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Abstract
Ball’s celebrated cube slicing theorem asserts that among hyperplane sections of
the cube in Rn, the central section orthogonal to .1; 1; 0; : : : ; 0/ has the greatest
volume. We show that the same continues to hold for slicing `p balls when p > 1015,
as well as that the same hyperplane minimizes the volume of projections of `q balls
for 1 < q < 1 C 10!12. This extends Szarek’s optimal Khinchin inequality which
corresponds to q D 1. These results thus address the resilience of the Ball–Szarek
hyperplane in the ranges 2 < p <1 and 1 < q < 2, where analysis of the extremizers
has been elusive since the works of Koldobsky, Barthe and Naor, and Oleszkiewicz.

1. Introduction
Fix p 2 Œ1;1! and n 2 N. The present paper is devoted to the study of geometric
parameters of the origin-symmetric convex bodies

Bnp D
®
x 2Rn W kxkp ! 1

¯
;

which are the closed unit balls of the normed spaces `np D .Rn;k " kp/, where for
p 2 Œ1;1/,

kxkp D
!
jx1jp C " " "C jxnjp

"1=p

and kxk1 D maxiD1;:::;n jxi j, when x D .x1; : : : ; xn/ 2 Rn. More specifically, we
shall address the classical problem of identifying volume extremizing sections and
projections of these bodies with respect to hyperplanes passing through the origin.
This subject has attracted the interest of mathematicians for decades and a range of
tools from probability and Fourier analysis have been employed in its study. We refer
to the survey [28] for a detailed account of classical results, recent advances, and
further references.
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1.1. Sections
Fix p 2 Œ1;1!, n 2N, and consider the following question for sections of Bnp .

QUESTION 1
For which unit vectors a in Rn is the volume of Bnp \ a? maximal or minimal?

This problem and its variations have been intensively studied for five decades,
since Hadwiger [13] and Hensley [14] showed that sections of the cube Bn1 with
coordinate hyperplanes e?i have minimal volume. The reverse question of identifying
the volume maximizing sections of the cube was answered in the monumental work
of Ball [2], who proved that

vol.Bn1 \ a?/! vol
#
Bn1 \

#e1C e2p
2

$?$
: (1)

For p <1, the study of Question 1 was initiated by Meyer and Pajor. In [27],
they extended the result of Hadwiger and Hensley by proving that sections of Bnp with
coordinate hyperplanes e?i have minimal volume for any p # 2 and maximal volume
when p 2 Œ1; 2!. In the reverse direction, they showed that when p D 1, the section
of the cross-polytope Bn1 with the hyperplane orthogonal to e1C"""Cenp

n
has minimal

volume, a result which was later extended to all values of p 2 Œ1; 2! by Koldobsky
[17] (see also [10] for a different probabilistic proof).

In view of the aforementioned results, the only missing case in the study of
Question 1 is the identification of volume maximizing sections of Bnp when p 2
.2;1/, a problem that has explicitly appeared in the literature multiple times (see,
e.g., [4], [9], [18], [19], [21], [25], [28], [30]). In [30], Oleszkiewicz made a crucial
remark, showing that for p 2 .2; 26/ and n large enough the section of Bnp with the
hyperplane . e1C"""Cenp

n
/? has in fact larger volume than the section with . e1Ce2p

2
/?

and thus one cannot expect a Ball-type extremal for all p > 2. In the same work, he
speculated that Ball-type hyperplanes may maximize the volume of sections for suffi-
ciently large values of p. The first theorem of this work provides a positive answer to
Oleszkiewicz’s question.

THEOREM 1
There exists 26 < p0 < 1015 such that for every n 2N, p # p0, and every unit vector
a in Rn, we have

vol.Bnp \ a?/! vol
#
Bnp \

#e1C e2p
2

$?$
: (2)

This is the first available result on maximal sections of Bnp for p 2 .2;1/ and
any dimension n # 3. A general conjecture for all choices of p and n, predicting
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that the extremals undergo a phase transition, was proposed in [32] and [28, Conjec-
ture 2]. Theorem 1 partially confirms it. Let us formulate a more precise version of
this conjecture.

CONJECTURE 2
For every n# 3, there is a unique p0.n/ such that

max
a2Sn!1

vol.Bnp \ a?/D

8<
:

vol.Bnp \ . e1C"""Cenp
n

/?/ 2 < p ! p0.n/;
vol.Bnp \ . e1Ce2p

2
/?/ p # p0.n/:

(3)

Moreover, limn!1 p0.n/ D 26:265: : : is the unique solution to the equation
22=p". 1

p
/3 D  p2". 3

p
/ in the interval .1;1/.

Let us remark that in the above conjecture the critical value p D p0.n/ is given
by the equation

vol
#
Bnp \

#e1C " " "C enp
n

$?$
D vol

#
Bnp \

#e1C e2p
2

$?$
: (4)

The limit of the ratio of these two volumes is equal to
22=p!. 1p /

3

 p2!. 3p /
, as was proved by

Oleszkiewicz in [30] using the central limit theorem.

1.2. Projections
Fix q 2 Œ1;1!, n 2N, and consider the dual question for projections of Bnq .

QUESTION 2
For which unit vectors a in Rn is the volume of Proja?Bnq maximal or minimal?

The current status of Question 2 is basically identical to that of Question 1. When
q D1, Cauchy’s projection formula shows that for every unit vector a, we have

vol.Proja?Bn1/D kak1 vol.Bn!11 /; (5)

which proves that the volume is minimized for a D ei and maximized for a D
e1C"""Cenp

n
. In the case of the cross-polytope Bn1 , similar reasoning based on Cauchy’s

formula (see [3]) shows that

vol.Proja?Bn1/D
2n!1

.n$ 1/ŠE
ˇ̌
ˇ
nX
jD1

aj "j

ˇ̌
ˇ; (6)

where "1; "2; : : : is a sequence of independent symmetric˙1 random variables. There-
fore, Jensen’s inequality shows that vol.Proja?Bn1/ is maximal when aD ei . In view
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of (6), identifying the volume minimizing projections of Bn1 amounts to finding the
sharp constant in the classicalL1-L2 Khinchin inequality in [16] which was famously
discovered by Szarek. In geometric terms, the important result of [31] asserts that
vol.Proja?Bn1/ is minimized for aD e1Ce2p

2
.

The study of Question 2 for 1 < q <1 was initiated by Barthe and Naor in [4].
In analogy to [27], they showed that projections of Bnq onto coordinate hyperplanes
e?i have minimal volume for q # 2 and maximal volume for q 2 Œ1; 2!. Moreover, in
the spirit of [17] and [27], they proved that when q # 2, the projections of Bnq onto the
hyperplane orthogonal to e1C"""Cenp

n
have maximal volume (see also [20] for a different

proof using the Fourier transform).
The volume minimizing hyperplane projections of Bnq remain unknown for

q 2 .1; 2/. In analogy with Oleszkiewicz’s observation in [30] mentioned earlier,
Barthe and Naor noticed that for q 2 .43 ; 2/, the projection of Bnq onto the hyperplane
. e1C"""Cenp

n
/? has smaller volume than the projection onto . e1Ce2p

2
/? and thus one

cannot expect a Szarek-type extremal for all q 2 Œ1; 2/. Our second theorem is the
dual to Theorem 1 and addresses Question 2 for q near 1.

THEOREM 3
There exists q0 2 .1C 10!12; 43 / such that for every n 2N, q 2 Œ1; q0!, and every unit
vector a in Rn, we have

vol.Proja?Bnq/# vol.Proj
.
e1Ce2p

2
/?Bnq/: (7)

One can formulate a similar conjecture to the one for sections.

CONJECTURE 4
For every n# 3, there is a unique q0.n/ such that

min
a2Sn!1

vol.Proja?Bnq/D

8̂
<
:̂

vol.Proj
.
e1C"""Cenp

n
/?Bnq/ q0.n/ < q ! 2;

vol.Proj
.
e1Ce2p

2
/?Bnq/ 1! q ! q0.n/:

(8)

Moreover, limn!1 q0.n/D 4
3 .

1.3. Methods
The delicacy of, say, Theorem 1 lies in the need to find a universal p0, independent
of the unit vector a and the dimension n 2N, such that for every p # p0,

vol.Bnp \ a?/! vol
#
Bnp \

#e1C e2p
2

$?$
: (9)
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On the other hand, finding such a p0.a/ for a fixed unit vector a in Rn is an immedi-
ate consequence of the continuity of the section function p 7! vol.Bnp \ a?/, as the
equality cases in Ball’s inequality (1) are known to be only the vectors of the form
˙ei˙ejp

2
, where i ¤ j .

Let aD .a1; : : : ; an/ be a unit vector, and assume without loss of generality that
its coordinates are positive and ordered, that is, a1 # a2 # " " " # an # 0. Choosing
p0 uniformly for (9) to hold requires radically different arguments in the following
ranges for a.

Case 1. The vector a is far from the extremizer e1Ce2p
2

, say ja $ e1Ce2p
2
j # •0 for

some •0 > 0.
Here the constant •0 depends on p and j " j stands for the standard Euclidean norm.

The key ingredient in this range is the dimension-free stability of Ball’s inequality (1)
with respect to the unit vector a which has been recently established in [7] and [26]
(see also Theorem 9 below for a statement with explicit constants). These works imply
that, under the assumption of Case 1, there is a positive deficit in Ball’s inequality.
Building on the simple-minded argument based on continuity described above, one
needs to reason that all functions of the form p 7! vol.Bnp \ a?/ are equicontinuous
at p D1 with a dimension-independent modulus. This strategy is implemented in
Lemma 14 and relies on a combination of Busemann’s theorem (see [5]) with a prob-
abilistic formula expressing the volume of sections of Bnp as a negative moment of a
sum of independent rotationally invariant random vectors in R3, following [6], [15],
and [22].

Case 2. The vector a is near the extremizer e1Ce2p
2

, say ja$ e1Ce2p
2
j< •0.

This range is evidently the more subtle one, as soft continuity-based arguments
are deemed to fail near the equality case. In order to amend this, we introduce a
novel inductive strategy. As our starting point, we express again the section function
vol.Bnp\a?/ as a negative moment of a sum of independent random variables. After a
suitable application of Jensen’s inequality, we use the inductive hypothesis according
to which the desired inequality holds in dimension n$2 and this reduces the problem
to an explicit two-dimensional estimate. Quite stunningly, the resulting estimate does
not hold when the unit vector a is far from the extremizer e1Ce2p

2
and thus our inductive

argument cannot circumvent the stability results which were crucially used in Case 1.
Nevertheless, a delicate analysis allows us to deduce the technical estimate under the
assumptions of Case 2 for •0 small enough as a function of p and p sufficiently large,
thus proving Theorem 1.

The proof of Ball’s inequality (1) and its stability from [7] crucially use the
Fourier transform representation for the volume of sections and properties of a cer-
tain special function. However, even in Ball’s original proof (see [2]), the Fourier
transform method is unable to analyze the case that the largest component a1 of a is
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greater than 1p
2

, which is instead handled by an elegant geometric argument. Unfor-
tunately, a similar geometric argument applied to Bnp for p <1 does not yield the
optimal bound (9) for a1 slightly larger than 1p

2
, which creates the need for a different

method. Surprisingly, our inductive approach outlined above does not use the Fourier
transform directly, even though it uses Ball’s inequality (1) and its stability as a black
box. In a way, this method complements the Fourier-analytic approach with a proba-
bilistic component which permits an analysis near the extremizer. We refer to [11] for
extensions of the results of this paper under the additional assumption a1 ! 1p

2
using

the Fourier analytic approach.
The proof of Theorem 3 relies on a very similar strategy apart from purely tech-

nical differences. In this case, the probabilistic representation for the volume of pro-
jections is due to [4] and the stability of Szarek’s inequality was obtained in [8].

2. Preliminaries
In this section we present some probabilistic representations for the volume of sec-
tions and projections of Bnp (see also [28] and the references therein) along with some
crucial technical estimates which will be used in the proofs of Theorems 1 and 3.

2.1. Probabilistic representation of the volume of sections
In [15], Kalton and Koldobsky discovered an elegant probabilistic representation of
the volume of sections of a convex setK in Rn in terms of negative moments of a ran-
dom vector X uniformly distributed on K . In the case of K D Bnp , this representation
takes the following explicit form (see [6] or [28, Lemma 42]).

LEMMA 5
Fix p 2 Œ1;1/, n 2 N, and let Y1; Y2; : : : be independent and identically distributed
(i.i.d.) random variables with density e!“

p
p jxjp , where “p D 2".1 C 1

p
/. Then for

every unit vector a in Rn, we have

vol.Bnp \ a?/
vol.Bn!1p /

D lim
s#!1

1C s
2

E
ˇ̌
ˇ
nX
jD1

ajYj

ˇ̌
ˇs: (10)

When pD1, the same identity holds with Y1; Y2; : : : being i.i.d. uniform on Œ$1; 1!.

Using the representation (10), we derive the following crucial formula for our
analysis.

PROPOSITION 6
Fix p 2 Œ1;1/ and n 2 N. Let R1;R2; : : : be i.i.d. positive random variables with
density ’!1p x

pe!x
p

1x>0, where ’p D 1
p".1C 1

p /, and let Ÿ1; Ÿ2; : : : be i.i.d. random
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vectors uniformly distributed on the unit sphere S2 in R3, independent of the random
variables Ri . Then for every unit vector a in Rn, we have

vol.Bnp \ a?/
vol.Bn!1p /

D "
#
1C 1

p

$
E
ˇ̌
ˇ
nX
jD1

ajRj Ÿj

ˇ̌
ˇ!1; (11)

where j " j denotes the Euclidean norm on the right-hand side. When pD1, the same
identity holds with deterministic coefficients R1 D " " "DRn D 1.

Proof
We shall assume that p <1 and the endpoint case follows (see also [22]). Let Y
have density e!“

p
p jxjp , let R have density ’!1p x

pe!x
p

1x>0, and let U be uniform
on Œ$1; 1!, independent of R. Then Y has the same distribution as “!1p RU . More
generally, if V is a random variable with even density g which is nonincreasing and
of class C 1 on .0;C1/, then V has the same distribution as R0U , where R0 has
density $2rg0.r/ on .0;1/. Indeed, for t > 0 we have

P¹R0U > tº D P
°
U >

t

R0

±
D
Z 1
0

P
°
U >

t

r

±!
$2rg0.r/

"
dr

D$
Z 1
t

#
1$ t

r

$
rg0.r/dr D$

Z 1
t

.r $ t /g0.r/dr

D
Z 1
t

g.r/dr D P¹V > tº:

Therefore, (10) can be rewritten as

vol.Bnp \ a?/
vol.Bn!1p /

D lim
s#!1

1C s
2“sp

E
ˇ̌
ˇ
nX
jD1

ajRjUj

ˇ̌
ˇs: (12)

By a result of König and Kwapień [24, Proposition 4], for every x1; : : : ; xn 2 R and
s >$1,

E
ˇ̌
ˇ
nX
jD1

xj Ÿj

ˇ̌
ˇs D .1C s/E

ˇ̌
ˇ
nX
jD1

xjUj

ˇ̌
ˇs: (13)

Substituting (13) in (12) conditionally on Rj and substituting the value of “p proves
(11).

2.2. Probabilistic representation of the volume of projections
The analogue of Proposition 6 for projections, expressing the normalized volume of
projections of Bnq as an L1-moment of a sum of independent random variables, has
been established in [4, Proposition 2].
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PROPOSITION 7 (Barthe and Naor [4])
Fix q 2 .1;1/ and n 2 N. Let X1;X2; : : : be i.i.d. random variables with density

”!1q jxj
2!q
q!1 e!jxj

q
q!1 , where ”q D 2.q $ 1/".1C 1

q /. Then for every unit vector a in
Rn, we have

vol.Proja?Bnq/

vol.Bn!1q /
D "

#1
q

$
E
ˇ̌
ˇ
nX
jD1

ajXj

ˇ̌
ˇ: (14)

When q D 1, the identity reduces to the consequence (6) of the Cauchy projection
formula.

2.3. Stability estimates
As explained in the introduction, a crucial step in the proofs of Theorems 1 and 3 is
a reduction to sections and projections with respect to hyperplanes near the extrem-
izer . e1Ce2p

2
/?. This will be a consequence of two recent works [7], [8] establishing

the stability of the inequalities of Szarek [31] and Ball [2] with respect to the unit
normal vector a. For the case of projections, we will use the following robust Szarek
inequality proved in [8, Theorem 3.2].

THEOREM 8 (De, Diakonikolas, and Servedio [8])
There exists ›1 > 0 such that for every n 2 N and every unit vector a in Rn with
a1 # " " " # an # 0, we have

E
ˇ̌
ˇ
nX
jD1

aj "j

ˇ̌
ˇ# 1p

2
C ›1

ˇ̌
ˇa$ e1C e2p

2

ˇ̌
ˇ: (15)

We can take ›1 D 8 " 10!5 in this inequality.

For the case of sections, we will use the following robust Ball inequality of [7,
Equation (5)]. We express it in the equivalent negative moment formulation which
follows from Proposition 6.

THEOREM 9 (Chasapis, Nayar, and Tkocz [7])
There exists ›1 > 0 such that for every n 2 N and every unit vector a in Rn with
a1 # " " " # an # 0, we have

E
ˇ̌
ˇ
nX
jD1

aj Ÿj

ˇ̌
ˇ!1 !p2$ ›1

ˇ̌
ˇa$ e1C e2p

2

ˇ̌
ˇ: (16)

We can take ›1 D 6 " 10!5 in this inequality.
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Unfortunately, a direct implementation of the arguments of [7] and [8] does not
yield explicit values for the constants ›1 and ›1, which are needed for our estimation
of p0 and q0 in Theorems 1 and 3. In Section 5, we shall present a new short proof of
Theorem 8 which is in the spirit of [7] and gives the numerical constant ›1 D 8 "10!5.
Moreover, we will explain how to quantify an existential argument used in [7] in order
to prove Theorem 9 with ›1 D 6 " 10!5.

2.4. A technical lemma
In this section we present the following key lemma, which is crucial for the induction
argument sketched in Section 1.3 to work.

LEMMA 10
Let c # 1 and p > 4

p
2c. If 0 < a2 ! a1 satisfy k.a1; a2/kp ! 2

1
p! 12 and jai $ 1p

2
j!

c
p

for i D 1; 2, then we have

ja1 $ a2j! 3:65
r

c

p $ 2

q
1$ a21 $ a22: (17)

To prove it, we need an elementary inequality between p-means with a deficit.

LEMMA 11
Let ¢ > 0, r #max¹¢; 2º, and b1; b2 2 .0; 1! with 1$ ¢

r
! b2
b1
! 1. Then we have

#br1 C br2
2

$ 1
r # b1C b2

2
C .r $ 1/1$ e

! ¢
2

4¢
jb1 $ b2j2: (18)

Proof

Denote cr
defD .r$1/1!e

! ¢
2

4¢ . Dividing both sides by b1, introducing • defD 1$ b2
b1

, raising
the inequality to the power r , and using that b1 ! 1, we see that (18) follows from

1C .1$ •/r
2

#
#
1$ •

2
C cr•2

$r
; • 2

h
0;
¢

r

i
:

We have equality for •D 0 and thus it is enough to show that on Œ0; ¢
r
! the derivatives

compare,

$r
2
.1$ •/r!1 # r

#
1$ •

2
C cr•2

$r!1#
$1
2
C 2cr•

$
:

Multiplying both sides by 2
r and rearranging gives an equivalent form

1$ 4cr•#
# 1$ •
1$ •

2
C cr•2

$r!1
;
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since 1$ •
2
C cr•2 > 0 on Œ0; ¢

r
!. To prove the last inequality, observe that

# 1$ •
1$ •

2 C cr•2
$r!1

!
# 1$ •
1$ •

2

$r!1
!
#
1$ •

2

$r!1
:

It is enough to check the inequality .1$ •
2
/r!1 ! 1$ 4cr• only for • 2 ¹0; ¢

r
º, since

the left-hand side is convex in •. For •D ¢
r , we have .1$ ¢

2r /
r!1 ! e! ¢2 " r!1r , so we

would like to prove that

e!
¢
2
" r!1r ! 1$ r $ 1

r
.1$ e! ¢2 /:

Since uD r!1
r 2 Œ0; 1!, we want to verify that e!

¢
2
u ! 1$u.1$ e! ¢2 /, which follows

by observing that the left-hand side is a convex function of u and we have equality
for u 2 ¹0; 1º.

Proof of Lemma 10
Since p >

p
2c, we have

a2

a1
#

1p
2
$ c
p

1p
2
C c

p

D
1$

p
2c
p

1C
p
2c
p

#
#
1$
p
2c

p

$2
# 1$ 2

p
2
c

p
;

so a22
a21
# 1$ 4

p
2 c
p
D 1$ 2

p
2c

p=2
. We can apply Lemma 11 with r D p

2
, bi D a2i , and

¢ D 2
p
2c to get

1

2
#
#ap1 C ap2

2

$ 2
p # a

2
1 C a22
2

C
#p
2
$ 1

$1$ e!p2c
8
p
2c
ja21 $ a22j2;

where the leftmost inequality is equivalent to k.a1; a2/kp ! 2
1
p! 12 . By the assump-

tions, we also have a1C a2 #
p
2$ 2c

p #
p
2$ 1

2
p
2

and e!c
p
2 < e!

p
2. Therefore,

rearranging gives

1$ a21 $ a22 #
c0

c
.p $ 2/ja1 $ a2j2; c0 D

.
p
2$ 1

2
p
2
/2

8
p
2

.1$ e!
p
2/:

Thus, we conclude that

ja1 $ a2j!
p
cp

c0.p $ 2/

q
1$ a21 $ a22;

1p
c0
< 3:65;

which completes the proof.
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3. Sections

3.1. Ancillary results
We begin with a simple L2-bound quantifying that the distribution of the random
magnitudes Rj from (11) is close to the point mass at 1 as p gets large. Explicit
computations using the density show that for every s > $p $ 1, the sth moment of
R1 is

ERs1 D
".1C sC1

p
/

".1C 1
p /

: (19)

LEMMA 12
For p > 5, we have

EjR1 $ 1j2 !
2

".1C 1=p/p
!2: (20)

Proof
By (19), we can write

EjR1 $ 1j2 D ER21 $ 2ER1C 1D
".1C 3=p/$ 2".1C 2=p/C ".1C 1=p/

".1C 1=p/ :

The function

h.x/
defD ".1C 3x/$ 2".1C 2x/C ".1C x/

satisfies h.0/ D h0.0/ D 0, so for every 0 < x < 1
5 , by Taylor’s expansion with

Lagrange’s remainder, there exists 0 < ™ < x such that

h.x/D 1

2
x2h00.™/D 1

2
x2
!
9" 00.1C 3™/$ 8" 00.1C 2™/C " 00.1C ™/

"
: (21)

LEMMA 13
The function " 00 is decreasing on .0; 8

5
/.

Taking this for granted, " 00.1C 3™/ < " 00.1C 2™/ and " 00.s/ < " 00.1/D ”2 C
 2

6 < 2 for s 2 .1; 85 / (as usual ”D 0:577.. is the Euler–Mascheroni constant, and this
calculation of " 00.1/ can be done with the aid of the polygamma function; see, for
instance, 6.4.2 in the standard reference [1]). Equation (21) thus gives h.x/ ! 2x2.
This applied to x D 1

p
leads to (20).

Proof of Lemma 13
Note that clearly ".4/ > 0, so ".3/ increases, so for s 2 .0; 85 /, we have ".3/.s/ <
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".3/.8
5
/D$0:33.. (to obtain such numerical values, we refer again to [1]). Therefore,

" 00 is decreasing on .0; 8
5
/.

To deal with hyperplanes far from the extremizer, we will crucially rely on the
equicontinuity of the section functions at p D1 which we will now verify. For p 2
Œ1;1! we introduce the normalized section function,

An;p.a/
defD

vol.Bnp \ a?/
vol.Bn!1p /

; (22)

where a is a unit vector in Rn. Additionally, observe that

An;1.a/D
vol.Bn1 \ a?/

vol.Bn!11 /
D vol.Qn \ a?/;

where Qn D Œ$12 ; 12 !n is the unit-volume cube in Rn. Recall that from Proposition 6,

An;p.a/D "
#
1C 1

p

$
E
ˇ̌
ˇ
nX
jD1

ajRj Ÿj

ˇ̌
ˇ!1:

LEMMA 14
Let p > 5. For every unit vector a in Rn, we have

ˇ̌
An;p.a/$An;1.a/

ˇ̌
! 5

p
: (23)

Proof
First recall that for an arbitrary nonzero vector x in Rn,

N.x/ defD jxj
vol.Qn \ x?/

D
#
E
ˇ̌
ˇ
nX
jD1

xj Ÿj

ˇ̌
ˇ!1
$!1

is a norm by Busemann’s theorem (see [5]). In particular, using 1! vol.Qn \ x?/!p
2, we get

ˇ̌
N.y/!1 $N.x/!1

ˇ̌
D jN.x/$N.y/j

N.x/N.y/
! N.x $ y/

N.x/N.y/

D jx $ yjjxjjyj
vol.Qn \ x?/vol.Qn \ y?/

vol.Qn \ .x $ y/?/
! 2 jx $ yjjxjjyj ;

where x;y 2Rn n ¹0º. Evoking (11), we can write

An;p.a/

".1C 1=p/ D EREŸ
ˇ̌
ˇ
nX
jD1

ajRj Ÿj

ˇ̌
ˇ!1 D ERN.aR/!1;
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where we use the ad hoc notation aR for the vector .a1R1; : : : ; anRn/ in Rn. From
the previous bound on 1=N, we thus obtain

ˇ̌
ˇ An;p.a/

".1C 1=p/ $An;1.a/
ˇ̌
ˇD ˇ̌EN.aR/!1 $N.a/!1

ˇ̌

! 2E ja$ aRjjaj " jaRj D 2E
ja$ aRj
jaRj :

By the Cauchy–Schwarz inequality,

E
ja$ aRj
jaRj !

p
Eja$ aRj2

p
EjaRj!2

D

vuutE
nX
jD1

a2j .Rj $ 1/2
vuutE

# nX
jD1

a2jR
2
j

$!1
:

The first factor on the right-hand side is equal to kR1 $ 1k2. By the convexity of the
function s 7! 1

s
,

E
# nX
jD1

a2jR
2
j

$!1
!

nX
jD1

a2jER!2j
(19)D

".1$ 1
p /

".1C 1
p
/
:

Combining all the above yields
ˇ̌
An;p.a/$ ".1C 1=p/An;1.a/

ˇ̌
! 2kR1 $ 1k2

p
".1$ 1=p/".1C 1=p/:

Using Lemma 12, the right-hand side gets upper-bounded by

2

s
2

".1C 1=p/p
!2
p
".1$ 1=p/".1C 1=p/ < 2

p
2".1=2/

p
D 2
p
2 4
p
 

p

using p > 2. Consequently,

ˇ̌
An;p.a/$An;1.a/

ˇ̌
! 2
p
2 4
p
 

p
C
!
1$ ".1C 1=p/

"
An;1.a/

! 2
p
2 4
p
 

p
C
p
2”

p
<
5

p
;

because 1$ ".1C x/ <$" 0.1/x D ”x for 0 < x < 1, by convexity of " on .0;1/.
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3.2. Proof of Theorem 1
Following notation (22), our goal is to prove that for every p # p0 and every unit
vector a in Rn, we have

An;p.a/!An;p
#e1C e2p

2

$
; (24)

where the right-hand side is explicitly given by

An;p

#e1C e2p
2

$
D "

#
1C 1

p

$
E
ˇ̌
ˇR1Ÿ1CR2Ÿ2p

2

ˇ̌
ˇ!1

DA2;p
#e1C e2p

2

$
D 1

k. 1p
2
; 1p

2
/kp
D 2 12! 1p :

Our proof will proceed by induction on n. It is directly checked that the theorem holds
when nD 2, as A2;p.a/D kak!1p for every unit vector a in R2. We therefore assume
that n # 3 and a1 # " " " # an > 0. Our analysis will differ depending on the distance
of a to the extremizer. Let

•.a/
defD
ˇ̌
ˇa$ e1C e2p

2

ˇ̌
ˇ2 D 2$p2.a1C a2/: (25)

3.2.1. The vector a is far from the extremizer
Suppose that

p
•.a/ # c

p
with c D 105. Then, by the equicontinuity proved in

Lemma 14 and the stability of Ball’s inequality from Theorem 9 with constant
›1 D 6 " 10!5, we obtain

An;p.a/!
5

p
CAn;1.a/!

5

p
C
p
2$ ›1

p
•.a/!

p
2$ ›1c $ 5

p
:

Since

c #
p
2 log2C 5
›1

D
p
2 log2C 5

6
105 D 0:996:: " 105;

we have
p
2$ ›1c $ 5

p
!
p
2
#
1$ log2

p

$
!
p
2e!

log2
p D 2 12! 1p ;

which finishes the proof in this case (without using the inductive hypothesis).

3.2.2. The vector a is close to the extremizer
Now, suppose that

p
•.a/ <

c

p
;
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where c D 105. This in particular implies that (as we already assume that a2 ! a1)

1p
2
$ c
p
! a2 ! a1 !

1p
2
C c

p
:

Let us also notice for further use that a2 ! 1p
2

since 2a22 ! a21 C a22 ! 1. We shall
consider p > Lc C 2 for a large numerical constant L. With hindsight, we put LD
7:9 " 109. Observe that our goal (24) is equivalent to the inequality

E
ˇ̌
ˇ
nX
jD1

ajRj Ÿj

ˇ̌
ˇ!1 ! Cp (26)

with

Cp D E
ˇ̌
ˇR1Ÿ1CR2Ÿ2p

2

ˇ̌
ˇ!1 D 2

1
2
! 1p

".1C 1=p/ ; (27)

which we will now prove by induction on n. We record for future estimates that when
p >LcC 2, we have

1:41 < Cp < 1:42; (28)

since 210
!6
> 21=p".1C 1=p/ > ".1C 10!6/.

Consider the random vectors X D a1R1Ÿ1Ca2R2Ÿ2 and Y DPj>2 ajRj Ÿj in
R3. Since X and Y are independent and rotationally invariant, the representation

E
ˇ̌
ˇ
nX
jD1

ajRj Ÿj

ˇ̌
ˇ!1 D E min

®
jX j!1; jY j!1

¯

holds (see, e.g., [7, Lemma 6.6]). By the inductive hypothesis,

EjY j!1 D 1q
1$ a21 $ a22

E
ˇ̌
ˇ
P
j>2 ajRj Ÿjq
1$ a21 $ a22

ˇ̌
ˇ!1 ! Cpq

1$ a21 $ a22
;

and hence (by the concavity and monotonicity of the function t 7!min¹jX j!1; tº), we
get

E
ˇ̌
ˇ
nX
jD1

ajRj Ÿj

ˇ̌
ˇ!1 D E min

®
jX j!1; jY j!1

¯
! E min

®
jX j!1; ’!1

¯
; (29)

where we set

’
defD 1

Cp

q
1$ a21 $ a22: (30)
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Observe that

E min
®
jX j!1; ’!1

¯
D EjX j!1 $E

!
jX j!1 $ ’!1

"
C (31)

and

EjX j!1 D 1q
a21 C a22

E
ˇ̌
ˇa1R1Ÿ1C a2R2Ÿ2q

a21 C a22

ˇ̌
ˇ!1

(11)D 1q
a21 C a22

1

k .a1;a2/q
a21Ca22

kp".1C 1=p/
D 1

k.a1; a2/kp".1C 1=p/
: (32)

In view of the inductive step (29) and the identities (27), (31), and (32), the desired
inequality (26) is a consequence of the following proposition.

PROPOSITION 15
Under the assumptions and notation above, for p # 1015 we have

E
!
jX j!1 $ ’!1

"
C # Cp

# 2
1
p! 12

k.a1; a2/kp
$ 1

$
: (33)

Proof
If the right-hand side is nonpositive, then we are done. Otherwise,

%%.a1; a2/
%%
p
< 2

1
p! 12 :

Since jai $ 1p
2
j< c

p
, Lemma 10 gives

ja1 $ a2j! 3:65
r

c

p $ 2

q
1$ a21 $ a22

(30)D 3:65

r
c

p $ 2Cp’
(28)
! 5:25’p

L
: (34)

To simplify, note that k.a1; a2/kp # 21=p!1=2k.a1; a2/k2, so

2
1
p! 12

k.a1; a2/kp
$ 1! 1

k.a1; a2/k2
$ 1D 1$ .a21 C a22/q

a21 C a22.1C
q
a21 C a22/

<
C 2p’

2

1:95
;

where we used that

a21 C a22 # 2a22 # 2
# 1p

2
$ c
p

$2
> 1$ 2

p
2c

p
> 1$ 2

p
2

L
> 0:97 (35)
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and
p
u.1Cpu/ > 1:95 for u > 0:97. Since

C3p
1:95 <

1:423

1:95 <
3
2 , (33) will follow from

E
!
jX j!1 $ ’!1

"
C #

3

2
’2: (36)

Consider the event

E
defD
°
R1 ! 1; jR1 $R2j< ’; ja1Ÿ1C a2Ÿ2j<

1

4
’
±
:

On E , we have

jX j D ja1R1Ÿ1C a2R2Ÿ2j! ja1R1Ÿ1C a2R1Ÿ2j C ja2R2Ÿ2 $ a2R1Ÿ2j
DR1ja1Ÿ1C a2Ÿ2j C a2jR2 $R1j

<
1

4
’C 1p

2
’ <

24

25
’;

so

E
!
jX j!1 $ ’!1

"
C #

1

24’
P.E/

D 1

24’
P
®
R1 ! 1; jR1 $R2j< ’

¯
P
°
ja1Ÿ1C a2Ÿ2j<

1

4
’
±
: (37)

For the second probability in (37), observe that the random variable ja1Ÿ1 C
a2Ÿ2j2 has the same distribution as a21 C a22 C 2a1a2U , with U being uniform on
Œ$1; 1!. Therefore,

P
°
ja1Ÿ1C a2Ÿ2j<

1

4
’
±
D P

°
U <

’2=16$ a21 $ a22
2a1a2

±
:

Note that the condition

$ 1 < ’2=16$ a21 $ a22
2a1a2

< 1 (38)

is equivalent to

ja1 $ a2j<
’

4
< a1C a2:

The left inequality holds thanks to (34), provided that L> .5:25 " 4/2 D 441, whereas
the right inequality holds since a1C a2 # 2a2 >

p
2$ 2c

p
>
p
2$ 2

L
> 1:2 which is

greater than ’
4 since

’! 1

Cp

q
1$ 2a22

(28)
<

1

1:41

s
1$ 2

# 1p
2
$ c
p

$2
<

1

1:41

r
2
p
2
c

p
<
1:2p
L
: (39)
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As (38) holds, we have

P
°
ja1Ÿ1C a2Ÿ2j<

1

4
’
±
D 1

2

#’2=16$ a21 $ a22
2a1a2

C 1
$

D ’2=16$ .a1 $ a2/2
4a1a2

:

Using (34) and the estimate 4a1a2 ! 2.a21 C a22/ < 2, we get

P
°
ja1Ÿ1C a2Ÿ2j<

1

4
’
±
>
1$ 441L!1

32
’2: (40)

For the other probability in (37), it is convenient to place a uniform function of con-
stant mass under the density of R1, which is doable due to the following technical
lemma.

LEMMA 16
Fix p 2 .1;1/, and let gp WRC!RC be the density of R1. Then we have

8x > 0; gp.x/#
p

4
1Œ1! 1

2p
;1#.x/: (41)

Proof
Recall from Proposition 6 that gp.x/D p".1C 1=p/!1xpe!x

p
for x > 0. Since gp

is log-concave, it suffices to check the inequality at the endpoints x D 1 $ 1
2p and

x D 1. For the first endpoint, we have

gp

#
1$ 1

2p

$
D p

".1C 1=p/
#
1$ 1

2p

$p
e
!.1! 1

2p
/p
>
p

2
e!e
!1=2

>
p

4
;

using that .1$ 1
2p /

p < e!1=2 and .1$ 1
2p /

p > 1
2 . Moreover, for the second endpoint,

gp.1/D
p

e".1C 1=p/ >
p

4
:

Finishing the proof of Proposition 15
We estimate the first probability in (37) using Lemma 16,

P
®
R1 ! 1; jR1 $R2j< ’

¯

#
Z Z

#x$1;jx!yj<’º

#p
4

$2
1Œ1! 1

2p
;1#.x/1Œ1! 1

2p
;1#.y/dx dy

D
´
1
64 if ’ > 1

2p ;
p2’
16 .

1
p $ ’/ if ’! 1

2p ;
(42)
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where the equality is an elementary computation. In the case ’! 1
2p

, we further have
1
p
$ ’# 1

2p
, so the probability is further bounded from below by p’

32
, which we will

use.
& If ’ > 1

2p , then inequalities (37), (40), and (42) yield the lower bound

E
!
jX j!1 $ ’!1

"
C #

1

24’
" 1
64
" 1$ 441L

!1

32
’2 D

#1$ 441L!1
214 " 3 " 1

’

$
’2

(39)
>
#1$ 441L!1
214 " 3 " 1:2

p
L
$
’2:

Since LD 7:9 " 109, this gives the desired bound (36) by 3
2’
2.

& If ’! 1
2p , then inequalities (37), (40), and (42) yield the lower bound

E
!
jX j!1 $ ’!1

"
C #

1

24’
" p’
32
" 1$ 441L

!1

32
’2 D p.1$ 441L!1/

213 " 3 ’2

>
.L$ 441/c
213 " 3 ’2:

This is at least 32’
2 for the chosen L, which completes the proof of (36) for p # p0,

where

p0 DLcC 2 < 8 " 109 " 105 < 1015:

4. Projections
The proof here parallels the one from Section 3. For the reader’s convenience, we
include all the details (which are in fact easier in several places).

4.1. Ancillary results
We start by quantifying how close the distribution of the Xj from (14) is to that of a
Rademacher variable (in the Wasserstein-2 distance). Explicit computations using the
density show that for every s >$ 1

q!1 , the sth moment of jX1j is

EjX1js D
".1C .s!1/.q!1/

q
/

". 1q /
: (43)

LEMMA 17
For 1 < q < 2, we have

E
ˇ̌
X1 $ sgn.X1/

ˇ̌2 ! 9
#
1$ 1

q

$2
: (44)
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Proof
Observe that

E
ˇ̌
X1 $ sgn.X1/

ˇ̌2 D EX21 $ 2EjX1j C 1
(43)D ".2$ 1=q/$ 2C ".1=q/

".1=q/
:

Since " is decreasing on .0; 1/, ".1=q/ # ".1/D 1. Using Taylor’s expansion with
Lagrange’s remainder, for every 0 < x < 1 there exists 0 < ™ < x such that

h.x/
defD ".1$ x/C ".1C x/$ 2D 1

2
x2
!
" 00.1$ ™/C " 00.1C ™/

"
:

Thus for 0 < x < 1=2, we have

h.x/! 1
2
x2
!
k" 00kL1. 12 ;1/Ck"

00kL1.1; 32 /
"
D 1

2
x2
!
" 00.1=2/C " 00.1/

"
< 9x2

since " 00 decreases on .12 ;
3
2 /, by Lemma 13. Applying this to x D 1$ 1

q , we indeed
obtain

E
ˇ̌
X1 $ sgn.X1/

ˇ̌2 ! h
#
1$ 1

q

$
! 9

#
1$ 1

q

$2
:

From this estimate, we can easily deduce the equicontinuity of the normalized
projection functions, which we state directly in probabilistic terms in view of Propo-
sition 7.

LEMMA 18
Let 1 < q < 2, X1;X2; : : : be i.i.d. random variables from (14), and let "1; "2; : : : be
i.i.d. Rademacher random variables. For every unit vector a in Rn, we have

ˇ̌
ˇE
ˇ̌
ˇ
nX
jD1

ajXj

ˇ̌
ˇ$E

ˇ̌
ˇ
nX
jD1

aj "j

ˇ̌
ˇ
ˇ̌
ˇ! 3

#
1$ 1

q

$
: (45)

Proof
Since "j has the same distribution as sgn.Xj /, we have

ˇ̌
ˇE
ˇ̌
ˇ
nX
jD1

ajXj

ˇ̌
ˇ$E

ˇ̌
ˇ
nX
jD1

aj "j

ˇ̌
ˇ
ˇ̌
ˇ

D
ˇ̌
ˇE
ˇ̌
ˇ
nX
jD1

ajXj

ˇ̌
ˇ$E

ˇ̌
ˇ
nX
jD1

aj sgn.Xj /
ˇ̌
ˇ
ˇ̌
ˇ

! E
ˇ̌
ˇ
nX
jD1

aj
!
Xj $ sgn.Xj /

"ˇ̌ˇ!
vuutE

ˇ̌
ˇ
nX
jD1

aj
!
Xj $ sgn.Xj /

"ˇ̌ˇ2
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D
q

E
ˇ̌
X1 $ sgn.X1/

ˇ̌2
;

and Lemma 17 finishes the proof.

4.2. Proof of Theorem 3
By virtue of (14), our goal is to show that for every 1 < q < q0 and every unit vector
a in Rn, we have

E
ˇ̌
ˇ
nX
jD1

ajXj

ˇ̌
ˇ# E

ˇ̌
ˇX1CX2p

2

ˇ̌
ˇ defD cq : (46)

For later use, we note that thanks to (14), for every vector a in R2,

Eja1X1C a2X2j D jaj
vol.Proja? B2q/

2".1=q/

D jaj
".1=q/

sup
x2@B2q

ˇ̌
ˇ
D
x;

1

jaj .$a2; a1/
Eˇ̌
ˇD
kak q

q!1
".1=q/

: (47)

In particular, we have

cq D E
ˇ̌
ˇX1CX2p

2

ˇ̌
ˇD 2

1
2
! 1q

".1=q/
: (48)

In view of the above explicit expression, inequality (46) clearly holds for nD 2. We
therefore assume that n# 3, a1 # " " " # an > 0, and proceed by induction on n. Recall
the definition of the deficit parameter used earlier,

•.a/D
ˇ̌
ˇa$ e1C e2p

2

ˇ̌
ˇ2 D 2$p2.a1C a2/:

4.2.1. The vector a is far from the extremizer
Here we consider the case

p
•.a/ # .1$ 1

q /c with numerical constant c > 0. With
hindsight, we set

c D 5$
p
2

8
" 105:

Using the equicontinuity from Lemma 18 and the robust version of Szarek’s inequal-
ity from Theorem 8, we obtain

E
ˇ̌
ˇ
nX
jD1

ajXj

ˇ̌
ˇ# E

ˇ̌
ˇ
nX
jD1

aj "j

ˇ̌
ˇ$ 3

#
1$ 1

q

$
# 1p

2
C ›1

p
•.a/$ 3

#
1$ 1

q

$

# 1p
2
C .›1c $ 3/

#
1$ 1

q

$
:
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Note that by convexity, 2x < 1C 2.
p
2$ 1/x for 0 < x < 1

2
, which with x D 1$ 1

q

gives

cq D
2
1
2
! 1q

".1=q/
! 2 12! 1q D 1p

2
21!

1
q <

1p
2
C .2$

p
2/
#
1$ 1

q

$
:

Since

c D 5$
p
2

›1
D 5$

p
2

8
" 105;

we get the desired bound (46) (nota bene, without the inductive argument).

4.2.2. The vector a is close to the extremizer
It is left to consider the case when

p
•.a/ <

#
1$ 1

q

$
c;

where c D 5!
p
2

8 " 105, as in the previous case. In particular, we also have that

1p
2
$ c

#
1$ 1

q

$
! a2 ! a1 !

1p
2
C c

#
1$ 1

q

$
: (49)

Letting pD q
q!1 , we shall assume that p is large relative to c, say p >LcC 2 with a

positive numerical constant L, with hindsight set to be

LD 8294400:

In particular, when 1
p
D 1$ 1

q
< 10!5,

0:7 < cq < 0:71; (50)

since 0:7 < 2!1=2
!.1!10!5/ <

21=2!1=q
!.1=q/

< 2!1=2C10
!5
< 0:71.

To run an inductive argument in order to prove (46), we consider the random vari-
ables X D a1X1C a2X2 and Y DPj>2 ajXj . By the independence and symmetry
of X and Y ,

E
ˇ̌
ˇ
nX
jD1

ajXj

ˇ̌
ˇD EjX C Y j D E max

®
jX j; jY j

¯
:

Using the inductive hypothesis,

EjY j D
q
1$ a21 $ a22E

ˇ̌
ˇ
P
j>2 ajXjq
1$ a21 $ a22

ˇ̌
ˇ# cq

q
1$ a21 $ a22I
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hence (by the convexity of the nondecreasing function t 7!max¹jX j; tº), we get

E
ˇ̌
ˇ
nX
jD1

ajXj

ˇ̌
ˇD E max

®
jX j; jY j

¯
# E max

®
jX j; ’

¯
; (51)

where we set

’
defD cq

q
1$ a21 $ a22: (52)

Observe that

E max
®
jX j; ’

¯
D EjX j CE

!
’$ jX j

"
C (53)

and, by (47),

EjX j D
k.a1; a2/k q

q!1
".1=q/

(48)D cq2
1
q! 12

%%.a1; a2/
%%

q
q!1

: (54)

In view of the inductive step (51) and the identities (53) and (54), the desired inequal-
ity (46) is a consequence of the following proposition.

PROPOSITION 19
Under the assumptions and notation above, for 1! q ! 1C 10!12 we have

E
!
’$ jX j

"
C #

!
1$ 2 1q! 12

%%.a1; a2/
%%

q
q!1

"
cq : (55)

Proof
If the right-hand side is nonpositive, then we are done. Otherwise,

%%.a1; a2/
%%

q
q!1

< 2
1
2
! 1q :

Letting pD q
q!1 and recalling (49), we see that we can apply Lemma 10 to conclude

that

ja1 $ a2j! 3:65
r

c

p $ 2

q
1$ a21 $ a22

(52)D 3:65

cq

r
c

p $ 2’
(50)
<
5:25’p
L
: (56)

To simplify the right-hand side of (55), we write

cq
!
1$ 2 1q! 12

%%.a1; a2/
%%

q
q!1

"
! cq

!
1$

%%.a1; a2/
%%
2

"
D cq

1$ .a21 C a22/
1C

q
a21 C a22

(52)D ’2

cq.1C
q
a21 C a22/

(50)
<

’2

0:7.1C
p
0:97/

<
3

4
’2;
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as we have a21 C a22 > 0:97 (see (35)). Therefore, it suffices to show that

E
!
’$ jX j

"
C #

3

4
’2: (57)

Since the Xj are symmetric random variables, each Xj has the same distribution
as "j jXj j, for independent random signs "j , also independent of all the other random
variables. We consider the event

E
defD
°
jX1j! 1;

ˇ̌
jX1j$ jX2j

ˇ̌
< ’; ja1"1C a2"2j<

1

4
’
±
;

on which we have
ˇ̌
a1"1jX1j C a2"2jX2j

ˇ̌
! jX1j

ˇ̌
a1"1C a2"2

ˇ̌
C a2

ˇ̌
jX2

ˇ̌
$ jX1j

ˇ̌

<
1

4
’C 1p

2
’ <

24

25
’;

and thus, since X has the same distribution as a1"1jX1j C a2"2jX2j, we obtain the
lower bound

E
!
’$ jX j

"
C #

’

25
P.E/

D ’

25
P
®
jX1j! 1;

ˇ̌
jX1j$ jX2j

ˇ̌
< ’

¯
P
°
ja1"1C a2"2j<

1

4
’
±
: (58)

The second probability in (58) is clearly at least 1
2

provided that

ja1 $ a2j<
’

4
:

For this to hold, it suffices that L > .5:25 " 4/2 D 441, by virtue of (56). For the first
probability, analogously to Lemma 16, we will place a constant function under the
density fq of jX1j.

LEMMA 20
Fix q 2 .1; 3

2
/, and let fq WRC!RC be the density of jX1j. Then we have

fq.x/#
1

4.q $ 1/1
Œ1! q!1

2
;1#
.x/; x > 0: (59)

Proof
Recall from Proposition 7 that

fq.x/D
1

.q $ 1/".1C 1
q /
x
2!q
q!1 e!x

q
q!1

; x > 0:
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The proof is almost identical to that of Lemma 16. It suffices to check that the inequal-

ity holds for x D 1 $ q!1
2

and x D 1. Since .1 $ q!1
2
/
2!q
q!1 > 1 $ 2!q

q!1
q!1
2
D q

2
> 1
2

,

for 1 < q < 3
2 , .1$ q!1

2 /
q
q!1 < e!

q
2 < e!

1
2 , and ".1C 1

q / < 1, we obtain

fq

#
1$ q $ 1

2

$
>

1

.q $ 1/
1

2
e!e
! 1
2
>

1

4.q $ 1/ :

Moreover,

fq.1/D
1

.q $ 1/".1C 1
q /
e!1 >

1

e.q $ 1/ >
1

4.q $ 1/ :

Finishing the proof of Proposition 19
As earlier, Lemma 20 gives

P
®
jX1j! 1;

ˇ̌
jX1j$ jX2j

ˇ̌
< ’

¯

#
Z Z

#x$1;jx!yj<’º

# 1

4.q $ 1/
$2

1
Œ1! q!1

2
;1#
.x/1

Œ1! q!1
2
;1#
.y/dx dy

#
´
1
64 ’ > q!1

2 ;
’

32.q!1/ ’! q!1
2 ;

(60)

where the last inequality follows from (42) with p replaced by 1
q!1 .

& If ’ > q!1
2 , then inequalities (58) and (60) yield the lower bound

E
!
’$ jX j

"
C #

’

25
" 1
64
" 1
2
D ’

3200
:

Since

’
(52)
! cq

q
1$ 2a22

(50)
< 0:71

s
1$ 2

# 1p
2
$ c
p

$2
< 0:71

r
2
p
2
c

p
<
1:2p
L
;

and L# 8294400, we obtain the desired bound (57).
& If ’! q!1

2 , then inequalities (58) and (60) give

E
!
’$ jX j

"
C #

’

25
" ’

32.q $ 1/ "
1

2
D ’2

1600.q $ 1/ :

As we assume that 1 $ 1
q
! 1
cLC2 , this is at least the desired 3

4
’2 by a large margin

for LD 8294400. The proof is complete for every 1! q ! q0, where

q0 D
LcC 2
LcC 1 > 1C 10

!12:
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5. Stability estimates with explicit constants
The proofs of both Theorems 8 and 9 presented here follow the same strategy taken
from [7], which we shall now outline. For a unit vector a in Rn, consider again the
deficit

•.a/D
ˇ̌
ˇa$ e1C e1p

2

ˇ̌
ˇ2 D 2$p2.a1C a2/:

Let a be a unit vector, and without loss of generality assume that a1 # " " " # an # 0.
The approach leading to the stability of the inequalities of Szarek and Ball differs
depending on whether the vector a is close to or far from the extremizer e1Ce2p

2
, as

measured by •.a/.
Case 1. When a is close to e1Ce2p

2
, we quantitatively sharpen the inequalities of

Szarek and Ball by reapplying them only to a portion of the vector a, thus exhibiting
their self-improving feature. The probabilistic formulas are crucial for this part.

When a is far from the extremizer, three things can happen.
Case 2. If the largest magnitude of the coordinates of a is below 1p

2
, then the

second largest magnitude has to drop well below 1p
2

on account of •.a/ being large
and the classical Fourier-analytic approach of Haagerup [12] and Ball [2] allows us
to track the deficit.

Case 3. If the largest magnitude is barely above 1p
2

, then a Lipschitz property
of the section and projection functions allows us to reduce this case to the one from
Case 2.

Case 4. If the largest magnitude is bounded below away from 1p
2

, then an easy
convexity/projection argument gives a strict inequality with a margin.

5.1. Stability of Szarek’s inequality
We first deal with the sharp Khinchin inequality of [31].

Case 1
We begin with the case that a is near the extremizer.

LEMMA 21
Let 0 < •0 < 2

3 , and take c0 D 1

2
p
2
.
q
1
5 .4$ •0/$

p
•0/ > 0. For every unit vector a

in Rn with a1 # " " " # an # 0 satisfying •.a/! •0, we have

E
ˇ̌
ˇ
nX
jD1

aj "j

ˇ̌
ˇ# 1p

2
C c0

p
•.a/: (61)

Proof
We will assume without loss of generality that n# 3 and a21 C a22 < 1 (the remaining
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cases can be obtained by taking a limit). Let

™
defD 1p

2

q
1$ a21 $ a22:

Arguing as in the induction of Section 4 and using Jensen’s and Szarek’s inequalities,
we get

E
ˇ̌
ˇ
nX
jD1

aj "j

ˇ̌
ˇD E max

°
ja1"1C a2"2j;

ˇ̌
ˇ
nX
jD3

aj "j

ˇ̌
ˇ
±

# E max
°
ja1"1C a2"2j;E

ˇ̌
ˇ
nX
jD3

aj "j

ˇ̌
ˇ
±
# E max

®
ja1"1C a2"2j; ™

¯

D 1

2
max¹a1C a2; ™º C

1

2
max¹a1 $ a2; ™º

# a1C a2
2

C 1

2

r
1

5
.a1 $ a2/2C

4

5
™2

D 2$ •.a/
2
p
2
C 1

2
p
2

r
1

5

!
4$ •.a/

"p
•.a/

D 1p
2
C 1

2
p
2

#r1

5

!
4$ •.a/

"
$
p
•.a/

$p
•.a/

# 1p
2
C c0

p
•.a/;

whenever •.a/! •0.

Case 2
We assume that a is far from the extremizer and that a1 is at most 1p

2
. A key step in

Haagerup’s slick Fourier-analytic proof of Szarek’s inequality from [12] is the bound

E
ˇ̌
ˇ
nX
jD1

aj "j

ˇ̌
ˇ#

nX
jD1

a2jF.a
!2
j /; (62)

for every unit vector a in Rn, where the function F W .0;1/!R is given by

F.s/D 2p
 s
"
". sC12 /

". s2 /
; s > 0:

Haagerup showed that the function F.s/ is increasing on .0;1/, which will be crucial
for us.
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LEMMA 22
Let 0 < •0 < 2. For every unit vector a in Rn with a1 # " " " # an # 0 satisfying •.a/#
•0 and a1 ! 1p

2
, we have

E
ˇ̌
ˇ
nX
jD1

aj "j

ˇ̌
ˇ# 1p

2
C c1

p
•.a/; (63)

with c1 D 1

2
p
2
.F. 8

.2!•0/2 /$ F.2//.

Proof
We have

a2 !
a1C a2
2

D 2$ •.a/
2
p
2
! 2$ •0
2
p
2
;

which shows that a!2j # l0, for all j # 2, with l0 D 8
.2!•0/2 > 2. Employing (62) and

using the monotonicity of F , we therefore have

E
ˇ̌
ˇ
nX
jD1

aj "j

ˇ̌
ˇ# a21F.2/C

X
j%2

a2jF.l0/D a21F.2/C .1$ a21/F.l0/

D F.l0/C a21
!
F.2/$F.l0/

"
# F.l0/C

1

2

!
F.2/$F.l0/

"

D 1

2

!
F.2/CF.l0/

"
D 1p

2
C 1

2

!
F.l0/$F.2/

"
;

since F.2/D 1p
2

. The conclusion follows since •.a/! 2.

Case 3
We assume that a is far from the extremizer, but a1 is barely larger than 1p

2
.

LEMMA 23
Let ”0 ! 1$ 1p

2
and 2

p
”0 < •0 < 2. For every unit vector a in Rn with coordinates

a1 # " " " # an # 0 satisfying 1p
2
! a1 ! 1p

2
C ”0 and •.a/# •0, we have

E
ˇ̌
ˇ
nX
jD1

aj "j

ˇ̌
ˇ# 1p

2
C c2

p
•.a/; (64)

with

c2 D
1

2
p
2

#
F
# 8

.2C 2p”0 $ •0/2
$
$F.2/

$q
•0 $ 2

p
”0

$
q
2”0C ”20 : (65)
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Proof
We can assume that c2 # 0 since otherwise it is enough to observe that

E
ˇ̌
ˇ
nX
jD1

aj "j

ˇ̌
ˇD E

ˇ̌
ˇa1C

nX
jD2

aj "j

ˇ̌
ˇ#

ˇ̌
ˇa1C

nX
jD2

ajE"j
ˇ̌
ˇD ja1j# 1p

2
:

Consider the unit vector

b
defD
# 1p

2
;

r
a21 C a22 $

1

2
; a3; : : : ; an

$
:

Then by the triangle inequality, we obtain the following Lipschitz property:

E
ˇ̌
ˇ
nX
jD1

aj "j

ˇ̌
ˇ# E

ˇ̌
ˇ
nX
jD1

bj "j

ˇ̌
ˇ$E

ˇ̌
ˇ
nX
jD1

.aj $ bj /"j
ˇ̌
ˇ

# E
ˇ̌
ˇ
nX
jD1

bj "j

ˇ̌
ˇ$

#
E
ˇ̌
ˇ
nX
jD1

.aj $ bj /"j
ˇ̌
ˇ2
$1=2
D
ˇ̌
ˇ
nX
jD1

bj "j

ˇ̌
ˇ$ ja$ bj:

Note that b1 # b2 and since b2 # a2, also b2 # b3 # " " " # bn. Moreover,
r
a21 C a22 $

1

2
$ a2 D

a21 $ 1
2q

a21 C a22 $ 1
2
C a2

!
r
a21 $

1

2
!
qp

2”0C ”20 <
p
2”0I (66)

thus

ja$ bj2 D
#
a1 $

1p
2

$2
C
#r

a21 C a22 $
1

2
$ a2

$2
< ”20 C 2”0:

Observe that, since a1 # 1p
2

, we have

•.b/D 2$
p
2
# 1p

2
C
r
a21 C a22 $

1

2

$

D •.a/$
p
2
# 1p

2
C
r
a21 C a22 $

1

2
$ a1 $ a2

$

# •0 $
p
2
#r

a21 C a22 $
1

2
$ a2

$ (66)
> •0 $ 2

p
”0:

Thus, applying Lemma 22 to the vector b and using the above estimates, we get
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E
ˇ̌
ˇ
nX
jD1

aj "j

ˇ̌
ˇ# 1p

2
C 1

2
p
2

#
F
# 8

.2C 2p”0 $ •0/2
$
$F.2/

$p
•.b/

$
q
2”0C ”20

# 1p
2
C 1

2
p
2

#
F
# 8

.2C 2p”0 $ •0/2
$
$F.2/

$q
•0 $ 2

p
”0

$
q
2”0C ”20 :

Finally, as a1 # 1p
2

, we have •.a/D 2$
p
2.a1Ca2/! 1$

p
2a2 ! 1, and the proof

is complete.

Case 4
Finally, there is also a simple bound for the case that a1 is much larger than 1p

2
.

LEMMA 24
Let ”0 > 0. For every unit vector a in Rn with a1 # 1p

2
C ”0, we have

E
ˇ̌
ˇ
nX
jD1

aj "j

ˇ̌
ˇ# 1p

2
C ”0

p
•.a/: (67)

Proof
By Jensen’s inequality and the fact that •.a/! 1,

E
ˇ̌
ˇ
nX
jD1

aj "j

ˇ̌
ˇ# ja1j# 1p

2
C ”0 #

1p
2
C ”0

p
•.a/:

Constants
Combining Lemmas 21, 22, 23, and 24 with •0 D 0:66 (almost the maximal value
allowed in Lemma 21) and ”0 D 8 " 10!5, we conclude that for all unit vectors a in
Rn,

E
ˇ̌
ˇ
nX
jD1

aj "j

ˇ̌
ˇ# 1p

2
C ›1

p
•.a/

with

›1 #min¹c0; c1; c2; ”0º
>min¹1:7 " 10!3; 1:6 " 10!2; 5:1 " 10!4; 8 " 10!5º D 8 " 10!5:

This completes the proof of Theorem 8.
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5.2. Stability of Ball’s inequality
We now turn to the study of Ball’s inequality (1). Throughout this section we denote
by Qn D Œ$12 ; 12 !n the cube of unit volume.

Case 1
We begin with the case that a is near the extremizer.

LEMMA 25
For every n # 2 and every unit vector a in Rn with a1 # " " " # an # 0 satisfying
•.a/! 1

4 , we have

vol.Qn \ a?/!
p
2$ c1

p
•.a/; (68)

where c1 D 0:12.

Proof
We can assume that n # 3 and a21 C a22 < 1 (the missing cases follow by taking
a limit). Leveraging a self-improving feature of Ball’s inequality, the proof of [7,
Lemma 6.7] yields

vol.Qn \ a?/!
p
2max

°#
1$ •C

r
•.2$ •/
5

$!1
;

.1$ •/!2
#
1$ •$

p
•.2$ •/
2
p
2

$±
;

where •D •.a/. Denoting the maximum on the right-hand side by M.•/, we can take

c1 D inf
0<•<1=4

p
2
1$M.•/p

•
:

Direct numerical calculations show that c1 > 0:12.

Cases 2 and 3
We assume that a is far from the extremizer, but a1 is not much larger than 1p

2
.

LEMMA 26
For every n # 2 and every unit vector a in Rn with a1 # " " " # an # 0 satisfying
•.a/# 1

4
and a1 ! 1p

2
C ”0, we have

vol.Qn \ a?/!
p
2$ c2; (69)

where ”0 D 3:2 " 10!5 and c2 D 0:0002.
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Proof
Here the proof relies on Fourier-analytic arguments. For the special function

‰.s/D 2

 

p
s

Z 1
0

ˇ̌
ˇ sin t
t

ˇ̌
ˇs dt;

Ball showed in [2] that ‰.s/ < ‰.2/D
p
2, for every s > 2. We need a robust ver-

sion of this estimate. Using the Nazarov–Podkorytov lemma (see [29]), König and
Koldobsky [23] proved that

8s # 9
4
; ‰.s/!‰.1/D

r
6

 
D
p
2
# 3
 

$1=2
(70)

(i.e., ™0 D . 3  /1=2 in the notation of [7, Lemma 6.8]). The argument now splits into
two cases.
& Assume that a1 ! 1p

2
. Provided that

s.a/
defD 2

#
1$ •.a/

2

$!2
# 9
4
;

which holds as long as •.a/# 2.1$ 2
p
2
3
/D 0:11.., with the aid of (70), the arguments

from [7, Lemma 6.8] give the explicit estimate

vol.Qn \ a?/!
# 3
 

$1=4p
2D
p
2$
p
2
!
1$ .3= /1=4

"
:

Therefore, we can take any

c2 !
p
2
!
1$ .3= /1=4

"
D 0:016 : : : :

& Assume that 1p
2
< a1 ! 1p

2
C ”0. Using Busemann’s theorem (see [5]), this

case is reduced in [7, Lemma 6.8] to the previous range, which yields the bound

vol.Qn \ a?/!
p
2$
p
2min

°
c1

r
1

8
$p”0; 1$ .3= /1=4

±

C 2
q
”20 C 2”0;

where c1 is the constant from Lemma 25. With the choice of parameters ”0 D 3:2 "
10!5 and c1 D 0:12, this estimate yields vol.Qn \ a?/ !

p
2 $ 0:00021.. and thus

completes the proof.

Case 4
Finally, there is also a simple bound for the case that a1 is much larger than 1p

2
.
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LEMMA 27
For every n# 2 and every unit vector a in Rn satisfying a1 # 1p

2
C ”0, we have

vol.Qn \ a?/!
p
2$ 2”0

1C ”0
p
2

p
•.a/; (71)

where ”0 D 3:2 " 10!5.

Proof
By Ball’s geometric projection argument (see [2]; see also [29]), we have vol.Qn \
a?/! 1

a1
. Since a1 # 1p

2
C ”0 and hence •.a/ < 1, we deduce that

vol.Qn \ a?/!
1

1p
2
C ”0

D
p
2$
p
2
#
1$ 1

1C ”0
p
2

$

!
p
2$ 2”0

1C ”0
p
2

p
•.a/:

Constants
Combining Lemmas 25, 26, and 27, and using that always •.a/ < 2, we conclude that
for all unit vectors a in Rn, we have the inequality

vol.Qn \ a?/!
p
2$ ›1

p
•.a/

with

›1 #min
°
c1;

c2p
2
;

2”0

1C ”0
p
2

±
> 6 " 10!5:

This completes the proof of Theorem 9.

Remark 28
We would like to stress that the arguments of this paper have not been optimized to
give the best possible constants p0 and q0 in Theorems 1 and 3. We instead chose to
be fairly generous in various parts of the proof for the sake of clarity of the exposition.
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