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Abstract—This research seeks to benefit the software engineering society by providing a simple yet effective pre-processing approach to
achieve equalized odds fairness in machine learning software. Fairness issues have attracted increasing attention since machine learning
software is increasingly used for high-stakes and high-risk decisions. It is the responsibility of all software developers to make their
software accountable by ensuring that the machine learning software do not perform differently on different sensitive demographic
groups— satisfying equalized odds. Different from prior works which either optimize for an equalized odds related metric during the
learning process like a black-box, or manipulate the training data following some intuition; this work studies the root cause of the violation
of equalized odds and how to tackle it. We found that equalizing the class distribution in each demographic group with sample weights is
a necessary condition for achieving equalized odds without modifying the normal training process. In addition, an important partial
condition for equalized odds (zero average odds difference) can be guaranteed when the class distributions are weighted to be not only
equal but also balanced (1:1). Based on these analyses, we proposed FairBalance, a pre-processing algorithm which balances the class
distribution in each demographic group by assigning calculated weights to the training data. On eight real-world datasets, our empirical
results show that, at low computational overhead, the proposed pre-processing algorithm FairBalance can significantly improve equalized
odds without much, if any damage to the utility. FairBalance also outperforms existing state-of-the-art approaches in terms of equalized
odds. To facilitate reuse, reproduction, and validation, we made our scripts available at https://github.com/hil-se/FairBalance.

Index Terms—machine learning fairness, ethics in software engineering.
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1 INTRODUCTION

Increasingly, machine learning and artificial intelligence
software is being used to make decisions that affect people’s
lives. This has raised much concern on the fairness of
that kind of reasoning. Decision making software can be
“biased”; i.e. it gives undue advantage to specific group of
people (where those groups are determined by sex, race,
etc.). Such bias in the machine learning software can have
serious consequences in deciding whether a patient gets
released from the hospital [1], [2], which loan applications are
approved [3], which citizens get bail or sentenced to jail [4],
who gets admitted/hired by universities/companies [5].
With such prevalence of the potentially biased machine
learning software being developed, it is the responsibility of
all software developers to make their software accountable
by reducing the unwanted biases from machine learning
software predictions.

A machine learning software can have different types
of biases. (1) It can inherit the bias from its training data
labels, e.g. a machine learning software will predict that all
female applicants should not be hired if it learns from biased
hiring decisions where no female applicants (even when they
were qualified) were hired historically. (2) It can also favor
one demographic group over another by generating more
accurate or positive predictions on data from that group, e.g.
it has been found that, in 2020, the face recognition software
from large companies including Amazon, Microsoft, IBM,
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etc. predict in significantly lower accuracy (20 − 30%) for
darker female faces than for lighter male faces [6]. Another
example is the COMPAS analysis [4] where a machine
learning software has similar accuracy across black and white
groups in predicting whether a defendant will re-offend in
two years. However, the software has around 20% higher
false positive rate and around 20% lower false negative rate
in predicting a black defendant will re-offend— i.e. more
black defendants were wrongly predicted as higher risk
when they actually won’t and more white defendants were
wrongly predicted as lower risk when they will re-offend.
Given that the definition and criteria of fair decisions vary
from context to context [7], it is not the software developers’
responsibility to decide whether the training data labels are
fair (which is the responsibility of the domain experts). On
the other hand, with the assumption that the training data
labels are correct and fair, software developers should ensure
that the machine learning software do not perform differently
on different sensitive demographic groups. That is, the true
positive rate and false positive rate of the predictions on
each demographic group should be the same for a fairly
designed machine learning software [8], [9], [10]. Thus,
amongst the various fairness notions proposed for different
scenarios [11], [12], this work specifically targets equalized
odds [13]. It is a simple, interpretable, and easily checkable
notion of nondiscrimination with respect to a specified
sensitive attribute [13]. Most importantly, it always allows
for the perfectly accurate solution— the model’s predictions
always equal to the ground truth labels. Equalized odds
are almost always applied to evaluate fairness in machine
learning software when ground truth labels are available.
However, most existing machine learning fairness solutions
do not directly target equalized odds, nor do they analyze

https://github.com/hil-se/FairBalance


2

how and why equalized odds can be achieved.
In addition, most existing machine learning fairness

solutions only affect one sensitive attribute (e.g. sex) at a
time. For example, on a dataset with two sensitive attributes
sex and race, most existing approaches can learn either a fair
model on sex or a fair model on race, but not a fair model
on both sex and race [14], [15], [16]. This also hinders the
application of the fairness algorithms since a fair machine
learning model cannot be biased on any sensitive attribute.
Some in-processing bias mitigation algorithms can tackle
multiple sensitive attributes at the same time by optimizing
for both utility and specific fairness metrics [17] (including
equalized odds). However, such in-processing algorithms are
usually very expensive. Magic parameters also need to be
decided beforehand to trade off between utility and fairness
metrics. In addition, these in-processing methods usually
limit the models used for the decision making.

To sum up, prior works either optimize for an equalized
odds related metric during the learning process like a black-
box [17], [18], or manipulate the training data following some
intuition [9], [14]. None of the work studies the root cause
of the violation of equalized odds and how to tackle it. To
bridge this gap, we analyzed the conditions behind equalized
odds and derived two important conditions: (1) a neces-
sary condition of pre-training sample weights to achieve
equalized odds, and (2) a sufficient condition of pre-training
sample weights to satisfy zero average odds difference (a
partial/relaxed condition for equalized odds) in the training
data. Such analyses provided the theoretical foundation for
our proposed pre-processing algorithm FairBalance. These
conditions suggest that,
The violation of equalized odds of the learned model is positively
related to the weighted class distribution differences across each
demographic group in the training data.

Back to the COMPAS analysis example, in the training
data, the ratio of black defendants re-offended is higher
than that of white defendants. Such difference in class
distribution caused the learned software to have a higher
false positive rate and lower false negative rate on black
defendants. Satisfying both conditions, the proposed pre-
processing algorithm FairBalance adjusts the sample weights
of training data from each demographic group so that the
weighted class distributions across each demographic group
become balanced. With the empirical results on eight real
world datasets, we show that, as a simple yet effective pre-
processing algorithm, FairBalance guarantees zero smAOD
(smoothed maximum average odds difference defined later in
Section 3) in the training data, can handle multiple sensitive
attributes simultaneously, has low computational overhead
(O(n)), has little damage to utility, and is model-agnostic.

The overall contributions of this paper include:

• We analyzed the conditions of equalized odds and derived
two important conditions for achieving equalized odds by
adjusting sample weights of the training data.

• We proposed our pre-processing algorithm satisfying the
necessary and sufficient conditions to directly target equal-
ized odds of multiple sensitive attributes simultaneously.

• With empirical results on eight datasets, we tested the pro-
posed algorithm. FairBalance significantly outperformed
existing state-of-the-art fairness approaches in terms of

equalized odds. It also has little damage to utility and low
computational overhead (O(n)).

• We demonstrated the generalizability of FairBalance by
achieving equalized odds with a complex deep neural
network VGG-16 on a real world image processing dataset.

• To facilitate reuse, reproduction, and validation of this
work, our scripts and data are available at https://
github.com/hil-se/FairBalance.

The rest of this paper is structured as follows. Section 2
provides the background and related work of this paper.
Section 3 analyzes the conditions of equalized odds and
proposes our pre-processing algorithms based on the con-
ditions. To test the proposed algorithms, Section 4 presents
the empirical experiment setups on eight datasets while
Section 5 shows the experiment results and answers the
research questions. Followed by discussion of threats to
validity in Section 6 and conclusion in Section 7.

1.1 Notations
Here, we summarize the general notations applied to the rest
of the paper. Consider a binary classification problem,
• A ∈ Rq represents the sensitive attributes.
• X ∈ Rp represents the independent variables excluding

the sensitive attributes.
• Y ∈ {0, 1} represents the binary dependent variable.
• fθ(X,A) is a predictor of trainable parameters θ which

takes inputs of X and A.
• Ŷ ∈ {0, 1} is the binary output of the predictor fθ(X,A).
• w(A = a, Y = y) is the calculated sample weight for

training data points with A = a, Y = y.

2 BACKGROUND AND RELATED WORK

Ethical bias in machine learning software is a well-known
and fast-growing topic. It leads to unfair treatments to people
belonging to certain groups. Recently, large industries have
started putting more and more importance on ethical issues
of machine learning model and software. IEEE [19], the
European Union [20], and Microsoft [21] have each recently
published principles for ethical AI conduct. All three stated
that intelligent systems or machine learning software must
be fair when used in real-life applications. IBM launched an
extensible open-source software toolkit called AI Fairness
360 [22] to help detect and mitigate bias in machine learning
models throughout the application life cycle. Microsoft
has created a research group called FATE [23] (Fairness,
Accountability, Transparency, and Ethics in AI). Facebook
announced they developed a tool called Fairness Flow [24]
that can determine whether a ML algorithm is biased or
not. ASE 2019 has organized first International Workshop on
Explainable Software [25] where issues of ethical AI were
extensively discussed.

Various different fairness notions [11], [12] have been
defined to assess whether a trained machine learning
model has ethical bias. Most of these fairness notions,
e.g. individual fairness, fairness through awareness, and
demographic parity, test both bias emerged in the learning
process and bias inherited from the training labels [26].
In this work, we focus on mitigating the bias emerged in
the learning process and assume that all training data and
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their labels are perfectly correct. Under this assumption,
a perfect predictor Ŷ = Y should always be fair and
unbiased. Many of the popular fairness testing metrics, e.g.
FlipTest [27], [28], [29], individual fairness violation [30],
and demographic parity [31], do not always allow a perfect
predictor to be evaluated as fair and unbiased when the
sensitive attributes are indeed correlated to the dependent
variable [32]. For example, in the COMPAS analysis, the re-
offended rate in the male group is indeed larger than that
in the female group— P (Y = Re-offended|A = Male) >
P (Y = Re-offended|A = Female). A perfect predictor
Ŷ = Y will have the same predicted re-offended rates—
P (Ŷ = Re-offended|A = Male) = P (Y = Re-offended|A =
Male) > P (Y = Re-offended|A = Female) = P (Ŷ =
Re-offended|A = Female). Therefore, it would not satisfy
demographic parity or FlipTest but will achieve equalized
odds. This is why we specifically target equalized odds in
the experiments.

2.1 Equalized Odds
As defined by Hardt et al. [13], a predictor Ŷ satisfies
equalized odds with respect to sensitive attribute A and
outcome Y , if Ŷ and A are conditionally independent on Y .
More specifically, for binary targets Y and sensitive attributes
A, equalized odds is equivalent to:

P (Ŷ = 1|A = 0, Y = y)

=P (Ŷ = 1|A = 1, Y = y), y ∈ 0, 1
(1)

The above equation also means that the predictor has the
same true positive rate and false positive rate across the
two demographics A = 0 and A = 1. Equalized odds
thus enforces both equal bias and equal accuracy in all
demographics, punishing models that perform well only
on the majority.

Equalized odds is a widely applied fairness notation
since it always allows for the perfectly accurate solution
of Ŷ = Y . More broadly, the criterion of equalized odds
is easier to achieve the more accurate the predictor Ŷ is,
aligning fairness with the central goal in supervised learning
of building more accurate predictors. It is important to note
that there is no single best fairness notion for every scenario,
only the most appropriate fairness notion for the scenario
under study. Two major limitations of equalized odds are
• It heavily relies on the correctness of training data

labels. Thus it can be misleading when the training data
labels themselves are biased and discriminative.

• It ignores the underlying causal structures of the data
that actually generate disparities. When the underlying
causal structures are known, it is more appropriate to
use counterfactual fairness notions [33] where the causal
structure is being utilized to ensure that the sensitive at-
tributes are not the causes for the disparities of predictions.
Counterfactual fairness would reflect unfairness in the
training data labels as well.

In the scenarios studied by this work, we assume the
correctness of the training data labels— they correctly reflect
the distribution of test data labels— and that the causal
relationships are unknown.

To measure the extent to which a predictor satisfies equal-
ized odds, two important fairness metrics were established:

• Average Odds Difference (AOD) [22], [34]: Average of
difference in False Positive Rates (FPR) and True Positive
Rates (TPR) (2).

AOD =0.5× [(FPR(A = 0)− FPR(A = 1))

+ (TPR(A = 0)− TPR(A = 1))]
(2)

• Equal Opportunity Difference (EOD) [13]: Difference of
True Positive Rates (TPR) (3).

EOD = TPR(A = 0)− TPR(A = 1) (3)

Where TPR and FPR are the true positive rate and false
positive rate calculated as (4).

TPR(A = ak) = P (Ŷ = 1|A = ak, Y = 1)

FPR(A = ak) = P (Ŷ = 1|A = ak, Y = 0)

∀ak ∈ {0, 1}.
(4)

The two fairness metrics AOD and EOD each features
a relaxed version of equalized odds. When AOD = 0, the
sums of true positive rate and false positive rate are the same
across the two demographics A = 0 and A = 1. This metric
measures whether the predictor Ŷ favors one demographic
over the other. When EOD = 0, the true positive rates are
the same across the two demographics A = 0 and A = 1.
This metric measures a relaxed version of equalized odds
called equal opportunity where only true positive rates were
considered. When both AOD = 0 and EOD = 0, perfect
equalized odds will be achieved.

2.2 Fairness on Multiple Sensitive Attributes

Most machine learning fairness research only considers one
sensitive attribute with binary values (such as the definition
of equalized odds by Hardt et al. [13]). However, it is
very important to extend the fairness notions to multiple
sensitive attributes. This is because Intersectionality is a
critical lens for analyzing how unfair processes in society
affect certain groups [35]. In many real-world scenarios,
multiple sensitive attributes exist and discrimination against
any subgroup ai = (a

(1)
i , a

(2)
i , · · · , a(q)i ) is not desired. Here,

ai ∈ A where A is the set of all possible combinations of the
sensitive attributes a(1), a(2), · · · , a(q). For example, when
there are two sensitive attributes a(1) = {Male, Female} and
a(2) = {White,Non-White}, the demographic groups are
A = {(Male,White), (Male,Non-White), (Female,White),
(Female, Non-White)}. Following this notation, equalized
odds on multiple sensitive attributes is equivalent to:

P (Ŷ = 1|A = ai, Y = y)

=P (Ŷ = 1|A = aj , Y = y), ∀ai, aj ∈ A, y ∈ 0, 1
(5)

Based on (5), the following two metrics shown in (6) and (7)
evaluate the violation of equalized odds on multiple sensitive
attributes:

mAOD =0.5× [max
ai∈A

(TPR(A = ai) + FPR(A = ai))

− min
aj∈A

(TPR(A = aj) + FPR(A = aj))]
(6)

mEOD = max
ai∈A

TPR(A = ai)− min
aj∈A

TPR(A = aj) (7)
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2.3 Related Work

Prior work on machine learning fairness can be classified into
three types depending on when the treatments are applied:

Pre-processing algorithms. Training data is pre-
processed in such a way that discrimination or bias is reduced
before training the model. Overall, there are three main
categories of pre-processing algorithms to reduce machine
learning bias:

• Category 1 features algorithms modifying the values of
training data points (including feature values, sensitive
attribute values, and label values). For example, Feldman et
al. [36] designed disparate impact remover which edits feature
values to increase group fairness while preserving rank-
ordering within groups. Calmon et al. [37] proposed an
optimized pre-processing method which learns a probabilistic
transformation that edits the labels and features with
individual distortion and group fairness. Another pre-
processing technique, learning fair representations, finds a
latent representation which encodes the data well but
obfuscates information about sensitive attributes [38].
Romano et al. [39] replace the original sensitive attributes
with values independent from the labels Y to train a
model approximately achieving equalized odds. Similarly,
Peng et al. [10] replace the sensitive attributes with values
predicted based on other attributes.

• Category 2 algorithms aim to increase training efficacy
by removing certain data points from the training data.
For example, Chakraborty et al. proposed Fairway [8] and
FairSituation [9] which select a subset of the original data
for training by performing different tests on the original
training data points.

• Category 3 algorithms manipulate training data distribu-
tion by either adjusting the sample weights or oversample
data points from certain demographics. For example,
Kamiran and Calders [14] proposed reweighing method
that generates weights for the training examples in each
(group, label) combination differently to achieve fairness.
Fair-SMOTE [9] oversamples training data points from
minority groups with synthetic data points [40] to achieve
balanced class distributions. Similarly, Yan et al. [41] also
oversample training data points from minority groups with
synthetic data points to achieve balanced class distribu-
tions. However, it focused on the scenario where sensitive
attributes are unknown and applied a clustering method to
identify different demographic groups in an unsupervised
manner. For the actual fairness improvement part, Yan et
al. [41] is the same as Fair-SMOTE [9] as they both apply
the SMOTE [40] algorithm to oversample minority class
data to match the number of the majority class data in
every demographic group.

In-processing algorithms. These approaches adjust the
way a machine learning model is trained to reduce the bias.
Zhang et al. [16] proposed Adversarial debiasing method which
learns a classifier to increase accuracy and simultaneously
reduce an adversary’s ability to determine the sensitive
attribute from the predictions. This leads to generation
of fair classifier because the predictions cannot carry any
group discrimination information that the adversary can
exploit. Celis et al. [42] designed a meta algorithm to take the
fairness metric as part of the input and return a classifier

optimized with respect to that fairness metric. Kamishima et
al. [43] developed Prejudice Remover technique which adds
a discrimination-aware regularization term to the learning
objective of the classifier. Li and Liu [18] tunes the sample
weight for each training data point so that a specific fairness
notion such as equal opportunity can be achieved along
with the best prediction accuracy on a validation set. Several
approaches [17], [44], [45], [46], [47] solve the problem as a
constrained optimization problem by adding a constraint of
a certain bias metric to the loss function and optimizes it.
Among these, Lowy et al. [17] measured fairness violation
using exponential Rényi mutual information (ERMI) and
designed an in-processing algorithm to reduce ERMI and
prediction errors with stochastic optimization. There are
also works manipulating the way deep neural networks
are trained by dropping out certain neurons related to the
sensitive attributes [48].

Post-processing algorithms. These approaches adjust the
prediction threshold after the model is trained to reduce
specific fairness metrics. Kamiran et al. [49] proposed Reject
option classification which gives favorable outcomes to unprivi-
leged groups and unfavorable outcomes to privileged groups
within a confidence band around the decision boundary with
the highest uncertainty. Equalized odds post-processing [13],
[34], [50] specifically finds the optimal thresholds of an exist-
ing predictor to achieve equal opportunity or equalized odds.
Such post-processing algorithms usually do not change the
prediction probabilities (the ROC curve will stay the same)
but only selects different thresholds for the classification. A
simple baseline approach Fairea [51] even randomly mutates
the predictions of certain classes to a different class.

Ensemble algorithms. These approaches combine differ-
ent bias mitigation methods/models [9], [52], [53], [54], [55]
to address fairness bugs. For example, Chen et al. [55] train
two separate models, one optimized for fairness and one
optimized for accuracy, then the average of the two models’
outputs are utilized for the final prediction.

In this paper, we focus on the pre-processing approaches
since they are usually model-agnostic and cost-effective.
Also, based on the analyses later in Section 3, the class
distributions in each demographic group are the main factor
affecting equalized odds and pre-processing is the most
efficient and effective way to change that. The in-processing
and post-processing algorithms are indirect and costly in
terms of equalized odds. In addition, under the assumption
that all the data values are correct, we avoided Category
1 algorithms since they will modify the data values and
possibly mislead the learned models. Algorithms in Category
3 is also preferred over those in Category 2 since Category
2 algorithms do not fully utilize the entire training data.
Therefore, later in Section 4, we will compare the proposed
algorithms FairBalance and FairBalanceVariant with two
baseline pre-processing algorithms Fair-SMOTE [9] and
Reweighing [14] in Category 3, two baseline pre-processing
algorithms Fairway [8] and FairSituation [9] in Category 2,
and one baseline None without any fairness treatment. A
preview of the differences between each treatments studied in
this paper can be found in Table 1. Details of each algorithm
will be provided in Section 3.6, Section 3.5 and Section 4.3.
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TABLE 1: Characteristics of each treatment.

Treatment Satisfies the necessary
condition for equalized

odds

Satisfies the sufficient
condition for
smAOD = 0

Keeps size difference
across the

demographic groups

Removes confusing
training data

Synthetic training
data

None
Fairway [8]
FairSituation [9]
Fair-SMOTE [9]
Reweighing [14]
FairBalance
FairBalanceVariant

3 METHODOLOGY

Existing work showed that, adjusting the sample weights
of training data points affects the model’s fairness the
most [14], [56]. Therefore, we aim to achieve equalized odds
by adjusting the weight on the training data points. For
simplicity, we define our problem under the following two
assumptions:

Assumption 3.1. Labels in the training data and test data
follow the same distribution— a perfect predictor trained on
the training data will have 100% accuracy on the test data.

Assumption 3.2. The data distribution in each demographic
group a ∈ A is independent.

3.1 Problem Statement

Given a set of labeled data (X ∈ Rp, A ∈ Rq, Y ∈ {0, 1})
following the Assumption 3.1 and 3.2, we aim to learn a
predictor shown in (8),

Ŷ =

{
1 if fθ(X,A) ≥ 0.5
0 if fθ(X,A) < 0.5

(8)

that satisfies equalized odds defined in (5). The predictor
is learned by minimizing the weighted loss function with
parameter θ:

L(θ) = 1

N

N∑
i=1

w(ai, yi) · E(fθ(xi, ai), yi). (9)

Where w(ai, yi) is the weight on the ith data point.
E(fθ(X,A), y) is a specific loss such as binary cross-entropy
or squared error. Without loss of generality, we use logistic
regression as the predictor so that

E(fθ(X,A), y)

=− [y · log fθ(X,A) + (1− y) · log(1− fθ(X,A))]
(10)

where

fθ(X,A) =
1

1 + exp−z
(11)

and
z =θ(0) + θ(1)x(1) + · · ·+ θ(p)x(p)

+ θ(p+1)a(p+1) + · · ·+ θ(p+q)a(p+q).
(12)

3.2 Smoothed Metrics

To better understand the relationship between the weight
w(A, Y ) and equalized odds, we analyze the smoothed

version of mAOD and mEOD as shown in (13) and (14).

smAOD

=0.5× [max
ai∈A

(P (Ŷ = 1|A = ai, Y = 1) + P (Ŷ = 1|A = ai, Y = 0))

− min
aj∈A

(P (Ŷ = 1|A = aj , Y = 1) + P (Ŷ = 1|A = aj , Y = 0))]

=0.5× [max
ai∈A

(

∑
A=ai,Y=1

fθ(X,A)

|A = ai, Y = 1|
+

∑
A=ai,Y=0

fθ(X,A)

|A = ai, Y = 0|
)

− min
aj∈A

(

∑
A=aj,Y=1

fθ(X,A)

|A = aj , Y = 1|
+

∑
A=aj,Y=0

fθ(X,A)

|A = aj , Y = 0|
).

(13)

smEOD = max
ai∈A

∑
A=ai,Y=1

fθ(X,A)

|A = ai, Y = 1|
− min
aj∈A

∑
A=aj,Y=1

fθ(X,A)

|A = aj , Y = 1|
. (14)

Given that the predictor fθ(X,A) ∈ [0, 1] is a continuous
output of the probability of the predicted data point belongs
to Class Y = 1, it more accurately reflect the prediction of the
classification model and in many scenarios, this continuous
output is being used as the final decisions instead of the
discrete prediction Ŷ . Thus, the smoothed metrics smAOD
and smEOD better evaluate the violation of equalized odds
in (5). Meanwhile, to evaluate equalized odds when using
the discrete predictions Ŷ as the final decisions, we will
also show each treatment’s performance in terms of mAOD
and mEOD in our experiments along with smAOD and
smEOD in Section 4 and 5.

3.3 Necessary Condition

Proposition 3.3. The necessary condition for achieving equalized
odds (smAOD = 0 and smEOD = 0) is

∀ak ∈ A,
w(A = ak, Y = 1)

w(A = ak, Y = 0)
= α
|A = ak, Y = 0|
|A = ak, Y = 1|

(15)

where α ∈ R≥0 is a positive constant.

That is, the weighted class distribution in each demo-
graphic group ak ∈ A should be the same:

w(A = ak, Y = 1)|A = ak, Y = 1|
w(A = ak, Y = 0)|A = ak, Y = 0|

= α.

Proof. Given smAOD = 0 and smEOD = 0, we have∑
A=ak,Y=1

fθ(X,A)

|A = ak, Y = 1|
= c1 and∑

A=ak,Y=0
fθ(X,A)

|A = ak, Y = 0|
= c0, ∀ak ∈ A.

(16)
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where c1, c0 ∈ [0, 1] are two positive constants. The learned
(sub-)optimal model fθ(X,A) should satisfy

∂L(θ)
∂θ

= 0. (17)

Apply (9), (10), (11), and (12) to (17) we have

∂L(θ)
∂θ(0)

=
1

N

N∑
i=1

w(ai, yi)
∂E(fθ(xi, ai), yi)

∂θ(0)

=
1

N

N∑
i=1

w(ai, yi)(fθ(xi, ai)− yi)

=
1

N

∑
ak∈A

w(ak, 1) · ∑
A=ak,Y=1

(fθ(X,A)− 1)

+ w(ak, 0) ·
∑

A=ak,Y=0

fθ(X,A)


=0

(18)

Since the data distribution in each demographic group ak ∈
A is independent according to Assumption 3.2, we have

w(ak, 1) ·
∑

A=ak,Y=1

(fθ(X,A)− 1)

+ w(ak, 0) ·
∑

A=ak,Y=0

fθ(X,A)

= 0, ∀ak ∈ A.

(19)

Apply (16) to (19) we have

∀ak ∈ A, w(ak, 1) · (c1 − 1) · |A = ak, Y = 1|
+ w(ak, 0) · c0 · |A = ak, Y = 0| = 0.

(20)

Therefore we have (15) with α = c0
1−c1 ∈ R≥0.

Proposition 3.3 explains why a machine learning model
trained with uniform sample weights will always violates
equalized odds when the class distributions |A=ak,Y=0|

|A=ak,Y=1| are
different in each demographics ak ∈ A.

Generalizability: Note that, although the analysis is
performed on a logistic regression classifier as specified in
Section 3.1, (18) holds for any unbiased predictor with zero
mean of training errors and an intercept term θ(0). This
property will be demonstrated in RQ5 of Section 4 and 5.

3.4 Sufficient Condition

Proposition 3.4. One sufficient condition for smAOD = 0 is
α = 1 in (15).

That is, the weighted class distribution in each demo-
graphic group ak ∈ A should be perfectly balanced:

w(A = ak, Y = 1)|A = ak, Y = 1|
w(A = ak, Y = 0)|A = ak, Y = 0|

= 1.

Proof. With α = 1 in (15) we have

∀ak ∈ A,
w(A = ak, Y = 1)

w(A = ak, Y = 0)
=
|A = ak, Y = 0|
|A = ak, Y = 1|

(21)

Apply (21) to (19) we have

w(ak, 0)|A = ak, Y = 0|


∑

A=ak,Y=1
(fθ(X,A)− 1)

|A = ak, Y = 1|

+

∑
A=ak,Y=0

fθ(X,A)

|A = ak, Y = 0|

 = 0, ∀ak ∈ A.

(22)

This guarantees smAOD = 0 since ∀ak ∈ A,∑
A=ak,Y=1

fθ(X,A)

|A = ak, Y = 1|
+

∑
A=ak,Y=0

fθ(X,A)

|A = ak, Y = 0|
= 1.

3.5 Analyses of Existing Algorithms

Existing pre-processing treatments in Category 3 fit into
our problem statement in Section 3.1 and can be analyzed
for whether they satisfy the necessary condition and the
sufficient condition.

Reweighing: Perfectly falling into the problem statement
in Section 3.1, the Reweighing [14] algorithm sets the sample
weight w(A, Y ) as (23).

wRW (A = ak, Y = yi) =
|A = ak| · |Y = yi|
|A = ak, Y = yi|

∀ak ∈ A, ∀yi ∈ Y
(23)

While Reweighing satisfies the necessary condition in Propo-
sition 3.3:

wRW (A = ak, Y = 1)

wRW (A = ak, Y = 0)
=
|Y = 1|
|Y = 0|

· |A = ak, Y = 0|
|A = ak, Y = 1|

∀ak ∈ A.

It does not satisfy the sufficient condition in Proposition 3.4
when

α =
|Y = 1|
|Y = 0|

6= 1.

As a result, it is possible for Reweighing [14] to achieve
equalized odds, but there is no guarantee for it to achieve
smAOD = 0.

Fair-SMOTE: As for Fair-SMOTE [9], it oversamples the
training data to (X ′, A′, Y ′) so that

|A′ = ak, Y
′ = yi| = |A′ = al, Y

′ = yj |
∀ak, al ∈ A′, ∀yi, yj ∈ Y ′

(24)

Then, with unit weights w(A′, Y ′) = 1, it satisfies both the
necessary condition in Proposition 3.3 and the sufficient
condition in Proposition 3.4:

w(A′ = ak, Y
′ = 1)

w(A′ = ak, Y ′ = 0)
=
|A′ = ak, Y

′ = 0|
|A′ = ak, Y ′ = 1|

= 1, ∀ak ∈ A′.

As a result, with the synthetic training data, it is possible
for Fair-SMOTE [9] to achieve equalized odds and it is
guaranteed to achieve smAOD = 0 on its training data
(X ′, A′, Y ′). However, by generating synthetic training data,
Fair-SMOTE may include unrealistic training examples and
also requires longer pre-processing time.
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Fig. 1: Demonstration of the preprocessing sample weights
of FairBalance, FairBalanceVariant, and Reweighing. In this
example, gender and race are the sensitive attributes, T and
F are the two possible values of the dependent variable.
The example training data consists of 50 white male, among
which 20 have the label of T and 30 have the label of F. The
FairBalance algorithm will assign a sample weight of 50/20
to each white male training data points with a T label and
a sample weight of 50/30 to each white male training data
points with a F label.

3.6 Proposed Algorithms

Inspired by the reweighing algorithm [14] and based on
the necessary condition in Proposition 3.3 and the sufficient
condition in Proposition 3.4, we propose two pre-processing
algorithms FairBalance and FairBalanceVariant with the
following weighting mechanisms:

wFB(A = ak, Y = yi) =
|A = ak|

|A = ak, Y = yi|

wFBV (A = ak, Y = yi) =
1

|A = ak, Y = yi|
∀ak ∈ A, ∀yi ∈ Y,

(25)

Note that, both FairBalance and FairBalanceVariant satisfy
the necessary condition in Proposition 3.3 and the sufficient
condition in Proposition 3.4:

wFB(A = ak, Y = 1)

wFB(A = ak, Y = 0)
=
wFBV (A = ak, Y = 1)

wFBV (A = ak, Y = 0)

=
|A = ak, Y = 0|
|A = ak, Y = 1|

∀ak ∈ A.
(26)

It can be easily seen that the computational cost of the
proposed algorithms are both O(n) based on (25). Figure 1
demonstrates how the weights are calculated for FairBal-
ance, FairBalanceVariant, and Reweighing. The differences
between these three approaches are whether the original
size difference in each demographic group ak ∈ A and the
original class distribution are preserved. We will compare
the performance of FairBalance, FairBalanceVariant, and
Reweighing on real world test data to determine which
approach is preferred.

4 EXPERIMENTS

4.1 Datasets

For this study, we selected commonly used datasets in ma-
chine learning fairness to conduct our experiments. Starting
with datasets seen in recent high-profile papers [8], [9], [17],
[65]. This leads to the selection of the eight real world datasets
(mostly from the UCI Machine Learning Repository [66])
shown in the first eight rows of Table 2. All of these eight
datasets were collected from real world data and represent
a real problem. They also contain at least one sensitive
attribute (four of the datasets contain two sensitive attributes)
as independent variable. Experimenting on these dataset
would generate a fair comparison between the proposed
algorithm and the existing work. In addition to the eight
tabular datasets, we also experimented on one real world
face beauty image dataset SCUT-FBP5500 [64] (at Row 9 in
Table 2) to demonstrate the generalizability of the proposed
algorithms on complex deep neural networks in RQ5.

4.2 Evaluation

The two machine learning fairness metrics mAOD and
mEOD described in Section 2.2 and their smoothed version
smAOD and smEOD in Section 3.2 are applied to evaluate
the violation of equalized odds. In the meantime, accuracy is
applied to evaluate the overall prediction performance:

Accuracy = P (Ŷ = Y ). (27)

Since accuracy is largely affected by the classification thresh-
old, we also apply the area under the ROC curve (AUC)
shown in (28) to more comprehensively evaluate the utility
of the learned model:

AUC =

∑
yi=0

∑
yj=1 1[f(xi, ai) < f(xj , aj)]

|Y = 1| · |Y = 0|
(28)

where 1[f(xi, ai) < f(xj , aj)] denotes an indicator function
which returns 1 if f(xi, ai) < f(xj , aj) otherwise returns 0.
Runtime information of each treatment is also collected to
reflect the computation overheads.

Each treatment is evaluated 30 times during experiments
by each time randomly sampling 70% of the data as training
set and the rest as test set. Medians (50th percentile) and
IQRs (75th percentile - 25th percentile) are collected for each
performance metric since the resulting metrics do not follow
a normal distribution. In addition, a nonparametric null-
hypothesis significance testing (Mann–Whitney U test [67])
and a nonparametric effect size testing (Cliff’s delta [68])
are applied to check if one treatment performs significantly
better than another in terms of a specific metric. A set of
observations is considered to be significantly different from
another set if and only if the null-hypothesis is rejected
in the Mann–Whitney U test and the effect size in Cliff’s
delta is medium or large. Similar to the Scott-Knott test [69],
rankings are also calculated to compare different treatments
with nonparametric performance results. For each metric,
the treatments are first sorted by their median values in that
metric. Then, each pair of treatments is compared with the
Mann–Whitney U test (p ≥ 0.05) and Cliff’s delta (|δ| < 0.33)
to decide whether they belong to the same rank. Pseudo code
of the ranking algorithm is shown in Algorithm 1.
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TABLE 2: Description of the data sets used in the experiment.

Dataset #Rows #Cols Protected Attribute Class Label
Privileged Unprivileged Favorable Unfavorable

Adult Census Income [57] 48,842 14 Sex-Male
Race-White

Sex-Female
Race-Non-white High Income Low Income

Compas [58] 7,214 28 Sex-Male
Race-Caucasian

Sex-Female
Race-Not Caucasian Did not reoffend Reoffended

Heart Health [59] 297 14 Age< 60 Age≥ 60 Not Disease Disease
Bank Marketing [60] 45,211 16 Age> 25 Age≤ 25 Term Deposit - Yes Term Deposit - No

German Credit Data [61] 1,000 20 Sex-Male
Age> 25

Sex-Female
Age≤ 25

Good Credit Bad Credit

Default of Credit Card
Clients [62]

30,000 23 Sex-Male
Age> 25

Sex-Female
Age≤ 25

No Default Payment Default Payment

Student Performance in
Portuguese Language [63]

395 32 Sex-Male Sex-Female Grade ≥ 10 Grade < 10

Student Performance in
Mathematics [63]

649 32 Sex-Male Sex-Female Grade ≥ 10 Grade < 10

SCUT-FBP5500 [64] 5,500 350×350 Sex-Male
Race-Asian

Sex-Female
Race-Caucasian Beauty Score > 3 Beauty Score ≤ 3

Algorithm 1: Nonparametric ranking.
Input : T, performances to rank, a list of list.
Output : R, rankings of the each treatment in T.

1 medians = []
2 for t ∈ T do
3 medians.append(median(t))

4 asc = argsort(medians)
5 base = T[asc[0]]
6 rank = 0
7 R = []
8 R[asc[0]] = 0
9 for i=1, i<m, i++ do

10 if MannWhitneyU (T[asc[i]], base) < 0.05 &
CliffsDelta (T[asc[i]], base) > 0.33 then

11 rank = rank + 1
12 base = T[asc[i]]

13 R[asc[i]] = rank

14 return R

4.3 Research Questions

Via experimenting on eight real world tabular datasets and
one image processing dataset, we explore the following
research questions:
RQ1 Is the violation of equalized odds of the learned
model positively related to the weighted class distribution
differences across each demographic group in the training
data— is the ecessary condition in Proposition 3.3 valid?
RQ2 Does balanced weighted class distribution in each
demographic group lead to zero smAOD on the training
data— is the sufficient condition in Proposition 3.4 valid?
RQ3 Does the proposed algorithm outperform other Cate-
gory 3 algorithms in equalized odds?
RQ4 Does removing certain training data (Category 2
algorithms) help in achieving equalized odds?

To answer RQ4, the following two Category 2 algorithms
will be tested as well:

Fairway [8]: First split the training data into partitions
according to the values of one sensitive attribute, e.g. one par-
tition with Sex=Male and another partition with Sex=Female.

Then train a separate logistic regression model on each of
the partitions. Next, the models are applied onto the training
data and only the training data points which are predicted
as the same class by all models are kept. Repeat this process
if multiple sensitive attributes present.

FairSituation [9]: Fit a logistic regression model on the
training data. Next, for each of the training data point (xi, ai),
create a counterpart of it (xi, A 6= ai). Apply the model to
predict on the training data point and its counterpart, the
training data point is removed if the predictions are different.
RQ5 Can the proposed algorithms be applied to solve more
complicated problems such as image processing with deep
neural networks— is FairBalance model-agnostic or does it
only apply to logistic regressors?

4.4 Base Model Selection

We utilized the first eight tabular datasets to explore RQ1 to
RQ4. Same as the existing work utilizing the same tabular
datasets [8], [9], [65], we fit a logistic regression model
(implemented by scikit-learn with default hyper-parameters
except for max_iter=100,000) on each dataset with different
pre-processing treatments including FairBalance. It has been
shown that logistic regression models perform the best on
these tabular datasets [8], [9], [65].

To explore RQ5 and demonstrate the generalizability of
FairBalance, we employed a complex deep neural network
called the VGG-16 [70] model on an image processing dataset.
Details of the VGG-16 model will be presented in Section 5.5.

5 RESULTS

5.1 RQ1 Validate the necessary condition

RQ1 focuses on validating the necessary condition in Propo-
sition 3.3 by empirically analyzing whether the violation of
equalized odds of the learned model is positively related
to the weighted class distribution differences across each
demographic group in the training data. To this end, we
plotted the smEOD and smAOD of a logistic regression
classifier trained with uniform weights on eight datasets. In
Figure 2, x-axis shows the MaxDiff values for each dataset
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Fig. 2: Relationship between the violation of equalized odds
of the learned model (measured as smEOD and smAOD at
the y-axis) and the corresponding dataset’s difference in class
distributions of each demographics (measured as MaxDiff in
(29) at the x-axis).

TABLE 3: Model performance with FairBalance on the
training data. Each cell shows the median (50th percentile)
value, and the IQR value (75th percentile - 25th percentile)
of the metric from 30 random repeats on a certain dataset.

Data Accuracy AUC mEOD mAOD smEOD smAOD

Adult 0.82 (0.00) 0.90 (0.00) 0.06 (0.01) 0.02 (0.01) 0.08 (0.01) 0.01 (0.01)

Compas 0.69 (0.01) 0.75 (0.00) 0.08 (0.03) 0.04 (0.02) 0.03 (0.01) 0.02 (0.01)

Heart 0.85 (0.02) 0.93 (0.02) 0.03 (0.03) 0.02 (0.02) 0.03 (0.02) 0.00 (0.00)

Bank 0.85 (0.00) 0.91 (0.00) 0.07 (0.01) 0.00 (0.00) 0.04 (0.01) 0.00 (0.00)

German 0.75 (0.01) 0.84 (0.01) 0.13 (0.07) 0.05 (0.04) 0.09 (0.03) 0.02 (0.02)

Default 0.69 (0.01) 0.72 (0.00) 0.17 (0.02) 0.12 (0.01) 0.01 (0.00) 0.00 (0.00)

Student-por 0.93 (0.02) 0.98 (0.01) 0.02 (0.02) 0.02 (0.02) 0.03 (0.01) 0.00 (0.00)

Student-mat 0.97 (0.01) 1.00 (0.00) 0.03 (0.02) 0.01 (0.01) 0.03 (0.01) 0.00 (0.00)

calculated as (29) reflecting the maximum difference in class
distributions across each demographic group.

MaxDiff = max
ai∈A

|A = ai, Y = 1|
|A = ai|

− min
aj∈A

|A = aj , Y = 1|
|A = aj |

.

(29)
As we can see from Figure 2, the extent of violation of
equalized odds is positively related (not strictly since it is
also related to the overall prediction accuracy of the learned
model) to the MaxDiff values of the training data. This
validates the necessary condition in Proposition 3.3 that
the difference in class distributions across each demographic
groups lead to the violation of equalized odds.

Answer to RQ1: Yes. On eight real world datasets, we
observe that the violation of equalized odds of the learned
model is positively related to the weighted class distri-
bution differences across each demographic group in the
training data.

5.2 RQ2 Validate the sufficient condition
To validate the sufficient condition in Proposition 3.4, we
apply FairBalance to multiply the weight wFB(ak, yi) in

(25) to each training data point. As shown in (26), the
weighted class distribution in each demographic group
becomes balanced after applying the weights. Then we train
a logistic regression model on the weighted training data and
collect its training performance in Table 3. In consistency with
the sufficient condition in Proposition 3.4, we can observe
that the training smAODs are close to 0 on all eight datasets.
The reason for smAODs on the Adult, Compas, and German
datasets not strictly being 0 could be that, Assumption 3.2 is
not strictly valid for these datasets— all three datasets have
two sensitive attributes which can be correlated to each other.
On the other hand, the smEODs are not always close to 0
even on the training data.

Answer to RQ2: Yes. Balanced weighted class distribution
in each demographic group does lead to zero smAOD on
the training data. However, it does not guarantee equalized
odds on the training data since it does not always lead to
zero smEOD.

5.3 RQ3 Category 3 pre-processing
RQ3 tests the proposed pre-processing algorithms Fair-
Balance and FairBalanceVariant against the state-of-the-
art Category 3 pre-processing algorithms Reweighing [14],
Fair-SMOTE [9], and Fair-SMOTE-Situation [9]. Here, Fair-
SMOTE-Situation is the combination of Fair-SMOTE and
FairSituation. According to Chakraborty et al. [9] it first
applies Fair-SMOTE to generate synthetic data points so
that the training data is balanced as (24), then it applies
FairSituation to remove data points failing the situation
testing from the training data. The SMOTE algorithm in
this experiment is implemented with the same configuration
as [9]— cr=0.8, f=0.8, and the number of neighbors is 3. Each
treatment is evaluated 30 times during the experiments by
each time randomly sampling 70% of the data as training set
and the rest as test set. Performances of each treatment on
the test set are shown in Table 4-11 and are summarized in
Figure 4:
• On most datasets (except for the Math dataset where

the MaxDiff is close to 0 in Figure 2), equalized odds
(measured by smEOD and smAOD) of the None treatment
can be significantly improved after applying any of the
pre-processing treatment. This aligns with the analysis that
all these pre-processing treatments satisfy the necessary
condition in Proposition 3.3.

• FairBalance always achieves the best smAOD (ranked as
r0) on every dataset. Following that, FairBalanceVariant
and Fair-SMOTE are ranked r0 on 6 datasets and r1 on
2 datasets. Reweighing is ranked r0 on 6 datasets, r1 on
the Bank Marketing dataset and r2 on the Adult Census
Income dataset. Such results align with the analysis that
FairBalance, FairBalanceVariant, and Fair-SMOTE satisfy
the sufficient condition in Proposition 3.4 which leads to
better smAOD.

• In terms of smEOD, Reweighing (6 r0, 1 r1, and 1 r2) and
Fair-SMOTE (5 r0 and 3 r1) outperform FairBalance (4 r0
and 4 r1) and the other algorithms.

• In terms of utility, FairBalance (4 r0 and 4 r1) and Reweigh-
ing (5 r0, 2 r1, and 1 r2) achieves the best AUC amongst
the six treatments.
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(a) AUC of the ROC curve

(b) smAOD

Fig. 3: Summarized results of median values for RQ3 (from Table 4 to Table 11).

TABLE 4: Empirical results for RQ3 on the Adult Census Income dataset. Each cell shows (1) the ranking, (2) the median
(50th percentile) value, and (3) the IQR value (75th percentile - 25th percentile) of the metric on a certain dataset. Colored
cells are the ones with top rank r0.

Treatment Accuracy AUC mEOD mAOD smEOD smAOD Runtime (secs)

None r0: 0.85 (0.00) r0: 0.91 (0.00) r2: 0.19 (0.10) r4: 0.14 (0.05) r2: 0.14 (0.07) r3: 0.14 (0.04) r0: 1.18 (0.15)

Reweighing r1: 0.84 (0.00) r2: 0.90 (0.00) r2: 0.17 (0.04) r3: 0.08 (0.02) r2: 0.12 (0.05) r2: 0.04 (0.03) r0: 1.23 (0.03)

Fair-SMOTE r4: 0.81 (0.00) r3: 0.89 (0.00) r1: 0.07 (0.04) r1: 0.05 (0.03) r0: 0.08 (0.03) r1: 0.03 (0.01) r3: 142.83 (5.48)

Fair-SMOTE-Situation r3: 0.81 (0.01) r2: 0.89 (0.00) r0: 0.07 (0.04) r2: 0.06 (0.01) r0: 0.07 (0.03) r1: 0.03 (0.02) r3: 140.52 (14.06)

FairBalance r2: 0.81 (0.00) r1: 0.90 (0.00) r1: 0.08 (0.03) r0: 0.03 (0.02) r1: 0.09 (0.03) r0: 0.02 (0.01) r1: 1.23 (0.03)

FairBalanceVariant r3: 0.81 (0.00) r2: 0.90 (0.00) r1: 0.08 (0.03) r1: 0.05 (0.04) r0: 0.07 (0.03) r1: 0.03 (0.02) r2: 1.34 (0.10)

• In terms of runtime, FairBalance, FairBalanceVariant, and
Reweighing have similar computational overheads (5-25%),

while Fair-SMOTE and Fair-SMOTE-Situation have much
higher computational overheads.
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TABLE 5: Empirical results for RQ3 on the Compas dataset.

Treatment Accuracy AUC mEOD mAOD smEOD smAOD Runtime (secs)

None r0: 0.67 (0.01) r0: 0.72 (0.01) r2: 0.23 (0.05) r2: 0.31 (0.05) r1: 0.13 (0.02) r2: 0.15 (0.02) r0: 0.35 (0.03)

Reweighing r1: 0.67 (0.01) r0: 0.72 (0.02) r1: 0.11 (0.05) r1: 0.07 (0.05) r0: 0.03 (0.01) r0: 0.03 (0.02) r1: 0.38 (0.04)

Fair-SMOTE r3: 0.65 (0.01) r2: 0.70 (0.01) r0: 0.08 (0.04) r1: 0.09 (0.05) r0: 0.03 (0.02) r1: 0.03 (0.02) r3: 7.86 (1.15)

Fair-SMOTE-Situation r3: 0.65 (0.01) r2: 0.70 (0.01) r0: 0.07 (0.04) r1: 0.07 (0.04) r0: 0.03 (0.01) r1: 0.03 (0.01) r2: 6.31 (0.59)

FairBalance r2: 0.66 (0.00) r1: 0.72 (0.01) r0: 0.07 (0.05) r0: 0.05 (0.04) r0: 0.03 (0.02) r0: 0.02 (0.02) r1: 0.38 (0.05)

FairBalanceVariant r2: 0.66 (0.01) r1: 0.71 (0.02) r1: 0.10 (0.05) r1: 0.07 (0.06) r0: 0.03 (0.01) r0: 0.03 (0.01) r1: 0.38 (0.04)

TABLE 6: Empirical results for RQ3 on the Heart Health dataset.

Treatment Accuracy AUC mEOD mAOD smEOD smAOD Runtime (secs)

None r0: 0.83 (0.05) r0: 0.90 (0.04) r1: 0.11 (0.11) r0: 0.08 (0.08) r1: 0.13 (0.11) r0: 0.08 (0.05) r0: 0.02 (0.00)

Reweighing r0: 0.84 (0.05) r0: 0.91 (0.04) r0: 0.09 (0.13) r0: 0.08 (0.09) r0: 0.07 (0.08) r0: 0.06 (0.07) r1: 0.02 (0.00)

Fair-SMOTE r0: 0.81 (0.06) r0: 0.90 (0.06) r1: 0.11 (0.12) r0: 0.05 (0.10) r0: 0.06 (0.11) r0: 0.06 (0.07) r2: 0.14 (0.00)

Fair-SMOTE-Situation r1: 0.79 (0.03) r1: 0.88 (0.05) r0: 0.08 (0.10) r0: 0.08 (0.13) r0: 0.05 (0.08) r0: 0.06 (0.09) r3: 0.14 (0.00)

FairBalance r0: 0.83 (0.05) r0: 0.90 (0.04) r0: 0.09 (0.10) r0: 0.07 (0.09) r0: 0.07 (0.04) r0: 0.05 (0.06) r1: 0.02 (0.00)

FairBalanceVariant r0: 0.83 (0.05) r0: 0.90 (0.04) r0: 0.09 (0.10) r0: 0.06 (0.10) r0: 0.06 (0.09) r0: 0.06 (0.07) r0: 0.02 (0.00)

TABLE 7: Empirical results for RQ3 on the Bank Marketing dataset.

Treatment Accuracy AUC mEOD mAOD smEOD smAOD Runtime (secs)

None r0: 0.90 (0.00) r1: 0.91 (0.00) r3: 0.13 (0.08) r2: 0.09 (0.04) r1: 0.08 (0.03) r2: 0.08 (0.02) r0: 0.98 (0.02)

Reweighing r0: 0.90 (0.00) r1: 0.90 (0.01) r2: 0.09 (0.06) r1: 0.04 (0.03) r1: 0.08 (0.02) r1: 0.03 (0.02) r3: 1.12 (0.02)

Fair-SMOTE r3: 0.83 (0.01) r3: 0.89 (0.01) r0: 0.05 (0.05) r0: 0.02 (0.03) r0: 0.03 (0.03) r0: 0.02 (0.02) r4: 357.84 (3.24)

Fair-SMOTE-Situation r2: 0.83 (0.01) r3: 0.89 (0.01) r0: 0.06 (0.05) r0: 0.02 (0.02) r0: 0.03 (0.03) r0: 0.01 (0.02) r4: 357.68 (1.94)

FairBalance r1: 0.84 (0.00) r0: 0.91 (0.00) r1: 0.07 (0.05) r0: 0.02 (0.02) r0: 0.04 (0.03) r0: 0.01 (0.01) r1: 1.05 (0.02)

FairBalanceVariant r2: 0.83 (0.00) r2: 0.90 (0.00) r0: 0.06 (0.05) r0: 0.02 (0.02) r0: 0.04 (0.04) r0: 0.02 (0.02) r2: 1.10 (0.02)

TABLE 8: Empirical results for RQ3 on the German Credit dataset.

Treatment Accuracy AUC mEOD mAOD smEOD smAOD Runtime (secs)

None r0: 0.76 (0.03) r0: 0.79 (0.03) r2: 0.25 (0.17) r1: 0.29 (0.16) r2: 0.19 (0.07) r1: 0.18 (0.07) r0: 0.06 (0.00)

Reweighing r0: 0.75 (0.03) r0: 0.78 (0.03) r0: 0.12 (0.08) r0: 0.16 (0.13) r0: 0.08 (0.06) r0: 0.07 (0.05) r1: 0.07 (0.00)

Fair-SMOTE r1: 0.71 (0.04) r1: 0.77 (0.04) r0: 0.15 (0.12) r0: 0.19 (0.11) r1: 0.10 (0.07) r0: 0.11 (0.06) r3: 1.85 (0.03)

Fair-SMOTE-Situation r1: 0.71 (0.03) r1: 0.77 (0.03) r1: 0.17 (0.15) r0: 0.14 (0.10) r1: 0.10 (0.09) r0: 0.08 (0.07) r4: 1.91 (0.03)

FairBalance r1: 0.72 (0.04) r0: 0.78 (0.04) r1: 0.21 (0.16) r0: 0.15 (0.11) r1: 0.12 (0.10) r0: 0.09 (0.06) r1: 0.07 (0.00)

FairBalanceVariant r2: 0.70 (0.03) r1: 0.77 (0.03) r1: 0.17 (0.16) r0: 0.18 (0.09) r1: 0.11 (0.10) r0: 0.09 (0.05) r2: 0.07 (0.00)

Overall, the empirical results on the eight real world datasets
are consistent with our analyses in Section 3. Among the
five tested pre-processing algorithms, we would recommend
FairBalance since (1) it always achieves the best smAOD,
(2) in terms of utility measured by AUC, it is also one of

the best treatments, (3) it also has very small computational
overhead. Note that, when smEOD and smAOD cannot be
both satisfied, we value smAOD more since it is a more
comprehensive metric (reflecting both the difference in true
positive rate and false positive rate) than smEOD (which
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TABLE 9: Empirical results for RQ3 on the Default of Credit Card Clients dataset.

Treatment Accuracy AUC mEOD mAOD smEOD smAOD Runtime (secs)

None r0: 0.81 (0.00) r0: 0.72 (0.01) r1: 0.04 (0.01) r1: 0.06 (0.03) r3: 0.08 (0.01) r3: 0.08 (0.02) r0: 0.68 (0.01)

Reweighing r0: 0.81 (0.00) r1: 0.72 (0.00) r0: 0.01 (0.01) r0: 0.05 (0.02) r0: 0.01 (0.01) r0: 0.01 (0.01) r1: 0.86 (0.01)

Fair-SMOTE r2: 0.68 (0.01) r1: 0.72 (0.01) r2: 0.16 (0.02) r2: 0.12 (0.03) r1: 0.01 (0.00) r0: 0.01 (0.01) r3: 611.89 (4.19)

Fair-SMOTE-Situation r3: 0.61 (0.02) r1: 0.71 (0.01) r2: 0.17 (0.07) r2: 0.12 (0.05) r2: 0.03 (0.01) r2: 0.02 (0.01) r3: 611.01 (2.59)

FairBalance r1: 0.69 (0.01) r1: 0.72 (0.01) r2: 0.17 (0.03) r2: 0.13 (0.03) r1: 0.02 (0.01) r0: 0.01 (0.01) r1: 0.86 (0.02)

FairBalanceVariant r2: 0.68 (0.01) r1: 0.72 (0.01) r2: 0.16 (0.03) r2: 0.11 (0.03) r1: 0.02 (0.01) r1: 0.02 (0.01) r2: 0.86 (0.01)

TABLE 10: Empirical results for RQ3 on the Student Performance in Portuguese Language dataset.

Treatment Accuracy AUC mEOD mAOD smEOD smAOD Runtime (secs)

None r0: 0.92 (0.02) r0: 0.95 (0.02) r1: 0.04 (0.02) r0: 0.05 (0.06) r2: 0.04 (0.03) r0: 0.04 (0.03) r0: 0.05 (0.00)

Reweighing r0: 0.91 (0.03) r0: 0.95 (0.02) r0: 0.02 (0.02) r0: 0.05 (0.09) r0: 0.01 (0.02) r0: 0.04 (0.05) r2: 0.05 (0.01)

Fair-SMOTE r1: 0.88 (0.04) r0: 0.95 (0.02) r1: 0.03 (0.03) r0: 0.05 (0.06) r1: 0.03 (0.06) r0: 0.05 (0.07) r3: 0.76 (0.01)

Fair-SMOTE-Situation r1: 0.88 (0.03) r1: 0.95 (0.02) r1: 0.03 (0.04) r0: 0.06 (0.06) r1: 0.03 (0.04) r0: 0.06 (0.06) r4: 0.79 (0.01)

FairBalance r1: 0.89 (0.02) r1: 0.95 (0.02) r1: 0.04 (0.03) r0: 0.06 (0.06) r1: 0.03 (0.04) r0: 0.05 (0.05) r2: 0.05 (0.00)

FairBalanceVariant r1: 0.89 (0.02) r1: 0.95 (0.01) r1: 0.04 (0.05) r0: 0.06 (0.05) r2: 0.04 (0.04) r0: 0.06 (0.08) r1: 0.05 (0.00)

TABLE 11: Empirical results for RQ3 on the Student Performance in Mathematics dataset.

Treatment Accuracy AUC mEOD mAOD smEOD smAOD Runtime (secs)

None r0: 0.91 (0.04) r0: 0.97 (0.01) r0: 0.05 (0.05) r0: 0.04 (0.03) r0: 0.05 (0.03) r0: 0.03 (0.04) r0: 0.04 (0.00)

Reweighing r0: 0.91 (0.03) r0: 0.97 (0.01) r0: 0.03 (0.04) r0: 0.03 (0.04) r0: 0.03 (0.05) r0: 0.03 (0.03) r1: 0.04 (0.00)

Fair-SMOTE r1: 0.90 (0.04) r0: 0.97 (0.02) r1: 0.05 (0.05) r0: 0.06 (0.07) r0: 0.06 (0.05) r0: 0.04 (0.05) r2: 0.25 (0.00)

Fair-SMOTE-Situation r1: 0.89 (0.04) r1: 0.96 (0.02) r1: 0.05 (0.05) r0: 0.05 (0.05) r0: 0.05 (0.06) r0: 0.03 (0.05) r3: 0.27 (0.00)

FairBalance r0: 0.91 (0.03) r0: 0.98 (0.01) r0: 0.03 (0.03) r0: 0.04 (0.04) r0: 0.04 (0.04) r0: 0.03 (0.04) r1: 0.04 (0.00)

FairBalanceVariant r0: 0.91 (0.03) r0: 0.97 (0.01) r1: 0.05 (0.07) r0: 0.04 (0.06) r1: 0.06 (0.06) r0: 0.03 (0.04) r1: 0.04 (0.00)

only relfects the difference in true positive rate). Note that,
FairBalance achieves higher smAODs on the test sets than
the training sets. This is due to the sampling bias which
causes the training and test set not strictly following the same
distribution. This is especially obvious on smaller datasets
such as Heart, German, Student-Portuguese, and Student-
Mathematics with ≤1,000 samples.

Answer to RQ3: Yes. The proposed algorithm FairBalance
outperforms or on par with the other state-of-the-art
Category 3 pre-processing algorithms in terms of smAOD,
AUC, and runtime.

5.4 RQ4 Category 2 pre-processing

RQ3 has shown that FairBalance is the best Category 3 pre-
processing algorithm for smAOD and AUC. Inspired by the
ensemble algorithms such as Chakraborty et al. [9], RQ4 tests
how the Category 2 algorithms affect equalized odds and

whether they can further improve the model’s performance
when applied in combination with FairBalance. Performances
of each treatment on the test set are shown in Table 12-19
and are summarized in Figure 4:
• Fairway and FairSituation cannot achieve comparable

smAOD or smEOD with FairBalance on most of the
datasets (5 out of 8). They do not have much improve-
ment smAOD or smEOD over the None treatment either.
Fairway only slightly improves smAOD and smEOD over
the None treatment on 3 out of 8 datasets and FairSituation
does so on only 1 dataset. This is consistent with our
analysis since Fairway and FairSituation do not satisfy the
necessary condition in Proposition 3.3.

• Adding either Fairway of FairSituation to FairBalance only
worthen the smAOD performance on at least one dataset.
Both FairBalance+Fairway of FairBalance+FairSituation do
not improve on other metrics such as AUC or smEOD
comparing to just applying FairBalance.

Overall, the Category 2 pre-processing algorithms do not
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(a) AUC of the ROC curve

(b) smAOD

Fig. 4: Summarized results of median values for RQ4 (from Table 12 to Table 19).

TABLE 12: Empirical results for RQ4 on the Adult Census Income dataset.

Treatment Accuracy AUC mEOD mAOD smEOD smAOD Runtime (secs)

None r0: 0.85 (0.00) r0: 0.91 (0.00) r2: 0.19 (0.10) r3: 0.14 (0.05) r2: 0.14 (0.07) r2: 0.14 (0.04) r0: 1.27 (0.18)

Fairway r0: 0.85 (0.00) r0: 0.91 (0.00) r2: 0.18 (0.07) r3: 0.13 (0.03) r2: 0.12 (0.05) r2: 0.14 (0.03) r3: 1.56 (0.05)

FairSituation r0: 0.85 (0.00) r0: 0.91 (0.00) r2: 0.19 (0.11) r3: 0.14 (0.05) r2: 0.16 (0.05) r2: 0.15 (0.03) r0: 1.30 (0.02)

FairBalance r1: 0.81 (0.00) r1: 0.90 (0.00) r1: 0.08 (0.03) r0: 0.03 (0.02) r1: 0.09 (0.03) r0: 0.02 (0.01) r1: 1.39 (0.20)

FairBalance+Fairway r2: 0.80 (0.01) r1: 0.90 (0.00) r0: 0.06 (0.03) r1: 0.04 (0.02) r0: 0.08 (0.03) r0: 0.02 (0.01) r4: 1.78 (0.04)

FairBalance+FairSituation r2: 0.80 (0.01) r1: 0.90 (0.00) r0: 0.07 (0.04) r2: 0.06 (0.02) r0: 0.07 (0.02) r1: 0.03 (0.02) r2: 1.52 (0.03)

improve equalized odds and there is little value in applying
FairBalance along with them.

Answer to RQ4: No. Removing certain training data does
not help in achieving better equalized odds.

5.5 RQ5 Model-agnostic

To test the generalizability of the proposed algorithms on
complex problems with deep neural networks, we exper-
imented on the SCUT-FBP5500 dataset [64]. This dataset
consists of 5,500 face images from Male and Female, Cau-
cassian and Asian. Sixty different raters manually rated
each face image for their perceptive ratings ranging from
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TABLE 13: Empirical results for RQ4 on the Compas dataset.

Treatment Accuracy AUC mEOD mAOD smEOD smAOD Runtime (secs)

None r0: 0.67 (0.01) r0: 0.72 (0.01) r3: 0.23 (0.05) r5: 0.31 (0.05) r4: 0.13 (0.02) r3: 0.15 (0.02) r0: 0.27 (0.01)

Fairway r1: 0.66 (0.02) r1: 0.71 (0.02) r2: 0.18 (0.03) r3: 0.25 (0.04) r3: 0.10 (0.02) r2: 0.13 (0.02) r4: 0.41 (0.01)

FairSituation r0: 0.67 (0.01) r0: 0.72 (0.01) r3: 0.21 (0.03) r4: 0.27 (0.05) r4: 0.12 (0.03) r3: 0.15 (0.04) r2: 0.34 (0.01)

FairBalance r2: 0.66 (0.00) r1: 0.72 (0.01) r0: 0.07 (0.05) r0: 0.05 (0.04) r0: 0.03 (0.02) r0: 0.02 (0.02) r1: 0.31 (0.01)

FairBalance+Fairway r3: 0.65 (0.01) r2: 0.71 (0.01) r1: 0.12 (0.07) r2: 0.10 (0.03) r2: 0.06 (0.02) r1: 0.04 (0.01) r5: 0.43 (0.01)

FairBalance+FairSituation r2: 0.66 (0.01) r1: 0.71 (0.01) r0: 0.08 (0.06) r1: 0.07 (0.03) r1: 0.04 (0.02) r0: 0.03 (0.01) r3: 0.38 (0.01)

TABLE 14: Empirical results for RQ4 on the Heart Health dataset.

Treatment Accuracy AUC mEOD mAOD smEOD smAOD Runtime (secs)

None r0: 0.83 (0.05) r0: 0.90 (0.04) r1: 0.11 (0.11) r0: 0.08 (0.08) r1: 0.13 (0.11) r0: 0.08 (0.05) r0: 0.02 (0.00)

Fairway r0: 0.82 (0.04) r0: 0.90 (0.03) r1: 0.11 (0.17) r1: 0.12 (0.15) r0: 0.12 (0.10) r0: 0.08 (0.11) r3: 0.03 (0.00)

FairSituation r0: 0.84 (0.03) r0: 0.90 (0.04) r0: 0.08 (0.10) r0: 0.09 (0.10) r0: 0.07 (0.08) r0: 0.08 (0.07) r2: 0.02 (0.00)

FairBalance r0: 0.83 (0.05) r0: 0.90 (0.04) r0: 0.09 (0.10) r0: 0.07 (0.09) r0: 0.07 (0.04) r0: 0.05 (0.06) r1: 0.02 (0.00)

FairBalance+Fairway r0: 0.82 (0.05) r0: 0.89 (0.03) r0: 0.06 (0.07) r0: 0.09 (0.06) r0: 0.07 (0.07) r0: 0.07 (0.09) r3: 0.03 (0.00)

FairBalance+FairSituation r0: 0.82 (0.05) r0: 0.90 (0.03) r0: 0.08 (0.11) r0: 0.08 (0.07) r0: 0.06 (0.08) r0: 0.05 (0.06) r2: 0.02 (0.00)

TABLE 15: Empirical results for RQ4 on the Bank Marketing dataset.

Treatment Accuracy AUC mEOD mAOD smEOD smAOD Runtime (secs)

None r0: 0.90 (0.00) r1: 0.91 (0.00) r1: 0.13 (0.08) r1: 0.09 (0.04) r1: 0.08 (0.03) r1: 0.08 (0.02) r0: 0.97 (0.02)

Fairway r1: 0.90 (0.00) r2: 0.90 (0.01) r1: 0.12 (0.06) r1: 0.08 (0.03) r1: 0.08 (0.04) r1: 0.08 (0.02) r2: 1.27 (0.02)

FairSituation r1: 0.90 (0.00) r1: 0.91 (0.00) r1: 0.12 (0.08) r1: 0.08 (0.04) r1: 0.08 (0.05) r1: 0.08 (0.03) r2: 1.27 (0.02)

FairBalance r2: 0.84 (0.00) r0: 0.91 (0.00) r0: 0.07 (0.05) r0: 0.02 (0.02) r0: 0.04 (0.03) r0: 0.01 (0.01) r1: 1.05 (0.02)

FairBalance+Fairway r4: 0.83 (0.00) r0: 0.91 (0.00) r0: 0.08 (0.05) r0: 0.02 (0.03) r0: 0.05 (0.03) r0: 0.02 (0.02) r3: 1.35 (0.05)

FairBalance+FairSituation r3: 0.83 (0.00) r0: 0.91 (0.00) r0: 0.06 (0.05) r0: 0.02 (0.02) r0: 0.05 (0.03) r0: 0.01 (0.01) r4: 1.38 (0.03)

TABLE 16: Empirical results for RQ4 on the German Credit dataset.

Treatment Accuracy AUC mEOD mAOD smEOD smAOD Runtime (secs)

None r0: 0.76 (0.03) r0: 0.79 (0.03) r1: 0.25 (0.17) r1: 0.29 (0.16) r1: 0.19 (0.07) r2: 0.18 (0.07) r0: 0.06 (0.00)

Fairway r0: 0.74 (0.03) r1: 0.77 (0.05) r0: 0.21 (0.09) r1: 0.23 (0.11) r0: 0.15 (0.07) r1: 0.13 (0.09) r4: 0.11 (0.00)

FairSituation r0: 0.75 (0.02) r0: 0.78 (0.03) r1: 0.26 (0.10) r1: 0.28 (0.12) r1: 0.18 (0.05) r2: 0.17 (0.05) r2: 0.08 (0.00)

FairBalance r1: 0.72 (0.04) r0: 0.78 (0.04) r0: 0.21 (0.16) r0: 0.15 (0.11) r0: 0.12 (0.10) r0: 0.09 (0.06) r1: 0.07 (0.00)

FairBalance+Fairway r2: 0.68 (0.02) r1: 0.75 (0.03) r0: 0.19 (0.11) r0: 0.15 (0.11) r0: 0.13 (0.07) r0: 0.08 (0.07) r5: 0.11 (0.00)

FairBalance+FairSituation r1: 0.70 (0.03) r0: 0.77 (0.04) r0: 0.23 (0.16) r0: 0.15 (0.11) r0: 0.15 (0.11) r0: 0.07 (0.09) r3: 0.09 (0.00)

1 to 5 individually and the average ratings are used as the
ground truth. In this experiment, ratings higher than 3 are
considered as favorable and ratings lower than or equal
to 3 are considered as unfavorable as shown in Table 2.
The image dataset was split into 50% for training, 20% for

validation, and 30% for testing. A VGG-16 [70] model with
pre-trained weights on the ImageNet data is transferred to
predict the average beauty ratings with the output layer
being replaced as a dense layer of size 256 and a one node
output layer. The model is optimized for binary cross-entropy
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TABLE 17: Empirical results for RQ4 on the Default of Credit Card Clients dataset.

Treatment Accuracy AUC mEOD mAOD smEOD smAOD Runtime (secs)

None r0: 0.81 (0.00) r0: 0.72 (0.01) r0: 0.04 (0.01) r1: 0.06 (0.03) r1: 0.08 (0.01) r1: 0.08 (0.02) r0: 0.68 (0.01)

Fairway r2: 0.80 (0.00) r0: 0.72 (0.01) r0: 0.04 (0.01) r0: 0.06 (0.02) r1: 0.08 (0.01) r1: 0.08 (0.01) r2: 0.86 (0.02)

FairSituation r1: 0.81 (0.00) r0: 0.72 (0.01) r0: 0.04 (0.02) r1: 0.06 (0.02) r1: 0.08 (0.01) r1: 0.08 (0.02) r1: 0.74 (0.01)

FairBalance r3: 0.69 (0.01) r1: 0.72 (0.01) r1: 0.17 (0.03) r2: 0.13 (0.03) r0: 0.02 (0.01) r0: 0.01 (0.01) r2: 0.85 (0.02)

FairBalance+Fairway r5: 0.66 (0.00) r1: 0.72 (0.01) r2: 0.18 (0.03) r3: 0.14 (0.03) r0: 0.01 (0.01) r0: 0.01 (0.01) r4: 1.05 (0.02)

FairBalance+FairSituation r4: 0.67 (0.01) r0: 0.72 (0.01) r2: 0.18 (0.02) r3: 0.13 (0.04) r0: 0.01 (0.01) r0: 0.01 (0.01) r3: 0.94 (0.01)

TABLE 18: Empirical results for RQ4 on the Student Performance in Portuguese Language dataset.

Treatment Accuracy AUC mEOD mAOD smEOD smAOD Runtime (secs)

None r0: 0.92 (0.02) r0: 0.95 (0.02) r0: 0.04 (0.02) r0: 0.05 (0.06) r0: 0.04 (0.03) r0: 0.04 (0.03) r0: 0.05 (0.00)

Fairway r0: 0.91 (0.02) r0: 0.96 (0.02) r0: 0.02 (0.02) r0: 0.06 (0.09) r0: 0.03 (0.02) r0: 0.05 (0.06) r4: 0.07 (0.00)

FairSituation r0: 0.92 (0.02) r1: 0.95 (0.02) r0: 0.02 (0.03) r0: 0.06 (0.06) r0: 0.03 (0.04) r0: 0.04 (0.05) r2: 0.07 (0.00)

FairBalance r1: 0.89 (0.02) r1: 0.95 (0.02) r1: 0.04 (0.03) r0: 0.06 (0.06) r0: 0.03 (0.04) r0: 0.05 (0.05) r1: 0.05 (0.00)

FairBalance+Fairway r1: 0.89 (0.04) r1: 0.94 (0.03) r1: 0.04 (0.04) r0: 0.05 (0.05) r0: 0.04 (0.04) r0: 0.05 (0.04) r5: 0.08 (0.00)

FairBalance+FairSituation r1: 0.89 (0.02) r1: 0.95 (0.02) r1: 0.06 (0.07) r0: 0.09 (0.06) r0: 0.05 (0.05) r0: 0.06 (0.06) r3: 0.07 (0.00)

TABLE 19: Empirical results for RQ4 on the Student Performance in Mathematics dataset.

Treatment Accuracy AUC mEOD mAOD smEOD smAOD Runtime (secs)

None r0: 0.91 (0.04) r0: 0.97 (0.01) r0: 0.05 (0.05) r0: 0.04 (0.03) r0: 0.05 (0.03) r0: 0.03 (0.04) r0: 0.04 (0.00)

Fairway r1: 0.89 (0.04) r1: 0.96 (0.02) r0: 0.05 (0.07) r0: 0.05 (0.05) r1: 0.05 (0.04) r0: 0.03 (0.05) r4: 0.06 (0.00)

FairSituation r0: 0.91 (0.03) r0: 0.97 (0.02) r1: 0.08 (0.07) r1: 0.06 (0.04) r1: 0.07 (0.06) r0: 0.05 (0.02) r2: 0.06 (0.00)

FairBalance r0: 0.91 (0.03) r0: 0.98 (0.01) r0: 0.03 (0.03) r0: 0.04 (0.04) r0: 0.04 (0.04) r0: 0.03 (0.04) r1: 0.04 (0.00)

FairBalance+Fairway r1: 0.88 (0.04) r1: 0.96 (0.02) r1: 0.08 (0.08) r0: 0.06 (0.09) r1: 0.06 (0.06) r0: 0.03 (0.04) r5: 0.06 (0.00)

FairBalance+FairSituation r1: 0.90 (0.03) r0: 0.97 (0.01) r1: 0.05 (0.08) r0: 0.04 (0.03) r0: 0.05 (0.06) r0: 0.04 (0.04) r3: 0.06 (0.00)

loss with stochastic gradient descent in batches of size 1501.
The model is trained on 4 NVIDIA A100 Tensor Core GPUs
with 320 Gigabytes memory and is repeated 10 times for
each treatment. The results are shown in Table 20.

Empirical results from Table 20 show that FairBalance
is able to reduce both EOD and AOD significantly without
damaging the accuracy and AUC for the image processing
problem. This aligns with the results on the tabular datasets
with logistic regression classifiers.

Answer to RQ5: Yes. FairBalance improved equalized odds
on image processing problems with deep neural networks.
This demonstrated that FairBalance is model-agnostic.

1. The analysis in Section 3 applies and FairBalance will guarantee 0
smAOD on the training data when trained with full batches. However,
due to memory limitation, we can only train with batch size of 150.

6 THREATS TO VALIDITY

Sampling Bias - Conclusions may change if other datasets
and classification models are used. Specifically, Zhang and
Harman [71] showed that enlarging feature set of the
data could improve both fairness and accuracy. We have
attempted to reduce the sampling bias by using two different
models logistic regression model and VGG-16 model as the
base classifier and experimenting on nine different real world
datasets (including one image processing dataset).
Evaluation Bias - We focused on the equalized odds fairness
notion and evaluated it with mEOD, mAOD, smEOD and
smAOD. For scenarios where other types of fairness is
required, e.g. demographic parity, the proposed algorithm
does not apply.
Conclusion Validity - Analyses in this work were made
based on Assumption 3.1 and 3.2. Prior fairness studies made
similar assumptions [9], [72]. However, such assumptions
may not always hold for data with human decisions.



16

TABLE 20: Empirical results for RQ5 on the SCUT-FBP5500 dataset.

Treatment Accuracy AUC mEOD mAOD smEOD smAOD Runtime (secs)

None 0.89 (0.01) 0.96 (0.00) 0.14 (0.07) 0.11 (0.03) 0.14 (0.03) 0.10 (0.02) 686.61 (59.99)

Reweighing 0.89 (0.01) 0.95 (0.00) 0.13 (0.06) 0.08 (0.05) 0.11 (0.05) 0.06 (0.03) 687.71 (0.20)

FairBalance 0.89 (0.01) 0.96 (0.00) 0.09 (0.05) 0.05 (0.02) 0.07 (0.04) 0.04 (0.01) 687.68 (90.00)

FairBalanceVariant 0.88 (0.01) 0.95 (0.01) 0.09 (0.05) 0.07 (0.05) 0.08 (0.04) 0.05 (0.03) 627.69 (105.04)

External Validity - This work focuses on classification
problems which are very common in AI software. We are
currently working on extending it to regression problems.

7 CONCLUSION AND FUTURE WORK

It is the responsibility of software developers to develop
accountable and fair machine learning software that does
not perform differently on different sensitive demographic
groups (i.e. achieving equalized odds). This paper aims
to help software developers design classifiers satisfying
equalized odds by assigning different weights to the training
data points. Through analysis of the training process of
common classifiers, we first find, equal weighted class distribu-
tions across each demographic group is a necessary condition for
achieving equalized odds (Proposition 3.3). This is also validated
empirically in RQ1 where we showed the extent of violation
of equalized odds is positively related to the max difference
in the class distributions, and that in RQ3 and RQ4, the
pre-processing algorithms satisfying the necessary condition
achieve better equalized odds than those do not. Our second
finding is, when the weighted class distributions are balanced (1:1)
in every demographic group, partial equalized odds (smAOD=0)
can be guaranteed in the training data (Proposition 3.4). This
sufficient condition is empirically validated in RQ2 that with
FairBalance balancing the training data, smAODs are close
to 0 on every training datasets. Note that these two major
findings are subject to Assumption 3.1 and 3.2 in Section 3.

With the two findings, we proposed FairBalance, a pre-
processing algorithm balancing the training data. With
experiments on eight real world datasets, we show in RQ3
and RQ4 that FairBalance outperforms every other baseline
in smAOD, and is on par with them in terms of utility
(measured by AUC) and runtime. Also demonstrated in RQ5
with a complex neural network model trained on an image
processing dataset, FairBalance is model-agnostic itself and
can be generalized to classifiers other than logistic regression.

Overall, FairBalance is able to improve equalized odds of
binary classifiers on training data by adjusting the sample
weights. It can be applied with any unbiased predictor with
zero mean of training errors and an intercept term θ(0).
The computational overhead of it is also linear. With all
these advantages, we would recommend the application of
FairBalance when developing machine learning software that
is required to perform similarly across different sensitive
demographic groups. This would solve problems such
as the COMPAS example discussed in Section 1— after
balancing the class distributions with FairBalance, the false
positive rates and true positive rates across white and black
defendants become less different (measured as mEOD and

mAOD in Table 5). Note that FairBalance cannot prevent the
machine learning software from being unfair due to unfair
training data labels. This would require data elicitation from
domain experts.

Given the threats to validity discussed in Section 6 and
the above limitation, future work of this paper focuses on:

• How to detect and mitigate biased labels. Equalized odds is
no longer reliable when ground truth labels can be biased.
But this also creates an opportunity to isolate the bias in-
herited from the training data when applying FairBalance
to mitigate the bias originated from the training process.
When equalized odds is violated for a model trained with
FairBalance, the violation is possibly due to the biased
labels.

• How to mitigate potential ethical bias when the sensitive
attributes are unknown or noisy. There are some existing
work along this research [73], However, it remains as a
major challenge for machine learning fairness.

• How to generalize this work to regression problems when
the dependent variable and the sensitive attributes can
be continuous. This requires a generalized definition of
equalized odds for the regression problems.
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