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Abstract

Ball’s celebrated cube slicing theorem asserts that among hyperplane sections of
the cube in R", the central section orthogonal to (1,1,0,...,0) has the greatest
volume. We show that the same continues to hold for slicing £, balls when p > 101>,
as well as that the same hyperplane minimizes the volume of projections of £, balls
for 1 < g <1+ 10712, This extends Szarek’s optimal Khinchin inequality which
corresponds to q = 1. These results thus address the resilience of the Ball-Szarek
hyperplane in the ranges 2 < p < oo and 1 < q < 2, where analysis of the extremizers
has been elusive since the works of Koldobsky, Barthe and Naor, and Oleszkiewicz.

1. Introduction
Fix p € [1,00] and n € N. The present paper is devoted to the study of geometric
parameters of the origin-symmetric convex bodies

B ={xeR":|x|, <1},

which are the closed unit balls of the normed spaces £, = (R", || - || ), where for
pell,00),

1/
Ixllp = (Ix11? 4+ + xal?) 7

and || X|jeco = Max;j=1,  n»|¥xi|, when x = (x1,...,x,) € R". More specifically, we

shall address the classical problem of identifying volume extremizing sections and
projections of these bodies with respect to hyperplanes passing through the origin.
This subject has attracted the interest of mathematicians for decades and a range of
tools from probability and Fourier analysis have been employed in its study. We refer
to the survey [28] for a detailed account of classical results, recent advances, and

further references.
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1.1. Sections
Fix p €[1,00], n €N, and consider the following question for sections of B

QUESTION 1
For which unit vectors a in R" is the volume of B, N at maximal or minimal?

This problem and its variations have been intensively studied for five decades,
since Hadwiger [13] and Hensley [14] showed that sections of the cube B, with
coordinate hyperplanes el.L have minimal volume. The reverse question of identifying
the volume maximizing sections of the cube was answered in the monumental work
of Ball [2], who proved that

vol(BY, Nat) < VOI(B’;<> N (%)L). (1)

For p < o0, the study of Question | was initiated by Meyer and Pajor. In [27],
they extended the result of Hadwiger and Hensley by proving that sections of B’;, with
coordinate hyperplanes eiJ- have minimal volume for any p > 2 and maximal volume
when p € [1,2]. In the reverse direction, they showed that when p = 1, the section
of the cross-polytope B} with the hyperplane orthogonal to % has minimal
volume, a result which was later extended to all values of p € [1,2] by Koldobsky
[17] (see also [10] for a different probabilistic proof).

In view of the aforementioned results, the only missing case in the study of
Question 1 is the identification of volume maximizing sections of B, when p €
(2,00), a problem that has explicitly appeared in the literature multiple times (see,
e.g., [4], [, [18], [19], [21], [25], [28], [30]). In [30], Oleszkiewicz made a crucial
remark, showing that for p € (2,26) and n large enough the section of B’I’, with the
hyperplane ( %)J— has in fact larger volume than the section with (%)J—
and thus one cannot expect a Ball-type extremal for all p > 2. In the same work, he
speculated that Ball-type hyperplanes may maximize the volume of sections for suffi-
ciently large values of p. The first theorem of this work provides a positive answer to
Oleszkiewicz’s question.

THEOREM 1
There exists 26 < po < 10'° such that for every n € N, p > po, and every unit vector
a in R*, we have

vol(B", Na™) < vol(B';, N (elj;)l). )

This is the first available result on maximal sections of BY, for p € (2,00) and
any dimension n > 3. A general conjecture for all choices of p and n, predicting
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that the extremals undergo a phase transition, was proposed in [32] and [28, Conjec-
ture 2]. Theorem 1 partially confirms it. Let us formulate a more precise version of
this conjecture.

CONJECTURE 2
For every n > 3, there is a unique po(n) such that

vol(B" N (&t=tenyly 5 o 5 < po(n),
max vol(B;mal)z (p ( N )5) P =< po(n) 3)

aesn-1 vol(B) N (S22)4) > po(n).

Moreover, lim,_o po(n) = 26.265... is the unique solution to the equation
22/"’F(%)3 = szr(%) in the interval (1, 00).

Let us remark that in the above conjecture the critical value p = po(n) is given
by the equation

vol(BY, N (%)L) = vol(B; N (elj;)L). @
22/pr(%)3
¥p2T(3)

The limit of the ratio of these two volumes is equal to , as was proved by

Oleszkiewicz in [30] using the central limit theorem.

1.2. Projections
Fix g € [1,00], n € N, and consider the dual question for projections of Bj.

QUESTION 2
For which unit vectors a in R" is the volume of Proj, . BZ maximal or minimal?

The current status of Question 2 is basically identical to that of Question 1. When
q = oo, Cauchy’s projection formula shows that for every unit vector a, we have

vol(Proj, 1 B) = [lal|1 vol(BZS ), (5)

which proves that the volume is minimized for ¢ = ¢; and maximized for a =
w In the case of the cross-polytope B?, similar reasoning based on Cauchy’s
formula (see [3]) shows that

on—1 n
vol(Proj, 1 BY) = e 1)!]E“2:10j8j
J=

: (6)

where €1, €, .. . is a sequence of independent symmetric 1 random variables. There-
fore, Jensen’s inequality shows that vol(Proj,1 BY) is maximal when a = ¢;. In view
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of (6), identifying the volume minimizing projections of B} amounts to finding the
sharp constant in the classical L;-L, Khinchin inequality in [16] which was famously
discovered by Szarek. In geometric terms, the important result of [31] asserts that
vol(Proj, 1 BY) is minimized for a = eiter

The study of Question 2 for 1 < ¢ < co was initiated by Barthe and Naor in [4].
In analogy to [27], they showed that projections of By onto coordinate hyperplanes
eiL have minimal volume for ¢ > 2 and maximal volume for ¢ € [1, 2]. Moreover, in
the spirit of [17] and [27], they proved that when g > 2, the projections of BZ onto the
hyperplane orthogonal to % have maximal volume (see also [20] for a different
proof using the Fourier transform).

The volume minimizing hyperplane projections of BZ remain unknown for
q € (1,2). In analogy with Oleszkiewicz’s observation in [30] mentioned earlier,
Barthe and Naor noticed that for ¢ € (2,2), the projection of Bj onto the hyperplane
(%)l has smaller volume than the projection onto (%)l and thus one
cannot expect a Szarek-type extremal for all ¢ € [1,2). Our second theorem is the

dual to Theorem | and addresses Question 2 for g near 1.

THEOREM 3
There exists qo € (1 + 10712, %) such that for everyn € N, q € [1,qo], and every unit
vector a in R", we have

vol(Proj, 1 B?) = vol(Proj e, +e,, , BY). @)
“ CRH

One can formulate a similar conjecture to the one for sections.

CONJECTURE 4
For every n > 3, there is a unique qo(n) such that

vol(Proj(el+..-+e,, )L By qo(n) <q =<2,
v ®)

min vol(Proj,. B}) =
aesn—1

vol(Proj ¢ +e, ., BY) 1 <g<qo(n).
v ont
Moreover, limy, 0 qo(n) = %.

1.3. Methods
The delicacy of, say, Theorem 1 lies in the need to find a universal po, independent
of the unit vector a and the dimension n € N, such that for every p > po,

VOI(B; Nat) < Vol(B'I’, N (el:/i_;z)L). 9)
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On the other hand, finding such a pg(a) for a fixed unit vector @ in R” is an immedi-
ate consequence of the continuity of the section function p — vol(B7, N al), as the
equality cases in Ball’s inequality (1) are known to be only the vectors of the form
%) wherei # j

N /-

Leta = (ay,...,a,) be a unit vector, and assume without loss of generality that
its coordinates are positive and ordered, that is, @y > ap > --- > a, > 0. Choosing
po uniformly for (9) to hold requires radically different arguments in the following
ranges for a.

e1ten

Case 1. The vector a is far from the extremizer 5 Say la — %| > 8¢ for

some 8¢ > 0.

Here the constant 8¢ depends on p and |- | stands for the standard Euclidean norm.
The key ingredient in this range is the dimension-free stability of Ball’s inequality (1)
with respect to the unit vector a which has been recently established in [7] and [26]
(see also Theorem 9 below for a statement with explicit constants). These works imply
that, under the assumption of Case 1, there is a positive deficit in Ball’s inequality.
Building on the simple-minded argument based on continuity described above, one
needs to reason that all functions of the form p — vol(B’}, N a') are equicontinuous
at p = oo with a dimension-independent modulus. This strategy is implemented in
Lemma 14 and relies on a combination of Busemann’s theorem (see [5]) with a prob-
abilistic formula expressing the volume of sections of B, as a negative moment of a
sum of independent rotationally invariant random vectors in R>, following [6], [15],
and [22].

Case 2. The vector a is near the extremizer 122

_elter
: vect 2,say|a. 7 | < 8o.
This range is evidently the more subtle one, as soft continuity-based arguments

are deemed to fail near the equality case. In order to amend this, we introduce a
novel inductive strategy. As our starting point, we express again the section function
vol(B, N al) as a negative moment of a sum of independent random variables. After a
suitable application of Jensen’s inequality, we use the inductive hypothesis according
to which the desired inequality holds in dimension n — 2 and this reduces the problem
to an explicit two-dimensional estimate. Quite stunningly, the resulting estimate does
not hold when the unit vector a is far from the extremizer €442 and thus our inductive
argument cannot circumvent the stability results which were crucially used in Case 1.
Nevertheless, a delicate analysis allows us to deduce the technical estimate under the
assumptions of Case 2 for 8 small enough as a function of p and p sufficiently large,
thus proving Theorem 1.

The proof of Ball’s inequality (1) and its stability from [7] crucially use the
Fourier transform representation for the volume of sections and properties of a cer-
tain special function. However, even in Ball’s original proof (see [2]), the Fourier
transform method is unable to analyze the case that the largest component a; of a is
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greater than %, which is instead handled by an elegant geometric argument. Unfor-
tunately, a similar geometric argument applied to B’;, for p < oo does not yield the
optimal bound (9) for a; slightly larger than %’ which creates the need for a different
method. Surprisingly, our inductive approach outlined above does not use the Fourier
transform directly, even though it uses Ball’s inequality (1) and its stability as a black
box. In a way, this method complements the Fourier-analytic approach with a proba-
bilistic component which permits an analysis near the extremizer. We refer to [11] for
extensions of the results of this paper under the additional assumption a; < JLE using
the Fourier analytic approach.

The proof of Theorem 3 relies on a very similar strategy apart from purely tech-
nical differences. In this case, the probabilistic representation for the volume of pro-
jections is due to [4] and the stability of Szarek’s inequality was obtained in [8].

2. Preliminaries

In this section we present some probabilistic representations for the volume of sec-
tions and projections of B’I’, (see also [28] and the references therein) along with some
crucial technical estimates which will be used in the proofs of Theorems 1 and 3.

2.1. Probabilistic representation of the volume of sections

In [15], Kalton and Koldobsky discovered an elegant probabilistic representation of
the volume of sections of a convex set K in R” in terms of negative moments of a ran-
dom vector X uniformly distributed on K. In the case of K = B’;, this representation
takes the following explicit form (see [6] or [28, Lemma 42]).

LEMMA 5

Fix p €[l,00), n €N, and let Y1,Y,... be independent and identically distributed
(i.i.d.) random variables with density e BoIX1” ywhere Bp=2I'l + %)~ Then for
every unit vector a in R", we have

N

vol(B" Na't) Do l4s e
T % im —E‘Za,»yj (10)
j=1

vol(BZ—l) Tsi-1 2
When p = oo, the same identity holds with Y1,Y>, ... being i.i.d. uniform on [—1, 1].

Using the representation (10), we derive the following crucial formula for our
analysis.

PROPOSITION 6

Fix pe[l,00) and n € N. Let Ry, R,,... be i.i.d. positive random variables with

density a;lxpe_xp 1x>0, where ap = %F(l + %), and let €1,€,, ... be i.i.d. random
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vectors uniformly distributed on the unit sphere S? in R3, independent of the random
variables R;. Then for every unit vector a in R"*, we have

vol(B7, N at) 1 " -1
— L =T(1+ )Y e RiE | 11
vol(B7 1) ( + » j;aj j8i an
where |- | denotes the Euclidean norm on the right-hand side. When p = oo, the same
identity holds with deterministic coefficients Ry = ---= R, = 1.
Proof

We shall assume that p < co and the endpoint case follows (see also [22]). Let ¥
have density e‘BZ‘x‘p, let R have density a;lxpe_xp1x>0, and let U be uniform
on [—1, 1], independent of R. Then Y has the same distribution as B;IRU . More
generally, if V' is a random variable with even density g which is nonincreasing and
of class C! on (0, 400), then V has the same distribution as RoU, where Ry has
density —2rg’(r) on (0, c0). Indeed, for r > 0 we have

P{RoU > 1} = P{U > %} _ /OOIP{U > ;}(—ng/(r))dr
0

0

= —/too(l — ;)rg/(r)dr = —/too(r—l)gl(r)dr
:/oog(r)drz]P’{V>l}.

Therefore, (10) can be rewritten as

vol(B, N aJ-) R

= E( R;U; ‘ 12
vol(B7%~1) s¢ 1 2% Za, (12)
By a result of Konig and Kwapien [24, Proposition 4], for every xi,...,x, € R and
s> —1,
n s n )
B[ x| =1 +9B[Y 50, (13)
j=1 Jj=1

Substituting (13) in (12) conditionally on R; and substituting the value of f, proves
(11). O

2.2. Probabilistic representation of the volume of projections

The analogue of Proposition 6 for projections, expressing the normalized volume of
projections of Bj as an L;-moment of a sum of independent random variables, has
been established in [4, Proposition 2].
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PROPOSITION 7 (Barthe and Naor [4])
Fix g € (1,00) and n € N. Let X1, X»,... be i.i.d. random variables with density
q

o A
y;l|)c|qi—"]eflx"’_1 , where yg =2(q — 1)I'(1 + é) Then for every unit vector a in
R”, we have

vol(Proj, . By) 1 z
T et P (2 IE‘ X‘ 14
VOl(BZ_l) (q) ;Clj J (14)

When q = 1, the identity reduces to the consequence (6) of the Cauchy projection
formula.

2.3. Stability estimates

As explained in the introduction, a crucial step in the proofs of Theorems 1 and 3 is
a reduction to sections and projections with respect to hyperplanes near the extrem-
izer (%)J—. This will be a consequence of two recent works [7], [8] establishing
the stability of the inequalities of Szarek [31] and Ball [2] with respect to the unit
normal vector a. For the case of projections, we will use the following robust Szarek
inequality proved in [8, Theorem 3.2].

THEOREM 8 (De, Diakonikolas, and Servedio [8])
There exists k1 > 0 such that for every n € N and every unit vector a in R" with
a; >--->a, >0, we have

€1+€2‘

E‘éajsj‘2%+m‘a— 7 (15)

We can take «1 = 8 - 107 in this inequality.

For the case of sections, we will use the following robust Ball inequality of [7,
Equation (5)]. We express it in the equivalent negative moment formulation which
follows from Proposition 6.

THEOREM 9 (Chasapis, Nayar, and Tkocz [7])
There exists Koo > 0 such that for every n € N and every unit vector a in R" with
a; >--->a, >0, we have

‘. (16)

n
-1 e1+ e

E‘Zajij‘ f\/E—Koo‘a—

j=1 V2

We can take koo = 6+ 107> in this inequality.
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Unfortunately, a direct implementation of the arguments of [7] and [8] does not
yield explicit values for the constants k; and k.o, Which are needed for our estimation
of po and g¢ in Theorems | and 3. In Section 5, we shall present a new short proof of
Theorem & which is in the spirit of [7] and gives the numerical constant k; = 8-107.
Moreover, we will explain how to quantify an existential argument used in [7] in order
to prove Theorem 9 with ke = 6107,

2.4. A technical lemma
In this section we present the following key lemma, which is crucial for the induction
argument sketched in Section 1.3 to work.

LEMMA 10

Lete > Land p > 43/2c. If0 < a> < ay satisfy |[(ar.a2) |, <2573 and |a; — 5] <
%fori = 1,2, then we have

lay —aa| <3.65. | ——J1—a? —a2. 17)
=2 143

To prove it, we need an elementary inequality between p-means with a deficit.

LEMMA 11
Let 0 > 0, r > max{o,2}, and by, b, € (0,1] with 1 — % < b—? < 1. Then we have
by + byt _ by +bs 1—e2 )
> -1 by —by|*. 18
( 5 ) = +(@ =1 py |61 — by (18)

Proof
Denote ¢, & (r—1) 1—:(:5
the inequality to the power r, and using that b; < 1, we see that (18) follows from

# > (1 - % +c,82)r, §e [0,07].

. Dividing both sides by by, introducing § L 2—2, raising
1

We have equality for 8 = 0 and thus it is enough to show that on [0, %] the derivatives
compare,

—2(1 —8 !> r(l - % + crsz)r_l(—% + 2cr8).

Multiplying both sides by % and rearranging gives an equivalent form

1-38 )’—1

ez (=
’ 1—%+cr82
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since 1 — % + ¢,8% > 0 on [0, 2]. To prove the last inequality, observe that

(Flg%rgz)r_l (=) =(-3)"

-3

It is enough to check the inequality (1 — %)’_1 < 1—4c,8 only for § € {0, %}, since
the left-hand side is convex in 8. For § = 2, we have (1 — %)’_1 < e_%'%, SO we

r b
would like to prove that

r—1 r—1

1—

(1 —e_%).

o
wla
<

IA

r

Since u = rr;l € [0, 1], we want to verify that e 3 <l—-u(l— e_%), which follows
by observing that the left-hand side is a convex function of ¥ and we have equality
for u € {0, 1}. O

Proof of Lemma 10
Since p > ﬁc, we have

1 c J2c
e R en2

“@ T z(l_ﬁ) o 1-243C
—_— = C

ai ﬁ—i-p 1+T p p

2
SO Z—% >1- 4«/5% =1- 2;?2". We can apply Lemma 11 with r = £, b; = a?, and
o= Zﬁc to get

3= () = e (S

11
where the leftmost inequality is equivalent to ||(a1,a2)||, <27~ 2. By the assump-
tions, we also have a1 + a > V2 - 270 > 2 — 217 and e‘cﬁ < e‘ﬁ. Therefore,
rearranging gives

2 22
lay — a3,

_ 1y
:(ﬁ >v3) |
8v2

_\/5)‘

Co
1‘“%—51%2?@—2”01—42 2 Co

Thus, we conclude that

Je 1

which completes the proof. ([

lay —az| <
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3. Sections

3.1. Ancillary results

We begin with a simple L,-bound quantifying that the distribution of the random
magnitudes R; from (11) is close to the point mass at 1 as p gets large. Explicit
computations using the density show that for every s > —p — 1, the sth moment of
Rl is

+1
s ra+ ST)
=T+ L) (19)
I+ )
LEMMA 12
For p > 5, we have
E[R; —1]* < #p_z. (20)
“T+1/p)

Proof
By (19), we can write

ra+3/p)—-2r(1+2/p)+ra+1/p)

E|R; — 1> =ER? —2ER, + 1=
o P =R T+ 1/p)

The function

h() E (14 3x) =21 +2x) + T + x)
satisfies 7(0) = h’(0) = 0, so for every 0 < x < é, by Taylor’s expansion with
Lagrange’s remainder, there exists 0 < 6 < x such that

h(x) = %x%”(e) = %x2(9F”(1 +30) —8I'(1 4 260) + I'"(1 + 6)). (21)

LEMMA 13
The function T is decreasing on (0, %).

Taking this for granted, I'”(1 + 30) < T'”(1 4 20) and I'"(s) < I'"(1) = y2 +
3’? <2fors e (1,3) (as usual y = 0.577.. is the Euler—Mascheroni constant, and this
calculation of T'”/(1) can be done with the aid of the polygamma function; see, for
instance, 6.4.2 in the standard reference [1]). Equation (21) thus gives h(x) < 2x2.
This applied to x = % leads to (20). O

Proof of Lemma 13
Note that clearly T® > 0, so T'® increases, so for s € (0, %), we have T® (s) <
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re (%) = —0.33.. (to obtain such numerical values, we refer again to [1]). Therefore,
I'” is decreasing on (0, %). O

To deal with hyperplanes far from the extremizer, we will crucially rely on the
equicontinuity of the section functions at p = oo which we will now verify. For p €
[1, co] we introduce the normalized section function,

def VOI(B’;’ n aJ_)

A, @) 22
,P(a VOI(BZ_I) ( )

where a is a unit vector in R”. Additionally, observe that

vol(B?, Nat)

_ 1
Vol(BLT) =vol(Q, Na™),

An,oo(a) =

where Q, = [—%, %]” is the unit-volume cube in R”. Recall that from Proposition 6,
1 " -1
A (@) = r(l + ;)E}Za, Rjg,-‘ .
j=1

LEMMA 14
Let p > 5. For every unit vector a in R, we have

5
\An,p(a) - An,oo(a)| = ; (23)

Proof
First recall that for an arbitrary nonzero vector x in R”,

N(x) dgivol(Q';'m i (E‘;xjgj“l)—l

is a norm by Busemann’s theorem (see [5]). In particular, using 1 < vol(Q, N xJ-) <
V2, we get
ING) =NO)I _ N —y)
NEN()  — N)N(y)
_ [x =] vol@u N xHvol@, Ny x|
Ixllyl  vol(QuN(x—=y)t) 7 Ix[lyl’

INO)™ =N~ =

where x, y € R" \ {0}. Evoking (11), we can write

An,p(a)

n
-1
P —EREe|Y ajR;&;| =EgN@R)™!
F(1+1/p) R §‘j=1al ]g]‘ R (a ) s
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where we use the ad hoc notation aR for the vector (a; Ry,...,a,R,) in R". From
the previous bound on 1/N, we thus obtain

An,p(a)

_ -1 _ -1
m—Am(a))_}EN(aR) N(a)™"|

< la —aR)]| =2IE|a—aR|
la|-|aR| laR|

By the Cauchy—Schwarz inequality,

la —aR|

E
|aR]|

< VE|la —aR|>\/E|aR|2

- |E iai(zej —1)2 E(Xn:a§R§)_l.
j=1 j=1

The first factor on the right-hand side is equal to || R; — 1||,. By the convexity of the
1

function s 5

E(Xn: asz)_l < Xn:aZ]ER_Z wId=p
j=1 n = Y r+3)

Combining all the above yields

|An,p(@) =T (1 4+ 1/p)An.co(@)| 2| Ry = 12/T(1 = 1/p)T (1 + 1/ p).

Using Lemma 12, the right-hand side gets upper-bounded by

2, 2T 3T
2\,/1“(1+71—/P)p2\/F(1—1/P)1“(1+1/p)< ; ==

using p > 2. Consequently,

‘An,p(a) - An,oo(a)‘ = 2\/574\/?” + (1 — F(l + l/p))A,,,oo(a)

)

p p p

because 1 — T'(1 + x) < —I'"(1)x = yx for 0 < x < 1, by convexity of I" on (0, 00).
d
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3.2. Proof of Theorem |
Following notation (22), our goal is to prove that for every p > py and every unit
vector a in R”, we have

el +€2>

NG

Ap,pla) < An,p( (24)

where the right-hand side is explicitly given by

)l DR

e; +en 1 1_1
=A2, = :22 D,
(5 75) 15 21,

Our proof will proceed by induction on 7. It is directly checked that the theorem holds
when n =2, as A, ,(a) = |la|/," for every unit vector a in R?. We therefore assume
that n > 3 and a; > -+ > a, > 0. Our analysis will differ depending on the distance
of a to the extremizer. Let

def

8(a) < |a =2—2(a1 + a2). (25)

el+62‘2

V2

3.2.1. The vector a is far from the extremizer

Suppose that m > % with ¢ = 10°. Then, by the equicontinuity proved in
Lemma 14 and the stability of Ball’s inequality from Theorem 9 with constant
Koo = 6+ 1072, we obtain

5 5 Kool — 5
An,p(a)f_+An,oo(a)§_+\/§_'<oov8(a)f\/__L-

p p p

Since
2log2 + 5 2log2 + 5
szog +5 _ Y2log2+ 10° = 0.99%...- 10°,
Koo 6

we have

N KooC — 5 S\/5(1_105;2) 5\/56_% :2%_%’
p p

which finishes the proof in this case (without using the inductive hypothesis).

3.2.2. The vector a is close to the extremizer
Now, suppose that

Vo(a) < %
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where ¢ = 10°. This in particular implies that (as we already assume that a, <ay)

1 C_ 1 n c
———=<mm<a<—+—.
V2 p V2P
Let us also notice for further use that a, < Lz since 2a2 < al + a% < 1. We shall
consider p > Lc + 2 for a large numerical constant L. With hindsight, we put L =
7.9-10°. Observe that our goal (24) is equivalent to the inequality

n
-1
E‘ZajRjig'j’ pr (26)
j=1
with
1 1
R R -1 227 p
Cp=E| 161+ 222‘ - ’ @7)

V2 CT+1/p)

which we will now prove by induction on n. We record for future estimates that when
p > Lc + 2, we have

1.41 <C, < 1.42, (28)

since 2197° > 2V/PT(1 + 1/p) > (1 + 1079).
Consider the random vectors X = a1 R1&1 +ax Rz and Y = Zj>2 a;R;E; in
R3. Since X and Y are independent and rotationally invariant, the representation

n —
E’ZajRjEj‘ "= Emin{) X[y
i=1

holds (see, e.g., [7, Lemma 6.6]). By the inductive hypothesis,

E’szajR 51‘ - Cp

ElY|™ = ——
\/1—a1—a2 1—a?—a3 1—a?—a3

’

and hence (by the concavity and monotonicity of the function ¢ — min{| X |~1,¢}), we
get

n —
E[Y aiR;8,| = Emin{| X[y} <Emin{[X|"La7), (29)
j=1

where we set

oczc— l—aj—a;. (30)
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Observe that
Emin{|X|~" a7} = E[X|™ —E( X' —a™"), 3D
and
1 R R -1
x| = E‘Cll 181 + a2 2%2‘
Vai+al Vai+a3
1 1 1
Y (32)

(@1.42) - T(1+1/p)
@+ a2 ||m||pr(1+1/p) (a1, a2)[, (1 +1/p)

In view of the inductive step (29) and the identities (27), (31), and (32), the desired
inequality (26) is a consequence of the following proposition.

PROPOSITION 15
Under the assumptions and notation above, for p > 10'> we have

N
=

2
-1 -1
B(X1 ~a ), 2 & (o~ ) &)

Proof
If the right-hand side is nonpositive, then we are done. Otherwise,

|@1.a2)], <2772

Since |a; — %| < %, Lemma 10 gives

lay —az| <3.65 /pc_z,/l—af—a%

k (28) 5.25
@365 C_2Cpoc <2
p VL

To simplify, note that ||(a1,a2)||, > 2"/7712|/(a1,a2)||2, so

(34)

27573 1 1 —(a? + a3) Cﬁaz

_15—— = 5
”(al’aZ)”P ||(a1,612)||2 a%+a%(1+ a%_i_a%) 1.95

where we used that

a%+a§>2a§>2(i—5)2>1—2 S1-Y25097  (35)
AV L




RESILIENCE OF CUBE SLICING IN £, 3393

and /u(1 + /u) > 1.95 for u > 0.97. Since 1 o < 1149253 %, (33) will follow from

o’ (36)

N W

E(IX|™'—a™"), =

Consider the event

1
gL {Rl <1L,|R; — Rz| <a,|a1§1 + az82| < ZOL}-

On &, we have

|X|=la1R1&1 + a2 Rz | < a1 R1&1 + a2 R1&2| + |az R2§2 — az R1&;|
= Rila1§1 + a282| + az|R2 — Ry|
1 1 24
<04 —a< —a,

4 "2 25

SO

E(IX|™ - ]P’(S)

-1

@), 2 24
1

= 5 P{RI S LIR = Ro| <a)B{lait) +azka| < gaf. 37)

For the second probability in (37), observe that the random variable |a1&; +

a>£,|? has the same distribution as a% + a% + 2a a,U, with U being uniform on
[—1, 1]. Therefore,

P{lar&s +astol < %a} =P{U < M}.

201&2
Note that the condition
2 16 — 2,2
¥ Momaimay (38)
Zalaz

is equivalent to
a
|a1 —a2| < Z <ap +as.

The left inequality holds thanks to (34), provided that L > (5.25- 4)2 = 441, whereas
the right inequality holds since a + a; > 2as > /2 — 2c >2-2 + > 1.2 which is
greater than § since

(28) 2 2
a<_,/1—2a§ 141\/ 7—;) 141/f— ﬁ' (39)
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As (38) holds, we have

}:1<M+1)

1
P{|a121 +asty| < —a

4 2 2a1a2
_ a®/16 — (a) — ay)?
o 401612 ’

Using (34) and the estimate 4aja, < 2(a? + a3) <2, we get

1 —441L7"
> —a".

32 (40)

1
P{|a1§1 + a2§2| < ZOL}
For the other probability in (37), it is convenient to place a uniform function of con-
stant mass under the density of R;, which is doable due to the following technical
lemma.

LEMMA 16
Fix p € (1,00), and let g, : Ry — R be the density of Ry. Then we have

P
Vx>0, gplx)=> Zl[l—ﬁ,l](x)' 41

Proof

Recall from Proposition 6 that g, (x) = pI'(1 + 1/p)"'xPe™*" for x > 0. Since gp
is log-concave, it suffices to check the inequality at the endpoints x = 1 — ﬁ and
x = 1. For the first endpoint, we have

1 D 1\? _q-Ly p _,-1/2_ D
- )= (1- 2" 5 P e L
g”( 2p) T +1/p) 2p) ¢ TR 74

using that (1 — ﬁ)" <e 12 and (1— ﬁ)p > % Moreover, for the second endpoint,

_ P P
&= ravi,) 7 1 =

Finishing the proof of Proposition 15
We estimate the first probability in (37) using Lemma 16,

p 2
}(_> 1[1—$,1](x)1[1_$,1](y) dxdy

P{Rl < 1,|R1 —R2| <O£}
4
1

{x=L]x—y|<a
L ifa> =

=64 2p” 42)
- LeTe (
{%(;—0‘) ifa <5,
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where the equality is an elementary computation. In the case o < ﬁ, we further have
5 —a> ﬁ, so the probability is further bounded from below by £,
use.

oIfa> %, then inequalities (37), (40), and (42) yield the lower bound

which we will

1 1 1—441L71 1—441L71 1
-1 -1 L 2 _ I\ 2
BIXT =)y 2 00 e 2 ( 2143 a)“
(91— 44117 )
> Gz V)

Since L = 7.9-10°, this gives the desired bound (36) by 2.
elfa< ﬁ, then inequalities (37), (40), and (42) yield the lower bound

1 pa 1—441L7" ,  p(1—441L71) ,

Z—~—~70L =

T 7 240 32 32 213.3
(L—441)c ,

213.3

]E(|X|_1 — oc_l)

This is at least %az for the chosen L, which completes the proof of (36) for p > po,
where

po=Lc+2<8-10°-10° < 10'5. O

4. Projections
The proof here parallels the one from Section 3. For the reader’s convenience, we
include all the details (which are in fact easier in several places).

4.1. Ancillary results

We start by quantifying how close the distribution of the X; from (14) is to that of a
Rademacher variable (in the Wasserstein-2 distance). Explicit computations using the
density show that for every s > —q%l, the sth moment of | X1 | is

F 4 i)
E|X,|° = : . 43)
I'(;)

LEMMA 17
For 1 < q <2, we have

E|X; —sgn(X))|* < 9(1 - 3)2. (44)
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Proof
Observe that

E|X, —sgn(X))|* =EX? - 2B X, |+ 1 £ re- l/qr)(l—/z;r I'(1/q)

Since T is decreasing on (0, 1), I'(1/¢g) = I'(1) = 1. Using Taylor’s expansion with

Lagrange’s remainder, for every 0 < x < 1 there exists 0 < 6 < x such that

M) ETA—x)+T(1+x)—2= %xZ(r"a —60) + (1 496)).

Thus for 0 < x < 1/2, we have
1, 1, 2
h(x) < Ex (”F””Loo(%,l) + ”FN”LOO(I,%)) = Ex (I‘”(I/Z) + 1"”(1)) < 9x

since I'” decreases on (%, %), by Lemma 13. Applying thisto x =1 — é, we indeed
obtain

E’Xl—sgn(X1)|2§h<1—$) 59(1—3)2. O

From this estimate, we can easily deduce the equicontinuity of the normalized
projection functions, which we state directly in probabilistic terms in view of Propo-
sition 7.

LEMMA 18
Let 1 <q <2, X1,X5,... beiid. random variables from (14), and let ¢;,¢5, ... be
i.i.d. Rademacher random variables. For every unit vector a in R, we have

B3-S <3(1-2).
j=1 Jj=1

q

Proof
Since ¢; has the same distribution as sgn(X ), we have

n n
‘EJE:anj‘—szjajeﬁ‘
j=1 j=1

[ 3%~ E[ 34 senty)|
j=1 =1

< E)iaj (X, - sgn(Xj))‘ < E)Xn:aj (X; - Sgn(Xj))}2
j=1 =1
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2
s

= JE[X; —sgn(x)
and Lemma 17 finishes the proof. U
4.2. Proof of Theorem 3

By virtue of (14), our goal is to show that for every 1 < g < g¢ and every unit vector
a in R", we have

= (46)

n
X1+ X>
IE‘ a-X~‘zE‘—
; iX; 5

For later use, we note that thanks to (14), for every vector a in R?,

vol(Proj, . B2)
Ela1 X1 + a2 Xa| = |a| ——=——L

o1 /g)
__lal ! _ ez
=ta/m 20 e e =ray @

In particular, we have

= . (48)
I'(1/9)

In view of the above explicit expression, inequality (46) clearly holds for n = 2. We

therefore assume thatn > 3, a; > --- > a, > 0, and proceed by induction on n. Recall

the definition of the deficit parameter used earlier,

X1 + le 2374

=2- «/5((11 + ay).

8(a) = ‘a

e1 +€2‘2

V2

4.2.1. The vector a is far from the extremizer
Here we consider the case /8(a) > (1 — é)c with numerical constant ¢ > 0. With
hindsight, we set

5-V2
8

Using the equicontinuity from Lemma 18 and the robust version of Szarek’s inequal-
ity from Theorem 8, we obtain

B> 0| 2 B[ aes| -3(1- 1)z v vB@-3(1- 1)
j=1 ji=1

c= -10°.

z

+ (ch—3)(1 — é)

&l =
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Note that by convexity, 2* < 1 +2(v/2— 1)x for 0 < x < 1, which with x =1 — ;
gives

Q=

ELS AU NSNS NI YOO
w=Fag S =5 <50 fz)(l q).

Since

_5=V2_5-V2 s

K1 8

we get the desired bound (46) (nota bene, without the inductive argument).

4.2.2. The vector a is close to the extremizer
It is left to consider the case when

\/8(—a)< (l—é)c,

where ¢ = 2= ‘/— -10°, as in the previous case. In particular, we also have that
! (1 1)< <ay <y (1 1) (49)
— —c|l——)<ay<a;<—+c(1—-).
V2 q V2 q
Letting p = , we shall assume that p is large relative to ¢, say p > Lc + 2 with a

positive numerlcal constant L, with hindsight set to be
L = 8294400.
In particular, when % =1- é <1073,

0.7 <cq <0.71, (50)

. 2-1/2 2l/2=1/q —1/2+107°
since 0.7 < w1 =5 < *rqzp <2 <0.71.

To run an inductive argument in order to prove (46), we consider the random vari-
ables X = a1 X1 +a,X,andY =), ,a;X,. By the independence and symmetry
of Xand Y,

j>2

n
E(Zajxj) =E|X + Y| =Emax{|X],|¥|}.
j=1

Using the inductive hypothesis,

ElY|=4/1—a%—a3

2.
ZCq T—a3

| 222 % |
az
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hence (by the convexity of the nondecreasing function ¢ +— max{|X|,7}), we get

E‘Xn:anj‘ =Emax{|X|,|Y|} 2Emax{|X|,0L}, (51)
j=1

where we set
a e \J1—a?—a2. (52)

Observe that
Emax{|X|,a} =E|X| 4+ E(a—|X]), (53)

and, by (47),
E|X —%“” ¢q202 (@) o . (54)

In view of the inductive step (51) and the identities (53) and (54), the desired inequal-
ity (46) is a consequence of the following proposition.

PROPOSITION 19
Under the assumptions and notation above, for 1 < g <1+ 10712 we have

E(a—|X|)+3(1—25—%||(a1,a2)||fj)cq. (55)

Proof
If the right-hand side is nonpositive, then we are done. Otherwise,

|(@1.a2)|| o <2577,
qg—1

Letting p = _Z7 and recalling (49), we see that we can apply Lemma 10 to conclude

that
3.65 5.5
|a1—a2|<365/ Sy1-at- 22 / 2 0‘. (56)

To simplify the right-hand side of (55), we write

1 —(a? + a3)

Cgq——F—
1+ \/a? + a3

2

a1 =24 @] o) = cal1 = o)) =

o? (50) o

w

—~
” W
LS}
-

2
< < —a7,
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as we have a? + a3 > 0.97 (see (35)). Therefore, it suffices to show that
> 32
E(a—[X]), > i (57)

Since the X ; are symmetric random variables, each X ; has the same distribution
as £;|X |, for independent random signs ¢, also independent of all the other random
variables. We consider the event

g &f 1
&£ {1X1] < L[IX1| - Xl < Jarer +azes] < 5o,
on which we have
lare1|X1] + aze2| Xa|| < | X1l|are1 + aze2| + az2||X2| — [ X1 ]|
1 1 24

< -0+ —a<—q,

4 "2 25

and thus, since X has the same distribution as aje1|X1| + ae2|X2|, we obtain the
lower bound

o
E(a—1X]), = 5-P(6)

1
|X2|| < oc}IP’{lalsl +azes| < Zoc}. (58)

o
=—P

TR

The second probability in (58) is clearly at least X 5 provided that

o
ay—daz| < —.
| 1 2| 4

For this to hold, it suffices that L > (5.25 - 4)? = 441, by virtue of (56). For the first
probability, analogously to Lemma 16, we will place a constant function under the
density f; of | X1|.

LEMMA 20
Fix q € (1, %), and let fz : Ry — Ry be the density of | X1|. Then we have

1
Ja(x) = 4( D [1 1](x) x> 0. (59)
Proof
Recall from Proposition 7 that
1 2=¢ %
fot) = ——————xa e x 0.

(¢— DL+ 1)
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The proof is almost identical to that of Lemma 16. It sufﬁces to check that the inequal-
1tyholdsf0rx—1—— and x = 1. Since (1——)(1 T o2 ‘{qzl 4>,

for1<q<5,(1—%)q*1 <e 3 <e é,andF(1+E)<1,weobtain

fq(l - u) > le“’_% >t

2 (g-1D2 4(q-1)
Moreover,
| 1 1
fi()=—— 71> > . O
T @-pra+hT Te@-17 4@-1
Finishing the proof of Proposition 19
As earlier, Lemma 20 gives
P{|X1| < 1.||X1] — | X2|| <o}
/] () ety @1t () dxd
z —a=1 (X)L _g=1 1(y)dxdy
(r=lir—yl<ay V(g — 1)/ O I=5R
1 q—1
= a> L=,
> {64 . 2 (60)
Be-n *="73

where the last inequality follows from (42) with p replaced by q+1
oIfo> q—;l, then inequalities (58) and (60) yield the lower bound

a 1 1_ o
25 64 2 3200

(52) > 1 c\2 c 1.2
o< cgy/1—2a2 2071 1-2(— - =) <071 /2725 < —=,
V2 op p VL

and L > 8294400 we obtain the desired bound (57).
o If o < 4=, then inequalities (58) and (60) give

E(oc—|X|) >

Since

o o 1 a?
(0L—|X|) - =
=25 32(q—1) 2 1600(g—1)

As we assume that 1 — é < L 15 this is at least the desired 3 OL by a large margin
for L = 8294400. The proof is complete for every 1 < g < qo, where

Lc+2

>1+10712, O
Le+1 +

qdo =



3402 ESKENAZIS, NAYAR, and TKOCZ

5. Stability estimates with explicit constants

The proofs of both Theorems 8 and 9 presented here follow the same strategy taken
from [7], which we shall now outline. For a unit vector a in R”, consider again the
deficit

el +ep|?

ﬁ | :2—«/§(a1+a2).

Let a be a unit vector, and without loss of generality assume that a; > --- > a, > 0.
The approach leading to the stability of the inequalities of Szarek and Ball differs

depending on whether the vector a is close to or far from the extremizer e‘jfz, as

8(a) = ‘a -

measured by 8(a).

Case 1. When a is close to
Szarek and Ball by reapplying them only to a portion of the vector a, thus exhibiting
their self-improving feature. The probabilistic formulas are crucial for this part.

e1ten

, we quantitatively sharpen the inequalities of

When a is far from the extremizer, three things can happen.

Case 2. If the largest magnitude of the coordinates of a is below 7, then the
second largest magnitude has to drop well below % on account of §(a) being large
and the classical Fourier-analytic approach of Haagerup [12] and Ball [2] allows us
to track the deficit.

Case 3. If the largest magnitude is barely above %, then a Lipschitz property
of the section and projection functions allows us to reduce this case to the one from
Case 2.

Case 4. If the largest magnitude is bounded below away from f’
convexity/projection argument gives a strict inequality with a margin.

then an easy
5.1. Stability of Szarek’s inequality
We first deal with the sharp Khinchin inequality of [31].

Case 1
We begin with the case that a is near the extremizer.

LEMMA 21
Let 0 < 8y < , and take co = 7(,/ %(4 —80) — +/80) > 0. For every unit vector a
in R™ with al > .- >a, >0 satisfying 8(a) < 8¢y, we have
- 1
E)Zajsj‘z——i-cm/éﬂ(a). (61)
j=1 V2
Proof

We will assume without loss of generality that n > 3 and a? + a3 < 1 (the remaining
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cases can be obtained by taking a limit). Let

def 1 2 2
0=—/1—ay—a5.

/2

Arguing as in the induction of Section 4 and using Jensen’s and Szarek’s inequalities,
we get

n
E‘Zajsj) = Emax{|a181 + azées|,
j=1

n
> ajel)
j=3

n
ZEmax{|a181 +a282|,]E‘ E ajej‘} ZEmax{|a181 + ases
Jj=3

)

1 1
= Emax{al +a,,0} + Emax{al —as,0}

ap +a 1\/1 4
> — (a1 —ar)2 + —02
> > + 2 S(al az)? + 5

L2, 1 [T s
=5 +2«/§ 5(4 8(a)) v/8(a)

1 1

i
=2+ ﬁ( S(4-8(@) - V@) V5@

> % 1 co/5(@).

whenever §(a) < 8. O

5

Case 2
We assume that a is far from the extremizer and that a; is at most % A key step in
Haagerup’s slick Fourier-analytic proof of Szarek’s inequality from [12] is the bound

E[Y ajei| =Y a2 F(ap?), 62)

for every unit vector a in R”, where the function F : (0, 00) — R is given by
+1
2 INEEY
Vs T(3)
Haagerup showed that the function F(s) is increasing on (0, co), which will be crucial
for us.

F(s)= s> 0.
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LEMMA 22
Let 0 < 8¢ < 2. For every unit vector a in R" withay > - n > 0 satisfying 8(a) >
8o and a1 < «}E we have

n
1
B ajes| = 7z +er/B@, (63)
j=1
with ¢i = ;W(F(m) — F(2)).
Proof
We have

air+ax 2 —38(a) - 2—38p
-2 22 T 22
which shows that a;z > Iy, for all j > 2, with [y =
using the monotonicity of F, we therefore have

az

o 8 a2 > 2. Employing (62) and

E’Za]e]‘ > AFQ)+ Y a3 F(ly) = 2 FQ2) + (1—a}) F(lo)

j=2

= F(lo) + a;(F(2) — F(ly)) = F(lo) + = (F(Z) F(lp))

1 1 1
=—(FQ)+ F(lp)) =—=+=(F(lo)— FQ2
2( ) + F(lo)) ﬁ+2( (lo) = F(2)),
since F(2) = % The conclusion follows since 8(a) < 2. O
Case 3

We assume that a is far from the extremizer, but a; is barely larger than %

LEMMA 23

Letyog<1-— % and 2, /Yo < 8¢ < 2. For every unit vector a in R" with coordinates

ay>-->ay, Zosa[isfying «/_ <a; < «/— + Yo and S(Cl) > 80, we have
1
E‘Zajsj‘ > 5 eV, (64)
Jj=1 2

with
¢ = z\lfz(F((z +2\/i_0_80)2) _ F(z)) 80 —2./70

—/2v0 + V3. (65)
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Proof
We can assume that ¢, > 0 since otherwise it is enough to observe that

n n
E)Zajej‘zE‘al—f—Zajsj‘ ‘a1+2a,E£,)—|a1 .
j=1 j=2 \/—

Consider the unit vector

1 1
P (Lot bai - Sanan)

Then by the triangle inequality, we obtain the following Lipschitz property:
n n n
E‘Zaﬁ?j‘ > E‘Zbi?i‘ —E‘Z(aj _bj)gj‘
j=1 j=1 j=1
n n 201/2 n
ZE‘ZbJSj‘-(E’Z(aj—bj)Sj’ ) =‘ij8j)—|a—b|.
j=1 j=1 j=1

Note that b1 > b, and since b, > a,, also by > b3 > --- > b,,. Moreover,

21
1 ai—s5
1
a?+a2—-—ay= 2
1 a3
2, 2

1
aitas;—35 +az

1
<./a —Esx/fvwvo V2vo; (66)

thus
1\2 1 2
la—b|* = (a1 _ﬁ) + (\/af—i—a%—i—az) <v& + 2yo.
Observe that, since a; > we have

f’

8(b)=2—«/§(%2+ a%—l—a%—%)

1 / 1
:8(61)—\/5(5"— a%—i—a%—i—al—az)
1 00
zSo—ﬁ(waf—i—a%—E—az) (;)80—24/

Thus, applying Lemma 22 to the vector b and using the above estimates, we get
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]E‘;aja" = 2 + 2\1/5(F((2+2\/i—o—80)2) —F(2))\/@

=5t z%(F(mwi——so)z) ~F@)yho -2

Finally, as a; > f’ we have 8(a) = 2—+/2(ay +a2) < 1 —+/2a, < 1, and the proof
is complete. O

Case 4
Finally, there is also a simple bound for the case that a; is much larger than %

LEMMA 24
Let yg > 0. For every unit vector a in R" with a; > f ~+ Yo, we have

- 1
E ajej| > —+vyové(a). (67)
ez

Proof
By Jensen’s inequality and the fact that §(a) <1,

E‘Za 5/‘2 7 +v0/5(a). U

w

Constants

Combining Lemmas 21, 22, 23, and 24 with §g = 0.66 (almost the maximal value
allowed in Lemma 21) and yo = 8 - 107>, we conclude that for all unit vectors a in
R",

n
1
E ajej| > —+k1v/8(a)

with
K1 > min{cg, c1,¢2,V0}

>min{1.7-1073,1.6-1072,5.1-1074,8-107°} =8 - 107>,

This completes the proof of Theorem 8.
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5.2. Stability of Ball’s inequality

We now turn to the study of Ball’s inequality (1). Throughout this section we denote
by Q, = —5, 5]" the cube of unit volume.

Case 1

We begin with the case that a is near the extremizer.

LEMMA 25
For every n > 2 and every unit vector a in R"* with a; > --- > a, > 0 satisfying
8(a) < %, we have

vol(Q, Nat) < V2 —¢1/5(a). (68)

where ¢c; = 0.12.

Proof

We can assume that n > 3 and a% + a% < 1 (the missing cases follow by taking
a limit). Leveraging a self-improving feature of Ball’s inequality, the proof of [7,
Lemma 6.7] yields

8(2—8))*1
5 ,
-2 (-s- LTI

where 8 = 8(a). Denoting the maximum on the right-hand side by M (8), we can take

vol(Q, Nat) < x/imax{(l -8+

— M@
c1 = inf \/_ ( )
0<8<1/4 Jg
Direct numerical calculations show that ¢; > 0.12. O

Cases 2 and 3
We assume that a is far from the extremizer, but a; is not much larger than %

LEMMA 26
For every n > 2 and every unit vector a in R* with a; > --- > a, > 0 satisfying
8(a) > % and ay < f + vo, we have

vol(Q, N al) <V2—c, (69)

where yo = 3.2-107> and ¢, = 0.0002.
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Proof
Here the proof relies on Fourier-analytic arguments. For the special function

N

dr,

sint
t

2 o0
v =5 [

Ball showed in [2] that W(s) < W(2) = /2, for every s > 2. We need a robust ver-
sion of this estimate. Using the Nazarov—Podkorytov lemma (see [29]), Konig and
Koldobsky [23] proved that

9 6 3\1/2
Vs> =, W(s)<W(oo)=,/—=~2(= 70
5210 W) = W) \/; (w) (70)
(i.e., 6 = (%)1/2 in the notation of [7, Lemma 6.8]). The argument now splits into
two cases.
o Assume that a; < % Provided that

def 8@\=2_9

= _— > —

s(@)=2 (1 2 ) -y

which holds as long as 8§(a) > 2(1— #) = 0.11.., with the aid of (70), the arguments
from [7, Lemma 6.8] give the explicit estimate

vol(Q, Nat) < (%)l/ﬂ/i =V2—V2(1=3/WY4.
Therefore, we can take any
c2 <V2(1=3/P'*) =0.016....

e Assume that % <ap < % + Yo. Using Busemann’s theorem (see [5]), this
case is reduced in [7, Lemma 6.8] to the previous range, which yields the bound

vol(Q, Nat) < V2-— ﬁmin{cl \ % — Vo, 1 — (3/1/f)1/4}
+24/v§ + 2vo.

where ¢, is the constant from Lemma 25. With the choice of parameters yo = 3.2 -
1075 and ¢; = 0.12, this estimate yields vol(Q, N a™) < /2 — 0.00021.. and thus
completes the proof. O

Case 4
Finally, there is also a simple bound for the case that a; is much larger than %
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LEMMA 27
For every n > 2 and every unit vector a in R" satisfying a; > f ~+ vo, we have

2vo

1Q, Nat <f—
vol( a—) Yox/—

5(a). 1)
where yo =3.2-107>.

Proof
By Ball’s geometric projection argument (see [2]; see also [29]), we have vol(Q, N
at) < <, Sincea; > ﬁ + vo and hence 8(a) < 1, we deduce that

7_f «/_(1—;)

ol(Q, Na~) <
volt = 1 +v0v2

L
5T
<V2- 8(a).

VO\/_

Constants
Combining Lemmas 25, 26, and 27, and using that always 8(a) < 2, we conclude that
for all unit vectors a in R”, we have the inequality

vol(Q, Nat) < V2 — koo /8(a)
with

2yo

V2 14 y0v2

This completes the proof of Theorem 9.

Koo >m1n{cl, }>6-10_5.

Remark 28

We would like to stress that the arguments of this paper have not been optimized to
give the best possible constants py and go in Theorems 1 and 3. We instead chose to
be fairly generous in various parts of the proof for the sake of clarity of the exposition.
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