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Abstract—Antimicrobial resistance (AMR) poses a significant
challenge in healthcare and public health, with organisms such
as nontyphoidal Salmonella leading the way due to their esca-
lating resistance to antimicrobial agents. This situation severely
complicates the management and containment of diseases, high-
lighting the urgent need for more effective techniques to as-
sess antimicrobial susceptibility. Conventional methods, including
the broth microdilution technique for determining Minimum
Inhibitory Concentrations (MICs), are time-consuming and re-
quire extensive manual effort. The advent of machine learning
(ML) technologies offers a revolutionary approach to predicting
MICs, thereby potentially increasing the efficacy of antimicrobial
therapies. This paper explores the latest advancements in ML
for MIC prediction, focusing on an innovative approach using
Graph Neural Networks (GNNs), which could provide a novel
insight into the correlation between gene fragment similarities
and MIC values. Within this paper, we introduce the K-mer
GNN, a novel GNN model designed for MIC prediction. The
K-mer GNN model distinctively identifies and incorporates the
similarities among k-mers, integrating these insights into GNN
alongside k-mer features. This approach not only elevates the
precision of MIC predictions but also sheds light on the genomic
factors at the k-mer level that drive antimicrobial resistance.

Index Terms—Graph Neural Networks, genomics, K-mer, An-
tibiotics, MIC

I. INTRODUCTION

Antimicrobial resistance (AMR) is a growing concern in
healthcare and public health [1]–[3]. The ability of pathogens
like nontyphoidal Salmonella to resist antimicrobial treat-
ments has significant implications for disease management
and control. Traditional methods of determining antimicrobial
susceptibility, such as broth dilution to ascertain Minimum
Inhibitory Concentrations (MICs), are time-consuming and
labor-intensive. Recent advances in machine learning (ML)
offer a transformative approach to predicting MICs, thereby
enhancing the effectiveness of antimicrobial therapies. This
paper reviews the current state of ML in predicting antimicro-
bial MICs, focusing on nontyphoidal Salmonella, a key player
in the AMR landscape.

Several studies have concentrated on employing machine
learning (ML) strategies to forecast antimicrobial minimum
inhibitory concentrations (MICs) and pinpoint genomic factors
influencing antibiotic resistance in nontyphoidal Salmonella.
These investigations span various methodologies, including the
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creation of portable detection systems, high-content imaging
techniques, analysis of genomic features, and the application
of bioinformatics, all aimed at tackling the escalating issue
of antimicrobial resistance among bacterial pathogens [4]–[8].
Notably, the research conducted by [9] is distinguished by its
successful application of ML to predict MICs in nontyphoidal
Salmonella, establishing a foundational reference for our dis-
cussion. This is further enriched by other studies, together
highlighting the potential and obstacles associated with the
use of ML in this field. Graph Neural Networks (GNNs) have
emerged as a significant focus in genomics research, and they
are noted for their versatility across various applications. These
applications range from the prediction of regulatory DNA and
RNA sites to the integration of multi-omics data for purposes
such as patient stratification and cancer prognosis [10]–[26].
These GNNs are utilized for groundbreaking purposes, such
as analyzing thermodynamics in genome-scale metabolic net-
works and forecasting tumor metastasis through the integra-
tion of genomic and protein-protein interaction network data.
Despite their increasing importance in the genomics domain,
GNNs have yet to be explored or applied in the specific context
of predicting MICs. This gap indicates a promising new
direction for future investigations into antimicrobial resistance.

In the subsequent sections, we introduce a novel model,
namely K-mer GNN, that leverages GNNs for predicting
MICs, showcasing a significant advancement over traditional
ML methodologies. GNNs, with their unique ability to model
relational data, present a novel framework for analyzing
complex interactions within microbial genomic data. This
approach not only enhances the accuracy of MIC predictions
but also offers more profound insights into the genomic factors
influencing antimicrobial resistance.

II. METHODS

A. Preliminary: Graph Convolutional Networks (GCN)

Graph Convolutional Networks (GCN), as the majority of
GNNs, have revolutionized how we process and analyze data
structured in graphs. GCNs operate by applying convolutional
processes to graph-structured data, involving the aggregation
of information from a node’s neighbors to capture the graph’s
topological features effectively. The convolution in GCNs is
mathematically represented as:

H
(l+1) = ω

(
D

→ 1
2 ÂD

→ 1
2H

(l)
W

(l)
)

(1)

where H
(l) → R

N↑F is the feature matrix at layer l and F

is a tunable hidden dimension of the neural network. Â is the20
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adjacency matrix with added self-connections (Â = A +D),
which often represents the similarity or proximity among data
instances. D is the degree matrix, W

(l) the layer’s weight
matrix, and ω a non-linear activation function. H typically
represents the normal features of data points (or nodes), while
Â denotes pairwise similarities among nodes. The fundamental
capability of GCN lies in their ability to merge non-Euclidean
connectivity, represented by Â, with Euclidean feature data,
denoted as H , for conventional machine learning tasks, as
shown in Equation 1. The predictive capability of GCNs is
realized in the final output layer, which can be represented as:

Z = softmax
(
H

(L)
W

(L)
)

(2)

where Z is an intermediate representation, H(L) is the feature
matrix at the last layer L, and W

(L) is the weight matrix
of the final layer. The softmax function is typically used
in classification tasks to convert the output into probability
distributions. This equation encapsulates the process where
GCNs leverage the encoded features and relationships to make
predictions, such as node classification, in graph-structured
data. Note that this paper will perform a revised regression
task, so we remove softmax in Equation :

Z = H
(L)

W
(L) (3)

It is essential to highlight that a graph convolutional layer is
frequently combined with multiple perceptron (MLP) layers.
In our investigation, we will experiment with configurations
incorporating either one or two graph convolutional layers
along with three MLP layers, a setup that is widely recognized
as effective for GCN models.

B. Kmer-GNN: A Revised GCN Model

The Kmer-GNN model represents a new modification of
GCN, specifically tailored for genomic data analysis in the
context of antimicrobial resistance prediction. This section
delves into the intricacies of the Kmer-GNN model, highlight-
ing its novel aspects, particularly the graph structure and the
node feature representation.

Architecture of Kmer-GNN. In Figure 1, the initial step
involves extracting a selection of top K-mers to form a pool.
This is followed by the derivation of their similarity graph
and existence. Subsequently, the Kmer-GNN applies graph
convolution, effectively integrating the similarity graph with
the binary node characteristics. The Kmer-GNN architecture
is further enhanced with multiple layers of graph convolution,
which are essential for aggregating neighbor node information.
Following this, the Kmer-GNN utilizes a series of fully con-
nected layers that aid in the further refinement and processing
of information, culminating in the prediction of MIC values.

Graph Structure in Kmer-GNN: Kmer-GNN utilizes a
unique graph structure where nodes represent k-mers, and
edges are established based on sequence similarity of k-
mers. This structure is critical for capturing the complex
relationships inherent in genomic sequences. Specifically, the
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Fig. 1. K-Mer Graph Neural Networks

similarity graph in Kmer-GNN is constructed using sequence
similarity such as cosine similarity and longest common
sequence. This graph representation facilitates the extraction
of meaningful patterns from K-mer sequences, a crucial step
in predicting antimicrobial resistance. The construction of the
similarity graph is mathematically represented as:

Aij = !(ki, kj) (4)

where Aij represents the edge weight between K-mers ki and
kj . All similarities are normalized to the range [0, 1]. So,
A → [0, 1]N↑N where N denote the total number of kmers.
To further decrease the computational burden, a similarity
threshold of 0.5 is established. Values below 0.5 are considered
as 0, while those above 0.5 are regarded as 1. Finally, we
have A → {0, 1}N↑N , which means that each entry in A is
either 0 or 1. If A is large, the matrix multiplication can
result in a prohibitive computational cost. To address this
issue, feature selection techniques can be applied to select the
most informative 10% of all 10-mers, utilizing their feature
importance scores obtained from a Random Forest algorithm.
This approach will result in the identification of 1351 (i.e., N )
10-mers within our dataset.

Node Feature Representation. In the Kmer-GNN framework,
the attributes of each node are encoded in a binary manner,
reflecting the presence (1) or absence (0) of specific K-
mers within the microbial genome. This binary encoding is
fundamental for delineating the genomic landscape in the
context of antimicrobial resistance analysis. For every node
within the network, a binary feature is assigned, denoting the
presence or lack thereof of the corresponding K-mer in the
genome. This method provides a succinct yet comprehensive
depiction of genomic information. The binary presence or
absence of a K-mer is mathematically represented as follows:

Hi = [0 or 1] (5)

In this context, Hi represents the feature vector for node i,
where the numerical values indicate the presence of specific
K-mers within the pool of N K-mers, thus H → {0, 1}N .
Following this, Equations 4 and 5 are applied to incorporate
these values into Equations 1 and 3 together. Note that the
output of 3 is a vector Y. To enhance the outcomes, an attention
layer is incorporated after the graph convolutional layers.
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III. DATASETS, PREPROCESSING, AND IMPLEMENTATION

Salmonella MIC Prediction Model. The prediction
model for Minimum Inhibitory Concentration (MIC) of
Salmonella—encompassing 4,500 genomes, along with its
software and comprehensive documentation—is publicly
accessible at https://github.com/PATRIC3/mic prediction [9].
The model’s performance is quantitatively assessed with an
accuracy metric defined by a ±1 two-fold dilution within a
confidence interval of 95%. The analyzed strains were isolated
from either raw retail meat and poultry or directly from
livestock animals post-slaughter. Antimicrobial susceptibility
was determined through broth microdilution techniques using
the Sensititre system by Thermo Scientific, specifically for
the antibiotic combination of trimethoprim-sulfamethoxazole
(COT), in accordance with the protocols of FDA and USDA’s
NARMS laboratories. Whole-genome sequencing (WGS)
was conducted using Illumina’s HiSeq and MiSeq platforms,
following standardized procedures.
Baseline Models. To highlight its relative efficacy, our ap-
proach was evaluated by conducting comparative analyses with
well-established models, including Linear Regression (LR),
Random Forest Regressor (RF), Support Vector Regressor
(SVR), and XGBoost (XGB). These baseline models were
developed utilizing Sklearn [27]. Additionally, the robustness
and sensitivity of the proposed K-mer-based GNN were eval-
uated across various configurations, encompassing different
graph similarity metrics (including Hamming distance [28],
Levenshtein distance [29], and Needleman-Wunsch [30]), a
range of k-fold cross-validation schemes (from 3 to 7 folds),
and multiple hidden layer dimensions (16, 24, 32, and 48).
Training and Evaluation of Kmer-GNN. The training pro-
cess for Kmer-GNN encompasses the utilization of a dataset
comprising microbial genomes and their respective MIC val-
ues. Evaluation of the model’s performance is predicated on its
precision in predicting these MIC values. This is achieved by
fine-tuning the selection of hyperparameters and implementing
measures to curtail overfitting. The entire model configuration,
along with its training and testing phases, is conducted using
PyTorch Geometric [31]. The full code necessary to reproduce
our study results has been made available at https://github.com/
aquastar/kmer-gnn.

IV. RESULTS AND ANALYSIS

Figure 2 provides a detailed comparison of the performance
of various machine learning models, including GCN (Kmer-
GNN), Logistic Regression (LR), Random Forest (RF), Sup-
port Vector Regression (SVR), and XGBoost (XGB), across
three distinct sequence similarity metrics: Hamming Distance,
Levenshtein Distance, and Needleman-Wunsch similarity. The
performance of each model under different similarity metrics is
depicted by bars, with error bars indicating the standard devia-
tion. While RF, SVR, and XGB demonstrate high accuracies,
the GCN model enhances performance by approximately 4-
5%. Figure 3 depicts the efficacy of the same ensemble of ma-
chine learning models (GCN, LR, RF, SVR, and XGB) across
various k-fold validation schemes, including 3-fold, 5-fold, and

Fig. 2. Comparative Analysis of Machine Learning Models’ Accuracy Across
Different Sequence Similarity Metrics.

Fig. 3. Comparative Analysis of Machine Learning Models’ Accuracy Across
K-Fold Settings.

7-fold. This figure offers critical insights into the impact of the
k-fold validation strategy on model performance, underscoring
the significance of selecting an appropriate validation approach
in the evaluation of models. Notably, there is no substantial
difference in performance across different fold sizes, with the
exception of Linear Regression (LR). RF, SVR, and XGB
maintain high accuracy levels, yet GCN surpasses all baseline
models by 4-5%. Figure 4 examines the performance of the
machine learning models over a range of hidden dimension
settings: 16, 24, 36, and 48. Consistently, the GCN model
outperforms the baseline models by 4-5% across these settings.

Throughout these analyses, as demonstrated in all three

Fig. 4. Comparative Analysis of Machine Learning Models’ Accuracy Across
Hidden Dimension Settings
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figures, the GCN model (Kmer-GNN) consistently exhibits
superior performance with minimal variation in accuracy when
compared to other models such as LR, RF, SVR, and XGB.
Consequently, the GCN model is affirmed as a highly effective
and adaptable model, outshining its counterparts under diverse
experimental conditions and settings, thereby confirming its
efficacy for tasks related to sequence similarity and genomic
data analysis.

V. CONCLUSION

The paper has presented a comprehensive overview of the
application of machine learning, specifically Graph Neural
Networks (GNNs), in predicting antimicrobial minimum in-
hibitory concentrations (MICs) and resisting genomic determi-
nants for nontyphoidal Salmonella. We described the underly-
ing mechanisms, architecture, and evaluation of Kmer-GNN, a
novel GNN model tailored for analyzing genomic sequences,
and demonstrated its effectiveness across various experimental
conditions compared to traditional machine learning models.
The results clearly establish the superiority of GNNs, exem-
plified through Kmer-GNN, in identifying complex patterns
in genomic data critical for accurate MIC prediction and
understanding antimicrobial resistance. By offering enhanced
predictive capabilities and deeper insights into genetic factors
influencing pathogen behavior, the integration of graph-based
deep learning methodologies promises to transform suscepti-
bility testing protocols and antibiotic therapeutic strategies.
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