
A Categorical Approach to DIBI Models

Tao Gu #

University College London, UK

Jialu Bao #

Cornell University, Ithaca, NY, USA

Justin Hsu #

Cornell University, Ithaca, NY, USA

Alexandra Silva #

Cornell University, Ithaca, NY, USA

Fabio Zanasi #

University College London, UK

University of Bologna, OLAS team (INRIA), Italy

Abstract

The logic of Dependence and Independence Bunched Implications (DIBI) is a logic to reason about

conditional independence (CI); for instance, DIBI formulas can characterise CI in discrete probability

distributions and in relational databases, using a probabilistic DIBI model and a similarly-constructed

relational model. Despite the similarity of the two models, there lacks a uniform account. As a

result, the laborious case-by-case verification of the frame conditions required for constructing new

models hinders them from generalising the results to CI in other useful models such that continuous

distribution. In this paper, we develop an abstract framework for systematically constructing DIBI

models, using category theory as the unifying mathematical language. We show that DIBI models

arise from arbitrary symmetric monoidal categories with copy-discard structure. In particular, we

use string diagrams – a graphical presentation of monoidal categories – to give a uniform definition of

the parallel composition and subkernel relation in DIBI models. Our approach not only generalises

known models, but also yields new models of interest and reduces properties of DIBI models to

structures in the underlying categories. Furthermore, our categorical framework enables a comparison

between string diagrammatic approaches to CI in the literature and a logical notion of CI, defined in

terms of the satisfaction of specific DIBI formulas. We show that the logical notion is an extension

of string diagrammatic CI under reasonable conditions.
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1 Introduction

Conditional independence (CI) is a fundamental concept that can be traced back to the

pioneer work on probabilities in Bayes [6] and Laplace [25]. In modern days, this notion is

formalised and applied across various fields of science. For instance, CI is a central concept
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17:2 A Categorical Approach to DIBI Models

in the first formal definition of secrecy by Shannon [37], and remains crucial in various

subsequent works in cryptography [26, 30]; graphical models leverage CI relations to have

efficient representations of probabilistic phenomenons [32, 21, 13]. The core idea of CI is

straightforward: events A and B are “independent” when information about one does not

convey information about the other; events A and B are “conditionally independent” given

event C if, with knowledge of event C, events A and B become independent. Albeit intuitive,

reasoning about conditional independence is intricate, leading to extensive research aimed at

formalising such reasoning [32, 14].

For probabilistic programs, an extension of standard programs with constructs to sample

from distributions, formal methods for (conditional) independence have emerged as powerful

tools for program verification. For instance, Barthe et al. [5] introduced Probabilistic

Separation Logic (PSL) to formalise several cryptography protocols, where the independence

of variables guarantees no leakage of information and thus security of the algorithms. A follow-

up work from Bao et al. [4] proposed the logic of Dependence and Independence Bunched

Implications (DIBI), which enhances PSL with the ability to reason about conditional

independence. Syntactically, DIBI extends the logic of Bunched Implications (BI) [28, 34],

which is the assertion logic underpinning Separation Logic (SL) [35] and PSL, with a non-

commutative conjunction # and its adjoints. Semantically, as in BI, the separating conjunction

∗ is interpreted through a partial operation · on states, regarded as the parallel composition.

In addition, they define a sequential composition » to interpret P # Q. Informally, P ∗ Q says

that P and Q hold in states that can be separated, and P #Q expresses a possible dependency

of Q on P . Section 3 will review the logic in more details.

Bao et al. [4] introduced two kinds of semantic models for DIBI logic: the probabilistic

DIBI models for reasoning about CI of variables in discrete probabilistic computation, and

the relational DIBI models for expressing the CI notion in relational databases called join

dependency. These two models are defined analogously, yielding similar conditions for one

to laboriously check to ensure that they are models. Such similarity led the authors to

conjecture a family of categorical DIBI models that induce these concrete models as instances.

We believe that such categorical models would facilitate the construction of new models

and set out to solve the conjecture with a simple observation: in both the probabilistic and

relational DIBI models, the states resemble Markov kernels – maps from input elements to

distributions/powersets over output elements. Such DIBI states can be identified categorically

as morphisms in the Kleisli categories associated to the discrete distribution monad D

(Definition 36) or the nonempty powerset monad Pi (Definition 37). However, giving a

categorical definition for the parallel compositions · is difficult. The previous work [4]

gives Figure 1a as a pictorial intuition for the parallel composition. The states are drawn as

trapezoids, with the short and long vertical sides representing the input and output domains,

respectively. There, given a blue map f1 and a red map f2, their parallel composition f1 · f2

takes as input the union of their inputs. Then, each fi takes its counterpart in the combined

input domain and generates an output. Finally these two outputs are combined to be the

output of f1 · f2. This parallel composition is partial because the combination of their

outputs is allowed only when the variables overlap in particular ways. This creates a challenge

to capture DIBI models categorically because, in a categorical setting, the domains and

codomains of DIBI states are objects, and it is not obvious how to define the overlap of

objects.

Our solution stems from a formalisation of this graphical intuition through string diagrams,

a pictorial formalism for monoidal categories. String diagrams are widely adopted as intuitive

yet mathematically rigorous reasoning tools across different areas of science, see [33] for
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· 7→

f1 f2 f1 · f2

(a) Parallel composition depicted in [4].

f ′
1

f ′
2 7→

f ′
1

f ′
2

·

f1 f2 f1 · f2

(b) A diagrammatic representation.

Figure 1 Intuition for parallel composition.

an overview. We formalise the trapezoids intuition in Figure 1a into string diagrams in

Figure 1b. The maps previously embodied as trapezoids now have a fork shape, with some

branches being straight lines and some other branches going through boxes. The boxes

represent arbitrary morphisms in the underlying category, and the straight lines represent

the identity morphisms. Whereas composition of two DIBI states were hand-waved as two

trapezoids tiled together in Figure 1a, the string diagram defines it precisely: the overlap of

the two trapezoids is witnessed by the grey wires, and the composition joins two diagrams

side-by-side with the grey wires shared. We show in Section 4 that this string diagram

representation yields DIBI models in any category with enough structure to interpret ,

namely, Markov categories [9, 12]. We then derive existing and new concrete DIBI models as

instances in Section 5.

This framework also enables a comparison between different characterisations of condi-

tional independence (CI). While Bao et al. [4] show that probabilistic or relational CI are

both captured by some DIBI formulas, it is unclear if these formulas generalise to CI in

other models and how they compare to other abstract notions of CI. Since we can construct

categorical DIBI models based on any Markov categories, we define a logical notion of CI

for morphisms in Markov categories as satisfaction of those DIBI formulas. In Section 6,

we investigate the relationship between our “logical” CI and various CI notions based on

categorical structures from literature in synthetic statistics [9, 12] and identify the conditions

that make them equivalent.

Throughout the paper we fix a countably infinite set of variables Var, use x, y, z, . . . for

elements of Var, and use W, X, Y, . . . for finite subsets of Var.

2 Category Theory Preliminaries

Unless specified, all monoidal categories we consider are strict and we write dom(f) and

cod(f) for the domain and codomain of any morphism f . We write ïC, ¹, Ið for a (strict)

monoidal category, where ¹ is the monoidal product and I the unit object of C. If it is also

symmetric, we write ÃA,B : A ¹ B → B ¹ A for the symmetry natural transformation indexed

by objects A and B.

As detailed for instance in [36, 33, 11], morphisms of symmetric monoidal categories have

a graphical presentation as string diagrams, where sequential composition and monoidal

product are depicted as concatenation and juxtaposition of diagrams, respectively: given

morphisms f : X → Y, g : Y → Z, h : U → V,

g ◦ f = f gX Z g ¹ h =
g

h

Y

V

Z

U

FSCD 2024



17:4 A Categorical Approach to DIBI Models

We read string diagrams from left to right, and tensor products from top to bottom. Object

labels in the diagrams are omitted when they are evident or irrelevant to the context.

Symmetries are indicated with the string diagram . We call string diagrams consisting

solely of combinations of s rewirings: intuitively, they permute the order of the objects.

We use the notion of a Markov category, which suitably generalises categories of probab-

ilistic processes [12]. First, a copy-delete category (CD category) is a symmetric monoidal

category (SMC) ïC, ¹, Ið with “copy” copyC and “delete” delC morphisms for each object C,

drawn diagrammatically as and respectively, that form a commutative comonoid:

= = = =

Because of the leftmost equation above, we sometimes write a “trident” for either side

of it. Moreover, both copy and del need to be compatible with the monoidal structure:

A¹B = A
B

A¹B = A

B

We say del is natural if f = for every morphism f . A Markov category is a CD

category in which del is natural. A CD category C has conditionals if for each morphism

f : A → X¹Y, there exist (not necessarily unique) morphisms fX : A → X (called the marginal)

and f|X : X → Y (called the conditional) such that fA
X

Y
= fX

f|XA

X

Y

. When

C is a Markov category, such marginal fX is unique given X by the naturality of del:

fX = fX

f|X
= f

3 DIBI Logic and its Probabilistic Model

In this section we review the logic of Dependence and Independence Bunched Implications

(DIBI). For space reasons, we focus on the discrete probabilistic model for DIBI. Interested

readers may refer to [4] for the relational model, whose construction follows similar steps.

DIBI formulas (based on a set AP of atomic formulas) are defined inductively as follows:

P, Q ::= p ∈ AP | ¦ | I | P ' Q | P → Q | P ∗ Q | P −∗ Q | P # Q | P ⊸ Q | P ⊸Q

The additive conjunction ' is the standard Boolean conjunction. The multiplicative conjunc-

tion ∗ states that P and Q are independent. Both are already present in BI. DIBI extends BI

with the non-commutative conjunction #1, where P # Q states that Q may depend on P . The

operation −∗ is adjoint to ∗, → is adjoint to ', and ⊸, ⊸are adjoints to #. DIBI formulas

are interpreted on DIBI models, each consisting of a DIBI frame on a set of states A and a

valuation function V : AP → P(A) that maps an atomic proposition to the set of states on

which it is true. While a BI frame is based on a partial commutative monoid [10], a DIBI

frame consists of two monoids (one commutative and one not) on the same underlying set,

taking care of the two non-additive conjunctions ∗ and #, respectively.

1 Not to be confused with the additive context constructor which is also denoted as # in the standard BI
literature such as [28, 34].
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a · b
.
= b · a (·-Com)

∃e ∈ E : a = e · a (·-UnitExist)

(a · b) · c
.
= a · (b · c) (·-Assoc)

∃e ∈ E : a = e » a (»-UnitExistL)

∃e ∈ E : a = a » e (»-UnitExistR)

(a » b) » c
.
= a » (b » c) (»-Assoc)

e ∈ E & (a · e)ó =⇒ (a · e) ´ a (·-UnitCoh)

e ∈ E & (a » e)ó =⇒ (a » e) ´ a (»-UnitCohR)

e ∈ E & e
′ ´ e =⇒ e

′ ∈ E (UnitClosure)

(a · b)ó & a ´ a
′ & b ´ b

′ =⇒ (a′ · b
′)ó & (a · b) ´ (a′ · b

′) (·-DownClosed)

(a » b)ó & (a » b) ³ c
′ =⇒ ∃a

′
, b

′ : a
′ ´ a & b

′ ´ b & c
′ = (a′ » b

′) (»-UpClosed)

(a1 » a2) · (b1 » b2)
.
= (a1 · b1) » (a2 · b2) (RevExchange)

Figure 2 DIBI frame conditions (with implicit outermost universal quantifiers), where ó stands

for “is defined”,
.
= means “equal when either side is defined”.

▶ Definition 1 ([4]). A DIBI frame is a tuple A = ïA, ³, ·, », Eð, where A is a set of states,

³ is a preorder on A, E ¦ A are units, and ·, » : A × A á A are partial binary operations2,

satisfying the frame conditions in Figure 2.

The operations » and · are referred to as the sequential and parallel compositions of states.

Intuitively, a ³ b says that a can be extended to b, and E is the set of states that act as

units for these operations. For capturing conditional independence, atomic propositions AP

have the form S ▷ [T ], for finite sets of variables S, T . Roughly, S ▷ [T ] means the values of

variables in T only depend on that of S. We now present the semantics of DIBI formulas,

restricting to the fragment needed for the current work.

▶ Definition 2. Given a DIBI model ïA, Vð, satisfaction ⊨V of DIBI{',∗,#}-formulas at

A-states is inductively defined as follows:

a ⊨V I iff a ∈ E a ⊨V ¦ always

a ⊨V (A ▷ [B]) iff a ∈ V(A ▷ [B])

a ⊨V P ' Q iff a ⊨V P and a ⊨V Q

a ⊨V P ∗ Q iff ∃b1, b2 ∈ A such that b1 · b2 ³ a, b1 ⊨V P , b2 ⊨V Q

a ⊨V P # Q iff ∃b1, b2 ∈ A such that b1 » b2 = a, b1 ⊨V P , b2 ⊨V Q

For a concrete example of DIBI models, we review the probabilistic models on program

memories. Let Val be a set of values, to which variables in Var are assigned. A memory

over a finite set of variables X is a function m : X → Val, and the memory space over X is

the set of all memories over X, denoted as M[X; Val], or M[X] when Val is clear. Given

a memory m ∈ M[X] and a subset U ¦ X, the memory mU : U → Val is the restriction

of m to the domain U . To express probabilistic features, we use DS to denote the set

of discrete distributions over S; that is, the set of all µ : S → [0, 1] such that the support

supp(µ) = {s ∈ S | µ(s) > 0} is finite, and
∑

s∈S µ(s) = 1. A dirac distribution ¶s on an

outcome s is the distribution such that ¶s(s) = 1, and ¶s(s′) = 0 for any s′ ≠ s. Given a

distribution µ in DM[X], if Y ¦ X, we define the marginalisation of µ to DM[Y ], written

as ÃY µ, by letting (ÃY µ)(m′) =
∑

m∈M[X]|mY =m′ µ(m).

2 Note that, even though », · are also partial in the models considered in [4], they have type A×A → P(A)
in that work. This is because the authors obtain completeness of DIBI logic using a method developed
by Docherty [10], which only works for the more general type. Because the operations are actually
partial rather than non-deterministic, and we are not interested in completeness here, we stick to the
more accurate type.

FSCD 2024



17:6 A Categorical Approach to DIBI Models

We are now ready to introduce the notion of probabilistic input-preserving kernels. In

words, a probabilistic kernel f maps a memory m on X to a distribution of memories on

Y § X whose support contains only memories m′ that faithfully extend m (thus the name

“input-preserving”). Alternatively, f can be seen as a conditional distribution Pr(Y | X)

where Y § X, such that Pr(Y = B |X = A) is nonzero only if B restricted to X equals A.

▶ Definition 3 ([4]). A probabilistic input-preserving kernel (or probabilistic kernel for

short) is a function f : M[X] → DM[Y ] satisfying:

(i) X ¦ Y ,

(ii) ÃX ◦ f = ¸D
M[X], where ¸D

M[X](m) returns the dirac distribution over m.

The set of all probabilistic kernels is denoted ProbKer.

The probabilistic model is a structure based on the carrier set ProbKer.

▶ Definition 4 (Probabilistic model, [4]). The probabilistic frame based on Val PrFr[Val]

(or simply PrFr when Val is evident) is a tuple ïProbKer, ³, ·, », ProbKerð where », ·, ³

are defined for arbitrary f : M[X] → DM[Y ] and g : M[Z] → DM[W ] as:

the sequential composition f » g is defined iff Y = Z. In this case, f » g is of the

form M[X] → DM[W ], and given m ∈ M[X], (f » g)(m) maps n ∈ M[W ] to
∑

ℓ∈supp(f(m)) (f(m)(ℓ) · g(ℓ)(n));

the parallel composition f · g is defined iff X ∩ Z = Y ∩ W . In this case, f · g is of the

form M[X ∪ Z] → DM[Y ∪ W ] such that given ℓ ∈ M[X ∪ Z] and m ∈ M[Y ∪ W ], we

have (f · g)(ℓ)(m) = f(ℓX)(mY ) · g(ℓZ)(mW );

the subkernel relation f ³ g holds if there exist a finite set of variables S and h ∈ ProbKer

such that g =
(

f · ¸D
M[S]

)

» h.

The probabilistic model based on Val consists of the probabilistic frame PrFr[Val] and the

following natural valuation Vnat : AP → P(ProbKer): given (S ▷ [T ]) and f : M[X] →

DM[Y ], f ∈ Vnat(S ▷ [T ]) iff there exists a probabilistic kernel f ′ : M[X ′] → DM[Y ′] such

that f ′ ³ f , X ′ = S and T ¦ Y ′.

Next we give examples of probabilistic kernels and how they compose. We write a map

from a variable x to a value c as cx and use the ket notation a|Éð to denote a probabilistic

outcome É of probability a.

▶ Example 5. Consider variables x, y, z that take values in Val = {0, 1}. We define a map
f : M[{z}] → DM[{x, y, z}] by:

f(0z) =
1

4
|0x, 0y, 0zð +

1

4
|0x, 1y, 0zð +

1

4
|1y, 0y, 0zð +

1

4
|1y, 1y, 0zð

f(1z) =
1

16
|0x, 0y, 1zð +

3

16
|0x, 1y, 1zð +

3

16
|1y, 0y, 1zð +

9

16
|1y, 1y, 1zð

Each input memory (coloured) is preserved by f so it is a probabilistic kernel. Then define
g1 : M[{z}] → DM[{x, z}] and g2 : M[{z}] → DM[{y, z}] as:

g1(0z) =
1

2
|0x, 0zð +

1

2
|1y, 0zð g1(1z) =

1

4
|0x, 1zð +

3

4
|1y, 1zð

g2(0z) =
1

2
|0y, 0zð +

1

2
|1y, 0zð g2(1z) =

1

4
|0y, 1zð +

3

4
|1y, 1zð

Both g1 and g2 are probabilistic kernels as well. The parallel composition g1 · g2 is defined

since {z} ∩ {z} = {x, z} ∩ {y, z}; in fact, it is easy to verify that g1 · g2 = f . Moreover, g1

and g2 can be obtained by projecting the output of f on {x, z} and {y, z}, respectively, and

we can show g1 ³ f and g2 ³ f .
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4 DIBI models in Markov categories

In this section we construct more abstract DIBI models based on categorical structures. The

starting point of our approach is a categorical characterisation of the concrete probabilistic

models given above. In the following, we begin by showing examples of how elements in that

model can be reformulated in categorical terms and then formally present our categorical

construction of DIBI models.

As we noted in Section 1, the probabilistic DIBI kernels can be identified as morphisms

in the Kleisli category for the distribution monad Kℓ(D) (Definition 36); however, not all

morphisms in Kℓ(D) are probabilistic DIBI kernels, so we need to define the extra conditions

categorically. First, we identify the Kℓ(D) morphisms operating on memories. Let MemPr be

the subcategory of Kℓ(D) where objects are restricted to memory spaces over Val. That is, the

objects are memory spaces m : X → Val, and the morphisms are maps f : M[X] → DM[Y ]

(or f : M[X] _ M[Y ] using the Kleisli category notation). Then, probabilistic kernels

are exactly those morphisms in the MemPr that satisfy the input-preserving condition

in Definition 3. So next, we need to express the input-preserving condition categorically.

To do that, we depict MemPr morphisms using string diagrams, which is possible because

MemPr is a subcategory of the monoidal category Kℓ(D) We also observe that the codomain

of an input-preserving kernel f : M[X] _ M[Y ] can be decomposed as M[X] × M[Y \ X].

Recall the probabilistic kernel f from Example 5. Since its codomain M[{x, y, z}] can be

decomposed as M[{x}] × M[{y}] × M[{z}], we can draw it as follows:

f ′

M[{z}]
M[{z}]

M[{y}]
M[{x}]

Intuitively, M[{z}] produces two copies of the value of z, and the values of x and y are

computed from that of z via f ′
M[{z}]

M[{y}]
M[{x}]

, while the value of z gets preserved through

a straight wire in the bottom. As in this example, such copy structure of Kℓ(D) enables us

to capture the “input-preserving” condition of probabilistic kernels generally.

Next we want to express the sequential (») and parallel (·) compositions of probabilistic

kernels categorically. The former is exactly the sequential composition in Kℓ(D). The parallel

composition, however, is not the monoidal product ¹ in Kℓ(D). By definition, the monoidal

product is total, while the parallel composition is partial. Even when the parallel composition

is defined, the types of the resulting morphisms do not match. Suppose that the parallel

composition of f : M[X] _ M[Y ] and g : M[U ] _ M[V ] is defined, we have

f · g : M[X ∪ U ] _ M[Y ∪ V ] f ¹ g : M[X] × M[U ] _ M[Y ] × M[V ]

The key difference is that parallel composition considers a single memory that can be

projected into two pieces, while the monoidal product considers the cartesian product of

two pieces of memory, no matter if they agree or not on overlapped variables. To define

the parallel composition, we need to combine M[X] and M[U ] into M[X ∪ U ] categorically.

Thus, we use the fact that for disjoint Z1, Z2, M[Z1 ∪ Z2] ∼= M[Z1] × M[Z2], which implies

that M[X ∪ U ] ∼= M[X \ U ] × M[X ∩ U ] × M[U \ X]. We illustrate the parallel composition

of two probabilistic kernels from Example 5 in the following example.

▶ Example 6. A first way of describing parallel composition of probabilistic kernels g1 and

g2 from Example 5 category-theoretically is by seeing them as Kℓ(D)-morphisms. In this

setting, we may define g1 · g2 as the composite

FSCD 2024



17:8 A Categorical Approach to DIBI Models

M[{z}] (DM[{z}] × DM[{x}]) × DM[{y}]

D((M[{z}] × M[{x}]) × M[{y}]) DM[{x, y, z}]

ïï¸,g′
1ð,g′

2ð

dst◦ïdst,idð
D∼=

(1)

where dst is the double strength of the monad D, and g′
1 : M[{z}] _ M[{x}], g′

2 : M[{z}] _

M[{y}] represent the conditional distributions obtained by suitable projections of g1 and g2

respectively. Now consider an alternative presentation: we draw kernels g1 and g2 respectively

as the first and second string diagrams below. The parallel composition g1 · g2 is then given

by the rightmost string diagram below.

g′
1

M[{z}]
M[{z}]

M[{x}] g′
2

M[{z}]
M[{z}]

M[{y}] g′
1

g′
2

M[{z}] M[{z}]
M[{x}]

M[{y}]
(2)

The formulation (2), which we adopt in our work, has two advantages over (1). First, string

diagrams make for a cleaner presentation, abstracting away most “bureaucratic” steps in (1).

Second, for kernels of larger sizes, the use of diagrams drastically simplifies calcu lations,

see, e.g., the verification of frame conditions in proving Theorem 12 below. e Therefore, we

will define categorical DIBI models and their compositions using string diagrams, though (1)

exists as an alternative formulation.

We give the formal string diagrammatic definitions of the compositions later in Definition 10,

as part of the generic construction of DIBI models.

While we simply use the concept of memory spaces M[X] to define the subcategory

MemPr, that concept of memory spaces is customised for reasoning about probabilistic

programs and relational databases and has potential to be parameterised. We observe that

the side conditions of the parallel and sequential compositions are all based on comparing the

set of variables in the (co)domains, so they only depend on the variable part (i.e., X) in M[X].

This motivates us to define DIBI states as morphisms in a category whose objects are made

of variables (see Definition 7) and abstracts the map between variables and corresponding

memory spaces through an assignment ¹ : Var → ob(C), for some Markov category ïC, ¹, Ið.

Finally, we need to express finite sets of variables and the union of disjoint such sets in a

monoidal category, where the monoidal products of objects do not take care of deduplication.

To address that, we impose a linear order ¯ on Var such that indexed variables inherit the

order of their indices, e.g., x1 ¯ x2 ¯ x3. Let x z y abbreviate for x ¯ y and x ≠ y. Then,

finite sets of variables can be represented as finite lists of variables ordered by z, via a

translation that we write as J·K. For instance, J{x3, x1, x3, x4}K = [x1, x3, x4]. This will be

realised in two steps: we first define a category whose objects are finite lists of variables

(Definition 7), and then we restrict the objects to finite lists without duplicates that respect

the linear order (Definition 9).

Now we are ready to define a symmetric monoidal category C[¹] that has enough structure

to support our categorical characterisation of DIBI models. The category C[¹] is parameterised

by C, whose objects abstract the concept of memory spaces. For simplicity, we fix a Markov

category C throughout the rest of the section.

▶ Definition 7. Let C[¹] be the symmetric monoidal category whose objects are finite lists of

variables, and morphisms [x1, . . . , xm] → [y1, . . . , yn] are C-morphisms ¹(x1)¹· · ·¹¹(xm) →

¹(y1) ¹ · · · ¹ ¹(yn). Sequential composition is defined as in C. The identity on [x1, . . . , xm]

is id¹x1¹···¹¹xm
. The monoidal product in C[¹] – which we also write as ¹ with abuse of

notation – is list concatenation on objects, and monoidal product in C on morphisms.
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The SMC and Markov category structure of C[¹] follow from those of C. In particular, the sym-

metric map [x1, . . . , xm]¹[y1, . . . , yn] → [y1, . . . , yn]¹[x1, . . . , xm] is the symmetry morphism

(¹(x1) ¹ · · · ¹ ¹(xm)) ¹ (¹(y1) ¹ · · · ¹ ¹(yn)) → (¹(y1) ¹ · · · ¹ ¹(yn)) ¹ (¹(x1) ¹ · · · ¹ ¹(xm))

in C. The copy map [x1, . . . , xm] → [x1, . . . , xm] ¹ [x1, . . . , xm] = [x1, . . . , xm, x1, . . . , xm] is

the copy map copy¹(x1)¹···¹¹(xm) : ¹(x1) ¹ · · · ¹ ¹(xm) → (¹(x1) ¹ · · · ¹ ¹(xm)) ¹ (¹(x1) ¹

· · · ¹ ¹(xm)) in C. The tensor unit in C[¹] is the empty list [ ], and ¹ maps it to the

tensor unit I of the SMC C. The delete map [x1, . . . , xm] → [ ] is then the delete map

del¹(x1)¹···¹¹(xm) : ¹(x1) ¹ · · · ¹ ¹(xm) → I in C.

Sometimes we restrict ourselves to a uniform assignment ¹; that is, for some fixed

C ∈ ob(C), ¹(x) = C for all x ∈ Var. This is in line with the scenario where a fixed value

space Val is used for all variables (see Definition 3). In this case, we write C[¹] as C[C]

to emphasise the uniform value of the assignment. This category can be seen as the full

subcategory of C freely generated by C, but with each occurrence of the generating object

named by a variable. The next example shows how the construction in Definition 7 selects

morphisms of Kℓ(D) that act on memory spaces, among which we have all the probabilistic

kernels.

▶ Example 8. Let C be Kℓ(D), and ¹ : Var → ob(Kℓ(D)) be the constant function x 7→ Val

for all x ∈ Var. Then there is a full and faithful embedding functor º : MemPr → Kℓ(D)[¹]:

on objects, given a set X, º(M[X]) = JXK; on morphisms, given f : M[X] → DM[Y ]

with X = {x1, . . . , xm} and Y = {y1, . . . , yn}, its image º(f) : JXK → JY K is the composed

map Valm
∼=
−→ M[X]

f
−→ DM[Y ]

D∼=
−−→ DValn, where the isomorphisms are, e.g., M[Y ]

∼=
−→

M[{y1}] × · · · × M[{yn}]
∼=θ

−−→ Valn, using the valuation ¹(yj) = Val.

Just as the states of the probabilistic models are exactly input-preserving morphisms in

MemPr, we define the notion of input-preserving kernels in C[¹], written Ker(C[¹]) and use

them as the states of our categorical DIBI models.

▶ Definition 9. A C[¹]-morphism f : [x1, . . . , xm] → [y1, . . . , yn] is a C[¹] input-preserving

kernel (or C[¹]-kernel for short) if x1 z · · · z xm, y1 z · · · z yn, and f can be decomposed

as follows, where Ã is a rewiring:

f
...

yn

...
y1

xm

x1

=
f ′

...

...

...
x1

xm

y1

yn

...Ã
u1

uk

(3)

In words, a C[¹]-kernel is a morphism whose interfaces are essentially finite sets of variables,

such that the input is preserved as part of the output (through the upper leg of those s).

The map f ′ in (3) is referred to as the nontrivial part of the input-preserving kernel. It

follows from Definition 9 that, for a C[¹]-kernel, its codomain [y1, . . . , yn] always subsumes

its domain [x1, . . . , xm]; also, u1, . . . , uk are precisely those yjs that are not among these xis.

Since the (co)domains of C[¹]-kernel are list presentation of sets, we also write the types of

C[¹]-kernels using the corresponding sets, e.g., in (3), f : {x1, . . . , xm} → {y1, . . . , yn}.

Next we define compositions on input-preserving kernels, generalising what we have seen

in Example 6 for the probabilistic models.

▶ Definition 10 (Compositions). Given arbitrary C[¹]-kernels f : X → Y and g : U → V

as in Figure 3a, their sequential composition f » g is defined iff cod(f) = dom(g), in

which case f » g = g ◦ f . Their parallel composition f · g is defined iff X ∩ U = Y ∩ V .

Assume L = JX ∩ UK, L1 = JX \ (X ∩ U)K, L2 = JU \ (X ∩ U)K, K1 = JY \ (Y ∩ V )K, and

K2 = JV \ (Y ∩ V )K, then f · g : X ∪ U → Y ∪ V is defined as in Figure 3b, where all the

Ãis are rewiring morphisms for making the input and output variables z-ordered.
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f ′

...

...

...
x1

xk

y1

yℓ

...Ã1

g′

...

...

...
u1

um

v1

vn

...Ã2

(a) C[¹]-kernels f and g.

f ′

g′

Ã3

Ã4 Ã6
...Ã5

...

L1

L2

L

K1

K2

(b) f · g.

Figure 3 Parallel composition of C[¹].

Note here a benefit of the diagrammatic representation: we can easily identify the memory

overlap M[X ∩ Y ], as it is depicted a separate wire; with traditional syntax, we would need

to apply associativity and commutativity to extract it from M[X ∪ Y ]. It is easy to see

that kernels are closed under compositions. Also, for curious readers, C[¹]-kernels with their

parallel compositions form a partially monoidal category [2]. Next we define the subkernel

relation.

▶ Definition 11 (Subkernel). Given two C[¹]-kernels f and g, we say f is a subkernel of g –

denoted as f ³ g – if there exist z1, . . . , zn ∈ Var, a C[¹]-kernel h, and rewiring morphisms

Ã1, Ã2 such that g can be expressed as follows:

g =

... f

...

Ã2z1

zn

Ã1
...

...

...
h

...

The subkernel relation is transitive and reflexive, which can be shown simply by manipu-

lations of the string diagram. We are finally able to state the main result of this section:

C[¹]-kernels and their compositions form a DIBI frame.

▶ Theorem 12. Fr(C[¹]) = ïKer(C[¹]), ³, ·, », Ker(C[¹])ð is a DIBI frame.

Also, under the natural valuation Vnat, a C[¹]-kernel f : X → Y satisfies S ▷ [T ] iff there is a

subkernel (f ′ : X ′ → Y ′) ³ f such that X ′ = S and Y ′ § T . Thus:

▶ Corollary 13. (Fr(C[¹]), Vnat) is a DIBI model.

We will see in Section 5 how to use this categorical construction to derive a wide range of

DIBI models. Moreover, it also enables us to extract the conditions needed for a specific

feature of a DIBI model as properties of the underlying category. Here is an example.

▶ Proposition 14. If C further satisfies that for arbitrary morphisms f, g and object D,

f ¹ delD = g ¹ delD implies f = g, then a subkernel is unique given its type in the following

sense: if C[¹]-kernels f1, f2 : U → V are both subkernels of g, then f1 = f2.

Note that the uniqueness of subkernels has been observed already in the context of

probabilistic and relational models, see [4, Sect. IV]. Proposition 14 reveals the general

conditions under which this uniqueness holds for a wider class of DIBI models.

5 Examples

In this section we provide concrete instances of the categorical construction in Section 4.

The first example recovers the probabilistic DIBI models. The remaining examples are new

DIBI models. Some of them have been suggested in the DIBI paper [4], yet not materialised

due to the complexity involved in stating each component and verifying the frame conditions.

Within our framework, these steps become much easier to perform.
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5.1 Probabilistic (and Relational) DIBI Models

As we sketched in Example 6 and Example 8, the probabilistic DIBI kernels and

ïFr(Kℓ(D)), Vnatð input-preserving kernels correspond to each other. We now formally

show that the probabilistic DIBI model in Definition 4 can be recovered from the categorical

DIBI model ïFr(Kℓ(D)), Vnatð. Since both models are equipped with the natural valuation

Vnat, we focus on the frame part. To make the correspondence precise, we introduce the

category of DIBI frames, as hinted in [4, Sect. III].

▶ Definition 15. In the category of DIBI frames DibiFr, objects are DIBI frames; morphisms

f : ïS, ³S , ·S , »S , ESð → ïT, ³T , ·T , »T , ET ð are functions f : S → T that respect all the

relations and partial operations: for arbitrary s, s′ ∈ S,

s ³S s′ implies f(s) ³T f(s′);
if s ⋆S s′ is defined, then f(s) ⋆S f(s′) is defined, and f(s) ⋆T f(s′) = f(s ⋆S s′), for

⋆ ∈ {·, »};

s ∈ ES implies f(s) ∈ ET .

It turns out that the function º introduced in Example 8 extends to an isomorphism of

DIBI frames from PrFr[Val] to Fr(Kℓ(D)[Val]).

▶ Proposition 16. PrFr[Val] ∼= Fr(Kℓ(D)[Val]).

▶ Example 17. The probabilistic kernel g1 : M[{z}] → DM[{x, z}] from Example 5 cor-

responds to the following Kℓ(D)[{0, 1}]-kernel h1 : [z] → [x, z] – i.e., a Kℓ(D)-morphism

{0, 1} _ {0, 1}2 – where: 0 7→ 1
2 |0, 0ð + 1

2 |1, 0ð, 1 7→ 1
4 |0, 1ð + 3

4 |1, 1ð. Diagrammatically, h1

is of the form
h′

1

z

x
, where h′

1 : [z] → [x] is the map such that 0 7→ 1
2 |0ð + 1

2 |1ð and

1 7→ 1
4 |0ð + 3

4 |1ð

Similarly, the relational DIBI model from [4] with the value space Val can be shown to

be isomorphic to Fr(Kℓ(Pi)[Val]), where Pi is the nonempty powerset monad A.

5.2 Stochastic DIBI Models

Using our categorical construction, we can derive a notion of DIBI model for continuous

probabilistic (stochastic) processes, not previously considered. This is of interest because, as

we show in Section 6, it allows to capture conditional independence for continuous probability

using DIBI formulas. We take as underlying category Stoch of stochastic processes, defined

as the Kleisli category Kℓ(G) for the Giry monad on measurable spaces – see Appendix A for

a full definition. Since G is an affine symmetric monoidal monad, Stoch is a Markov category.

Applying Theorem 12 to C = Stoch, we get DIBI frames based on stochastic processes.

▶ Proposition 18. Given an arbitrary map ¹ : Var → ob(Meas), Fr(Stoch[¹]) =

ïKer(Stoch[¹]), ³, ·, », Ker(Stoch[¹])ð is a DIBI frame.

We call Fr(Stoch[¹]) the stochastic DIBI frame based on ¹ and elements in Ker(Stoch[¹])

stochastic kernels.

▶ Example 19. We show a representation of the Box-Muller transformation using stochastic

kernels. Consider ¹ that maps all variable names to the Borel Ã-algebra over reals (R, B(R)).

Define stochastic kernels g1 : ∅ → {u} and g2 : ∅ → {w} – both standing for Stoch-morphisms

(1, {∅, 1}) → (R, B(R)), or equivalently, a probabilistic measure on (R, B(R)) – by gi(•) =

Unif(0, 1) for i = 1, 2, where Unif(0, 1) is the uniform measure over the interval (0, 1). Such
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a uniform measure over infinite outcomes is not possible in the discrete probabilistic DIBI

model. Define another stochastic kernel f : {u, w} → {u, w, x, y} where the value of x, y are

determined by the value of u, w:

f(u 7→ vu, w 7→ vw) = ¶
vu,vw,(

√
−2 ln u·cos(2Ãw))

x
,(

√
−2 ln u·sin(2Ãw))

y

.

Then h = (g1 · g2) » f gives a stochastic kernel ∅ → {u, w, x, y}. Box-Muller transformation

says that x and y are independent in h(ïð) despite their seemingly dependence on u and w.

Comparison with Lilac [24]. Our stochastic DIBI models can be used to reason about

independence and conditional probabilities in continuous distributions. A recent work Lilac

by Li et al. [24] proposed a BI model for the same goal, yet with some crucial differences in

the set-up.

First, the states in Lilac’s BI model are probabilistic space fragments of a fixed sample

space, and their variables are mathematical random variables that deterministically map

elements in the sample space to values. In comparison, we treat variables as names that

can be associated to values or distributions. Our stochastic kernels – though not using an

ambient sample space – can encode their set-up: we can devise a special variable Ω for “the

sample space”, and deterministic kernels from Ω to other variables encode random variables.

Second, to reason about conditional probabilities, Lilac want probability spaces to be

disintegrable with respect to well-behaved random variables. To achieve that, they require

probability spaces in their model to be extensible to Borel spaces, since disintegration

works nicer in Borel spaces. By working with kernels, which already represent conditional

probability spaces, we do not need to impose disintegratability on our DIBI states to reason

about conditional probabilities. For instance, while disintegration is not always possible in

the category Stoch, we can still construct a DIBI model based on Stoch.

Other measure-theoretic probabilistic DIBI models. The category Stoch is not the only

Markov category for measure-theoretic probability. Another choice is BorelStoch, a sub-

category of Stoch obtained by restricting to standard Borel spaces as objects. It has some

nice properties that Stoch does not satisfy, such as having conditionals as mentioned above.

BorelStoch is also a Markov category and we can easily instantiate a DIBI model.

▶ Proposition 20. Given any map ¹ : Var → ob(BorelStoch), Fr(BorelStoch[¹]) defined as

ïKer(BorelStoch[¹]), ³, ·, », Ker(BorelStoch[¹])ð is a DIBI frame.

The study of measure theory is also intertwined with topology, and another category

for measure-theoretic probability is the Kleisli category of the Radon monad R based on

the category of compact Hausdorff spaces CHaus and continuous maps, which we denote as

KℓCHaus(R). KℓCHaus(R) is also a Markov category [12], so Theorem 12 applies.

▶ Proposition 21. Given any map ¹ : Var → ob(KℓCHaus(R)), Fr(KℓCHaus(R)[¹]) defined as

ïKer(KℓCHaus(R)[¹]), ³, ·, », Ker(KℓCHaus(R)[¹])ð is a DIBI frame.

A measure-theoretic Markov category not formed as Kleisli categories is the Gaussian

probability category Gauss [12]. Its objects are natural numbers, and a morphism n → m is a

tuple (M, Ã2, µ) representing the function f : Rn → Rm with f(v) = M · v + À, where À is the

Gaussian noise with mean µ and covariance matrix Ã2. Its monoidal product is addition +

on the objects and vector concatenation on morphisms. Gauss differs from Stoch, BorelStoch

and KℓCHaus(R) in that it does not arise as the Kleisli category associated to some monad.

But since it is a Markov category, we can again instantiate DIBI models based on Gauss.
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▶ Proposition 22. Given any map ¹ : Var → ob(Gauss), Fr(Gauss[¹]) defined as

ïKer(Gauss[¹]), ³, ·, », Ker(Gauss[¹])ð is a DIBI frame.

5.3 Syntactic DIBI Models

The DIBI models defined so far all have kernels defined by some processes over memory

spaces. It is worth considering a different flavour: purely formal, syntactically generated

DIBI models. We start by defining the underlying category.

▶ Definition 23. SynVar is the Markov category freely generated as follows:

the generating objects are variables in Var;

there is exactly one generating morphism of type [u1, . . . , um] → [v1, . . . , vn] for distinct

variables u1 z · · · z um and v1 z · · · z vn, written as string diagrams of the form
...

...
u1

um

v1

vn

.

In words, SynVar-objects are finite lists of variables (without the requirements of duplicate-

free or ¯-ordered); morphisms are diagrams freely concatenated using , , , ,

and
...

...
u1

um

v1

vn

(quotiented by the Markov category equations). The syntactic DIBI frame

is based on the category SynVar[id], where id : Var → ob(SynVar) maps x ∈ Var to the

singleton list [x].

▶ Proposition 24. SynFr = ïKer(SynVar[id]), ³, ·, », Ker(SynVar[id])ð is a DIBI frame.

Equipped with the natural valuation Vnat, one obtains a DIBI model ïSynFr, Vnatð. We

postpone an example of SynVar[id]-kernels till Section 6, Example 33, in which SynVar[id]-

kernels are used to distinguish two notions of conditional independence in Markov categories.

An interesting question for future work is how to extend the syntactic DIBI model to a term

model. Typically being initial objects in categories of models, term models can help proving

completeness and defining categorical semantics for formal systems, including algebraic

theories [23], logics [38] (e.g., Lindenbaum–Tarski algebras) and type theories [19, 18]. A

term model for DIBI could lead to a sound and complete axiomatisation of the specific

version of DIBI logic in this paper, whose atomic propositions take the form of S ▷ [T ].

6 Conditional independence

DIBI logic is designed for reasoning about conditional independence (CI). The prior work [4]

shows that, CI in the discrete probabilistic models and join dependency in the relational

models can be characterised by the same class of DIBI formulas. Generalising this result,

in this section we define a notion of CI on C[¹]-kernels based on formula satisfaction. Since

C[¹] is a Markov category, we can compare our logical notion of CI with existing categorical

definitions of CI in Markov categories [9, 12].

Fix a Markov category C and a map ¹ : Var → ob(C). We define CI in the DIBI model

ïFr(C[¹]), Vnatð.

▶ Definition 25 (Conditional Independence). For any mutually disjoint finite sets of variables

W, X, Y, U , X and Y are DIBI conditionally independent given W in a C[¹]-kernel3f : ∅ →

W ∪ X ∪ Y ∪ U (denoted as X §§L Y |W ) if

f ⊨Vnat
(∅ ▷ [W ]) # ((W ▷ [X]) ∗ (W ▷ [Y ])). (4)

3 Note that C[¹]-kernels with domain ∅ are not to be thought of as maps with empty domains. For
instance, Kℓ(D)[¹]-kernels of the form ∅ → {x, y} corresponds to Kℓ(D)-morphisms 1 _ ¹(x) × ¹(y),
which denote distributions over x, y.
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Let us unfold what (4) means. Under the natural valuation Vnat, the atomic proposition

S ▷ [T ] encodes the dependence of T on S: formally, a C[¹]-kernel f : X → Y satisfies S ▷ [T ]

iff f contains some subkernel f ′ : S → Y ′ such that T ¦ Y ′. So the formula in (4) requires

that the kernel f has empty domain and can be decomposed as f ´ f0 » (f1 · f2), where f0

determines the value on W , f1 and f2 determine the value on X and Y given the value on

W , respectively, and f1 and f2 do so independently of each other. We illustrate the formula

with examples in the discrete probabilistic DIBI model and the stochastic DIBI model.

▶ Example 26. In the setting of Example 5, consider the probabilistic kernel h : M[∅] →
DM[{x, y, z}] such that :

h(∅) =
1

8
|0x, 0y, 0zð +

1

8
|0x, 1y, 0zð +

1

8
|1y, 0y, 0zð +

1

8
|1y, 1y, 0zð

+
1

32
|0x, 0y, 1zð +

3

32
|0x, 1y, 1zð +

3

32
|1y, 0y, 1zð +

9

32
|1y, 1y, 1zð

Then h ⊨Vnat
(∅ ▷ [{z}])#(({z} ▷ [{z, x}])∗({z} ▷ [{z, y}])), because h = h0»f = h0»(g1·g2),

where h0 denotes the uniform distribution 1
2 |0zð + 1

2 |1zð.

▶ Example 27. Define g1, g2, f, h as in Example 19. We want to assert that variables x and

y are independent in the distribution constructed by Box-Muller Transform. Independence

is a special case of conditional independence in which the set of conditioned variables is

empty. Thus, the goal is to assert (∅ ▷ [∅]) # ((∅ ▷ [{x}]) ∗ (∅ ▷ [{y}])) – equivalently,

(∅ ▷ [{x}]) ∗ (∅ ▷ [{y}]).

Define h1 : ∅ → {x} and h2 : ∅ → {y} both as the standard normal distribution N (0, 1).

Clearly h1 ⊨Vnat
∅ ▷ [{x}] and h2 ⊨Vnat

∅ ▷ [{y}]. Moreover, some non-trivial calculations

show that (h1 · h2) ³ h, and consequently h ⊨Vnat
(∅ ▷ [{x}]) ∗ (∅ ▷ [{y}]) by definition.

Since the categorical DIBI models are based on Markov categories, we compare our logical

notion of CI on kernels with the canonical notion of CI in Markov categories, which defines

CI as decomposability of morphisms. Fix a Markov category X in Definitions 28, 31, and 34.

▶ Definition 28. An X-morphism s : I → W ¹ X ¹ Y displays the conditional independence

of X and Y given W if there exist X-morphisms sW : I → W, gX : W → X, gY : W → Y such

that the following equation holds. We write this as X§Y |W.

W

X

Y

s = sW

W

X

Y

gX

gY

In the context of DIBI models, Definition 28 restricts to stating the conditional independ-

ence of X and Y given W in C[¹]-kernels of the form ∅ → W ∪ X ∪ Y . In particular, no

extra variable (as that U in Definition 25) in the kernel’s codomain is allowed.

▶ Example 29. We show an example of this notion of CI in the Markov category Gauss.

Consider a morphism s : ∅ → {w, x, y} specified by the tuple
(

!, Ã2 =
[

1 1 1
1 2 1
1 1 2

]

, µ =
[

0
0
0

])

,

where ! denotes the trivial map from empty domain. That is, s takes a length 0 vector and

generates a length 3 vector, holding the values of w, x and y, with the normal distribution

N (µ, Ã2). This s can be decomposed as in Definition 28 with sw = (!, 0, 1), gx = (1, 0, 1),

and gy = (1, 0, 1): composing sw, gx and gy, we get E(w) = E(Àw) = 0, E(x) = E(w + Àx) =

0 + 0 = 0 , and E(y) = E(w + Ày) = 0, justifying the noise’s mean µ being a zero vector.

For the covariance matrix, let v = (w, x, y) − (E(w), E(x), E(y)). Then Ã2 = E(v · vT ) =

E((w, x, y) · (w, x, y)T ), and one may show that Ã2 is equal to the matrix above.
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W

X

Y
s

U

= sW

W

X

Y

gX

gY

(a) Markov CI.

W

X

Y
s

U

= s0

W

X

Y

g1

g2

U0

U1

U2

(b) superset CI.

Figure 4 Two possible extension of plain CI.

▶ Proposition 30. For any C[¹]-kernel s : ∅ → W ∪ X ∪ Y where W, X, Y are mutually

disjoint, X §Y |W iff X §§L Y |W .

In order to extend Proposition 30 to the scenario in Definition 25 where a kernel f might

contain some U that does not appear in the CI statement in its codomain, we need to modify

the notion of CI from Definition 28 – referred to as plain CI – to allow objects that do

not appear in the CI statement to occur in the codomain of s. We suggest two sensible

extensions.

▶ Definition 31. Given an X-morphism s : I → W ¹ X ¹ Y ¹ U,

s displays Markov CI, denoted X§M Y |W, if there exist sW, gX, gY satisfying 4a.

s displays superset CI, denoted X§S Y |W, if there exist s0, g1, g2 satisfying 4b.

These two notions differ regarding to the treatment of the extra object U. In Figure 4a,

we project out the extra object U and reduce the situation to that of Definition 28. In

Figure 4b, U is kept and passed along through s0, g1, g2. Clearly, both reduce to Definition 28

when no such U appears. We can now state that DIBI CI coincides with Markov CI, but is

weaker than superset CI.

▶ Theorem 32. Given the C[¹]-kernel f : ∅ → W ∪ X ∪ Y ∪ U from Definition 25,

1. f satisfies X §M Y |W if and only if it satisfies X §§L Y |W ;

2. if f satisfies X §S Y |Z, then it also satisfies X §§L Y |Z.

Item 1 follows straightforwardly by unpacking the definitions. Item 2 follows from Item 1

and that X§S Y |W implies X§M Y |W: simply apply U on both sides of Figure 4b, and

Figure 4a follows via naturality of . The converse of Item 2 does not hold in general, as

demonstrated below.

▶ Example 33. Consider the syntactic DIBI model ïSynFr, Vnatð from Section 5.3. Define

the SynVar[id]-kernel f as follows, where c0, c1, c2, d are all generating morphisms, i.e., not

further decomposable:

c0

w

c1

c2 d

x
y

u

Then f satisfies the DIBI CI x§§L y |w, but not the superset CI x§S y |w: one cannot

rewrite the diagram in the dotted box into a juxtaposition of two diagrams with output

wires containing x and y, respectively; in other words, it cannot be rewritten as the style in

Figure 4b.

Example 33 gives some hint at how to weaken the superset CI to match DIBI CI: one

needs to allow some morphism d following the morphism witnessesing x§S y |z. We formalise

this idea and show the resulting notion is indeed equivalent to both Markov and DIBI CI.

FSCD 2024
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▶ Definition 34. An X-morphism s : I → W ¹ X ¹ Y ¹ U displays the extended superset

conditional independence – denoted as X§S+ Y |W – if there exist X-morphisms s0, g1, g2, h

such that s can be decomposed as follows:

s0

W
X
Y

g1

g2

V0

V1
V2

h V3 (5)

Compared with Figure 4b, here one allows an extra morphism h to appear after the original

superset CI diagrams in Figure 4b; in fact, modulo rewiring, (5) is exactly s1
h

W¹X¹V1¹Y¹V2

V0

V3

,

where s1 = s0

W

X

Y

g1

g2
V0

V1

V2

. One intuitive way to think of the extended superset CI is to

view the morphisms as certain computational processes [31]: X and Y are independent given

W in s if s could be obtained via a computation in which X and Y are computed independently

from W (using g1 and g2 in (5) respectively), after which some further computation may

apply (for which stands the h part in (5)).

▶ Proposition 35. In Markov categories with conditionals, extended superset CI and Markov

CI are equivalent. Therefore, in the context of Theorem 32, if C has conditionals, then the

three notions of CI – DIBI CI, Markov CI, and extended superset CI – coincide.

7 Conclusion

In this paper we provide a general recipe to construct models for DIBI logic, generalising the

previously studied probabilistic and relational models. We adopt string diagrams to best

visualise the “input-preserving” property that characterises the states in the models, as well

as the compositions and subkernel relations, whose definition would be quite convoluted in

non-diagrammatic syntax. Then, we derive various new classes of DIBI models of interest. In

addition, we define an abstract notion of conditional independence in terms of DIBI formulas.

Since our approach can construct DIBI models based on any Markov categories, we are then

able to compare the logical CI notion with other definitions of CI proposed in the literature.

There are many promising directions for future work. On the logic side, DIBI logic –

interpreted in the probabilistic models – was designed to be the assertion logic of Conditional

Probabilistic Separation Logic (CPSL). Our categorical construction of a wide class of DIBI

models suggests a generalisation of CPSL to obtain program logics in various scenarios

beyond probabilistic programs, in the spirit of Moggi [27].

The notion of CI we propose can be straightforwardly generalised from Markov categories

to copy-delete categories (see Section 2). This would allow us to encompass models such as

relations with bag semantics in databases [8, 16], sub-probability measures [20]. However, to

the best of the authors’ knowledge, Proposition 30 fails for generic CD categories. Hence,

finding appropriate notions of CI in this more general setting remains an open question.

From a categorical perspective, the definition of the category C[¹] deserves further

exploration, from at least three angles. First, the C[¹]-morphisms may be seen as a “bundle”

of the images of some syntactic categories of variables and renaming (similar to SynVar from

Section 5.3) under suitable functors – usually referred to as “models” in functorial semantics.

We would like to make the connection with functorial semantics rigorous in terms of the

categorical structures involved [23, 7]. Second, while the current work represents finite sets
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of variables using deduplicated finite ¯-ordered lists, towards a more principled treatment, it

is worth exploring using nominal string diagrams, a diagrammatic calculus for variables and

renaming [2, 3, 1], to represent sets of variables. Third, our categorical treatment of variables

seems related to prior work on internalising variables in categories; this problem has been

studied since the early days of categorical logic, which led to the construction of polynomial

categories [22], later extended to the monoidal setting [29, 17]. It is worth exploring potential

connection with this line of work.
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A Background on Monads

We first recall the basic definition of monads. We refer to [12, Sect. 3] for an overview

of the material in this section. An endofunctor T : C → C is a monad if it has a unit

¸T : 1C → T and a multiplication µT : T 2 → T natural transformations satisfying certain

compatibility conditions. Every monad T : C → C induces a Kleisli category Kℓ(T ), whose

objects are exactly C-objects, and morphisms X → Y are C morphisms of type X → T Y, with

compositions of f : X → T Y and g : Y → T Z given by X
f
−→ T Y

T g
−−→ T T Z

µT
Z−−→ T Z. We will

write the morphisms in Kℓ(T ) as X _ Y to distinguish them from their counterpart X → T Y

in C. Importantly, if C is a SMC and T is a commutative monad, then Kℓ(T ) is also an

SMC [19]. If T is affine symmetric monoidal, then Kℓ(T ) is a Markov category [15, 9].

In the remainder of this section, we recall the monads used in this paper: the distribution

monad D, the powerset monad P (and Pi), the Giry monad G, and the Radon monad R.

▶ Definition 36 (Discrete Distribution Monad). The discrete distribution monad D is an

endofunctor on Set. It maps a countable set X to the set of distributions over X, i.e., the

set containing all functions µ over X is satisfying
∑

x∈X µ(x) = 1, and maps a function

f : X → Y to D(f) : D(X) → D(Y ), given by D(f)(µ)(y) :=
∑

f(x)=y µ(x).

For the monadic structure, define the unit ¸ by ¸X(x) := ¶x, where ¶x denotes the Dirac

distribution on x: for any y ∈ X, we have ¶x(y) = 1 if y = x, otherwise ¶x(y) = 0. Further,

define bind : D(X) → (X → D(Y )) → D(Y ) by bind(µ)(f)(y) :=
∑

p∈D(Y ) D(f)(µ)(p) · p(y).

▶ Definition 37 (Powerset monad). The powerset monad P is an endofunctor on Set. It

maps every set to the set of its subsets P(X) = {U | U ¦ X}. We define ¸X : X → P(X)

mapping each x ∈ X to the singleton {x}, and bind : P(X) → (X → P(Y )) → P(Y ) by

bind(U)(f) := ∪{y | ∃x ∈ U.f(x) = y}. When restricted to nonempty powersets, the resulting

functor Pi is still a monad, called the nonempty powerset monad.

The next monad is defined on the category Meas of measurable spaces, which consists of

measurable spaces (A, ΣA) as objects, and measurable functions as morphisms. Meas is a

monoidal category, where the monoidal product on objects and morphisms are given by

the product of measurable spaces and measurable functions, respectively. In particular, the

monoidal unit consists of the singleton measurable space (1 = {•}, {∅, 1}).

▶ Definition 38 (Giry Monad). The giry monad G maps a measurable space (X, ΣX) to

another measurable space (G(X), ΣG(X)), where G(X) is the set of probability measures over X,

and the Ã-algebra ΣG(X) is the coarsest Ã-algebra over G(X) making the evaluation function

evA : G(X) → [0, 1], defined by evA(¿) = ¿(A), measurable for any A ∈ ΣX . For each

measurable function f : X 7→ Y , Gf : GX → GY is defined by (Gf)(¿)(B) = ¿(f−1(B)) for

B ∈ ΣY . For the monadic structure, define the unit ¸ by ¸X(x) = ¶x; define the bind operator

bindX,Y : GX → ((X → GY ) → GY ) by bind(¿)(f)(B) =
∫

X
f(X)(B)d¿ for B ∈ ΣGY .

▶ Definition 39 (Radon Monad). The Radon monad R is a measure monad on the category

of compact Hausdorff spaces. If maps a compact Hausdorff space X to the set of Radom

measures µ on X such that µ(X) f 1. It maps a continuous map between compact Hausdorff

spaces f : X → Y to the push-forward measure R(f) : RX → RY given by D(f)(µ)(y) :=

µ(f−1(y)).

For the monadic structure: we define the unit ¸ to take a point x ∈ X to the diract

distribution ¶x solely supported at x. We also define the bind operator bindX,Y : RX →

((X → RY ) → RY ) by bind(¿)(f)(B) =
∫

X
f(X)(B)d¿.

FSCD 2024



17:20 A Categorical Approach to DIBI Models

The category of stochastic processses Stoch is the Kleisli category of the Giry monad G.

It is helpful to explicate its structure.

▶ Definition 40. The symmetric monoidal category of stochastic processses Stoch has the

following components:

objects are measurable spaces (A, ΣA);

morphisms (A, ΣA) → (B, ΣB) are maps f : ΣB × A → [0, 1] satisfying: for arbitrary

T ∈ ΣB, f(T, −) : A → [0, 1] is measurable, and for arbitrary a ∈ A, f(−, a) : ΣB → [0, 1]

is a probability measure;

compositions of f : (A, ΣA) → (B, ΣB) and g : (B, ΣB) → (C, ΣC) is the map g ◦ f : ΣC ×

A → [0, 1] mapping (U, a) to
∫

b∈B
g(U, b) · f(db, a);

id(A,ΣA) maps (S, a) ∈ ΣA × A to 1 if a ∈ S, and to 0 if a ̸∈ S;

the monoidal product ¹ acts on objects as (A, ΣA) ¹ (B, ΣB) = (A × B, ΣA ¹ ΣB), where

ΣA ¹ ΣB is the smallest sigma-algebra containing ΣA × ΣB);

the monoidal product ¹ acts on morphisms to obtain product measures. That is, (U, V ) ∈

ΣB × ΣD as follows: given f : (A, ΣA) → (B, ΣB) and g : (C, ΣC) → (D, ΣD), f ¹ g : ΣB ¹

ΣD × A × C → [0, 1] maps (U, V, a, c) to f(U, a) · g(V, b).
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