turbulence near the air‐water interface given the disturbed

Figure 2. Synthetically generated normalized dissipation time series ϵÖtÜ from the stochastic differential equation calibrated to direct numerical simulations for locally
homogeneous‐isotropic turbulence. Note the log‐normal character of peÖϵÜ (top) for the synthetically generated ϵÖtÜ (middle). A zoom in on the intermittent and auto‐
correlated dissipation rate bursts (bottom) is also presented. The time scale is normalized by τK .
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nature of this interface. Values of σχ > 2:5 are likely in wind‐driven turbu-
lence. In such cases, turbulence generation occurs at the interface ‐ and the
instantaneous waterside dissipation rates are likely to be highest there.

3. Discussion and Conclusions
The mean gas transfer velocity kL was explored using SR theory and structure
function analyses. Both approaches yield identical results for
kL à αoSc�1= 2ÖνϵoÜ1= 4 with the added benefit that the structure function
approach offers a numerical estimate for the similarity constant
αo à Ö2= 15Ü1= 2 as well as a link between kL and the VKH, the latter derived
from an approximated Navier‐Stokes equations for locally homogeneous and
isotropic turbulence.

Variability in αo was further linked to two previously unexplored mechanisms
arising from the variability and long‐range spatial correlation of the TKE
dissipation rate. When the variability in ϵ near the interface is described by a
log‐normal pdÖϵÜ with a coefficient of variation CVe, a reduction in αo by a
factor �1 á CV2

e��3=32 must be introduced. This reduction may also be viewed
as an outcome of super‐statistics in the micro‐eddy SR scheme where the

contact duration probability density function pÖτÜ has a coefficient (à a the hazard rate) that must be derived from
another distribution ‐ pdÖϵÜ. The structure function interpretation leads to the same outcome but attributes this
reduction factor to ÖϵÜ1= 4≠ÖϵÜ1= 4 due to log‐normality of pdÖϵÜ and long‐range spatial correlation of the TKE
dissipation rate. A number of field studies reported pdÖϵÜ tails that appear heavier than log‐normal (Cael &
Mashayek, 2021; Lozovatsky et al., 2017) in stratified flows (e.g., Burr‐type XII, or log‐skewed‐normal). If so, then
reductions to αo will exceed those predicted by a log‐normal pdÖϵÜ for the same CVe.

The work here has also shown that under idealized conditions, intermittency effects (on‐off dissipation bursts)
result in αo varying as Re�9μ=64

λ . Thus, increases in Reλ are expected to reduce αo as well. Because λ ⇠ �Loη2�1= 3

involves a geometric averaging of a macro‐ or integral‐scale Lo and the square of a micro‐scale ηk, large‐scale
effects carry the details of the turbulence generation mechanism to αo through the energy cascade. However, the
dependency of αo on Lo does not necessarily violate the MEM ‐ at least in terms of linearity between kL and vk.
The weak dependency of αo on Lo (i.e., αo ⇠ L�3μ=64

o ) is simply an inherent feature of the turbulent energy cascade
and the long‐range dependency of the dissipation auto‐correlation function. In effect, the micro‐scale model
predicts αo ⇠ Re0

b, intermittency corrections to the micro‐scale model yield αo ⇠ Re�9μ=128
b , and the limiting case

where the hazard function is entirely dominated by a macro‐scale results in αo ⇠ Re�1= 4
b , where Reb à vL Lo=ν is a

macro‐scale Reynolds number formed from a macro‐scale length and velocity related to the TKE.

What scaling of αo � Reb applies to inland waters remains a subject of inquiry. Open channel and stirred tank
experiments and simulations suggest the dominance of macro‐eddies (Chu & Jirka, 1992; A. Herlina &
Jirka, 2008; Moog & Jirka, 1999; Pinelli et al., 2022; Talke et al., 2013). However, lakes, reservoirs, and many air‐
sea mass exchange studies in the absence of waves and ebullition suggest the MEM is more appropriate (Jähne &
Haußecker, 1998; Lorke & Peeters, 2006; MacIntyre et al., 2010; Rutgersson et al., 2011; Vachon et al., 2010;
Zappa et al., 2007). A plausibility argument that reconciles the two views is that when turbulence is generated far
from the air‐water interface, as may occur in stirred tanks and open channels (turbulence is produced at the bottom
and gets transported to the interface), then the ability of macro‐eddies to diffuse up and reach the air‐water
interface so as to “deliver” the micro‐eddies to the interface is more restricted (Moog & Jirka, 1999). Howev-
er, when turbulence is generated at the interface (e.g., by wind), then this limitation is ameliorated and the ability
of micro‐eddies to grind‐through the viscous sublayer pinned to the water side of the interface becomes limited by
the collision frequency. Indirect evidence of this plausibility argument comes from urban canopy studies, where
the macro‐eddy scaling dominates for tall and dense buildings and the micro‐eddy scaling applies for nearly flat
but rough surfaces. In the case of tall buildings, the ability of the large eddies to fully penetrate roughness ele-
ments and deliver the micro‐eddies to the momentum exchanging area is restricted and intermittent (Li
et al., 2020). However, for surfaces where large eddies can fully attach themselves to roughness elements, the

Figure 3. Variations of CVe as a function of σχ computed from the stochastic
differential equation.
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MEM may be more appropriate (Brutsaert, 1965; Hondzo, 1998; Li et al., 2018). Returning to the air‐water scalar
exchange, when the scalar diffusive sublayer is much smaller than the viscous sublayer (expected for high
molecular Sc), the diffusive front may be set proportional to the diffusive sublayer depth (as done here). A
plausibility argument for this approximation is that the scalar diffusive sublayer being embedded within the much
thicker viscous sublayer will likely be “shielded” from large‐scale eddy impingement during the mass exchange
process.

Data Availability Statement
The work is theoretical in nature and no new data were produced.
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