
Empirical Software Engineering (2025) 30:12
https://doi.org/10.1007/s10664-024-10580-3

Approaching code search for python as a translation retrieval
problemwith dual encoders

Monoshiz Mahbub Khan1 · Zhe Yu1

Accepted: 21 October 2024 / Published online: 30 October 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Code search is vital in the maintenance and extension of software systems. Past works have
used separate language models for the natural language and programming language artifacts
onmodelswithmultiple encoders anddifferent loss functions. Similarly, thiswork approaches
code search for Python as a translation retrieval problem while the natural language queries
and the programming language are treated as two types of languages. By using dual encoders,
these two types of language sequences are projected onto a shared embedding space, in
which the distance reflects the similarity between a given pair of query and code. However,
in contrast to previous work, this approach uses a unified language model, and a dual encoder
structurewith a cosine similarity loss function.A unified languagemodel helps themodel take
advantage of the considerable overlap of words between the artifacts, making the learning
much easier. On the other hand, the dual encoders trained with cosine similarity loss helps
the model learn the underlining patterns of which terms are important for predicting linked
pairs of artifacts. Evaluation shows the proposed model achieves performance better than
state-of-the-art code search models. In addition, this model is much less expensive in terms
of time and complexity, offering a cheaper, faster, and better alternative.

Keywords Code search · Deep neural networks · Dual encoders

1 Introduction

As defined by Husain et al. (2019), “Semantic code search is the task of retrieving relevant
code given a natural language query”. In other words, the goal of code search is, given a
natural language artifact or sequence, find the corresponding programming language arti-
fact or sequence from a pool of available or possible artifacts. In practical scenarios, there
might be multiple matching programming language artifacts for a natural language artifact
counterpart. The goal there might be vary from picking out the most relevant one, or simply

Communicated by: Dan Hao

B Monoshiz Mahbub Khan
mk7989@rit.edu

Zhe Yu
zxyvse@rit.edu

1 Rochester Institute of Technology, Rochester, NY, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10580-3&domain=pdf
http://orcid.org/0009-0004-7557-4751


12 Page 2 of 28 Empirical Software Engineering (2025) 30 :12

retrieving them all. Retrieving these target artifacts for a given query can help implement
specific features more conveniently, find software libraries for specific functionality, navigate
codebases, or even retrieve pieces of code that need some form of modification (Salza et al.
2022). However, manually retrieving these target artifacts for existing systems and artifacts
can be tedious and expensive (Rath et al. 2018; Lin et al. 2021). Moreover, traditional infor-
mation retrieval processes do not perform well in code search, due to the different languages
used in the queries and code— “there is often little shared vocabulary between search terms
and results” (Husain et al. 2019). In addition, real life data concerning programming lan-
guage artifacts may sometimes include variable or function names that may not be as easy
to understand the semantic of only from the names (Guo et al. 2021). As a result, an overlap
of vocabulary between artifacts does not necessarily guarantee better training or learning,
especially for large datasets where such an overlap occurring between unrelated artifacts
might be commonplace.

Contemporary works in code search have approached this as a retrieval task, where there
is already a pool of possible target artifacts, and the model simply has to learn which one
to pick for a given query. More recent works have utilized separate encoders for each type
of artifact, similar to translation tasks. This, in turn, has framed the code search task as a
translation retrieval task. The CodeSearchNet challenge (Husain et al. 2019) is perhaps the
most significant past work relevant to the task of code search. This work introduces the
CodeSearchNet dataset, consisting of documentation-function pairs from six programming
languages, and trains several models to retrieve the programming language artifact most
likely to be linked to a given natural language pair. Feng et al. (2020) build upon this task
by introducing more complex structures with some levels of pre-training, using the same
dataset for the task. Lu et al. (2021) expand on this by using a subset of the CodeSearchNet
dataset on the same models. Guo et al. (2021) incorporate data flow information from the
programming language artifacts into its training process, while Wang et al. (2021) utilize
Abstract Syntax Tree (AST) representations of the programming language artifacts. Wang
et al. (2023) pre-train a single model on separate tasks with both different unimodal and
bimodal data as different steps to ensure the model can be flexibly used in different modes
for different tasks.

1.1 Proposed Approach

The work here considers the same scenario as the CodeSearchNet challenge for Python,
where there are pools of natural language artifacts and programming language artifacts, and
every natural language query has at least one correct or linked target programming language
artifact. This work builds upon the upon mentioned past works for this retrieval task. This
work incorporates a unified language model to generate word embeddings, and utilizes a
dual encoder model alongside a cosine similarity based loss function to learn from these
embeddings.

One of the primary components of the work here is the use of a unified language model to
generate the word embeddings for both the natural and programming language artifacts. In
Table 1, the first two examples show two linked artifact pairs. These linked pairs demonstrate
a significant overlap in words or between them. This pattern of overlapping words or parts
of words is consistent for linked pairs throughout the data. In other words, linked artifacts
in the data show a shared vocabulary between them. A unified language model is able to
take advantage of a pair’s shared vocabulary to generate similar embeddings for the artifacts.
Therefore, the nature of the data directly motivates the use a unified language model for the

123



Empirical Software Engineering (2025) 30 :12 Page 3 of 28 12

Ta
bl
e
1

E
xa
m
pl
e
pa
ir
s
w
ith

ov
er
la
pp

in
g
w
or
ds

or
pa
rt
ia
lw

or
ds

L
in
ke
d

Te
xt

C
od

e

Y
es

D
ec
om

pr
es
se
s

da
ta

fo
r

C
on

te
nt
-E
nc
od

in
g:

de
fla

te
.

(t
he

zl
ib
co
m
pr
es
si
on

is
us
ed
.)

de
f
un
de
fla
te
(d
at
a)
:

im
po
rt
zl
ib

de
co
m
pr
es
so
bj

=
zl
ib
.d
ec
om

pr
es
so
bj
(-
zl
ib
.M

A
X
_W

B
IT
S)

re
tu
rn

de
co
m
pr
es
s o
bj
.d
ec
om

pr
es
s(
da
ta
)
+

de
co
m
pr
es
s o
bj
.fl
us
h(
)

Y
es

C
he
ck
s
if

a
ta
sk

is
ei
th
er

qu
eu
ed

or
ru
nn

in
g
in

th
is
ex
ec
ut
or

:p
ar
am

ta
sk
_i
ns
ta
nc
e :

Ta
sk
In
st
an
ce

:r
et
ur
n:

T
ru
e
if
th
e
ta
sk

is
kn
ow

n
to

th
is
ex
ec
ut
or

de
f
ha
s_
ta
sk
(s
el
f,
ta
sk
_i
ns
ta
nc
e)
:

if
ta
sk
_i
ns
ta
nc
e .
ke
y
in

se
lf
.q
ue
ue
d_

ta
sk
s
or

ta
sk
_i
ns
ta
nc
e.
ke
y
in

se
lf
.r
un

ni
ng
:

re
tu
rn

T
ru
e

N
o

D
um

ps
a
da
ta
ba
se

ta
bl
e
in
to

a
ta
b-

de
lim

ite
d
fil
e

de
f
bu
lk
_l
oa
d(
se
lf
,t
ab
le
,t
m
p_
fil
e)
:

se
lf
.c
op
y_
ex
pe
rt
(”
C
O
PY

ta
bl
e

FR
O
M

ST
D
IN

”.
fo
rm

at
(t
ab
le
=
ta
bl
e)
,

tm
p_
fil
e)

123



12 Page 4 of 28 Empirical Software Engineering (2025) 30 :12

word embeddings. The FastText word embeddings used here can leverage sub-word level
information, making similar artifacts’ embeddings similar.

However, there are also non-linked artifact pairs presenting in the data which also display
a significant overlap of words, as it can be seen in the negative example in Table 1. Therefore,
it is necessary to learn which artifacts are actually linked andwhich are not, regardless of their
embeddings’ initial similarity. The dual encoders trainedwith cosine similarity-based loss are
used to achieve that goal. The initial embeddings of the natural language and programming
language artifacts are projected onto a shared embedding space by the trained language-
specific encoders. In this shared embedding space, linked pairs are closer to each other than
non-linked pairs when measured with cosine distance. In this way, the similarity between
any pair of natural language query and programming language artifact can be predicted by
their cosine similarity score in the shared embedding space. This lends the learned model
the capability of learning which terms are more important and distinguishing between linked
pairs and non-linked pairs. In contrast to the use of classification based loss functions in
previous work, the cosine similarity loss is more appropriate for this task and consequently
performs better empirically.

1.2 Research Questions

This work evaluates the proposed model on the CodeSearchNet dataset and some of its
variations, and focusing only onPython-based code. Following different pre-processing steps,
this data is fed to ourmodel for the code search task.Detailed steps andprocesses are described
in a later section. The following research questions will be explored in the rest of this paper:

– RQ1: Is a simpler dual encoder architecture with unified word embeddings and
cosine similarity based loss function more effective at code search in Python? Dual
encoder architectures have shown to be effective on the code search task in the past.
Using two encoders helps distribute the training between each encoder, and makes their
learning more efficient and thorough. Past work has incorporated different contextual
information into this training to improve performance. Most of these works use separate
language models, alongside pre-trained models for their word embeddings, but also use
contextual information gathered from the data separately. In this RQ, we will explore
whether the proposed approach with (i) a single language model trained on all of the data
to generate the word embeddings, and (ii) a cosine similarity based loss function used to
teach themodel of each pairs’ similarities and differences rather than using a classification
loss function to classify between both linked and non-linked pair, outperforms existing
approaches in searching for Python code.

– RQ2: What roles do the data and the models play in making the code search task
more effective? The datasets used in this work are comprised of text and code pairs from
real projects across different tasks, all based on Python. The other key goal of this work
is to investigate how the nature of this varied and diverse data affects the model and the
task, and vice versa.

1.3 Contributions

The contributions of this work are:

123



Empirical Software Engineering (2025) 30 :12 Page 5 of 28 12

– This work builds a pipeline centered around the dual encoder architecture with trained
unifiedFastTextword embeddings and cosine similarity based loss function that considers
the semantic similarity between each pair of artifacts for the code search task.

– Evaluation shows that the proposed approach outperformed state-of-the-art approaches
on the CodeSearchNet Python dataset, the AdvTest dataset, and the DGMS dataset.

– Analysis on the results show how important an overlap of words between paired artifacts
is for the model to correctly learn of pairs’ similarities and dissimilarities.

– Analysis also proves the model being capable of learning which pairs are relevant, even
if function or variable names in common between artifact pairs are transformed.

– The code and data used in this work are made publicly available at https://github.com/
hil-se/CodeSearch.

The following sections go into more detail on the background and related work, the data
and methods used in this work, the results and their implications, and possible future work.

2 Background and RelatedWork

2.1 Code Search

Looking at earlier contributions to the code search task, Fernandes et al. (2018) treated
this task as a summarization problem, and used a sequence encoder in combination with
a graph neural network to generate natural language documentation when provided a pro-
gramming language query. In other words, this work did not retrieve the relevant artifacts
for given queries, but rather generated them. While this allowed the flexibility of documen-
tation generation for cases where the data might be incomplete or some artifacts might not
have corresponding pairs, this approach might not be ideal where the data is complete with
all programming language artifacts having existing natural language counterparts, since the
existing documentation might be more appropriate to human judges or users over the ones
learned and generated by the model.

Other approaches apply different vectorization for the programming language artifacts
and natural language queries to predict with vector space models (Van Nguyen et al. 2017).
For example, the NCS model (Sachdev et al. 2018) uses the word embeddings to vectorize in
an unsupervised model. Cambronero et al. (2019) later proposed their own model, UNIF—
which served as a supervised version and extension of the NCS model. In contrast, Yao et al.
(2019) uses a framework based on reinforcement learning to first train a model to generate
natural language documentation for given programming language artifacts, and includes
these documentations with a code retrieval model to retrieve programming language artifacts
relevant to a given query.

Looking at past works that made use of other approaches, Zamani et al. (2014) used a
Noun-Based Feature Location and a time-aware weighting technique to find the location
of some source code, given some request for change. In contrast, Pérez et al. (2018) uses
Feature Location techniques to reformulate the queries to better find corresponding artifacts.
On the other hand, Kevic and Fritz (2014) reforumlates the natural language queries using
certain heuristics, such as the term frequencies, part of speech andmore to better find relevant
artifacts.

Satter et al. (2016) uses the the terms present in the user’s history in conjunction with
their query to find the most similar artifacts from its pool. Wang et al. (2014) integrates
user feedback to reorder its predictions, refining future predictions. Similarly, Gay et al.

123

https://github.com/hil-se/CodeSearch
https://github.com/hil-se/CodeSearch


12 Page 6 of 28 Empirical Software Engineering (2025) 30 :12

(2009) integrate developers’ feedback to refine its information retrieval based concept location
methods. In contrast, Yu et al. (2016) uses the semantic and type information of queries and
programming language artifacts to assign similarity scores to each of the retrieved artifacts,
and then ranks them. On the other hand, Lemos et al. (2015) integrates a natural language
thesaurus in keyword-based code search interface-driven code search, and compares their
performances. Yang and Tan (2014) expands on this by using semantically similar word
pairs, mining through the training text data and considering the contexts of pairs.

Balachandran (2015) converts the queries intoAbstract SyntaxTrees (AST), and compares
theASTand its subtrees against theASTs and subtrees of the programming language artifacts.
Wang et al. (2016) generates Program Dependence Graphs (PDGs), and uses graph mining
methods to extract common structures in these PDGs and coverts them into dependency
queries to retrieve relevant code snippets.

2.2 Code Search with LLMs

Large language models (LLMs) have gained traction in recent times due to their ability to
produce high quality texts across a variety of natural language processing tasks. And with
recent advances in generative AI models such as GPT-4 (Achiam et al. 2023), Bing Chat
(Mehdi 2023) and Claude2 (2023 AB 2023), the quality of the generated code from a natural
language query has become better and better. However, these generative AI models are still
not suitable for the code search task largely due to their black-box nature. As an example,
Chai et al. (2022) found that the pre-trained GPT-2 model (Radford et al. 2019) did not
perform better than a transferred model with few-shot meta-learning in domain-specific code
search.

In addition, a few reasons have prevented the use of LLMs removing the need for code
search. Firstly, code search engines are often used internally by organizations maintaining
or re-using their codebase. For maintenance or similar tasks, the retrieved code snippets or
functions must be the exact snippets or functions in the codebase. LLMs used to generate
code can often generate code that is not an exact match of the existing code, which defeats
the purpose of maintenance or updates. Secondly, some of this codebase often contains
proprietary code. Code generated by LLMs often cannot be claimed as proprietary, especially
with off-the-shelf LLMs, which can often show better performance due to its training on
large-scale publicly available data. Finally, code generated by LLMs are often not perfect.
Requiring an extra step of verifying that the generated code is correct and usable creates an
extra step in the process, requiring more time and effort.

2.3 Dual Encoders

Dual-encoder architecture is a machine learning technique originally proposed by Guo et al.
(2018) for bilingual sentence embedding. The goal of a dual-encoder is to encode twodifferent
types of inputs into a shared embedding space so that the distance between two embeddings
reflects the similarity between two inputs. In Guo et al. (2018), it was applied to solve the
bilingual translation retrieval problem. It trains two separate encoders simultaneously, as
shown in Fig. 1a, to encode sentences from two different languages (x and y). The encoded
sentences (u and v) can then be scored by their dot production to find the most similar
sentence pairs. Similar to how the translation task aims to make two sequences’ encodings
from two languages more similar, the dual encoder structure can be used for code search with
an objective of making the encodings of the natural text and programming text sequences

123



Empirical Software Engineering (2025) 30 :12 Page 7 of 28 12

Fig. 1 Dual encoder architectures in previous work

similar. The translation retrieval problem can then be modeled as a ranking problem to place
yi , the true translation of xi , over all other sentences in Y. P(yi |xi ) can be expressed as a
following log-linear model and softmax loss can be used to train the weights of the encoders
(Yang et al. 2019):

P(yi |xi ) = eS(xi ,yi )
∑

y∈Y eS(xi ,y)
(1)

2.4 Code Search with Dual Encoders

CODEnn (Gu et al. 2018) was one of the earlier works to utilize multiple encoders for code
search. This model uses separate RNN networks for the method names from the code snippet
and an API sequence from the code snippet, as well as using a feed forward network on
the code tokens’ sequence. The model also uses an RNN network to encode the natural lan-
guage query sequence. The encoded and summarized programming language sequence and
the encoded natural language query sequences are used to calculate cosine similarity scores,
calculate the loss, and update the weights. In contrast, SCS (Husain and Wu 2018) uses a
sequence-to-sequence GRU network to generate natural language sequences given a pro-
gramming language sequence, and trains an LSTM network as a language model on only the
natural language sequences. Afterwards, the programming language encoder portion of the
sequence-to-sequence network and the language model are used together with added compo-
nents on programming language and natural language sequences. These encoded sequences
are then used to calculate a cosine similarity score for the sequences.

123



12 Page 8 of 28 Empirical Software Engineering (2025) 30 :12

Husain et al. (2019) introduced theCodeSearchNet dataset, a large anddiverse collectionof
data containing pairs of natural text in the form of comments, documentation and description,
and programming language text, in the form of fully coded functions from six different
programming languages. Several subsequent works have trained and evaluated their models
on this dataset. Husain et al. (2019) used two encoders on this dataset for the trace link
retrieval task.

Lin et al. (2021) worked on trace link prediction on the OSS dataset, but also evaluated
their proposed model, T-BERT on the Python division of the CodeSearchNet corpus (Husain
et al. 2019) for the code search task. An aspect that helped these models perform better than
previousworkwas the process of generating pairs of non-linked artifacts as negative examples
for their models to learn from. Another key factor that helped achieve high performance for
this task, was using word embeddings generated by the CodeBERTmodel (Feng et al. 2020),
rather than building or training a new model for embeddings from scratch.

Gu et al. (2021) utilizes AST (Abstract Syntax Tree) representations of the program-
ming language sequences on the code search task. This work trains separate encoders on the
programming language sequences, the natural language sequences, and on the AST repre-
sentation sequences, and combines the programming language-related sequences. Themodel
then uses this joint sequence encodings and the natural language encodings to calculate the
cosine similarity. In contrast, Ling et al. (2021) represents the natural language and pro-
gramming language sequences in graph formats before using separate RGCNs (Relational
GraphConvolutionalNetwork) to encode these sequences and calculate their cosine similarity
scores. The CoCoSoDamodel (Shi et al. 2023) uses soft data augmentation and a momentum
mechanism to generate positive and negative samples respectively, utilizing intermodal and
intra-modal contrastive learning loss to train their model to find the most similar artifact,
given a query artifact. Similarly, Liu et al. (2023) construct a model called GraphSearchNet,
and use bidirectional GNNs to construct graphs for both the code and the queries. Zeng et al.
(2023) uses word embeddings from CodeBERT (Feng et al. 2020) and CodeT5 (Wang et al.
2023) with variable-based flow graphs and use a gated graph neural network to model these
graphs. On the other hand, Sun et al. (2022) generates translations for the programming
language artifacts using a program compiler and a disassembler to generate an instruction
sequence for the artifact.

The CodeBERT model (Feng et al. 2020), also working on the code search task, used a
pre-trained model trained with two different objectives. This pre-trained model consisted of
separate entities for the natural language and programming language sequences, and a unified
entity for both types of sequences. A special token was used as an aggregated sequence
representation for the two types of sequences. These tokens were the measure of similarity
between the two types of sequences. During data pre-processing, 1000 pairs of sequences
where picked, both where the pairs are actually linked, and pairs where they were not.
All of these pairs’ representations had these special tokens to measure their similarities.
The model was then trained with a binary classification loss function, with a softmax layer
connected to those special tokens. In other words, the model was pre-trained on different
objectives to generate special tokens that represented the similarity of the sequences. The
aggregated sequence, including both sequences and the special tokens were passed on to a
modified version of the model, where the special token was used to classify the sequences
as either linked or not. The same model is reused by Lu et al. (2021) to evaluate a more
constrained version of the Python division of the CodeSearchNet dataset. This dataset, called
the “AdvTest” set, consists of training, validation and testing sets based on thePythondivision,

123



Empirical Software Engineering (2025) 30 :12 Page 9 of 28 12

with many of its rows filtered through based on certain constraints. The chief constraint
being the removal of rows where the code could not be compiled into Abstract Syntax Trees,
and replacing function and variable names with special tokens. Details on this dataset are
discussed later.

Guo et al. (2021) builds upon these works by also utilizing the data flow from the program-
ming language sequences during pre-training. This pre-trained model, GraphCodeBERT, is
then used for the task of code search on the CodeSearchNet dataset. On the other hand,
Wang et al. (2021) pre-trains the SynCoBERT with natural language artifacts, program-
ming language artifacts, and AST representations of the programming language artifacts
with different pre-training objectives with a goal of encoding the symbolic and syntactic
information of programming languages. Similarly, Guo et al. (2022) pre-trains the UniX-
coder model with natural language artifacts, and flattened sequence derived from the AST
representations of the programming languages. In other words, this work pre-trains their
model using sequential representations of the ASTs of the programming language artifacts,
rather than the programming language sequences directly. Parvez et al. (2021) makes use
of the CodeSearchNet dataset for code generation and summarization with their SCODE-R
model. An earlier step in that process included code retrieval or code search. This work also
made use of two pre-trained encoders, one for the natural language sequences and the other
for the programming language sequences. The retriever module in this work adopts Dense
Passage Retriever (DPR) models (Karpukhin et al. 2020), and the encoders in this module
are initialized from GraphCodeBERT (Guo et al. 2021). Another contemporary work, Salza
et al. (2022) pre-trains separate BERT encoders, one on natural language sequences, and the
other on programming language sequences. The representations learned by these encoders
are then used with a Multimodal Embedding Model (MEM) to calculate the similarity of
the sequences, and update the two pre-trained encoders’ learning. The CodeBERT model
(Feng et al. 2020), as well as the models following it, GraphCodeBERT (Guo et al. 2021)
and SynCoBERT (Wang et al. 2021) follow a similar process of pre-training a model with
multiple encoders with some objective to encode the sequences and generate a special token
for each group of input sequences, and then fine-tuning this model and using the special
tokens to classify the given group of input sequences as either linked to each other or not.

In the pre-training stage, two separate language models are used to generate embeddings
for the natural language and programming language sequences. These embedded sequences
are concatenated and formatted to include certain tokens. The [SE P] token separates the two
sequences, the [EOS] denotes the end of the sequence, and the [CLS] token functions as
a representation of the two sequences’ similarity. These concatenated sequences are passed
as input to train the the CodeBERT model with an objective. The output of the CodeBERT
model is a sequence that includes encoded representations for the natural language and
programming language sequences, as well as an encoded [CLS] token. During training for
the task of code search, the language models are discarded, and a softmax layer is attached to
the representation of the [CLS] token. The CodeBERT model is then trained with a binary
classification loss function to predictwhether the given pair is linked or not. Before testing, the
dataset is formatted to formpairs of natural language and programming language artifacts. For
each truly linked pair, 999 distractor pairs are formed, with different programming language
artifacts, none of which are actually linked to the one natural language artifact. For training
and validation, the numbers of linked and non-linked pairs are balanced. Either the natural
language artifact or the programming language artifact can be replaced to form these pairs

123



12 Page 10 of 28 Empirical Software Engineering (2025) 30 :12

for both training and validation. However for testing, only the programming language artifact
is replaced to simulate retrieving the correct artifact from a pool of 1000 possible artifacts.

GraphCodeBERT (Guo et al. 2021) and SynCoBERT (Wang et al. 2021) follow simi-
lar processes of pre-training and the use of [CLS] tokens, but use different forms of inputs.
GraphCodeBERT substitutes the use of programming language artifactswith data flowgraphs
extracted using those programming language artifacts, while SynCoBERT substitutes them
with AST representations of the programming language artifacts. Similarly, Guo et al. (2022)
replaces the programming language artifacts with their flattened AST representations and
uses the natural language sequences alongside them to pre-train their model. The CodeT5+
model (Wang et al. 2023) also pre-trains their model consisting of multiple encoders on
several objectives, and make use of special tokens for classification. Hu et al. (2023) builds
a framework, TOSS, that integrates the methods from different past works, notably Graph-
CodeBERT (Guo et al. 2021) and CodeBERT (Feng et al. 2020), first retrieving multiple
candidates before ranking them. This results in higher performance, at the cost of time.

Gu et al. (2021), on the other hand, uses natural language sequences, programming lan-
guage sequences, and ASTs derived from the programming language artifacts for training.
The training of this work’s model, UNI-LCRS, involves using separate encoders for these
three types of inputs. All three of these encoders transform the inputs to vectors with the same
shapes. The vectors derived from encoding the programming language artifacts and ASTs
are summed to generate the joint vectors. The cosine similarity between this joint vector and
the query vectors are used to update the encoders during the training process.

To summarize, there have been numerous works in the past that make use of the dual
encoder structure for the code search task. While these works show impressive performance,
the need for auxiliary information such as ASTs, either available separately in the data, or
extracted from the data as a separate step can be negative for the task. Models that rely on
training on this data might show poor performance if this data is not readily available. On the
other hand, extracting and integrating this information can raise the complexity of the model,
requiring more resources and time for both training and evaluation. Moreover, without a
sufficient amount of this extra information, the model can potentially overfit on this data,
leading to poorer performance overall. In addition, existing works do not make use of the
language’s semantic characteristics, whereas our approach does consider that for Python.
This results in our approach performing well for Python, but not for other languages.

The model in this work takes inspiration from these structures to build a simpler dual
encoder architecture, and trains FastText language models on each of the used dataset varia-
tions to generate the embeddings, but does not extract and encode any contextual information
separately. Some of the baseline models, the architecture of this work, the data used, their
results, comparison against baseline models, and the results’ implications are discussed in
the following sections.

3 Methodology

Figure 2a shows an outline of the process here. The raw data undergoes some preprocessing,
before being used to train a unified FastText language model. This language model is used to
generate embeddings for each input artifact in the data. The embedding pairs are passed on to
the dual encoder structure, where the text embeddings are passed on to the text encoder, and
the code embeddings are passed on to the code encoder. The structure for each encoder can
be seen in Fig. 2b. These encoders output encodings, which are used with a cosine similarity
loss function to calculate the loss and update the weights for each encoder.

123



Empirical Software Engineering (2025) 30 :12 Page 11 of 28 12

Text
encoder

Code
encoder

Text 
input

Code 
input

Text 
embeddings

Code 
embeddings

Encoded
text

Encoded
code

Updated 
weights

Similarity 
loss 

function

FastText 
(CBOW)

embeddings

Updated 
weights

Elements

Input
Encoder
Loss function
Language model

Dropout layer

Combination layer

Dense layer

Dropout layer

Combination layer

Dense layer

Input 
sequence

Encoded 
sequence

ReLU layer

Normalization 
layer

Similarity 
loss function

Intermediate 
sequence

Fig. 2 Pipeline for the proposed approach

Preprocessing: All data used here underwent a series of pre-processing steps. These
steps included filtering out any pairs containing non-ASCII symbols, removing any non-
alphanumeric symbols, and splitting variable or function names into separate words.

FastText Embedding: Text from both the natural language and programming language
sequences were then used to train a FastText CBOW (Continuous Bag-of-Words) language
model with a 300 dimension size for each of the CodeSearchNet dataset variations. Each of
these models were then used to generate the word embeddings for both sequences in each

123



12 Page 12 of 28 Empirical Software Engineering (2025) 30 :12

dataset. The data, in this embedded format, was used by themodel for training and evaluation.

Dual Encoders: Separate encoders were used for the natural language and programming lan-
guage sequences. These encoders consisted of three layers with two passes and two following
layers as shown in Fig. 2b. More specifically, the output from the final layer of an encoder
is passed on again to the first layer. The output from the final layer after this second pass is
passed on to the final following layers. The repeating three layers consist of a dense layer, a
dropout layer, and a combination layer. The final layers are a ReLU (Rectified Linear Unit)
layer and a normalization layer. As shown in Fig. 2a, the initial input to these encoders are
the word embedding sequences for the natural language and programming language artifacts.
After passing through the first dense layer, a sequence then goes through a dropout layer. The
dropout layer arbitrarily sets a certain portion of the input sequence’s weights to zero. This
forces the model to try to extract the necessary information from the remaining portion of the
input sequence. Since each pass sets a different combination of points’ weights to zero, the
final trained model is more efficient at learning from the entire input sequence, rather than
specific parts of it. The sequence then moves on to a combination layer. The combination
layer combines its input sequence with the current pass’s input sequence.

This sequence then moves on to the second pass, which has a similar sequence of layers.
After the sequence has passed through this second pass of a dense layer, a dropout layer
and a combination layer, it is then passed on to a ReLU layer. The ReLU layer only keeps
the non-negative values of its input. This ensures the cosine similarity of the two encoded
sequences is always non-negative.

Finally, the input layer is put through an L2 normalization layer which helps simplify
the cosine similarity calculation. The output from this layer is the encoded sequence for the
given input. An encoded sequence is generated for the natural language and programming
language artifacts each.

Loss Function:These sequences are passed onto a cosine similarity loss function to calculate
the loss at this stage. In contrast to previous approaches, this loss function does not use 0
as ground truth labels for the non-linked pairs. Given the encoded sequences of a pair of
artifacts (Xi , Y j ) the target cosine similarity is

S(Xi , Y j ) = (Xi · X j + Y j · Yi )/2

where X j is a code artifact linked to Y j and Yi is a text artifact linked to Xi . The binary
cross-entropy loss is then calculated:

L(Xi , Y j ) = −S(Xi , Y j ) log(Xi · Y j ) − (1 − S(Xi , Y j )) log(1 − Xi · Y j ).

This calculation allows the model to also take into consideration the semantic similarity
between each pair into its learning process.

Evaluation: The model is evaluated by feeding it a pair of artifacts. The output from the
model is then a similarity score between 0 and 1. For each natural language query, the
similarity score with each programming language artifact is first calculated. These scores
are then sorted, and are iterated through. During each iteration, the programming language
artifact for the current score is treated as a resultant artifact, and it is checked whether this
pair exists in the list of all correct pairs. If it does, then the reciprocal rank (RR) is calculated
for that query. The average of these RR scores is the final Mean Reciprocal Rank (MRR)
score.

123



Empirical Software Engineering (2025) 30 :12 Page 13 of 28 12

Ta
bl
e
2

D
if
fe
re
nc
e
in

ou
r
ap
pr
oa
ch

an
d
pa
st
w
or
ks

Fa
ct
or

O
ur

ap
pr
oa
ch

Pa
st
w
or
ks

L
an
gu

ag
e

m
od

el
U
ni
fie
d
Fa
st
Te
xt

m
od
el

C
od
eB

E
R
T

(F
en
g

et
al
.

20
20

),
R
oB

E
R
Ta

(F
en
g
et
al
.2

02
0)
,

G
ra
ph

C
od

eB
E
R
T
(G

uo
et
al
.2

02
1)
,

Sy
nC

oB
E
R
T
(W

an
g
et
al
.2

02
1)
,

C
od

eT
5+

(W
an
g
et
al
.2

02
3)
,o
th
er
s.

Su
b-
w
or
d
le
ve
l

em
be
dd

in
g

Y
es

N
o

L
os
s

fu
nc
tio

n
C
os
in
e
si
m
ila
ri
ty
-b
as
ed

lo
ss

an
d
B
in
ar
y
cr
os
s-
en
tr
op
y
lo
ss

B
in
ar
y
cl
as
si
fic
at
io
n
lo
ss

(F
en
g
et

al
.

20
20

)
C
on
tr
as
tiv

e
lo
ss

(S
hi

et
al
.2

02
3)

Ta
sk

fr
am

in
g

R
et
ri
ev
al
ta
sk

C
la
ss
ifi
ca
tio

n
ta
sk

W
or
d
em

be
dd

in
g

ge
ne
ra
tio

n
A
s
a
si
ng
le
st
ep

be
fo
re

tr
ai
ni
ng

an
d
te
st
in
g

W
hi
le
tr
ai
ni
ng

an
d
te
st
in
g

A
dd

iti
on

al
tr
ai
ni
ng

in
fo
rm

at
io
n
(a
si
de

fr
om

na
tu
ra
la
nd

pr
og

ra
m
m
in
g
la
ng

ua
ge

se
qu
en
ce
s

N
o

A
ST

s
(G

u
et

al
.
20

21
;
W
an
g
et

al
.

20
21

;G
uo

et
al
.2

02
2)
,

D
at
a
flo

w
(G

uo
et
al
.2

02
1)

Te
st
in
g
po

ol
B
ot
h
en
tir
e
po

ol
an
d
99

9
di
st
ra
ct
or
s

99
9
di
st
ra
ct
or
s

(G
u
et
al
.2

02
1;

Fe
ng

et
al
.2

02
0;

L
in

et
al
.2

02
1;

Sa
lz
a
et
al
.2

02
2)
,

B
ot
h
en
tir
e
po

ol
an
d

99
9
di
st
ra
ct
or
s
(G

uo
et
al
.2
02

1)
,

E
nt
ir
e
po

ol
on

ly
(H

u
et
al
.2
02

3;
W
an
g
et
al
.2
02

3;
Sh

i
et

al
.2

02
3;

W
an
g
et

al
.2

02
1;

Pa
rv
ez

et
al
.2

02
1)

123



12 Page 14 of 28 Empirical Software Engineering (2025) 30 :12

In summary, the factor that separates ourwork from previouswork is not any single change
or substitution, but rather the combination of several factors that our approach constitutes of.
Nonetheless, key traits of our approach that separate it from previous works can be seen in
Table 2.

These defining factors are discussed in more detail below -

– The training of a unified language model for both the natural language and programming
language artifacts. Using a unified language model for both type of sequences allows
for similar artifacts to have similar embeddings, more so if there is an overlap of words
between artifacts. Our model uses this as a starting point to learn which artifacts are
different, rather than which ones are similar.

– The use of a cosine similarity based loss function during training. The use of this loss
function directly helps the model in learning which artifacts are similar and which ones
are dissimilar. This eliminates the need for separately generating non-linked artifact pairs,
as that would be an essential step in training a model to predict whether a pair is linked
or not when a classification-based loss function is used.

– The use of language models to generate word embeddings as a step before training. This
step can prevent the need for generating embeddings while training, whichmight become
time and resource consuming for large amounts of data.

4 Experiment Setup

4.1 Data

The Python division of the CodeSearchNet corpus, and two of its variations were used as the
data for training and testing the model here. The size of the splits in each of the datasets can
be seen in Table 3. The Python division of the CodeSearchNet corpus is the only Python-
based large dataset used in training and evaluation in past relevant works. The original corpus
consists of lines of code in the form of fully coded functions in Python, and their correspond-
ing documentation. The CodeSearchNet task divided these documentation-code pairs into
training, validation, and testing sets. Those same sets were also used for the model here. The
approach was evaluated in two different ways using this dataset - one with 1000 artifacts
while querying, and one where the entire testing set was used for each query. The dataset
where the results with 1000 artifacts while querying is labeled as “CodeSearchNet Python
(Limited)”, while the dataset with the complete testing set is labeled as “CodeSearchNet
Python (Full)”.

The same training-validation-testing splits for the CodeSearchNet dataset is maintained
throughout both this work and the baselines this work is compared against. The limited
CodeSearchNet data tests on similar data - all of the queries from the testing split. It is
limited by the number of distractor artifacts chosen alongside the correct option. These
distractors are chosen at random. But these experiments are conducted a number of times to
ensure consistency.

Table 3 Dataset sizes after filtering

Dataset Training set Validation set Testing set Total

CodeSearchNet (Python) 412,178 23,107 22,176 457,461

AdvTest 250,680 9,562 19,113 279,355

DGMS 327,576 81,894 1000 410,470

123



Empirical Software Engineering (2025) 30 :12 Page 15 of 28 12

AdvTest is a more constrained version of the CodeSearchNet dataset’s Python division,
introduced in Lu et al. (2021). This data filters out any pairs where the programming language
artifacts cannot be parsed into ASTs, filters out pairs where any artifact in a pair is either
empty or not in English, and filters out pairs based on their lengths and the presence of
certain phrases or tokens. This dataset also replaces all function and variable names in the
data with special tokens, such as replacing function names with “func”, and variable names
with “argi”. This replacement is done only on the validation and testing splits of the dataset.

The DGMS data is a version of the CodeSearchNet Python data used in Ling et al. (2021).
This version of the dataset underwent different processing steps than AdvTest. Rather than
using the pre-divided splits, this version combines these splits, then extracts the docstrings
from the programming language artifact in every pair. Then these docstrings are used as the
natural language artifacts instead of the original natural language artifacts. Afterwards, any
pairs with fewer than three words in the docstring or fewer than three lines of code in the
programming language artifacts are filtered out. This combined and filtered collection of
pairs are then shuffled and split into training, validation and testing sets, where the testing
set contains only 1000 pairs. 80% of the remaining data is used as the training set here, while
the remainder of the dataset is used as validation data. All three of the datasets that were used
underwent a series of aforementioned pre-processing steps before being used by the model
for training.

4.2 Word Embeddings

FastTextword embeddings (Bojanowski et al. 2017)were used in generating theword embed-
dings for both the natural text and code sequences due to their ability to capture sub-word
level information in the embeddings. Retaining sub-word level information is particularly
important here since the code could potentially contain words, such as variable or function
names that are combinations of otherwords found in the related natural text artifact. ACBOW
(Continuous Bag-Of-Words) version of a FastText language model with a dimension size of
300 was trained from scratch on the text for each dataset. These models were then used to
generate the word representation for all pairs in each dataset. Data was passed on to themodel
in this embedded format.

4.3 EvaluationMetrics

To focus on the retrieval aspect of the task, MRR was the primary metric used for evaluation.
To calculate the MRR score, for each natural text query, the rank of its corresponding linked
code artifact is retrieved. Rank here simply refers to the position of the linked artifact in the
sorted list of matching code artifacts. The inverse of the rank is the Reciprocal Rank (RR)
for the query. The mean of all the queries is the MRR scores. For Q queries,

MRR = 1

Q

Q∑

i=1

1

Ranki
(2)

TheMRR score here represents how likely it is for the correct artifact to be the top retrieved
artifact when querying. This metric was chosen as the only metric when comparing perfor-
mance since this was the onlymetric used by all the baselinemodels. Some othermetricswere
also used to show the performance of our approach. However, since not all baselines models
use thesemetrics, theywere not usedwhen comparing the results. These othermetrics include

123



12 Page 16 of 28 Empirical Software Engineering (2025) 30 :12

Accuracy, Mean Average Precision(MAP)@1 and Mean Average Accuracy(MAA)@1.

MAP@1 = 1

Q

Q∑

i=1

Precision@1 (3)

MAA@1 = 1

Q

Q∑

i=1

Accuracy@1 (4)

Here, Precision@1 and Accuracy@1 refer to the Precision and Accuracy scores for the
retrieved artifact for each given query respectively.

4.4 Experimental Setup

The training and evaluation steps were conducted on a device with an Intel i7-4790 3.6 GHz
processor, 32 GB of system memory, and a NVIDIA GeForce RTX 2070 with a memory of
8 GB. The hyperparameter values used while training the model are shown in Table 4. The
models were run for 300 epochs with early stopping on validation loss.

4.5 Comparison

Performance on the CodeSearchNet Python dataset was compared against several previous
works. The results reported in those works are used when comparing our approach against
them. These works are discussed at length in a previous section.

Evaluation on the base CodeSearchNet dataset involved testing on both CodeSearchNet
Python (limited) and CodeSearchNet Python (Full). Testing on the limited dataset involved
on 1000 pairs at a time. During each testing round, 1000 pairs from the testing set were
tested, and then removed from the testing pool. After a number of iterations, all of the pairs
in the testing set were tested on. The results from these iterations were aggregated as the
final results. This helped make the results from these evaluations comparable to other works
where only 1000 pairs were tested at a time (Feng et al. 2020). This process also ensured the
entire testing set was tested on, making the evaluations more thorough. Including these two
types of testing ensured consistency with previous works, since some works tested with 1000
possible artifacts for each query, some tested with the entire testing set, and some evaluated
their approach in both ways.

In contrast, evaluation on the AdvTest dataset covered the entire testing pool. Expanding
the testing set size to its entire pool made the task much more difficult and time-intensive.
Our approach’s performance on this dataset is also compared against several models. Finally,

Table 4 Model hyperparameter
values

Hyperparameter Value

Initial learning rate 0.001

Optimizer Adam optimizer

Loss function Cosine Similarity loss

Dropout rate 0.3

Output size 2000

Maximum number of epochs 300

123



Empirical Software Engineering (2025) 30 :12 Page 17 of 28 12

Table 5 Results

Dataset Accuracy MAP@1 MAA@1 MRR

CodeSearchNet Python (Limited) 0.946 0.888 0.919 0.919

CodeSearchNet Python (Full) 0.692 0.692 0.692 0.762

AdvTest 0.529 0.518 0.518 0.597

DGMS 0.914 0.914 0.914 0.939

performance on the DGMS dataset is compared against only Ling et al. (2021). The DGMS
dataset is limited to 1000 pairs in its testing set. So the entire dataset was shuffled, split, and
used by the model a number of times to generate and report the final mean results.

5 Results

Table 5 shows the performance of our model on the different dataset variations using the
evaluation metrics outlined in Section 4.3. The performance of our approach is evaluated
primarily using MRR scores. Numerous works have evaluated their models on the Code-
SearchNet dataset in the past. Our approach’s performance, in comparison to state-of-the-art
models and other baselines models can be seen in Table 6. The MRR scores represent how
likely it is for the actual result to be retrieved as the most similar artifact for a given query.
For example, a MRR score of 0.9186 can be interpreted as the model retrieving the correct
artifact as the most similar code artifact for a given text query 91.86% of the time.

Table 6 Comparative results using MRR scores. Results from proposed approach is in bold

Model Dataset
CodeSearchNet CodeSearchNet AdvTest DGMS
(Limited) (Full)

Our approach 0.9186 0.7616 0.5967 0.9385

DGMS (Ling et al. 2021) – – – 0.922

TOSS (Hu et al. 2023) – 0.759 – –

CodeT5+ (Wang et al. 2023) – 0.758 0.447 –

CoCoSoDa (Shi et al. 2023) – 0.757 – –

GraphSearchNet (Liu et al. 2023) – 0.739 – –

SynCoBERT (Wang et al. 2021) – 0.724 0.381 –

GraphCodeBERT (Guo et al. 2021) 0.879 0.692 – –

Uni-LCRS (Gu et al. 2021) 0.8707 – – –

SCODE-R (Parvez et al. 2021) – 0.690 – –

CodeBERT (Feng et al. 2020) 0.8685 0.672 0.507 –

T-BERT (Lin et al. 2021) 0.851 – – –

RoBERTa (Feng et al. 2020) 0.8087 0.610 0.419 –

CodeSearchNet challenge
(Husain et al. 2019)

0.6922 – – –

Salza et al. (2022) 0.3069 – – –

123



12 Page 18 of 28 Empirical Software Engineering (2025) 30 :12

For the CodeSearchNet dataset, the model was also evaluated with different test sizes
between 1000 and the complete testing set. A change of MRR scores over test set size can be
seen in Fig. 3. The fewer distractor artifacts the model has to chose from during testing, the
lower the probability of picking the wrong artifact. Moreover, the rank of a correct artifact
would be higher even in the event of an incorrect retrieval. This in turn would lower the
RR score for each query. With a very small pool of possible artifacts, the model performs
almost perfectly. The MRR scores see a significant drop once the test set size crosses 1000.
These scores keep declining until the test set size reaches the size of the entire test set of the
CodeSearchNet (Limited) dataset.

5.1 RQ1: Effectiveness

Table 6 showcases our approach’s, and other relevant models’ results on the code search
task in terms of MRR scores. Several of these past works make use of either pre-trained
models where the two types of artifacts are used to train separate language models, such as
RoBERTa (Feng et al. 2020) and CodeBERT (Feng et al. 2020). In contrast, our approach
trains a unified language model incorporating both the natural language and programming
language artifacts. While this raises the similarity for non-linked pairs initially, the model is
then able to learn which parts of each sequence is important for linked pairs with the help of
a similarity loss function.

On the other hand, numerous other works extract contextual information from sequence
pairs and include them during training. For example, GraphCodeBERT (Guo et al. 2021)
makes use of the data flow from the programming language artifacts, and Uni-LCRS (Gu
et al. 2021) encodes the AST representations of the programming language sequences in
addition to the sequence pairs themselves. Furthermore, several past works generate pairs
where the artifacts are not linked, and make use of a classification loss function to predict
whether a given pair is linked (Feng et al. 2020).

Both incorporating contextual information separately, and generating these negative pairs
separately for training can be intensely resource-intensive. CodeBERT requires 10 hours and

Fig. 3 Test set size size vs MRR score for CodeSearchNet Python

123



Empirical Software Engineering (2025) 30 :12 Page 19 of 28 12

Table 7 Most frequent words in
CodeSearchNet Python

Text the to of a is and param for in be

Code self the if to in is a of return for

2 hours each for pre-training on each objective, while their best model combines these two
objectives.GraphCodeBERTreports requiring83hours to pre-train themodel. In comparison,
our approach takes about an hour to train and generate the word embeddings, and 2 hours to
train on CodeSearchNet Python, yet shows higher MRR scores.

Answer to RQ1: Our approach shows performance better than state-of-the-art models for
the CodeSearchNet Python, AdvTest and DGMS datasets. Furthermore, through the use
of a unified language model, and a similarity loss function which eliminates the need for
generating negative pairs— our approach proves to have a less complex structure, and is
less resource intensive. This approach also completes its training faster than state-of-the-art
models. A combination of all of this points to the answer for the first research question—
the architecture of our approach is indeed more effective at code search.

5.2 RQ2: Data andModel’s Roles in Effictiveness

Our approach shows much better performance with CodeSearchNet Python when compared
to the other datasets. This occurrence can be explained by looking at the dataset’s characteris-
tics. CodeSearchNet Python contains a significant amount of pairs where the natural language
sequence is partially or completely present within the programming language sequence in
the form of the docstrings or comments. Having more words in common between artifacts in
linked pairs can help boost the similarity scores of those pairs. In other words, the model finds
it easier to identify linked pairs based on the words or parts of words the artifacts have or do
not have in common. A look at the most frequent words in Table 7 shows that there is indeed
a significant overlap among the natural language and programming language artifacts’ most
frequent words for CodeSearchNet Python.

However, there might also be a high similarity between non-linked pairs as long as they
have words or phrases in common between their artifacts, as it can be seen in Table 1.
Aside from variable or function names, it might be likely that multiple pairs would have
an overlap of words in their natural language artifacts. And if the programming language
artifacts for those pairs contain their natural language counterparts, this overlap might carry
on there as well. The model’s objective would then be to extract the relevant information that
makes linked pairs linked, and not only rely on an overlap of words. Table 8 shows that the
model does exactly this. Before training, both linked and non-linked pairs have high average
similarity scores, although the linked pairs’ scores are higher. However, after training, the
average similarity score for non-linked pairs decrease by a considerable margin while the
linked pairs’ score remains close to its pre-training value. Therefore, the high similarity

Table 8 Average similarity
scores on CodeSearchNet Python
(Limited)

Trained Linked pair Non-linked pair MRR score

No 0.79 0.57 0.42

Yes 0.72 0.09 0.92

123



12 Page 20 of 28 Empirical Software Engineering (2025) 30 :12

scores between linked artifact pairs would not be sufficient for code search without training,
as the similarly high scores between non-linked pairs would result in incorrect artifacts being
retrieved more often.

On the other hand, the AdvTest dataset replaces function and variable names with special
tokens. Therefore, themodel has to focus on other keywords to capture the similarity between
artifacts, without using function and variable names. This is undoubtedly amore difficult task,
which is reflected in the evaluation of models on this dataset. The MRR score drops from
0.7616 on the CodeSearchNet Python dataset (Full) to 0.5967 on theAdvTest dataset. In other
words, without an overlap of unique words, the model’s MRR scores see a drop. However,
this model still manages to show better performance than baseline models. In other words,
overlapping words between linked artifact pairs is not necessary for the model’s learning, but
it is beneficial.

In light of all of this, our approachworks not by learningwhy linked pairs are linked, but by
learning why non-linked pairs are not linked. In the process, it keeps linked pairs’ similarity
scores higher, and lowers non-linked pairs’ similarity scores significantly. The magnitude of
linked pairs’ high scores and non-linked pairs’ low scores are directly tied into their retrieval
scores. Therefore, the key to improving this model’s performance is to increase the linked
pairs’ similarity scores while decreasing non-linked pairs’ similarity scores. This simpler
architecture is appropriate for the task since the model would have two different goals for
two different types of input sequences, where each encoder can take on each of those inputs
and goals. This helps support the answer to the first research question, and expands on it by
explaining in what way the architecture of our approach is efficient at code search.

Answer to RQ2: The results explain why the code search task is easier for models when
there is a high overlap of words or phrases between linked pairs. Nonetheless, results also
show our model being able to learn to differentiate linked and non-linked pairs even when
function and variable names are transformed. This proves that our model is capable of
extracting contextual information from the pairs to learn their similarities and differences,
even if any such information is not provided separately. This conclusion helps answer the
second research question of what roles the data and the models play in making the code
search task more efficient.

6 Discussion

This section outlines some additional experiments conducted, which do not directly help
answer our research questions. However, the results from these experiments help support our
primary findings, and inform the direction of our future work.

6.1 Other CodeSearchNet Languages

Table 9 showcases the proposed model’s performance on the other languages within the
CodeSearchNet dataset, while Table 10 compares these results against baseline works. These
experiments were conducted similarly to the CodeSearchNet Python (Limited) experiments,
with 1000 pairs tested each time until the entire testing set was exhausted. All of the metrics
show much lower scores for the other languages when compared to Python. Some likely
reasons behind this difference are discussed below:

123



Empirical Software Engineering (2025) 30 :12 Page 21 of 28 12

Table 9 Results on other code
search languages

Language Accuracy MAP@1 MAA@1 MRR

Java 0.382 0.381 0.381 0.506

JavaScript 0.402 0.396 0.396 0.523

Ruby 0.387 0.369 0.369 0.507

GO 0.413 0.409 0.409 0.532

PHP 0.452 0.450 0.450 0.569

– Semantic characteristics: The semantic differences between the six languages is likely
the primary reason behind the difference in results. Compared to the other languages,
Python-specific keywords are more commonly seen in natural language text than key-
words from most of the other languages, as seen in Table 11. In Table 11, programming
language words that are also in the top 10 frequent natural language artifact words’ list
for those languages are highlighted. On the other hand, languages such as Java are much
more verbose than Python, with variable and function names often being combinations of
different words that are broken into their original words during pre-processing. Both of
these characteristics lead to an increased vocabulary size for the non-Python languages,
where there are more words with low occurrences. This makes training the word embed-
dings more difficult compared to Python, where the vocabulary is comparatively smaller
with fewer words that have low occurrences. The relatively better word embeddings
training for Python is likely a primary reason behind the dual encoders’ learning process
being smoother and more accurate as well.
Due to Python having more words in its programming language artifacts that are com-
monly seen in natural language text, and these words being higher up on the list -
indicating that these are more frequent in Python than the overlapping words are for
Java, JavaScript and PHP, we can deduce this semantic difference to be the primary rea-
son Python performs better than those languages for code search. Ruby and GO have
more of these overlapping words than Python. However for GO, most of these words
seem to be variable names - which are not very informative for the model to learn from,
since they might have different meanings from artifact to artifact. In other words, this
high overlap of words between natural and programming language artifacts actually hurts

Table 10 Comparative results on other languages using MRR scores

Model Language
Java JavaScript Ruby GO PHP

Our approach 0.506 0.523 0.507 0.532 0.569

GraphCodeBERT (Guo et al. 2021) 0.757 0.711 0.732 0.841 0.725

CodeBERT (Feng et al. 2020) 0.748 0.706 0.693 0.840 0.706

RoBERTa (Feng et al. 2020) 0.666 0.606 0.625 0.820 0.658

CodeSearchNet
challenge (Husain
et al. 2019)

0.587 0.451 0.365 0.681 0.601

Salza et al. (2022) 0.291 0.311 - - -

Uni-LCRS (Gu et al. 2021) - - 0.364 - -

123



12 Page 22 of 28 Empirical Software Engineering (2025) 30 :12

Table 11 Top 10 frequent words
in programming language
artifacts

Python Java JavaScript Ruby GO PHP

self if if end return this

the return this if err if

if new 0 name if return

in String function def nil function

to null var to func array

return public return nil s public

for 0 i options string new

is int the new v null

a final 1 do error 0

0 this options id c value

the model’s learning process more than it helps. Thus, the semantic difference can be
used to also explain the model’s worse performance on GO.

– Dataset size: The CodeSearchNet Ruby and JavaScript datasets are much smaller com-
pared to the rest, as it can be seen in Table 12. Since the model is built primarily focusing
on Python-based data where the datasets are much larger, that can explain why the model
learns and performs poorly when there is less data to learn from. Despite having more
overlap in natural and programming language artifacts in Ruby, similar to Python, Ruby
has about 11.83% of the number of training pairs Python does. This much smaller dataset
size might be the contributing factor behind the model’s poor performance on Ruby.

These differences between the languages call for an approach that is suited to all of these
languages. The proposed approach focused only on Python-based data, tweaking and modi-
fying the structure and process based on the nature of the Python-based datasets. Therefore,
this approach might not be the most appropriate approach for the other languages. This
could explain the relatively poor performance on the other languages when compared to past
works. Exhaustive experimentation is included in the outlined future work. This future work
would include modification of the structure and pre-processing steps to ensure reasonable
performance across all languages.

Table 12 CodeSearchNet corpus sizes after filtering

Language Training
set size

Validation
set size

Testing
set size

Total

Python 412,178 23,107 22,176 457,461

Java 424,451 15,328 26,909 466,688

JavaScript 123,889 8,253 6,483 138,625

Ruby 48,791 2,209 2,279 53,279

Go 317,832 14,242 14,291 34,6365

PHP 523,712 26,015 28,391 578,118

123



Empirical Software Engineering (2025) 30 :12 Page 23 of 28 12

6.2 Control Experiments

The approach was also evaluated through different control experiments where different com-
ponents of the model were substituted, or certain hyperparameter values were changed. The
performance on the model was also recorded for each of these configurations. All these eval-
uations were done on CodeSearchNet Python (Limited). These evaluations and their results
helped in determining the final configuration of our approach and the model. Table 13 shows
a summary of these evaluations, while the following subsections discuss these factors and
their effects in detail.

6.2.1 Language Model

As previously discussed, FastText word embeddings were used in this work because of their
ability to capture sub-word level information in their generated embeddings. For this work, a
unified language model was used, both for the text and the code. The performance was also
noted with separate language models for text and code , and after disabling sub-word level
embeddings . Indeed, this is an approach taken by some previous works (Feng et al. 2020).
However, the model in our approach performs very poorly when using separate FastText
language models. The MRR score while testing on the CodeSearchNet Python (Limited)
dataset with a unified language model is 0.9186. This score sees a massive drop to 0.01 when
using separate language models. Disabling sub-word level embeddings also cause a drop in
performance, reducing the MRR to 0.8249.

When training a language model, involving both the text and code allows similar embed-
dings for pairs with a higher overlap of words. This in turn helps the model in understanding
the similarity between these artifacts, based on the embedding values. However, having sep-
arate language models can result in very different embedding values for similar artifact pairs.
Themodel then has to try to draw connections between these artifacts with contrasting values.
With such a large dataset, this task becomesmuch harder. This leads to poorer learning for the
model, and consequently, poorer performance. In other words, with separate language mod-
els, the model faces more difficulty in trying to learn about different artifact pairs’ similarities
and dissimilarities. This is reflected in the similarity score between pairs when testing. While
with a unified language model, the similarity scores for linked pairs are much higher than

Table 13 Summary of control experiments’ results. The final configuration used in the experiments is in bold

Language model Loss function Output size Number of passes MRR

Unified Cosine similarity loss 2000 2 0.9186

Separate Cosine similarity loss 2000 2 0.01

Unified Softmax loss 2000 2 0.5720

Unified Contrastive loss 2000 2 0.2078

Unified (no sub-word
level embeddings)

Cosine similarity loss 2000 2 0.8249

Unified Cosine similarity loss 2000 1 0.8312

Unified Cosine similarity loss 2000 3 0.8259

Unified Cosine similarity loss 500 2 0.8818

Unified Cosine similarity loss 8000 2 0.9107

123



12 Page 24 of 28 Empirical Software Engineering (2025) 30 :12

the ones for non-linked pairs, these scores are almost equal when using separate language
models.

6.2.2 Loss Function

A cosine similarity loss function was used in the model in this work. The steps for calculating
this loss during training are discussed in Section 3. A softmax loss and contrastive loss were
also included in evaluations. Both of these cases yielded poor results. The nature of the data
and its embeddings are the likely reasons behind these poor results. The embeddings for each
artifact contain a number of numerical values. These values express no explicit meaning on
their own. Rather, the collection of these values is used to represent the artifact. And since
the task involves finding similar artifacts, there needs to be some comparison between these
artifacts to determine their level of similarity. Although softmax loss might be appropriate
for certain classification tasks, the relationship between artifacts does not play a significant
role in the calculation of this loss. Softmax loss is therefore, not the most appropriate loss
function for this task.

The contrastive loss function shows poor performance for a similar reason.Contrastive loss
involves a step of calculating the Euclidean distance between artifact pairs. This distance, and
whether the pair is truly linked or not, are used to calculate the loss. Two artifacts might have
values with similar proportions but values that are far different from each other. Contrastive
loss would show a high loss for this pair, even though they are similar and linked. Moreover,
trying to force linked pairs’ encodings to have the same values, in contrast to having similarly
proportional values is a much more difficult task for the model. Therefore, contrastive loss
was not used in the final configuration.

6.2.3 Output Size

One factor that was noted to influence the artifacts’ embeddings was the output size of
the model. The output size is the size of the encoded embeddings. The higher this output
size, the more information about an artifact the model is able to encode within this encoding.
Whenmore information is present, linked pairswill show a higher overlap of this information.
This, in turn can lead to better understanding and better performance for the model. However,
there is only certain amount of useful information that the model can extract. After certain
output size value is reached, these encoded embeddings can contain unhelpful or repeating
information which can have a negative impact on the model’s understanding.

Figure 4 illustrates this relationship in our evaluations . Initially, the MRR scores increase
with the output size. But after crossing the 2000mark, theMRR score starts to decrease. After
this point, the model is likely approximating or estimating information to fill out the output
size in the encodings. This excess information can lower the similarity between linked pairs’
artifacts. Consequently, the model achieves poorer learning, and shows poorer performance.
Therefore, an output size of 2000 was picked to balance having the maximum amount of
usable information for the model without forcing it to include approximated information.

6.2.4 Number of Passes

The number of passes for each encoder was another factor that affected the model’s learning.
With only one pass, the model is not able to fully learn what makes each artifact pair similar
or dissimilar. This is reflected through higher training and validation losses during training.

123



Empirical Software Engineering (2025) 30 :12 Page 25 of 28 12

Fig. 4 Output size vs MRR score for CodeSearchNet Python (Limited)

On the other hand, with more than two passes, the model overfits on the given data, showing
similarly high loss.Having twopasses for each encoder ensured themodel learns andperforms
sufficiently well.

7 Threats to Validity

Despite having better performance than state-of-the-art models, this work suffers from some
drawbacks. Some limitations observed from the data andmodel’s performances are discussed
below as different categories of threats to this work’s validity -

– Internal validity:A high output size of encoded data is needed for the model to show the
reported performance. For very large datasets, generating and storing this large amount
of high dimensional data could prove resource-intensive. A potential solution to this issue
would be thorough investigation intowhat these high dimensional data represent. A better
understanding could lead to a better optimization of this data, or a trade-off between the
output size and the performance.

– External validity: The proposed model’s generalizability with different types of data
needs to be explored to ensure the model maintains its performance across different
applications. This model’s performance was primarily evaluated on Python-based data.
Preliminary experiments showed the approach performing poorly for other languages
in the CodeSearchNet dataset. Section 6 discusses possible reasons behind these per-
formances, as well as potential solutions. Since the vocabulary and structure of other
programming languages might be different from Python, the model’s learning process
might take some different paths as well. This might lead to the model showing different
performance for different data. In a similar vein, the proposed model shows lower MRR
scores on data where there is less overlap of text between the natural language and pro-
gramming language artifacts. Even though the performance for these data show higher
scores than state-of-the-art models, this performance might not be useful enough in some
practical scenarios, such as - if the paired artifacts do not follow consistent naming con-
ventions, or for certain programming languages which are not as intuitive as Python. The
model needs to be evaluated using different programming languages to guarantee the
model’s general high performance.

123



12 Page 26 of 28 Empirical Software Engineering (2025) 30 :12

– Construct validity:The proposedmodel’s performance is compared against the reported
performances of several other approaches. Although the other approaches use the same
benchmark, they can have unmentioned different settings, which could potentially inval-
idate the results.

– Reliability validity: No threats to the work’s reliability validity were found.
– Conclusion validity: No threats to the work’s conclusion validity were found.

8 Conclusion and FutureWork

In conclusion, this work treats the code search task as a multi-language translation task.
Through the use of unified FastText word embeddings and cosine similarity based loss on a
dual encoder architecture, this work achieves performance better than state-of-the-artmodels.
Through the analysis of the data, the model, and their relationship, this work also highlights
certain key aspects of the datasets used in this task. These analyses could help inform future
work in the code search task and provide more efficient directions to take while tackling this
dataset. This work also serves as a promising sign for the efficient and practical use of dual
encoders in other similar tasks.

There is still room for improvement or building upon this work, however. Some future
work involving this model could include -

– Deeper investigation into the nature of datasets that the model performs relatively poorly
on, as well as the model, and how they affect the performance.

– Modifying the training process, or introducing pre-training steps to accommodate for
smaller code search datasets, such as the OSS dataset.

– Experiments with similar tasks that could be framed as multi-language translation tasks
with the use of the dual encoder architecture. These tasks could be in similar contexts
with different artifact, even non-text based ones.

– The high performance of the model where both artifacts have a larger overlap of natural
text could help with the model’s use in tasks from very different contexts. For example,
for the task of finding relevant job applications, an ideal application would have a higher
overlap of words or phrases with a job posting if some of the applicant’s qualifications
matchwith the job posting. In otherwords, if the applicantmeets someof the requirements
put forth by the job posting, the job application will have some words or phrases in
common with that posting. Since the dual encoder model has been observed to perform
better for cases where there is such a high overlap of words, this task and other similar
ones might prove ideal applications of this model.

Author Contributions Both authors contributed equally to the work.

Funding Funding in direct support of this work: NSF grant 2245796.

Data Availability The code and link to the data for our approach here are available at https://github.com/hil-
se/CodeSearch. This repository includes links to both the raw text data without any pre-processing, as well as
the pre-processed data as word embeddings.

References

2023 AB (2023) Anthropic claude 2. https://www.anthropic.com/index/claude-2. Accessed 12 Sept 2023

123

https://github.com/hil-se/CodeSearch
https://github.com/hil-se/CodeSearch
https://www.anthropic.com/index/claude-2


Empirical Software Engineering (2025) 30 :12 Page 27 of 28 12

Achiam J, Adler S, Agarwal S, Ahmad L, Akkaya I, Aleman FL, Almeida D, Altenschmidt J, Altman S,
Anadkat S et al (2023) Gpt-4 technical report. arXiv preprint arXiv:2303.08774

Balachandran V (2015) Query by example in large-scale code repositories. In: 2015 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME). IEEE, pp 467–476

Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching word vectors with subword information. Trans
Assoc Comput Linguist 5:135–146

Cambronero J, Li H, Kim S, Sen K, Chandra S (2019) When deep learning met code search. In: Proceedings
of the 2019 27th ACM joint meeting on european software engineering conference and symposium on
the foundations of software engineering, pp 964–974

Chai Y, Zhang H, Shen B, Gu X (2022) Cross-domain deep code search with meta learning. In: Proceedings
of the 44th international conference on software engineering, pp 487–498

Feng Z, Guo D, Tang D, Duan N, Feng X, Gong M, Shou L, Qin B, Liu T, Jiang D et al (2020) Codebert: a
pre-trained model for programming and natural languages. arXiv preprint arXiv:2002.08155

Fernandes P, Allamanis M, Brockschmidt M (2018) Structured neural summarization. arXiv preprint
arXiv:1811.01824

Gay G, Haiduc S, Marcus A, Menzies T (2009) On the use of relevance feedback in ir-based concept location.
In: 2009 IEEE international conference on software maintenance. IEEE, pp 351–360

Gu J, Chen Z, Monperrus M (2021) Multimodal representation for neural code search. In: 2021 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME). IEEE, pp 483–494

Guo D, Lu S, Duan N, Wang Y, Zhou M, Yin J (2022) Unixcoder: unified cross-modal pre-training for code
representation. arXiv preprint arXiv:2203.03850

Guo D, Ren S, Lu S, Feng Z, Tang D, Liu S, Zhou L, Duan N, Svyatkovskiy A, Fu S, Tufano M, Deng
SK, Clement C, Drain D, Sundaresan N, Yin J, Jiang D, Zhou M (2021) Graphcodebert: pre-training
code representations with data flow. In: International conference on learning representations. https://
openreview.net/forum?id=jLoC4ez43PZ

Guo M, Shen Q, Yang Y, Ge H, Cer D, Abrego GH, Stevens K, Constant N, Sung YH, Strope B,
Kurzweil R (2018) Effective parallel corpus mining using bilingual sentence embeddings. arXiv preprint
arXiv:1807.11906

Gu X, Zhang H, Kim S (2018) Deep code search. In: 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE). IEEE, pp 933–944

Husain H, Wu HH, Gazit T, Allamanis M, Brockschmidt M (2019) Codesearchnet challenge: evaluating the
state of semantic code search. arXiv preprint arXiv:1909.09436

Husain H, Wu HH (2018) How to create natural language semantic search for arbitrary objects with deep
learning. Retrieved November 5:2019

Hu F,WangY,DuL, Li X, ZhangH,Han S, ZhangD (2023) Revisiting code search in a two-stage paradigm. In:
Proceedings of the sixteenth ACM international conference onWeb search and data mining, pp 994–1002

Karpukhin V, Oğuz B, Min S, Lewis P, Wu L, Edunov S, Chen D, Yih W (2020) Dense passage retrieval for
open-domain question answering. arXiv preprint arXiv:2004.04906

Kevic K, Fritz T (2014) Automatic search term identification for change tasks. In: Companion proceedings of
the 36th international conference on software engineering, pp 468–471

LemosOAL, de Paula AC, Sajnani H, Lopes CV (2015) Can the use of types and query expansion help improve
large-scale code search? In: 2015 ieee 15th international working conference on source code analysis
and manipulation (scam). IEEE, pp 41–50

Ling X, Wu L, Wang S, Pan G, Ma T, Xu F, Liu AX, Wu C, Ji S (2021) Deep graph matching and searching
for semantic code retrieval. ACM Trans Knowl Discov Data (TKDD) 15(5):1–21

Lin J, Liu Y, Zeng Q, Jiang M, Cleland-Huang J (2021) Traceability transformed: generating more accurate
links with pre-trained bert models. In: 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, pp 324–335

Liu S, Xie X, Siow J, Ma L, Meng G, Liu Y (2023) Graphsearchnet: enhancing gnns via capturing global
dependencies for semantic code search. IEEE Trans Software Eng 49(4):2839–2855

Lu S, Guo D, Ren S, Huang J, Svyatkovskiy A, Blanco A, Clement C, Drain D, Jiang D, Tang D et al (2021)
Codexglue: a machine learning benchmark dataset for code understanding and generation. arXiv preprint
arXiv:2102.04664

Mehdi Y (2023) Reinventing search with a new ai-powered microsoft bing and edge, your copilot for the web.
Official Microsoft Blog 7

Parvez MR, AhmadWU, Chakraborty S, Ray B, Chang KW (2021) Retrieval augmented code generation and
summarization. arXiv preprint arXiv:2108.11601

Pérez F, Font J, Arcega L, Cetina C (2018) Automatic query reformulations for feature location in a model-
based family of software products. Data Knowl Eng 116:159–176

123

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/1811.01824
http://arxiv.org/abs/2203.03850
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
http://arxiv.org/abs/1807.11906
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/2004.04906
http://arxiv.org/abs/2102.04664
http://arxiv.org/abs/2108.11601


12 Page 28 of 28 Empirical Software Engineering (2025) 30 :12

Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I et al (2019) Language models are unsupervised
multitask learners. OpenAI blog 1(8):9

RathM, Rendall J, Guo JL, Cleland-Huang J, Mäder P (2018) Traceability in the wild: automatically augment-
ing incomplete trace links. In: Proceedings of the 40th international conference on software engineering,
pp 834–845

Sachdev S, Li H, Luan S, Kim S, Sen K, Chandra S (2018) Retrieval on source code: a neural code search. In:
Proceedings of the 2nd ACM SIGPLAN international workshop on machine learning and programming
languages, pp 31–41

Salza P, Schwizer C, Gu J, Gall HC (2022) On the effectiveness of transfer learning for code search. IEEE
Trans Softw Eng

Satter A, Sakib K (2016) A search log mining based query expansion technique to improve effectiveness in
code search. In: 2016 19th International Conference on Computer and Information Technology (ICCIT).
IEEE, pp 586–591

Shi E, Wang Y, GuW, Du L, Zhang H, Han S, Zhang D, Sun H (2023) Cocosoda: effective contrastive learning
for code search. In: 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE).
IEEE, pp 2198–2210

Sun W, Fang C, Chen Y, Tao G, Han T, Zhang Q (2022) Code search based on contextaware code translation.
In: Proceedings of the 44th international conference on software engineering, pp 388–400

Van Nguyen T, Nguyen AT, Phan HD, Nguyen TD, Nguyen TN (2017) Combining word2vec with revised
vector space model for better code retrieval. In: 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C). IEEE, pp 183–185

Wang S, Lo D, Jiang L (2016) Autoquery: automatic construction of dependency queries for code search.
Autom Softw Eng 23:393–425

Wang Y, Le H, Gotmare AD, Bui ND, Li J, Hoi SC (2023) Codet5+: open code large language models for
code understanding and generation. arXiv preprint arXiv:2305.07922

Wang S, Lo D, Jiang L (2014) Active code search: incorporating user feedback to improve code search
relevance. In: Proceedings of the 29th ACM/IEEE international conference on automated software engi-
neering, pp 677–682

Wang X, Wang Y, Mi F, Zhou P, Wan Y, Liu X, Li L, Wu H, Liu J, Jiang X (2021) Syncobert: syntax-guided
multi-modal contrastive pre-training for code representation. arXiv preprint arXiv:2108.04556

Yang J, Tan L (2014) Swordnet: inferring semantically related words from software context. Empir Softw Eng
19:1856–1886

Yang Y, Abrego GH, Yuan S, Guo M, Shen Q, Cer D, Sung YH, Strope B, Kurzweil R (2019) Improving
multilingual sentence embedding using bi-directional dual encoder with additive margin softmax. arXiv
preprint arXiv:1902.08564

Yao Z, Peddamail JR, Sun H (2019) Coacor: code annotation for code retrieval with reinforcement learning.
In: The world wide web conference, pp 2203–2214

Yu H, Song W, Mine T (2016) Apibook: an effective approach for finding apis. In: Proceedings of the 8th
Asia-Pacific symposium on internetware, pp 45–53

Zamani S, Lee SP, Shokripour R, Anvik J (2014) A noun-based approach to feature location using time-aware
term-weighting. Inf Softw Technol 56(8):991–1011

Zeng C, Yu Y, Li S, Xia X, Wang Z, Geng M, Bai L, Dong W, Liao X (2023) degraphcs: embedding variable-
based flow graph for neural code search. ACM Trans Softw Eng Methodol 32(2):1–27

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/2305.07922
http://arxiv.org/abs/2108.04556
http://arxiv.org/abs/1902.08564

	Approaching code search for python as a translation retrieval problem with dual encoders
	Abstract
	1 Introduction
	1.1 Proposed Approach
	1.2 Research Questions
	1.3 Contributions

	2 Background and Related Work
	2.1 Code Search
	2.2 Code Search with LLMs
	2.3 Dual Encoders
	2.4 Code Search with Dual Encoders

	3 Methodology
	4 Experiment Setup
	4.1 Data
	4.2 Word Embeddings
	4.3 Evaluation Metrics
	4.4 Experimental Setup
	4.5 Comparison

	5 Results
	5.1 RQ1: Effectiveness
	5.2 RQ2: Data and Model's Roles in Effictiveness

	6 Discussion
	6.1 Other CodeSearchNet Languages
	6.2 Control Experiments
	6.2.1 Language Model
	6.2.2 Loss Function
	6.2.3 Output Size
	6.2.4 Number of Passes


	7 Threats to Validity
	8 Conclusion and Future Work
	References


