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Abstract

Morgan and Mclver’s weakest pre-expectation framework is one of the most well-
established methods for deductive verification of probabilistic programs. Roughly,
the idea is to generalize binary state assertions to real-valued expectations, which
can measure expected values of probabilistic program quantities. While loop-free
programs can be analyzed by mechanically transforming expectations, verifying
loops usually requires finding an invariant expectation, a difficult task.

We propose a new view of invariant expectation synthesis as a regression prob-
lem: given an input state, predict the average value of the post-expectation in
the output distribution. Guided by this perspective, we develop the first data-
driven invariant synthesis method for probabilistic programs. Unlike prior work
on probabilistic invariant inference, our approach can learn piecewise continuous
invariants without relying on template expectations. We also develop a data-
driven approach to learn sub-invariants from data, which can be used to upper-
or lower-bound expected values. We implement our approaches and demonstrate
their effectiveness on a variety of benchmarks from the probabilistic programming
literature.

Keywords: Probabilistic programs, Data-driven invariant learning, Weakest
pre-expectations



1 Introduction

Probabilistic programs are imperative programs augmented with a sampling command
that allows programs to draw from probability distributions. Probabilistic programs
provide a natural way to express randomized computations. While the mathematical
semantics of such programs is fairly well-understood [1], verification methods remain
an active area of research. Existing automated techniques are either limited to specific
properties (e.g., [2-5]), or target simpler computational models [6-8].

Reasoning about Expectations.

One of the earliest methods for reasoning about probabilistic programs is through
expectations. Originally proposed by Kozen [9], expectations generalize standard,
binary assertions to quantitative, real-valued functions on program states. Morgan
and Mclver further developed this idea into a powerful framework for reasoning about
probabilistic imperative programs, called the weakest pre-expectation calculus [10, 11].

Concretely, Morgan and Mclver defined an operator called the weakest pre-
expectation (wpe), which takes an expectation FE and a program P and produces an
expectation E’ such that E’(0) is the expected value of E in the output distribution
[P]o- In this way, the wpe operator can be viewed as a generalization of Dijkstra’s
weakest pre-conditions calculus [12] to probabilistic programs. For verification pur-
poses, the wpe operator has two key strengths. First, it enables reasoning about
probabilities and expected values. Second, when P is a loop-free program, it is pos-
sible to transform wpe(P, F) into a form that does not mention the program P via
simple, mechanical manipulations, essentially analyzing the effect of the program on
the expectation through syntactically transforming F.

However, there is a caveat: the wpe of a loop is defined as a least fixed point, and it
is generally difficult to simplify this quantity into a more tractable form. Fortunately,
the wpe operator satisfies a loop rule that simplifies reasoning about loops: if we can
find an expectation I satisfying an invariant condition and some additional condi-
tions, then we can easily bound the wpe of a loop. Checking the invariant condition
involves analyzing just the body of the loop, rather than the entire loop. Thus, finding
invariants is an important obstacle towards automated reasoning about probabilistic
programs.

Discovering Invariants.

Two prior works have considered how to automatically infer invariant expectations for
probabilistic loops. The first is PRINSYS [13]. Using a template with one hole, PRIN-
SYs produces a first-order logical formula describing possible substitutions satisfying
the invariant condition. While effective for their benchmark programs, the method’s
reliance on templates is limiting; furthermore, the user must manually solve a system
of logical formulas to find the invariant.

The second work, by Chen et al. [14], focuses on inferring polynomial invariants.
They apply Lagrange interpolation theorem to find a polynomial invariant. However,
many invariants are not polynomials: for instance, an invariant may combine two
polynomials piecewise by branching on a Boolean condition.



Our Approach: Invariant Learning.

We take a different approach inspired by data-driven invariant learning for “regular”
programs [15, 16]. In these methods, an invariant is seen as a classifier between a set
of “good” states that satisfy the specification, and a set of “bad” states that violate
the specification. For training data, the program is profiled to collect execution states.
Then, the program is executed with a set of inputs to generate the training data.
The invariant is synthesized using machine learning algorithms to find a classifier
between the “good” and the “bad” states”. Data-driven techniques reduce the reliance
on templates, and can treat the program as a black box— the learner only needs to
execute the program to gather input and output data. But to extend the data-driven
method to the probabilistic setting, there exist significant challenges:

e Quantitative invariants. While the logic of expectations resembles the logic of
standard assertions, an important difference is that expectations are quantitative:
they map program states to real numbers, not a binary yes/no. While standard
invariant learning is a classification task (i.e., predicting a binary label given a
program state), our probabilistic invariant learning is closer to a regression task
(i.e., predicting a number given a program state).

® Stochastic data. Standard invariant learning assumes the program behaves like
a function: a given input state always leads to the same output state. In contrast,
a probabilistic program takes an input state to a distribution over outputs. Since
we are only able to observe a single draw from the output distribution each
time we run the program, execution traces in our setting are inherently noisy.
Accordingly, we cannot hope to learn an invariant that fits the observed data
perfectly, even if the program has an invariant—our learner must be robust to
noisy training data.

® Complex learning objective. To fit a probabilistic invariant to data, the logical
constraints defining an invariant must be converted into a regression problem with
a loss function suitable for standard machine learning algorithms and models.
While typical regression problems relate the unknown quantity to be learned to
known data, the conditions defining invariants are somehow self-referential: they
describe how an unknown invariant must be related to itself. This feature makes
casting invariant learning as machine learning a difficult task.

® Quality of examples. If a candidate invariants fails the verification check, the
generated counterexamples are added back to the data-set for learning a bet-
ter invariant. However, if the generated counterexamples are “close” to valid
examples, the generated loss may not be enough to move the learning to a
new invariant, thereby stalling progress. To enable progress, we pose the search
for counterexamples as an optimization problem to search for the worst-case
counterexamples that would generate appreciable loss.

Outline.

After covering preliminaries (Section 2) and stating our problem (Section 3), we
present our contributions.

e A general method called EXIST for learning invariants for almost surely termi-

nating probabilistic programs (Section 4). EXIST executes the program multiple



times on a set of input states, and then uses machine learning algorithms to learn
models encoding possible invariants. A CEGIS-like loop is used to iteratively
expand the dataset after encountering incorrect candidate invariants.

e Concrete instantiations of EXIST tailored for handling two problems: learning
ezact invariants (Section 5), and learning sub-invariants (Section 6). Our method
for exact invariants learns a model tree [17], a generalization of binary decision
trees to regression. The constraints for sub-invariants are more difficult to encode
as a regression problem, and our method learns a neural model tree [18] with a
custom loss function. While the models differ, both algorithms leverage off-the-
shelf learning algorithms.

¢ An implementation of EXIST and a thorough evaluation on a large set of bench-
marks (Section 7). Our tool can learn invariants and sub-invariants for examples
considered in prior work, and more difficult versions that are beyond the reach
of prior work.

We discuss related work in Section 8.

2 Preliminaries

Probabilistic Programs.

We will consider programs written in pWhile, a basic probabilistic imperative
language with the following grammar:

P:=skip|z<e|xz & d|P;P|if e then P else P | while e : P

Above, x ranges over a countable set of variables X', e is an expression, and d is a
distribution expression. Expressions are interpreted in program states o : X — V),
which map variables to a set of values V (e.g., booleans, integers). The semantics of
probabilistic programs is defined in terms of distributions. To avoid measure-theoretic
technicalities, we assume that V' is countable.

Definition 1. A (discrete) distribution pu over a countable set S is a function of type
S — Ry satisfying > ..qp(s) = 1. We denote the set of distributions over S by
Dist(5).

Let ¥ denote the set of all program states As is standard, programs P are inter-
preted as maps [P] : ¥ — Dist(X). This definition requires two standard operations
on distributions.

Definition 2. Given a set S, unit maps any s € S to the Dirac distribution on s, i.e.,
unit(s)(s") =1 if s = 8" and unit(s)(s") =0 if s £ 5.

Given u € Dist(S) and a map f : S — Dist(T'), the map bind combines them into

a distribution over T', bind(u, f) € Dist(T'), defined via

bind (s, £)(t) = 3 pu(s) - F(s)(0).

ses

The full semantics is presented in Fig. 1; we comment on a few details here. First,
given a state o, we interpret expressions e and distribution expressions d as values



[skip], = unit(o)
[x < €]o = unit(o[z — [e]s])
[z ¢ d], == bind([d],,v > unit(o[z — v]))
[P ; Po]o = bind([P1]s, 0" = [Po]lor)
[Pis :elo =t
[P :lelo = £
[while e : P], := lim [(if e then P else skip)"],

n—roo

[if e then P; else P], = {

Fig. 1: Program semantics

[e]o € V and distributions over values [d], € Dist(V), respectively; we implicitly
assume that all expressions are well-typed. Second, since the program semantics maps
3 to distributions over X, the semantics for loops is only well-defined when the loop is
almost surely terminating (AST): from any initial state, the loop terminates with prob-
ability 1. Since our data-driven procedure will require running probabilistic programs
on concrete inputs, we assume throughout that all loops are almost surely terminating
(AST). This condition can often be verified using existing methods (e.g., [19-21]).

Weakest Pre-expectation Calculus.

Morgan and Mclver’s weakest pre-expectation calculus reasons about probabilistic
programs by manipulating expectations.

Definition 3. Denote the set of program states by X. Define the set of expectations,
E,tobe {E | E:%X — RX,}. Define By < Ey iff Vo€ X: Ei(o) < Ey(o). The set
& is a complete lattice.

While expectations are technically mathematical functions from ¥ to the non-
negative extended reals, for formal reasoning it is convenient to work with a more
restricted syntax of expectations (see, e.g., [22]). We will often view numeric expres-
sions as expectations. Boolean expressions b can also be converted to expectations; we
let [b] be the expectation that maps states where b holds to 1, and other states to 0.
As an example of our notation, [flip = 0]- (x+ 1), z + 1 are two expectations, and we
have [flip=0]-(z+1) <z + 1.

Now, we are ready to introduce Morgan and Mclver’s weakest pre-expectation
transformer wpe. In a nutshell, this operator takes a program P and an expecta-
tion E to another expectation E’, sometimes called the pre-ezpectation. Formally,
wpe is defined in Fig. 2. The case for loops involves the least fixed-point (Ifp) of
P3P == AX.([e] - wpe(P, X) + [~e] - E), the characteristic function of the loop with
respect to wpe [23]. The characteristic function is Scott-continuous on the complete
lattice &, so the least fixed-point exists by the Kleene fixed-point theorem.

The key property of the wpe transformer is that for any program P, wpe(P, E)(o)
is the expected value of E over the output distribution [P],.



wpe(skip, F) = FE wpe(z + e, E) = Ele/xz]

wpe(z ¢ d, F) = Ao. Z[[d]]g(v) - Elv/z](0) wpe(P ; Q, E) := wpe(P,wpe(Q, E))
veV
wpe(if e then P else Q, E) = [e] - wpe(P, E) + [—¢] - wpe(Q, E)
wpe(while e : P, E) = Ifp(AX. [e] - wpe(P, X) + [~e] - E)

Fig. 2: Morgan and Mclver’s weakest pre-expectation operator

Theorem 1 (See, e.g., [23]). For any program P and expectation E € £, wpe(P, E) =
7. Y e E(0”) - [Plo(o”)

Intuitively, the weakest pre-expectation calculus provides a syntactic way to com-
pute the expected value of an expression E after running a program P, except when
the program is a loop. For a loop, the least fixed point definition of wpe(while e : P, F)
is hard to compute.

3 Problem Statement

Analogous to when analyzing the weakest pre-conditions of a loop, knowing a loop
invariant or sub-invariant expectation helps one to bound the loop’s weakest pre-
expectations, but a (sub)invariant expectation can be difficult to find. Thus, we aim
to develop an algorithm to automatically synthesize invariants and sub-invariants of
probabilistic loops. More specifically, our algorithm tackles the following two problems:
1. Finding exact invariants: Given a loop while G : P and an expectation postE
as input, we want to find an expectation I such that
I=o P (I) = [G] - wpe(P, I) + [~G] - postE. (1)
Such an expectation [ is an ezxact invariant of the loop with respect to postE.
2. Finding sub-invariants: Given a loop while G : P and expectations
preE, postE, we aim to learn an expectation I such that
I < @< (I):=[G] wpe(P,I)+ [~G] - postE (2)

postE
preE < I. (3)

The first inequality Eq. (2) says that I is a sub-invariant: on states that satisfy
G, the value of I lower bounds the expected value of itself after running one
loop iteration from initial state, and on states that violate G, the value of I
lower bounds the value of postE. The second inequality Eq. (3) says that I is
lower-bounded by the given expectation preE.
Note that an exact invariant is a sub-invariant, so one indirect way to solve the
second problem is to solve the first problem, and then check preE < I. However, we
aim to find a more direct approach to solve the second problem because often exact



invariants can be complicated and hard to find, while sub-invariants can be simpler
and easier to find.

Once we find (sub)-invariants for a loop, we can use the (sub)-invariants to derive
provable bounds on the weakest pre-expectation of the loop if the (sub)-invariants sat-
isfy some additional conditions. Prior work has identified various sufficient conditions;
we use the conditions identified by Hark et al. [24] because they are relatively easy to
check. We use the following corollary of Hark et al. [24, Theorem 38].

Proposition 2. When E and I are both expectations, if in addition one of (a), (b)
or (c) holds:
(a) The number of iterations that while G : P runs is bounded, and (®%°)"(I) is
finite for every n € N.
(b) The following four conditions are all satisfied:
e The expected looping time of while G : P is finite for every initial state s € X3,
PPE(I) is finite.
There exists an expectation I’ such that I = [—e]- E + [e] - I.
The conditional difference of the invariant I, i.e., AT := As.([e] - wpe(P, |I —
1(s)|))(s) is bounded by a constant.
(c) while G : P is almost surely terminating and both I and E are bounded.
then we have:

[ < ®W(I) = I < wpe(while G : P,E) (4)
and I = ®3P°(I) = I = wpe(while G : P, E). (5)

Proof. For Eq. (4), note that our conditions and the claim are exactly the same as
those in Hark et al. [24, Theorem 38].

For Eq. (5), the definition of the weakest pre-condition operator
wpe(while G : P, E) = Ifp®%’® and the Park induction principle I > ®3¢(]) =
I > Ifp®%e [25] gives:

I>®%P(I) = I > wpe(while G : P, E). (6)

Combining this implication Eq. (6) with Eq. (4), we get Eq. (5). O

4 Algorithm

We solve both problems with one algorithm, EXisT (short for EXpectation Invari-
ant SynThesis). Our data-driven method resembles Counterexample Guided Inductive
Synthesis (CEGIS) (see Fig. 3), but differs in two ways. First, candidates are syn-
thesized by fitting a machine learning model to data consisted of program traces
starting from random input states. Our target programs are also probabilistic, intro-
ducing a second source of randomness to program traces. Second, our approach seeks
high-quality counterexamples—violating the target constraints as much as possible—
in order to improve synthesis. For synthesizing invariants and sub-invariants, such
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Expectah(m
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Program Candidate Invariants

Estimation Learning Verification
Fig. 3: Overview of EXIST

EX1ST(geo, pexp, Nyuns, Nstates )t
feat < getFeatures(geo, pexp)
states < sampleStates(feat, Nstates)
data < sampleTraces(geo, pexp, feat, Nyyns, states)
while not timed out:
models <+ learnlnv(feat, data)
candidates «+ extractlnv(models)
for inv in candidates:
verified, cex < verifylnv(inv, geo)
if verified:
return inv
else:
states < states U cex
states +— states U sampleStates(feat,

states)
data < data UsampleTraces(geo, pexp, feat, nruns, states)

Fig. 4: Algorithm ExXisT

counterexamples can be generated by using a computer algebra system to solve an
optimization problem.

In this section, we introduce a meta-algorithm to tackle both problems discussed in
Section 3. We will see how to instantiate the meta-algorithm’s subroutines in Section 5
and Section 6.

We present the pseudocode in Fig. 4. EXIST takes a probabilistic program geo, a
post-expectation or a pair of pre/post-expectation pexp, and hyper-parameters N5



and Ngiqres. EXIST starts by generating a list of features feat, which are numerical
expressions formed by program variables used in geo. Next, EXIST samples Ngigtes
initialization states and runs geo from each of those states for N, trials, and records
the value of feat on program traces as data. Then, EXIST enters a CEGIS loop. In
each iteration of the loop, first the learner learnlnv trains models to minimize their
violation of the required inequalities (e.g., Eq. (2) and Eq. (3) for learning sub-
invariants) on data. Next, extractlnv translates learned models into a set candidates
of expectations. For each candidate inv, the verifier verifylnv looks for program states
that mazimize inv’s violation of required inequalities. If it cannot find any program
state where inv violates the inequalities, the verifier returns inv as a valid invariant
or sub-invariant. Otherwise, it produces a set cex of counter-example program states,
which are added to the set of initial states. Finally, before entering the next iteration,
the algorithm augments states with a new batch of N, .. initial states, generates
trace data from running geo on each of these states for N, trials, and augments the
dataset data. This data augmentation ensures that the synthesis algorithm collects
more and more initial states, some randomly generated (sampleStates) and some from
prior counterexamples (cez), guiding the learner towards better candidates. Like other
CEGIS-based tools, our method is sound but not complete, i.e., if the algorithm returns
an expectation then it is guaranteed to be an exact invariant or sub-invariant, but the
algorithm might never return an answer; in practice, we set a timeout.

5 Learning Exact Invariants

In this section, we detail how we instantiate EXIST’s subroutines to learn an exact
invariant I satisfying I = @75 (1), given a loop geo and an expectation pezp = postE.

At a high level, we first sample a set of program states states using sampleStates.
From each program state s & states, sampleTraces executes geo and estimates
wpe(geo, postE)(s). Next, learnlnv trains regression models M to predict the estimated
wpe(geo, postE)(s) given the value of features evaluated on s. Then, extractlnv trans-
lates the learned models M to an expectation I. In an ideal scenario, this I would
be equal to wpe(geo, postE), which is also always an exact invariant. But since I is
learned from stochastic data, it may be noisy. So, we use verifylnv to check whether I
satisfies the invariant condition I = ® PS¢ ().

The reader may wonder why we took this complicated approach, first estimating
the weakest pre-expectation of the loop, and then computing the invariant: If we are
able to learn an expression for wpe(geo, postE) directly, then why are we interested
in the invariant I7 The answer is that it is easier to verify if an I is an invariant
than to check whether and I is the least fixed point. Once we verify that I is an
invariant that additionally satisfies conditions in Proposition 2, then we also know that
I = wpe(geo, postE). Since our learning process is inherently noisy, this verification
step is crucial and motivates why we want to find an invariant.

A running example.

We will illustrate our approach using Fig. 5. The simple program geo repeatedly loops:
whenever  becomes non-zero we exit the loop; otherwise we increase n by 1 and draw



while 2 =0 : x =07 x =07
n<+<n+1; x;iy V\—O x;«iy V\—O

x & Bernoulli(p)
n n+ s n n+0.951

(a) Program: geo (b) Model tree for wpe(geo, n) (c) Another model tree

Fig. 5: Running example: Program and model tree

x from a biased coin-flip distribution (x gets 1 with probability p, and 0 otherwise).
We aim to learn wpe(geo,n), which is [z # 0] -n+ [z =0]- (n + %)

Our Regression Model.

Before getting into how EXIST collects data and trains models, we introduce the class
of regression models it uses — model trees, a generalization of decision trees to regression
tasks [17]. Model trees are naturally suited to expressing piecewise functions of inputs,
and are straightforward to train. While our method can in theory generalize to other
regression models, our implementation focuses on model trees.

More formally, a model tree T € T over features F is a full binary tree where
each internal node is labeled with a predicate ¢ over variables from F, and each leaf
is labeled with a real-valued model M € M : RY — R. Given a feature vector in
x € R7, a model tree T over F produces a numerical output 7'(z) € R as follows:

e If T is of the form Leaf(M), then T'(z) := M(x).
e If T is of the form Node(¢, T, Tr), then T'(x) := Tr(x) if the predicate ¢ evaluates
to true on z, and T'(x) = Ty (x) otherwise.

Throughout this paper, we consider model trees of the following form as our regres-
sion model. First, node predicates ¢ are of the form f ¢, where f € F is a feature,
< € {<,<,=,>,>} is a comparison, and ¢ is a numeric constant. Second, leaf mod-
els on a model tree are either all linear models or all products of constant powers of
features, which we call multiplication models. For example, assuming n, + are both
features, Fig. 5b and Fig. 5c¢ are two model trees with linear leaf models, and Fig. 5b
expresses the weakest pre-expectation wpe(geo,n). Formally, the leaf model M on a
feature vector f is either

|7 | 7]

M(f)=> ai-fi  or  Mu(f)=]]£"
i=1 1=1

with constants {c;};. Note that multiplication models can also be viewed as linear
models on logarithmic values of features because log M, (f) = Zlﬂ o +log(f;). While
it is also straightforward to adapt our method to other leaf models, we focus on lin-
ear models and multiplication models because of their simplicity and expressiveness.
Linear models and multiplication models also complement each other in their expres-
siveness: encoding expressions like x + y uses simpler features with linear models (it

10



suffices if F 3 z,y, as opposed to needing F > z + y if using multiplicative mod-
els), while encoding % uses simpler features with multiplicative models (it suffices
if F 2 p,1 — p, as opposed to needing F > 1pr if using linear models).

5.1 Generate Features (getFeatures)

Given a program, the algorithm first generates a set of features F that model trees can
use to express unknown invariants of the given loop. For example, for geo, I = [z # 0]-
n+[z =0]-(n+ %) is an invariant, and to have a model tree (with linear/multiplication

leaf models) express I, we want F to include both n and L, or n + % as one feature.
F should include the program variables at a minimum, but it is often useful to have
more complex features too. While generating more features increases the expressivity
of the models, and richness of the invariants, there is a cost: the more features in F,
the more data is needed to train a model.

Starting from the program variables, getFeatures generates two lists of features, F;
for linear leaf models and F,,, for multiplication leaf models. Intuitively, linear models
are more expressive if the feature set F includes some products of terms, e.g., n-p~?!,
and multiplication models are more expressive if F includes some sums of terms, e.g.,
n+ 1.

We assume program variables and optional user-supplied features opt are typed as
probabilities (denoted using p;), integers (denoted using n;), booleans (denoted using
b;), or reals (denoted using x;). In general, we do not restrict the integers n; and
reals z; to be non-negative as our learning algorithm does not assume non-negativity;
later, though, to ensure that what EXIST generates are indeed expectations according
to Definition 3, we assume variables in specific programs to be non-negative. Then,
given program variables and user-supplied features p;, ..., n;, ..., b5, ..., x;, ..., aloop
with guard G, and post expectation pexp, getFeatures generates

Fi2 G | pexp | pi | ni | bi | i | pi-pjlni-ng|ai-ax;|ng-x;|b;-b;
Fm 2 G | pexp | pi | ni | b |ai | 1+p; | 1—pj | pi+p|pi +0j — i pj)
|m+n]|nzfn]|x1+xj|:clij|nl+m]|nzij|bz+b]|blfbj

5.2 Sample Initial States (sampleStates)

Recall that EXIST aims to learn an expectation I that is equal to the weakest pre-
expectation wpe(while G : P,postE). A natural idea for sampleTraces is to run the
program from all possible initializations multiple times, and record the average value of
postE from each initialization. This would give a map close to wpe(while G : P, postE)
if we run enough trials so that the empirical mean is approximately the actual mean.
However, this strategy is clearly impractical—many of the programs we consider have
infinitely many possible initial states (e.g., programs with integer variables). Thus,
sampleStates needs to choose a manageable number of initial states for sampleTraces
to use.

In principle, a good choice of initializations should exercise as many parts of the
program as possible. For instance, for geo in Fig. 5, if we only try initial states satisfying

11



x # 0, then it is impossible to learn the term [z = 0] - (n + %) in wpe(geo,n) from
data. However, covering the control flow graph may not be enough. Ideally, to learn
how the expected value of postE depends on the initial state, we also want data from
multiple initial states along each path.

While it is unclear how to choose initializations to ensure optimal coverage, our
implementation uses a simpler strategy: sampleStates generates Ngiqres States in total,
each by sampling the value of every program variable uniformly at random from a
space. We assume program variables are typed as booleans, integers, probabilities,
or floating point numbers and sample variables of some type from the corresponding
space. For boolean variables, the sampling space is simply {0, 1}; for probability vari-
ables, the space includes reals in some interval bounded away from 0 and 1, because
probabilities too close to 0 or 1 tend to increase the variance of programs (e.g., making
some loops iterate for a very long time); for floating point number and integer variables,
the spaces are respectively reals and integers in some bounded range. This strategy,
while simple, is already very effective in nearly all of our benchmarks (see Section 7),
though other strategies are certainly possible (e.g., performing a grid search of initial
states from some space).

5.3 Sample Training Data (sampleTraces)

We gather training data by running the given program geo on the set of initializations
generated by sampleStates. From each program state s € states, the subroutine sam-
pleTraces runs geo for Ny, times to get output states {s1,...,sn,,..} and produces
the following training example (s, v), where

Nruns
postE(s;).

Thus, the value v is the empirical mean of postE in the output state of running geo
from initial state s;; as Npuns grows large, this average value approaches the true
expected value wpe(geo, postE)(s).

5.4 Learning a Model Tree (learninv)

Now that we have the training set data = {(s1,v1), ..., (8K, vK)} (where K = Ngaes),
we want to fit a model tree T' to the data. We aim to apply off-the-shelf tools that
can learn model trees with customizable leaf models and loss. For each data entry, v;
approximates wpe(geo, postE)(s;), so a natural idea is to train a model tree T' that
takes the value of features on s; as input and predicts v;. To achieve that, we want to
define the loss to measure the error between predicted values T'(F;(s;)) (or T'(Fp(si)))
and the target value v;. Without loss of generality, we can assume our invariant I is
of the form

I =postE+[G]-I' (7)

12



because I being an invariant means
I = [=G] - postE + [G] - wpe(P, I) = postE + [G] - (wpe(P, I) — postE).

In many cases, the expectation I’ = wpe(P, I) — postE is simpler than I: for example,
the weakest pre-expectation of geo can be expressed as n + [z = 0] - (%); while I
is represented by a tree that splits on the predicate [x = 0] and needs both n,% as
features, the expectation I’ = % is represented by a single leaf model tree that only
needs p as a feature. Also, since we are rewriting I in terms of I’ and post only for
the convenience of model-fitting, the I’ here does not have to be an expectation, i.e.,
it could map states to negative values.

Aiming to learn weakest pre-expectations I in the form of Eq. (7), EXIST trains
model trees T to fit I’. More precisely, learnlnv trains a model tree T; with linear leaf
models over features /; by minimizing the loss

K

1/2
err(Ty, data) = (Z (postE(s;) + G(s;) - Ty(Fi(s;)) — Ui)2> ; (8)

i=1

where postE(s;) and G(s;) represents the value of expectation postE and G evaluated
on the state s;. This loss measures the sum error between the prediction postE(s;) +
G(si) - Ti(Fi(s;)) and target v;. Note that when the guard G is false on an initial state
si, the example contributes zero to the loss because postE(s;) + G(s;) - Ti(Fi(si)) =
postE(s;) = v;; thus, we only need to generate and collect trace data for initial states
where the guard G is true.

Analogously, learnlnv trains a model tree T}, with multiplication leaf models over
features JF,, to minimize the loss err,,(T,,, data), which is the same as err; (T}, data)
except T;(F;(s;)) is replaced by T, (Fn(s;)) for each i.

5.5 Extracting Expectations from Models (extractlnv)

Given the learned model trees 7} and T,,, we extract expectations that approximate
wpe(geo, postE) in three steps:

1. Round T;, T,, with different precisions. Since we obtain the model trees T;
and T}, by learning and the training data is stochastic, the coefficients of features
in T; and T,,, may be slightly off, so we apply several rounding schemes to generate
a list of rounded model trees.

For T;, the learned model tree with linear leaf models, we round its coefficients
to integers, one digit, and two digits respectively and get Tjg, 131, Tj2. For instance,
rounding the model tree depicted in Fig. 5c to integers gives us the model tree
in Fig. 5b. For T,,, the learned model tree with multiplication leaf models , we
construct Ty,0, Tin1, T2 by rounding the leading constant coefficient to respec-

tive digits and all other exponentiating coefficients to integers: c - H‘:ll x]' gets

rounded to round(c, digit) - Hyjl zint(‘“).
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2. Translate into expectations. Since we learn model trees, this step is straight-
forward: for example, n—l—% can be seen as a model tree (with only a leaf) mapping

the values of features n,% to a number, or an expectation mapping program
states where n,p are program variables to a number. We translate each model
tree obtained from the previous step to an expectation.

3. Form the candidate invariant. Since we train the model trees to fit I’ so
that postE + [G] - I’ approximates wpe(while G : P, postE), we construct each
candidate invariant inv € invs by replacing I’ in the pattern postE + [G] - I’ by
an expectation obtained in the second step.

5.6 Verify Extracted Expectations (verifylnv)

Recall that geo is a loop while G : P, and given a set of candidate invariants inuvs,
we want to check if any inv € invs is a loop invariant, i.e., if inv satisfies

inv = [=G] - postE + [G] - wpe(P, inv). (9)

Since the learned model might not predict the expected value for every data point
exactly, we must verify whether inv satisfies this equality using verifylnv.

5.7 Search for worst-case counterexamples

If the invariant is not verified, verifylnv has to look for counterexamples that violate
the conditions for valid invariants. These counterexamples are fed back to augment
the dataset to (hopefully) learn a better invariant.

In this process, we hope that our data augmentation leads to substantial loss in
the learning algorithm so as to steer the learning to a new invariant. We provide an
example on the challenges of such an endeavor. Though our algorithm uses regression,
let us use classification for ease of discussion and visualization. Figure 6a shows the
case of learning a linear classifier: we are attempting to learn a classifier that separates
the red and gray regions; the stars and circles are the data-points corresponding to
the red and grey regions, respectively. Given the current dataset, we may learn an
(incorrect) classifier, as shown by the dotted line.

Figure 6b shows the case where a new counterexample is found (counterexamples
are shown with green boundary), that is used to augment the dataset. As the coun-
terexample is quite close to the current classifier’s decision boundary, it may not create
enough loss to bulge the decision boundary. There are two possible solutions to this
problem:

¢ Engineer a classifier loss function that is more sensitive to violations.
We may engineer the loss function to penalize violations heavily. However, as
our dataset is generated from estimates from a finite set of observations, there
exist some amount of noise in the estimates. As our dataset is itself noisy, this
option is not desirable as we would like our learnt classifier to be robust to noise.
Further, such loss functions that are too sensitive to small violations can lead to
instability in the learning process, making it difficult to converge.
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® Improve data augmentation. Instead, we attempt to improve our data aug-
mentation process in two ways: firstly, to attempt generate better datapoints for
augmentation by searching for worst-case counterexamples, i.e. counterexamples
that generate a highest possible loss on the objective function used to train the
regression model (see Figure 6c¢). Secondly, we generate a set of counterexam-
ples so that the cumulative loss is high enough to ensure progress towards the
desirable invariant (see Figure 6d).

Hence, instead of searching for any counterexample that causes a violation, verifylnv
searches for a set of counterexamples that maximizes the violation in order to drive
the learning process forward in the next iteration. Formally, for every inv € inwvs,
verifylnv queries computer algebra systems to find a set of program states S such that
S includes states maximizing the absolute difference of two sides in Eq. (9):

S 3 argmax,|inv(s) — ([-G] - postE + [G] - wp(P, inv)) (s)].

If there are no program state where the absolute difference is non-zero, verifylnv returns
inv as a true invariant. Otherwise, the maximizing states in S are added to the list
of counterexamples cex; if no candidate in inwvs is verified, verifylnv returns False and
the accumulated list of counterexamples cex. The next iteration of the CEGIS loop
will sample program traces starting from these counterexample initial states, hopefully
leading to a learned model with less error.

6 Learning Sub-invariants

Next, we instantiate EXIST for our second problem: learning sub-invariants. Given a
program geo = while G : P and a pair of pre- and post- expectations (preE, postE),
we want to find a expectation I such that preE < I, and

I < @< (I):= [~G] - postE + [G] - wpe(P, I)

postE

Intuitively, @‘;’f:tE(I ) computes the expected value of the expectation I after one itera-

tion of the loop. We want to train a model M such that M translates to an expectation
I whose expected value increases each iteration, and preE < I.

The high-level plan is the same as for learning exact invariants: we train a model
to minimize a loss defined to capture the sub-invariant requirements. We generate
features F and sample initializations states as before. Then, from each s € states, we
repeatedly run just the loop body P and record the set of output states in data; this
departs from our method for exact invariants, which repeatedly runs the entire loop to
completion. Given this trace data, for any program state s € states and expectation
I, we can compute the empirical mean of I’s value after running the loop body P on
state s. Thus, we can approximate wpe(P, I)(s) for s € states and use this estimate to
approximate ® "% (I)(s). We then define a loss to sum up the violation of I < ®5%. (1)
and preE < I on state s € states, estimated based on the collected data.

The main challenge for our approach is that existing model tree learning algorithms
do not support our loss function. Roughly speaking, model tree learners typically
assume a node’s two child subtrees can be learned separately; this is the case when
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Fig. 6: Improved data augmentation

optimizing on the loss we used for exact invariants, but this is not the case for the
loss for sub-invariants.

To solve this challenge, we first broaden the class of models to neural networks.
To produce sub-invariants that can be verified, we still want to learn simple classes
of models, such as piecewise functions of numerical expressions. Accordingly, we work
with a class of neural architectures that can be translated into model trees, neural
model trees, adapted from neural decision trees developed by Yang et al. [18]. We defer
the technical details of neural model trees to Section 6.2.2; for now, we can treat them
as differentiable approximations of standard model trees; since they are differentiable
they can be learned with gradient descent, which can optimize on the sub-invariant
loss function.



Outline.

We will discuss changes in sampleTraces, learnlnv and verifylnv for learning sub-
invariants but omit descriptions of getFeatures, sampleStates, extractlnv because EXIST
generates features, samples initial states and extracts expectations in the same way
as in Section 5. To simplify the exposition, we will assume getFeatures generates the
same set of features F = F; = F,,, for model trees with linear models and model trees
with multiplication models.

6.1 Sample Training Data (sampleTraces)

Unlike when sampling data for learning exact invariants, here, sampleTraces runs only
one iteration of the given program geo = while G : P, that is, just P, instead of
running the whole loop. Intuitively, this difference in data collection is because we aim
to directly handle the sub-invariant condition, which encodes a single iteration of the
loop. For exact invariants, our approach proceeded indirectly by learning the expected
value of postE after running the loop to termination.

From any initialization s; € states such that G holds on s;, sampleTraces runs
the loop body P for Ny, trials, each time restarting from s;, and records the set of
output states reached. If executing P from s; leads to output states {s;1,...,Sin..}»
then sampleTraces produces the training example:

(8i,98) = (56, {8i1, -+ 5 8iNpa 1) »

For initialization s; € states such that G is false on s;, sampleTraces simply produces
(s, Si) = (s4,0) since the loop body is not executed.
6.2 Learning a Neural Model Tree (learninv)

Given the dataset data = {(s1,51),...,(sk,Sk)} (with K = Ngaes), we want to
learn an expectation I such that preE < I and I < ®"PS_(I). By case analysis on the

postE
guard G, the requirement I < @ P (I) can be split into two constraints:

[G]-I <[G]-wpe(P,I) and [-G] - I <[-G] - postE.
If I = postE+[G]-I’, then the second requirement reduces to [—G]-postE < [-G]-postE
and is always satisfied. So to simplify the loss and training process, we again aim to
learn an expectation I of the form of postE + [G] - I’. Thus, we want to train a model

tree T such that T translates into an expectation I’, and

preE < postE + [G] - I’ (10)
[G] - (postE + [G] - I") < [G] - wpe(P, postE + [G] - I') (11)

Then, we define the loss of model tree T on data to be

err(T,data) = erri(T,data) + erro(T, data),
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where erry (T, data) captures Eq. (10) and erry (7, data) captures Eq. (11).

Defining err; is relatively simple: we sum up the one-sided difference between
preE(s) and postE(s) + G(s) - T(F(s)) across s € states, where T is the model tree
getting trained and F(s) is the feature vector F evaluated on s. That is,

K
err1(T,data) := Zmax (0, preE(s;) — postE(s;) — G(s;) - T(F(s;))) - (12)

i=1

Above, preE(s;), postE(s;), and G(s;) are the value of expectations preE, postE, and
G evaluated on program state s;.

The term errs is more involved. Similar to err;, we aim to sum up the one-sided
difference between two sides of Eq. (11) across state s € states. On program state s
that does not satisfy G, both sides are 0; for s that satisfies G, we want to evaluate
wpe(P, postE+[G]-I') on s, but we do not have exact access to wpe(P, postE+ [G]-I")
and need to approximate its value on s based on sampled program traces. Recall that
wpe(P, I)(s) is the expected value of I after running program P from s, and our dataset
contains training examples (s;, S;) where .S; is a set of states reached after running P on
an initial state s; satisfying G. Thus, we can approximate [G]-wpe(P, postE+G-I")(s;)
by

G(s;) - |;| . Z (postE(s) + G(s) - I'(s)) .
v sES;
To avoid division by zero when s; does not satisfy G and .5; is empty, we evaluate the
expression in a short-circuit manner such that when G(s;) = 0, the whole expression
is immediately evaluated to zero.
Therefore, we define

K
erry(T, data) = Z max (o, G(s;) - postE(s;) + G(si) - T(F(si))

(i) - ﬁ -3 (postE(s) + G(s) ~T(]—'(s)))).

SES;

Standard model tree learning algorithms do not support this kind of loss function,
and since our overall loss err(T, data) is the sum of erry (7T, data) and erry(T, data),
we cannot use standard model tree learning algorithm to optimize err(T, data) either.
Fortunately, gradient descent does support this loss function. While gradient descent
cannot directly learn model trees (See Section 6.2.1), we can use gradient descent to
train a neural model tree T to minimize err(T,data). The learned neural networks
can be converted to model trees, and then converted to expectations as before (See
Section 6.2.2).

6.2.1 Difficulty of Training with Standard Algorithms.

When calculating the error contributed by one training example in err;, err,, or erry,
the training algorithm only needs to evaluate the model tree T on the feature vector
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of one program state: the data entry (s;,v;) in data contributes
(postE(s;) + G(s;) - T(Fi(s:)) — vi)?

to err?(T, data) and similarly (postE(s;) + G(s;) - T(Fn(si)) — v;)? to err? (T, data);
the data entry (s;,S;) contributes

max (0, preE(s;) — postE(s;) — G(s;) - T(F(si)))

to err?(T, data). For f = Fi(s;), Fm(s;) or F(s;), when we calculate T'(f) for a single
f as in above expressions, either T’s root is a leaf and we simply apply its leaf model
to the f, or we pass f to exactly one children subtree T of T and recursively calculate
T'(f). We associate a training example (s;,v;) (or (s;,.5;)) to a subtree T” if the feature
vector f of s; gets passed to T'. Thus, different subtrees get associated with disjoint
sets of training examples, and the standard training algorithm for model trees is able
to adopt the divide-and-conquer strategy and optimize children of T" independently.
However, the errq error of a model tree T on a training example (s;, S;) is

max <0, G(s;)-postE(s;)+G(s;)-T(F(s:))—G(s;)- ﬁ Z (postE(s)+G(s)-T(F(s))),

SES;

which depends on the evaluated values of T'(F(s;)) and T(F(s)) for all s € S;. Eval-
uating T'(F(s;)) and all T(F(s)) can use multiple children subtrees of T. Thus, we
cannot associate one training example (s;, S;) to exactly one children of T' and opti-
mize children of T independently. While children of T still gets associated with disjoint
sets of feature vectors, we cannot train children of T to minimize erry just with sets
of program states s; because unlike when learning exact invariants, now we do not
know what 7'(F(s;)) should be without calculating . (postE(s) + G(s) - T(F(s)).
Furthermore, because of the use of max(0,—) function in erre, we cannot solve the
problem by rearranging the terms across training examples.

6.2.2 Constructions of Neural Model Trees

To address the problem of optimizing on errqe, we consider another general training
algorithm, gradient descent, i.e., iteratively taking the gradient of the loss with respect
to the trainable parameters and adjust the parameters along the gradient to minimize
the loss. Although gradient descent only provides theoretical guarantee of finding
global minimum when the loss is convex, gradient descent and its stochastic variant
have showed good performance across a wide range of problems, as demonstrated by
the recent success of neural networks. To apply gradient descent, however, we need the
training model to be differentiable with respect to trainable parameters, and model
trees and decision trees are not differentiable with respect to each predicate in the
internal node. To address this problem, we use a differentiable approximation of model
trees based on neural networks, which we call neural model trees, and train them using
standard gradient descent method. we start with a model called neural decision tree
developed by Yang et al. [18]. As in standard decision tree learning, they consider
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internal nodes predicates and leaf labels as trainable parameters. Unfortunately, if we
let the training parameter at an internal node range over predicates of the form f < c,
it is unclear how to develop a differentiable loss function to optimize. Thus, deviating
from standard decision tree, neural decision trees assume there is a predicate of the
form f; < ¢; for each feature f; that we can split on and regard the cut point ¢; as the
training parameter, and in addition, they use a smooth approximation of the predicate
fi < ¢; so the loss becomes differentiable.
Concretely, a neural decision tree is a function

nndt : Trainable parameters © x Data — Labels

where the trainable parameters includes cut points ¢; for each feature f; € F and
numerical labels. The neural architecture developed by Yang et al. [18] implements
the map nndt in two stages: nndt = nniapel © NNclagsify, Where

NNiapel : Trainable parameters © x Data — OneHot(|27])

takes input ({c;}, d) to a one-hot vector of length 27 where the hot bit represents the
leaf that the data example d gets classified into according to the smoothed version of
predicates f; < ¢;, and

NNclassify - OHGHOt(‘2f|) — Labels

assigns a label to each leaf.
To approximate model trees with differentiable neural networks, we define

nnmt : Trainable parameters © x Data — R
by having nnmt(ﬁ, d) = nnregress(nnclassify(67 d))(d) where
MNyegress | OneHot(|2}- |) — Leaf Models

associates each one-hot vector with a trainable leaf model.

Our tool assumes the leaf models are linear models or multiplication models. When
the leaf models are linear, each leaf model can be represented by a vector of linear
coefficients, and we can represent Nnyegress as a |27 | x |F|] matrix. When we want to
fit neural model trees with multiplication leaf models, we take the logarithm of data
passed to the neural model, train a model with linear leaf models, and exponentiate the
output. In both cases, nnmt is differentiable with respect to its trainable parameters,
so we can apply standard stochastic gradient descent to train it.

6.3 Verify Extracted Expectations (verifylnv)

The verifier verifylnv is very similar to the one in Section 5 except here it solves a
different optimization problem. For each candidate inv in the given list invs, it looks

20



for a set S of program states such that S includes
argmax preE(s) — inv(s) and argmax,G(s) - I(s) — [G] - wpe(P, I)(s).

As in our approach for exact invariant learning, the verifier aims to find counterex-
ample states s that violate at least one of these constraints by as large of a margin
as possible; these high-quality counterexamples guide data collection in the follow-
ing iteration of the CEGIS loop. Concretely, the verifier accepts inv if it cannot find
any program state s where preE(s) — inv(s) or G(s) - I(s) — [G] - wpe(P, I)(s) is pos-
itive. Otherwise, it adds all states s € S with strictly positive margin to the set of
counterexamples cex.

7 Evaluation

We implemented our prototype in Python, using sklearn and tensorflow to fit model
trees and neural model trees, and Wolfram Alpha to verify and perform counterex-
ample generation. We have evaluated our tool on a set of 18 benchmarks drawn from
different sources in prior work [13, 14, 26]. All our benchmarks are almost surely
terminating: for all benchmarks except Gambler, their almost sure terminations are
witnessed by simple ranking super-martingales that are linear on variables and tests
on variables, e.g., [z > 0]; the gambler’s ruin problem is also well-studied to be AST
[19, 27]. While we check this condition by hand, existing work has explored synthesis
of such ranking super-martingale (e.g., [19-21, 28, 29]).

Our experiments were designed to address the following research questions:
R1. Can EXIST synthesize exact invariants for a variety of programs?
R2. Can EXIST synthesize sub-invariants for a variety of programs?

We summarize our findings as follows:

e EXIST successfully synthesized and verified exact invariants for 14/18 benchmarks
within a timeout of 300 seconds. Our tool was able to generate these 14 invari-
ants in reasonable time, taking between 1 to 237 seconds. The sampling phase
dominates the time in most cases. We also compare EXIST with a tool from prior
literature, MORA [30]. We found that MORA can only handle a restrictive set of
programs and cannot handle many of our benchmarks. We also discuss how our
work compares with a few others in (Section 8).

® To evaluate sub-invariant learning, we created multiple problem instances for
each benchmark by supplying different pre-expectations. On a total of 34 such
problem instances, EXIST was able to infer correct invariants in 27 cases, taking
between 7 to 102 seconds.

We present in the extended version the tables of complete experimental results.
Because the training data we collect are inherently stochastic, the results produced by
our tool are not deterministic.! As expected, sometimes different trials on the same
benchmarks generate different sub-invariants; while the exact invariant for each bench-
mark is unique, EXIST may also generate semantically equivalent but syntactically
different expectations in different trials (e.g. it happens for BiasDir).

1The code and data sampled in the trial that produced the tables in this paper can be found at https:
//github.com/JialuJialu/Exist.
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Table 1: Exact Invariants generated by EXIST

z+[z==9] (0.2 22 -0.2-y?

BiasDir P 09y 02-a02-yros 2397 034 025 2450
Bin0 z z+[n>0-([y£0-p-n-y) 72.80 509 115  79.04
Binl n z+n<M]-(M-p—n-p) 25.67 12.03  0.22 37.91
Bin2 P et [n>0(p-n-n 84.64 2654 048 111.66

—p-n-y+n-y)

DepRV Ty - - - - -
Detm count count + [z < 10] - (11 — z) 0.09 0.72 0.06 0.87
Duel t - - - - -
Fair count (pf‘j:‘g)’;(gi;; :;19]102) 578 162 030  T.69

Gambler P zt[e>0andy>af 11202 352 997 12551

z-(y—2)
GeoO z z+ [flip==0]-(1—p1)/p1 12.01 0.85 2.65 15.51
Geol z z+ [flip==0]-(1 —p1)/p1 20.30 520  3.57  29.09
Geo2 z z+ [flip==10]-(1 —p1)/m 1078 217 0.2 13.07

GeoAr T - - - - -

LinExp z - - - - -
Mart rounds rounds + [b > 0] - (1/p) 24.10 3.83 0.05 27.98

Prinsys [z == 1] [x==1]4[x==0]- (1 —p2) 1.60 0.17 1.25 3.02

RevBin z Z+ [z > 0] (z/p) 234.64 313 0.4  237.92

Sumo z z+[n> 0 (0.5 p-n*+ 102.12 3461 26.74 163.48

0.5-p-n)

Implementation Details.

For input parameters to EXIST, we use N,,,s = 500 and Ngqies = 500. Besides input
parameters listed in Fig. 4, we allow the user to supply a list of features as an optional
input. In feature generation, getFeatures enumerates expressions made up by program
variables and user-supplied features according to a grammar. Also, when incorporating
counterexamples cex, we make 30 copies of each counterexample to give them more
weights in the training. All experiments were conducted on a MacBook Pro 2020 with
M1 chip running macOS Monterey Version 12.1.
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7.1 R1: Evaluation of the Exact Invariant Method

Efficacy of Invariant Inference.

EXIST was able to infer exact invariants in 14/18 benchmarks. Out of 14 successfully
inferred benchmarks, only 2 of them need user-supplied features (n - p for Bin2 and
Sum0). Table 1 shows the postexpectation (postE), the inferred invariant (Invariant),
sampling time (ST), learning time (LT), verification time (VT) and the total time
(TT) for a few benchmarks. For generating exact invariants, the running time of EXIST
is dominated by the sampling time. However, this phase can be parallelized easily.

We (manually) check that all the inferred invariants only evaluates to non-negative
values if all the program variables take non-negative values, which is required for them
to be expectations as defined in Definition 3 and to apply Proposition 2. We then (man-
ually) check whether the inferred invariants are provably the weakest preexpectations
according to Proposition 2. We find 13 out of the 14 exact invariants inferred by EXIsT
satisfy at least one condition, and thus, are provably the weakest preexpectation: the
invariants inferred for Bin0, Binl, Bin2 and Sum0 satisfy condition (a), and the subin-
variants inferred for the rest of the benchmarks except Gambler all satisfy the condition
(b). The invariant EXIST inferred for Gambler, z+ [z > 0 and y > z] -z - (y — x), does
not satisfy any of the conditions, but it is sound according to known results about ran-
dom walks: the postexpectation z increases 1 at each iteration, and recurrence analysis
shows that z - (y — z) is the expected number of iterations Gambler [27].

Failure Analysis.

ExisT failed to generate invariants for 4/18 benchmarks. For two of them, EXIsT
was able to generate expectations that are very close to an invariant (DepRV and
LinExp); for the third failing benchmarks (Duel), the ground truth invariant is very
complicated. For LinExp, while a correct invariant is z + [n > 0] - 2.625 - n, EXIST
generates expectations like z + [n > 0] - (2.63 - n — 0.02) as candidates. For DepRV, a
correct invariant is z -y +[n > 0] (0.25-n?> +0.5-n-2+0.5-n-y—0.25-n), and in our
experiment EXIST generates 0.25-n%4+0.5-n-2+0.5-n-y—0.27-n—0.01-240.12. In
both cases, the ground truth invariants use coefficients with several digits, and since
learning from data is inherently stochastic, EXIST cannot generate them consistently.
In our experiments, we observe that our CEGIS loop does guide the learner to move
closer to the correct invariant in general, but sometimes progress obtained in multiple
iterations can be offset by noise in one iteration. For GeoAr, we observe the verifier
incorrectly accepted the complicated candidate invariants generated by the learner
because Wolfram Alpha was not able to find valid counterexamples for our queries.

Comparison with Previous Work.

There are few existing tools that can automatically compute expected values after
probabilistic loops. We experimented with one such tool, called MORA [30]. We man-
aged to encode our benchmarks Geo0, Bin0, Bin2, Geol, GeoAr, and Mart in their
syntax. Among them, MORA fails to infer an invariant for Geol, GeoAr, and Mart.
We also tried to encode our benchmarks Fair, Gambler, Binl, and RevBin but found
MoRA’s syntax was too restrictive to encode them. Table 2 shows how we encoded
two of our benchmarks into MORA.
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Table 2: Encoding of GeoAr and Mart in MORA Syntax

1 bool z, int x,y, float p 1 intz=1, x=0, y=0
2 while (z # 0) do 2 while true:

3 y—y+1; 3 y <~y +z;

4 c & Bernoulli(p) 4 z 4 0@ p;z

5 if ¢ then z < 0 5 Xioxryxz

6 else X < X +y

1 int ¢, b, rounds, float p 1 int ¢ = 0

2 while (b > 0) do 2 b=1

3 d <i Bernoulli(p) 3 d=0

4 if d then 4 rounds = 1

5 c + c + b; 5 while true:

6 b <« 0; 6 d < 1 @ p;d

- else 7 c ¢ c + bx(d-1)+b*d

8 ¢ < ¢ - b; 8 b < 2¥bx(1-d)

9 b < 2 * b; 9 rounds <— rounds + 1 - d
10 rounds <— rounds + 1;

7.2 R2: Evaluation of the Sub-invariant Method

Efficacy of invariant inference.

EXIST is able to synthesize sub-invariants for 27/34 benchmarks. Two out of 27 success-
fully inferred benchmarks use user-supplied features — Gambler with pre-expectation
x-(y— ) uses (y —x), and Sum0 with pre-expectation z + [z > 0] (p-n/2) uses p- n.
Contrary to the case for exact invariants, the learning time dominates. This is not
surprising: the sampling time is shorter because we only run one iteration of the loop,
but the learning time is longer as we are optimizing a more complicated loss function.

We check whether the subinvariants synthesized by EXIST satisfy one of the con-
ditions (a), (b) or (c) in Proposition 2, and thus, provably lower bounds the weakest
preexpectation. There are two subinvariants that do not satisfy any of the conditions:
Gambler with inferred subinvariant z 4+ [z > 0 and y > x| -z - (y — z) and GeoAr with
the inferred invariants z; both of them do lower bound the expectations calculated
manually through Theorem 1. For the rest of 25 subinvariants inferred by EXIST, the
subinvariants inferred by EXIST for Bin0O, Binl, Bin2, LinExp, DepRV and Sum0 satisfy
condition (a), and the subinvariants inferred for the rest of the benchmarks satisfy the
condition (b). As before, Table 3 reports the details for all these benchmarks.

One interesting thing that we found when gathering benchmarks is that for many
loops, pre-expectations used by prior work or natural choices of pre-expectations are
themselves sub-invariants. Thus, for some instances, the sub-invariants generated by
EXIST is the same as the pre-expectation preE given to it as input. However, EXIST
is not checking whether the given preE is a sub-invariant: the learner in EXIST does
not know about preE besides the value of preE evaluated on program states. Also,
we also designed benchmarks where pre-expectations are not sub-invariants (BiasDir
with preE = [z # y] - #, DepRV with preE = z -y + [n > 0] - 1/4 - n?, Gambler with
preE = 2z - (y — z), GeoO with preE = [flip == 0] - (1 — p1)), and EXIST is able to
generate sub-invariants for 3/4 such benchmarks.
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Table 3: Sub-Invariants generated by EXIST

BiasDir T
Bin0 x
Binl n
Bin2 T

DepRV Ty

Detm count
Duel t
Fair count

Mart rounds

[z #y] -z

o ==1y]1/2

z+ [n > 0]
(p-n-y)

T

z + [n < M]-
(p-M—p-n)

n

z + [n > 0]
(I-p):n-y

xT

z-y+[n>0]

(1/4-n-n)
Ty

count+
[x<=10]-1

count
¢ (—=p1+p2
—p1-p2)
+1

count+

[c1 4 c2 ==0]

(p1 +p2)
count

rounds+
b>0]-1

rounds

T+ [z ==y
01-p—05-z
—0.5-y+0.1)

o+l ==y]

(=05
—0.5-y+0.5)

count+
[xt <=10]-1

count

[e1 + c2 ==0]
(p1 + p2)
“+count

count

rounds+
b>0]-1

rounds

12.37

12.33

16.69

8.55

16.71

16.08

3.95

5.99

8.74

6.71

17.68

16.61

21.36

27.12

21.47

17.84

21.64

17.04

17.67

10.31

25.84

11.73

31.49

21.32

0.75

0.10

0.44

0.10

0.78

0.17

0.03

0.04

0.27

0.40

0.11

0.16

34.48

39.55

38.59

26.52

39.13

33.28

21.66

16.35

34.85

18.85

49.27

38.09

Failure Analysis.

On program instances where EXIST fails to generate a sub-invariant, we observe two
common causes. First, gradient descent seems to get stuck in local minima because the
learner returns suboptimal models with relatively low loss. The loss we are training
on is very complicated and likely to be highly non-convex, so this is not surprising.
Second, we observed inconsistent behavior due to noise in data collection and learning.

25



Table 4: Table 3 Continued
_ Name  postE ~ preE  Learned Invariant ST LT VT TT

2 2 6.99 1256 0.43  19.98
Gambler z
z+
z-(y—2) [2>0&y>al 7.31 2887 829  44.46
z-(y—=)
z+ z+
[flip == 0] [flip == 0] 8.69 28.04 0.10 36.84
Geo0 z (1-p1) (1-—p1)
z 2 8.08 12.01 3.62 2371
. z+
L/ (lip___)[))] [flip == 0]- 870 26.13 0.19  35.02
n (1-p1)
Geol 2 2 z 8.80 13.66 0.03 22.48
Geo2 z z z 8.19 14.49 0.05 22.73
z + [z = 0] ) . ) ) )
GeoAr x y-(1—p)/p
z z 851 40.98 0.39  49.89
z+[n > 0] [n > 0]
LinExp B 5 (n 1 1) 5372 30.01 0.35 84.98
z +2[” > 0] z+[n >0 20.18  28.61 0.68 5848
n 2'n
Prinsys  * T I o 1) [z == 1] 110 585 033  7.29
. z+ [z >0) 2+ [z > 0) 1817 7115 217 9155
RevBin z T z/p
2 2 15.62 1874 0.06  34.42
z + [n > 0] ) . . ) )
Sum0 T (p-n-n/2)
@+ [n> 0O @+ [n >0 19.60 7671 594 102.29
(p-n/2) (p-n)

For instance, for GeoAr with preE =z + [z # 0] -y - (1 — p)/p, EXIST could sometimes
find a sub-invariant with supplied feature (1 — p), but we could not achieve this result
consistently.

Comparison with Learning Exact Invariants.

The performance of EXIST on learning sub-invariants is less sensitive to the complexity
of the ground truth invariants. For example, EXIST is not able to generate an exact
invariant for LinExp as its exact invariant is complicated, but EXIST is able to generate
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sub-invariants for LinExp. However, we also observe that when learning sub-invariants,
EXIST returns complicated expectations with high loss more often.

8 Related Work

Invariant Generation for Probabilistic Programs.

There has been a steady line of work on probabilistic invariant generation over the
last few years. The PRINSYS system [13] employs a template-based approach to guide
the search for probabilistic invariants. PRINSYS is able encode invariants with guard
expressions, but the system doesn’t produce invariants directly—instead, PRINSYS
produces logical formulas encoding the invariant conditions, which must be solved
manually.

Chen et al. [14] proposed a counterexample-guided approach to find polynomial
invariants, by applying Lagrange interpolation. However, invariants involving guard
expressions—common in our examples—cannot be found, since they are not polyno-
mials. Additionally, Chen et al. [14] uses a weaker notion of invariant, which only
needs to be correct on certain initial states; our tool generates invariants that are
correct on all initial states. Feng et al. [31] improves on Chen et al. [14] by using
Stengle’s Positivstellensatz to encode invariants constraints as a semidefinite program-
ming problem. Their method can find polynomial sub-invariants that are correct on
all initial states. However, their approach cannot synthesize piecewise linear invari-
ants, and their implementation has additional limitations and could not be run on our
benchmarks.

Subsequent to the original publication of our results, Batz et al. [32] proposed
a different method to synthesize invariant expectations. Their approach is based on
a rich class of templates with numerical-valued holes, and uses an efficient CEGIS
loop to improve the invariant expectations. Unlike our approach, Batz et al. [32] use
access to the program source code. In this way, they are able to use a verifier to
check correctness of invariants and find counterexamples within their CEGIS loop. In
contrast, our approach does not rely on direct verification during synthesis since our
method does not have access to the internals of the program.

There is also a line of work on abstract interpretation for analyzing probabilistic
programs; Chakarov and Sankaranarayanan [33] search for linear expectation invari-
ants using a “pre-expectation closed cone domain”, while recent work by Wang et al.
[34] employs a sophisticated algebraic program analysis approach.

Another line of work applies martingales to derive insights of probabilistic
programs. Chakarov and Sankaranarayanan [35] showed several applications of mar-
tingales in program analysis, and Barthe et al. [36] gave a procedure to generate
candidate martingales for a probabilistic program; however, this tool gives no control
over which expected value is analyzed—the user can only guess initial expressions and
the tool generates valid bounds, which may not be interesting. Our tool allows the
user to pick which expected value they want to bound.

Another line of work for automated reasoning uses moment-based analysis. Bartocci
et al. [30, 37] develop the MORA tool, which can find the moments of variables as
functions of the iteration for loops that run forever by using ideas from computational
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algebraic geometry and dynamical systems. This method is highly efficient and is
guaranteed to compute moments exactly. However, there are two limitations. First, the
moments can give useful insights about the distribution of variables’ values after each
iteration, but they are fundamentally different from our notion of invariants which
allow us to compute the expected value of any given expression after termination of
a loop. Second, there are important restrictions on the probabilistic programs. For
instance, conditional statements are not allowed and the use of symbolic inputs is
limited. As a result, most of our benchmarks cannot be handled by MORA.

In a similar vein, Kura et al. [38], Wang et al. [39] bound higher central moments
for running time and other monotonically increasing quantities. Like our work, these
works consider probabilistic loops that terminate. However, unlike our work, they are
limited to programs with constant size increments.

Data-driven Invariant Synthesis.

We are not aware of other data-driven methods for learning probabilistic invariants,
but a recent work Abate et al. [40] proves probabilistic termination by learning ranking
supermartingales from trace data. Our method for learning sub-invariants (Section 6)
can be seen as a natural generalization of their approach. However, there are also
important differences. First, we are able to learn general sub-invariants, not just rank-
ing supermatingales for proving termination. Second, our approach aims to learn model
trees, which lead to simpler and more interpretable sub-invariants. In contrast, Abate,
et al. [40] learn ranking functions encoded as two-layer neural networks.

Data-driven inference of invariants for deterministic programs has drawn a lot of
attention, starting from DAIKON [16]. ICE learning with decision trees [41] modifies
the decision tree learning algorithm to capture implication counterexamples to handle
inductiveness. HANOI [42] uses counterexample-based inductive synthesis (CEGIS) [43]
to build a data-driven invariant inference engine that alternates between weakening
and strengthening candidates for synthesis. Recent work uses neural networks to learn
invariants [44]. These systems perform classification, while our work uses regression.
Data from fuzzing has been used for almost correct inductive invariants for programs
with closed-box operations [45].

Probabilistic Reasoning with Pre-expectations.

Following Morgan and Meclver, there are now pre-expectation calculi for domain-
specific properties, like expected runtime [23] and probabilistic sensitivity [46]. All of
these systems define the pre-expectation for loops as a least fixed-point, and practical
reasoning about loops requires finding an invariant of some kind.

9 Conclusion

Inspired by data-driven invariant generation techniques for standard programs, we
present the first data-driven invariant generation algorithm for probabilistic program.
Our method is the first to be able to learn exact piecewise linear probabilistic invariants
fully automatically, without relying on templates or manually solving logical formulas.
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Going forward, one potential direction is to improve sampling performance. While
our tool finds invariants in a reasonable amount of time, it needs many input-output
traces in order to reliably find invariants. Methods from statistics, like boosting, might
be useful to increase stability of our learning approach. More broadly, a natural ques-
tion is whether other quantitative invariants could be learned through regression,
rather than classification. In general, our work further strengthens the research direc-
tion invested in exploring the synergy between machine learning and formal methods
is solving hard tasks like program verification.
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