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Abstract
We prove an extension of Szarek’s optimal Khinchin inequality (1976) for distribu-
tions close to the Rademacher one, when all the weights are uniformly bounded by a
1/

√
2 fraction of their total !2-mass. We also show a similar extension of the proba-

bilistic formulation of Ball’s cube slicing inequality (1986). These results establish the
distributional stability of these optimal Khinchin-type inequalities. The underpinning
to such estimates is the Fourier-analytic approach going back to Haagerup (1981).

Mathematics Subject Classification Primary 60E15; Secondary 42A38 · 26D15 ·
60G50

1 Introduction

Let ε1, ε2, . . . be independent identically distributed (i.i.d.) Rademacher random vari-
ables, that is, symmetric random signs satisfying P

(
ε j = ±1

)
= 1

2 . Motivated by his
study of bilinear forms on infinitely many variables, Littlewood conjectured in [26]
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(see also [15]) the following inequality: for every n ≥ 1 and every unit vector a inRn ,
we have

E

∣∣∣∣∣∣

n∑

j=1

a jε j

∣∣∣∣∣∣
≥ E

∣∣∣∣
ε1 + ε2√

2

∣∣∣∣ =
1√
2
, (1)

which is clearly best possible.Not until 46 years after it had been posed,was this proved
by Szarek in [34]. His result was later generalised in a stunning way to the setting of
vector-valued coefficients a j in arbitrary normed space by Latała and Oleszkiewicz in
[24] (see also [30, Section 4.2] for a modern presentation of their proof using discrete
Fourier analysis). Szarek’s original proof was based mainly on an intricate inductive
scheme (see also [35]). Note that (1) holds trivially if ‖a‖∞ = max j |a j | ≥ 1√

2
, for

if, say we have |a1| ≥ 1√
2
, then thanks to independence and convexity,

E

∣∣∣∣∣∣

n∑

j=1

a jε j

∣∣∣∣∣∣
≥ E

∣∣∣∣∣∣
a1ε1 + E

n∑

j=2

a jε j

∣∣∣∣∣∣
= E|a1ε1| = |a1| ≥ 1√

2
.

Haagerup in his pioneering work [14] on Khinchin inequalities offered a very different
approach to the nontrivial regime ‖a‖∞ ≤ 1√

2
, using classical Fourier-analytic integral

representations along with tricky estimates for a special function.
Taking that route, the point of this paper is to illustrate the robustness of Haagerup’s

method and extend (1) to i.i.d. sequences of random variables whose distribution
is close to the Rademacher one in the W2-Wasserstein distance. Using the same
framework, we also treat Ball’s cube slicing inequality from [3] which asserts that
the maximal-volume hyperplane section of the cube [−1, 1]n in Rn is attained at
(1, 1, 0, . . . , 0)⊥. This can be equivalently stated in probabilistic terms as an inequal-
ity akin to (1) as follows (see, e.g. equation (2) in [6]). Let ξ1, ξ2, . . . be i.i.d. random
vectors uniform on the unit Euclidean sphere in R3. For every n ≥ 1 and every unit
vector a in Rn , we have

E





∣∣∣∣∣∣

n∑

j=1

a jξ j

∣∣∣∣∣∣

−1


 ≤ E
[∣∣∣∣

ξ1 + ξ2√
2

∣∣∣∣
−1
]

=
√
2, (2)

where here and throughout | · | denotes the standard Euclidean norm.
Szarek’s inequality (1), Ball’s inequality (2), as well as these extensions fall under

the umbrella of so-called Khinchin-type inequalities. The archetype was Khinchin’s
result asserting that all L p norms of Rademacher sums

∑
a jε j are comparable to

its L2-norm, established in his work [18] on the law of the iterated logarithm (and
perhaps discovered independently by Littlewood in [26]). Due to the intricacies of
the methods involved, sharp Khinchin inequalities are known only for a handful of
distributions, most notably random signs [14, 29], but also uniforms [2, 5, 6, 8, 19,
22, 25], type L [17, 32], Gaussian mixtures [1, 10], marginals of !p-balls [4, 11], or
distributions with good spectral properties [23, 33]. The present work makes a first
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Distributional stability of the Szarek and Ball inequalities 1163

step towards more general distributions satisfying only a closeness-type assumption
instead of imposing structural properties. Viewing sharp Khinchin-type inequalities
as maximization problems for functionals on the sphere, our results assert, perhaps
surprisingly, the fact that such inequalities are stable with respect to perturbations of
the law of the underlying random vectors. These distributional stability results are
novel in the context of optimal probabilistic inequalities.

2 Main results

For p > 0 and a random vector X in Rd , we denote its L p-norm with respect to
the standard Euclidean norm | · | on Rd by ‖X‖p = (E|X |p)1/p, whereas for a
(deterministic) vector a in Rn , ‖a‖∞ = max j≤n |a j | is its !∞-norm. We say that the
random vector X in Rd is symmetric if −X has the same distribution as X . We also
recall that the vector X is called rotationally invariant if for every orthogonal mapU on
Rd , UX has the same distribution as X . Equivalently, X has the same distribution as
|X |ξ , where ξ is uniformly distributed on the unit sphere Sd−1 in Rd and independent
of |X |. Recall that the W2-Wasserstein distance W2(X , Y ) between (the distributions
of) two random vectors X and Y in Rd is defined as inf(X ′,Y ′) ‖X ′ − Y ′‖2, where the
infimum is taken over all couplings of X and Y , that is, all random vectors (X ′, Y ′) in
R2d such that X ′ has the same distribution as X and Y ′ has the same distribution as Y .

Our first result is an extension of Szarek’s inequality (1) which reads as follows.

Theorem 1 There is a positive universal constant δ0 such that if we let X1, X2, . . . be
i.i.d. symmetric random variables satisfying

∥∥|X1| − 1
∥∥
2 ≤ δ0, (3)

then for every n ≥ 3 and unit vectors a in Rn with ‖a‖∞ ≤ 1√
2
, we have

E

∣∣∣∣∣∣

n∑

j=1

a j X j

∣∣∣∣∣∣
≥ E

∣∣∣∣
X1 + X2√

2

∣∣∣∣ . (4)

Moreover, we can take δ0 = 10−4.

Note that left hand side of (3) is nothing but theW2-Wasserstein distance between
the distribution of X1 and the Rademacher distribution since |x ± 1| ≥

∣∣|x | − 1
∣∣ for

x ∈ R and thus the optimal coupling of the two distributions is
(
X1, sign(X1)

)
.

Our second main result provides an analogous extension for Ball’s inequality (2).

Theorem 2 Let X1, X2, . . . be i.i.d. symmetric random vectors in R3. Suppose their
common characteristic function φ(t) = Eei〈t,X1+ satisfies

|φ(t)| ≤ C0

|t | , t ∈ R3 \ {0}, (5)

for some constant C0 > 0. Assume that
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1164 A. Eskenazis et al.

W2(X1, ξ) ≤ 10−38C−9
1 min

{
(E|X1|3)−6, 1

}
, (6)

where C1 = max{C0, 1} and ξ is a random vector uniform on the unit Euclidean
sphere S2 in R3. Then for every n ≥ 3 and unit vectors a in Rn with ‖a‖∞ ≤ 1√

2
, we

have

E

∣∣∣∣∣∣

n∑

j=1

a j X j

∣∣∣∣∣∣

−1

≤ E
∣∣∣∣
X1 + X2√

2

∣∣∣∣
−1

. (7)

Plainly, if we know that X1 and ξ are sufficiently close in W3, then the parameter
E|X1|3 in (6) is redundant. In contrast to Theorem 1, here the closeness assumption
(6) is put in terms of two parameters of the distribution: its third moment and the
polynomial decay of its characteristic function. It is not clear whether this is essential.
At the technical level of our proofs, the third moment is needed to carry out a certain
Gaussian approximation, whilst the decay assumption has to do with an a priori lack
of integrability in the Fourier-analytic representation of the L−1 norm (as opposed to
the L1-norm handled in Theorem 1).

On the other hand, neither of these is very restrictive. In particular, if X1 has a
density f on R3 vanishing at ∞ whose gradient is integrable, then

|t ||φ(t)| ≤
3∑

j=1

|t jφ(t)| =
3∑

j=1

∣∣∣∣

∫

R3
t j ei〈t,x+ f (x)dx

∣∣∣∣ =
3∑

j=1

∣∣∣∣

∫

R3
iei〈t,x+∂ j f (x)dx

∣∣∣∣

≤
√
3
∫

R3
|∇ f (x)|dx,

so (5) holds with C0 =
√
3
∫
R3 |∇ f |.

Another natural sufficient condition is the rotational invariance of X1: if, say, X1 has
the samedistribution as Rξ , for a nonnegative randomvariable R and an independent of
it random vector ξ uniform on the unit sphere S2, then Archimedes’ Hat-Box theorem
implies that 〈t, Rξ +, conditioned on the value of R, is uniform on [−R|t |, R|t |] and
thus

|φ(t)| = |EREξ ei〈t,Rξ +| =
∣∣∣∣ER

sin(R|t |)
R|t |

∣∣∣∣ ≤ ER−1

|t | = E|X1|−1

|t | .

Moreover, in this case W2(X1, ξ) = ‖R − 1‖2 (since for every unit vectors θ, θ ′

in Rd and R ≥ 0, we have |Rθ − θ ′| ≥ |R − 1|, as is easily seen by squaring).
Probabilistically, this is an important special case as it yields results for symmetric
unimodal distributions on R. Indeed, if X is of the form Rξ as above, for q > −1, we
have the identity

E

∣∣∣∣∣∣

n∑

j=1

a j X j

∣∣∣∣∣∣

q

= E

∣∣∣∣∣∣

n∑

j=1

a j R jξ j

∣∣∣∣∣∣

q

= (1+ q)E

∣∣∣∣∣∣

n∑

j=1

a j R jU j

∣∣∣∣∣∣

q

, (8)
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Distributional stability of the Szarek and Ball inequalities 1165

where the R j are i.i.d. copies of R and the Uj are i.i.d. uniform random variables
on [−1, 1], independent of the R j (see Proposition 4 in [20]). The R jU j showing
up in this formula can have any symmetric unimodal distribution, uniquely defined
by the distribution of R j . Thus, if V1, V2, . . . be i.i.d. symmetric unimodal random
variables, Theorem 2 then immediately yields a sharp upper bound on limq↓−1(1 +
q)E

∣∣∣
∑n

j=1 a j X j

∣∣∣
q
for all unit vectors a with ‖a‖∞ ≤ 1√

2
(cf. [5, 6, 11, 25]).

A result in the same vein as Theorem 2 is König and Koldobsky’s extension [20]
of Ball’s cube slicing inequality to product measures with densities satisfying certain
regularity and moment assumptions. Their result also applies specifically to vectors
of weights satisfying the small coefficient condition ‖a‖∞ ≤ 1√

2
.

Approached differently, full extensions of (1) and (2) (i.e. without the small
coefficient restriction on a) have been obtained in our recent work [12] for a very
special family of distributions corresponding geometrically to extremal sections and
projections of !p-balls.

3 Proof of Theorem 1

Our approach builds on Haagerup’s slick Fourier-analytic proof from [14]. We let

φ(t) = Eeit X1 , t ∈ R, (9)

be the characteristic function of X1. Using the elementary Fourier-integral represen-
tation

|x | = 1
(

∫

R
(1 − cos(t x))t−2dt, x ∈ R,

as well as the symmetry and independence of the X j , we have,

E

∣∣∣∣∣∣

n∑

j=1

a j X j

∣∣∣∣∣∣
= 1

(

∫

R

(
1 − Re Eeit

∑
a j X j

)
t−2dt = 1

(

∫

R



1 −
n∏

j=1

φ(a j t)



 t−2dt

(10)

(see also Lemma 1.2 in [14]). If a is a unit vector in Rn with nonzero components,
using the AM-GM inequality, we obtain Haagerup’s lower bound

E

∣∣∣∣∣∣

n∑

j=1

a j X j

∣∣∣∣∣∣
≥

n∑

j=1

a2j)(a−2
j ), (11)

where
)(s) = 1

(

∫

R

(
1 −

∣∣∣∣φ
(

t√
s

)∣∣∣∣
s)

t−2dt, s > 0. (12)

(see Lemma 1.3 in [14]). The crucial lemma reads as follows.

Lemma 3 Under the assumptions of Theorem 1, we have )(s) ≥ )(2) for every
s ≥ 2.
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1166 A. Eskenazis et al.

If we take the lemma for granted, the proof of Theorem 1 is finished because the
small coefficient assumption ‖a‖∞ ≤ 1√

2
gives )(a−2

j ) ≥ )(2) for each j , and as a
result we get

E

∣∣∣∣∣∣

n∑

j=1

a j X j

∣∣∣∣∣∣
≥ )(2) = 1

(

∫

R

(

1 −
∣∣∣∣φ

(
t√
2

)∣∣∣∣
2
)

t−2dt = E
∣∣∣∣
X1 + X2√

2

∣∣∣∣ ,

where the last equality is justified by (10).
It remains to prove Lemma 3. To this end, we recall that if the X j were Rademacher

random variables, then the special function ) becomes

)0(s) =
1
(

∫

R

(
1 −

∣∣∣∣cos
(

t√
s

)∣∣∣∣
s)

t−2dt, s > 0. (13)

Haagerup showed that for every s > 0,

)0(s) =
2√
(s

*
( s+1

2

)

*
( s
2

) =
√

2
(

∞∏

k=0

(
1 − 1/(s + 2k + 1)2

)1/2
(14)

and concluded by the product representation that )0 is strictly increasing. In partic-
ular, Lemma 3 holds in the Rademacher case due to monotonicity. The rest of the
proof builds exactly on this observation: we show that the closeness of distributions
guarantees that ) and )0 are close for, say s ≥ 3, and that their derivatives are close
for 2 ≤ s ≤ 3. Crucially, not only do we know that )0 is strictly monotone, but also
we can get a good bound on its derivative near the endpoint s = 2, which we record
now for future use.

Lemma 4 We have

inf
2≤s≤3

) ′
0(s) ≥ ζ(3) − 1

8
√
2

= 0.01785 . . . (15)

Proof Differentiating Haagerup’s product expression (14) term-by-term yields

) ′
0(s) =

d
ds

√
2
(

∞∏

k=0

(
1 − (s + 2k + 1)−2

)1/2

= )0(s)
∞∑

k=0

(
1 − (s + 2k + 1)−2

)−1
(s + 2k + 1)−3

≥ )0(2)
∞∑

k=0

(2k + 4)−3 = 1√
2

ζ(3) − 1
8

.

./
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Distributional stability of the Szarek and Ball inequalities 1167

The rest of this section is devoted to the proof of Lemma 3. We break it into several
parts.

3.1 A uniform bound on the characteristic function

Lemma 5 Let X be a symmetric random variable satisfying (3). Then its characteristic
function φ(t) = Eeit X satisfies,

|φ(t) − cos t | ≤ δ0(δ0 + 2)
2

t2, t ∈ R. (16)

Proof By symmetry, the triangle inequality and the bound | sin u| ≤ |u|, we get

|φ(t) − cos t | = |E [cos(t |X |) − cos t]| = 2
∣∣∣∣E

[
sin

(
t
|X | − 1

2

)
sin

(
t
|X | + 1

2

)]∣∣∣∣

≤ t2

2
E
[∣∣|X | − 1

∣∣ ·
∣∣|X | + 1

∣∣] ≤ t2

2

∥∥|X | − 1
∥∥
2

∥∥|X | + 1
∥∥
2,

using the Cauchy–Schwarz inequality in the last estimate. Moreover,

∥∥|X | + 1
∥∥
2 ≤

∥∥|X | − 1
∥∥
2 + 2.

Plugging in the assumption
∥∥|X | − 1

∥∥
2 ≤ δ0 completes the proof. ./

3.2 Uniform bounds on the special function and its derivative

Lemma 6 Assuming (3) and the symmetry of X1, the functions ) and )0 defined in
(12) and (13) respectively satisfy

|)(s) − )0(s)| ≤ 2
(

√
2δ0(δ0 + 2), s ≥ 1. (17)

Proof Fix T > 0. Breaking the integral defining ) into
∫ T
0 +

∫∞
T and using that

|a − b| ≤ 1 for a, b ∈ [0, 1], we obtain

|)(s) − )0(s)| =
2
(

∣∣∣∣

∫ ∞

0

[∣∣∣∣φ
(

t√
s

)∣∣∣∣
s

−
∣∣∣∣cos

(
t√
s

)∣∣∣∣
s]

t−2dt
∣∣∣∣

≤ 2
(

∫ T

0

∣∣∣∣

∣∣∣∣φ
(

t√
s

)∣∣∣∣
s

−
∣∣∣∣cos

(
t√
s

)∣∣∣∣
s∣∣∣∣ t

−2dt + 2
(

∫ ∞

T
t−2dt

We also have
∣∣|a|s − |b|s

∣∣ ≤ s|a − b| for a, b ∈ [−1, 1], s ≥ 1, thus Lemma 5 yields

|)(s) − )0(s)| ≤ 2
(

∫ T

0
s
δ0(δ0 + 2)

2

(
t√
s

)2

t−2dt + 2
(T

= 2
(

(
T

δ0(δ0 + 2)
2

+ 1
T

)
.
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1168 A. Eskenazis et al.

Optimizing over the parameter T gives the desired bound. ./
Lemma 7 For s ≥ 2 and 0 < u, v < 1, we have

|us log u − vs log v| ≤ |u − v|.

Proof Let f (x) = xs log x . It suffices to prove that on (0, 1) we have | f ′(x)| ≤ 1,
which is equivalent to |,t log t+ t | ≤ 1 with t = xs−1 ∈ (0, 1) and , = s

s−1 ∈ [1, 2].
To prove this observe that for t ∈ (0, 1) we have ,t log t + t ≤ t ≤ 1 and

,t log t + t ≥ ,t log t ≥ −,

e
≥ −2

e
> −1.

./
Lemma 8 Assuming (3) and the symmetry of X1, the functions ) and )0 defined in
(12) and (13) satisfy

|) ′(s) − ) ′
0(s)| ≤ 0.62

√
δ0(δ0 + 2), s ≥ 2. (18)

Proof Changing the variables and differentiating gives

) ′(s) = d
ds

(
2

(
√
s

∫ ∞

0

[
1 − |φ(t)|s

]
t−2dt

)

= − 1
2s

)(s) − 2
(

√
s

∫ ∞

0
|φ(t)|s log |φ(t)|t−2dt .

Thus,

|) ′(s) − ) ′
0(s)| ≤ 1

2s
|)(s) − )0(s)| +

2
(

√
s

∫ ∞

0

×
∣∣∣|φ(t)|s log |φ(t)| − | cos(t)|s log | cos(t)|

∣∣∣t−2dt .

To estimate the integral, we proceed along the same lines as in the proof of Lemma
6. We fix T > 0, write

∫∞
0 =

∫ T
0 +

∫∞
T and for the second integral use |us log u| =

1
s |us log(us)| ≤ 1

es , 0 < u < 1, to get a bound on it by 2
esT , whilst for the first integral,

using first Lemma 7 and then Lemma 5, we obtain

∫ T

0

∣∣∣|φ(t)|s log |φ(t)| − | cos(t)|s log | cos(t)|
∣∣∣t−2dt ≤

∫ T

0
|φ(t) − cos(t)|t−2dt

≤ δ0(δ0 + 2)
2

T .

Altogether, with the aid of Lemma 6,

|) ′(s) − ) ′
0(s)| ≤ 1

2s
2
(

√
2δ0(δ0 + 2)+ 2

(
√
s

(
δ0(δ0 + 2)

2
T + 2

esT

)
.
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Minimising the second term over T > 0 leads to the bound by

1
(s

√
2δ0(δ0 + 2)+ 4

(s

√
δ0(δ0 + 2)

e
=

√
δ0(δ0 + 2)

(s

(√
2+ 4√

e

)
.

For s ≥ 2, we have 1
(s

(√
2+ 4√

e

)
< 0.61 . . . and this completes the proof. ./

3.3 Proof of Lemma 3

First we assume that s ≥ 3. Using Lemma 6 and letting η = 2
(

√
2δ0(δ0 + 2) for

brevity, we get

)(s) ≥ )0(s) − η.

Since )0 is increasing, )0(s) ≥ )0(3) = )0(3) − )0(2) + )0(2) and )0(2) ≥
)(2) − η, again using Lemma 6. Therefore,

)(s) ≥ )(2)+
(
)0(3) − )0(2) − 2η

)
.

It is now clear that as long as δ0 is sufficiently small, namely 2η ≤ )0(3)−)0(2), we
get )(s) ≥ )(2), as desired. It can be checked that )0(3) − )0(2) = 4

(
√
3

− 1√
2
=

0.027.. and a choice of δ0 ≤ 10−4 suffices for the estimate )(s) ≥ )(2) to hold for
s ≥ 3.

Now we assume that 2 < s < 3. We have

)(s) = )(2)+ (s − 2)) ′(θ)

for some 2 < θ < s. Using Lemmas 4 and 8, we get

) ′(θ) ≥ ) ′
0(θ) − 0.62

√
δ0(δ0 + 2) ≥ 0.017 − 0.62

√
δ0(δ0 + 2)

which is positive for all δ0 ≤ 3.7 · 10−4. Thus, )(s) ≥ )(2) holds in both cases. !

4 Proof of Theorem 2

The approach is the same as for Theorem 1, however certain technical details are sub-
stantially more involved. We begin with a Fourier-analytic representation for negative
moments due to Gorin and Favorov [13].

Lemma 9 (Lemma 3 in [13]) For a random vector X inRd and−d < q < 0, we have

E|X |q = .q,d

∫

Rd
Eei〈t,X+ · |t |−q−ddt, (19)
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1170 A. Eskenazis et al.

where .q,d = 2q(−d/2 *((d+q)/2)
*(−q/2) , provided that the integral on the right hand side

exists.

Specialised to d = 3, q = −1 (.−1,3 = 1
2(2 ) and X = ∑n

j=1 a j X j with
X1, . . . , Xn independent random vectors, we obtain

E

∣∣∣∣∣∣

n∑

j=1

a j X j

∣∣∣∣∣∣

−1

= 1
2(2

∫

R3




n∏

j=1

Eei〈t,a j X j+


 |t |−2dt . (20)

Note that thanks to the decay assumption (5), the integral on the right hand side
converges as long as n ≥ 2 (assuming the a j are nonzero). As in Ball’s proof from
[3], Hölder’s inequality yields

E

∣∣∣∣∣∣

n∑

j=1

a j X j

∣∣∣∣∣∣

−1

≤
n∏

j=1

/
(
a−2
j

)a2j , (21)

where
/(s) = 1

2(2

∫

R3

∣∣∣φ
(
s−1/2t

)∣∣∣
s
|t |−2dt, s > 1 (22)

with
φ(t) = Eei〈t,X1+, t ∈ R3, (23)

denoting the characteristic function of X1. Exactly as in the proof of Theorem 1, the
following pivotal lemma allows us to finish the proof.

Lemma 10 Under the assumptions of Theorem 2, we have /(s) ≤ /(2) for every
s ≥ 2.

If the X j are uniform on the unit sphere S2 in R3, we have φ(t) = sin |t |
|t | (because

〈t, X1+ is uniform on [−|t |, |t |]), in which case the special function / defined in (22)
becomes

/0(s) =
2
(

∫ ∞

0

∣∣∣∣
sin(s−1/2t)
s−1/2t

∣∣∣∣
s

dt, s > 1 (24)

(after integrating in polar coordinates). Ball’s celebrated integral inequality states that
/0(s) ≤ /0(2), for all s ≥ 2 (see Lemma 3 in [3], as well as [28, 31] for different
proofs). Our proof of Lemma 10 relies on this, additional bounds on the derivative
/′

0(s) near s = 2, as well as, crucially, bounds quantifying how close / is to /0. In
the following subsections we gather such results and then conclude with the proof of
Lemma 10.

4.1 A uniform bound on the characteristic function

Throughout these sections ξ always denotes a random vector uniform on the unit
sphere S2 in R3.
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Distributional stability of the Szarek and Ball inequalities 1171

Lemma 11 Let X be a symmetric random vector in R3 with δ = W2(X , ξ). Then, its
characteristic function φ(t) = Eei〈t,X+ satisfies

∣∣∣∣φ(t) − sin |t |
|t |

∣∣∣∣ ≤ δ(δ + 2)
2

|t |2, t ∈ R3. (25)

Proof Let ξ beuniformonS2 such that for the joint distribution of (X , ξ),we have‖X−
ξ‖2 = W2(X , ξ) = δ. By symmetry, the bound | sin u| ≤ |u| and the Cauchy–Schwarz
inequality (used twice), we get

∣∣∣∣φ(t) − sin |t |
|t |

∣∣∣∣ = |E [cos〈t, X+− cos〈t, ξ +]|

= 2
∣∣E

[
sin

( 1
2 〈t, X − ξ +) sin

( 1
2 〈t, X + ξ +)]

∣∣

≤ |t |2
2

E
[∣∣X − ξ

∣∣ ·
∣∣X + ξ

∣∣]

≤ |t |2
2

∥∥X − ξ
∥∥
2

∥∥X + ξ
∥∥
2.

To conclude we use the triangle inequality

∥∥X + ξ
∥∥
2 ≤

∥∥X − ξ
∥∥
2 + 2‖ξ‖2 =

∥∥X − ξ
∥∥
2 + 2.

./

4.2 Bounds on the special function

We begin with a bound on the difference /(s) − /0(s) obtained from the uniform
bound on the characteristic functions (Lemma 11 above). In contrast to Lemma 6, the
bound is not uniform in s. For s not too large (the bulk), we incur the factor s3/4. To
fight it off for large values of s, we shall employ a Gaussian approximation. For that

part to work, it is crucial that /0(2) − /0(∞) =
√
2 −

√
6
( > 0.

4.2.1 The bulk

Lemma 12 Let X be a symmetric random vector in R3 with δ = W2(X , ξ) and char-
acteristic function φ satisfying (5) for some C0 > 0. Let / and /0 be defined through
(22) and (24) respectively. For every s ≥ 2, we have

|/(s) − /0(s)| ≤ 211/4

3(
s3/4

(
δ(δ + 2)

)1/4(C2
0 + 1

)3/4
. (26)

Proof Given the definitions, we have

/(s) − /0(s) =
√
s

2(2

∫

R3

(
|φ(t)|s −

∣∣∣∣
sin |t |
|t |

∣∣∣∣
s)

|t |−2dt .
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1172 A. Eskenazis et al.

We fix T > 0 and split the integration into two regions.
Small t . Using Lemma 11 and ||a|s − |b|s | ≤ s|a − b| when |a|, |b| ≤ 1, we obtain

∣∣∣∣

∫

|t |≤T

(
|φ(t)|s −

∣∣∣∣
sin |t |
|t |

∣∣∣∣
s)

|t |−2dt
∣∣∣∣ ≤ s

δ(δ + 2)
2

∫

|t |≤T
dt = 2(

3
sδ(δ + 2)T 3.

Large t . Since s ≥ 2, we have

∣∣∣∣

∫

|t |≥T

(
|φ(t)|s −

∣∣∣∣
sin |t |
|t |

∣∣∣∣
s)

|t |−2dt
∣∣∣∣ ≤

∫

|t |≥T

(

|φ(t)|2 +
∣∣∣∣
sin |t |
|t |

∣∣∣∣
2
)

|t |−2dt .

By virtue of the decay assumption (5), this is at most

∫

|t |≥T

C2
0 + 1
|t |4 dt = 4(

C2
0 + 1
T

.

Adding up these two bounds and optimising over T yields

∣∣∣∣

∫

R3

(
|φ(t)|s −

∣∣∣∣
sin |t |
|t |

∣∣∣∣
s)

|t |−2dt
∣∣∣∣ ≤ 215/4(

3
s1/4

(
δ(δ + 2)

)1/4(C2
0 + 1

)3/4
.

Plugging this back gives the assertion. ./

4.2.2 The Gaussian approximation

We now present a bound on /(s) which does not grow as s → ∞ that will allow us
to prove Lemma 10 for s sufficiently large.

Lemma 13 Let X be a symmetric random vector in R3 with δ = W2(X , ξ) and char-
acteristic function φ satisfying (5) for some C0 > 0. Let / be defined through (22).
Assuming that δ ≤ min{ 1√

3
, (15C0)

−2}, we have

/(s) ≤
√

6
(

(
(1 − δ

√
3)2 − θE|X |3

)−1/2

+
√

6
(
exp

{
−s

(
θ2

6
− 26δ(δ + 2)

)}
+ 2C0

(√
s + 2√

s

)
e−s, s ≥ 2,

(27)
with arbitrary 0 < θ < (1−δ

√
3)2

3E|X |3 .

Proof We split the integral defining /(s) = 1
2(2

∫
R3 |φ(s−1/2t)|s |t |−2dt into several

regions.
Large t. Using the decay condition (5), we get

∫

|t |≥eC0
√
s

∣∣∣φ
(
s−1/2t

)∣∣∣
s
|t |−2dt ≤

∫

|t |≥eC0
√
s
Cs
0|s−1/2t |−s |t |−2dt = 4(e

√
s

s − 1
C0e−s .
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Thus, for s ≥ 2,

1
2(2

∫

|t |≥eC0
√
s

∣∣∣φ
(
s−1/2t

)∣∣∣
s
|t |−2dt ≤ 2e

√
s

((s − 1)
C0e−s <

4C0√
s
e−s,

as 2e
√
s

((s−1) <
4√
s
for s ≥ 2.

Moderate t . This case is vacuous unless C0 > (/e. We use Lemma 11 to obtain

∫

(
√
s≤|t |≤eC0

√
s

∣∣∣φ
(
s−1/2t

)∣∣∣
s
|t |−2dt

≤
∫

(
√
s≤|t |≤eC0

√
s

(∣∣∣∣
sin(s−1/2|t |)
s−1/2|t |

∣∣∣∣+
δ(δ + 2)

2

(
s−1/2|t |

)2)s

|t |−2dt

≤
∫

(
√
s≤|t |≤eC0

√
s

(
1
(

+ δ(δ + 2)
2

(eC0)
2
)s

|t |−2dt

= 4(
√
s
(
1
(

+ δ(δ + 2)
2

(eC0)
2
)s

(eC0 − ()+.

In this case, the condition δ < (15C0)
−2 suffices to guarantee that 1

( + δ(δ+2)
2 (eC0)

2 <
1
e (also using, say δ + 2 < 3). Then we get

1
2(2

∫

(
√
s≤|t |≤eC0

√
s

∣∣∣φ
(
s−1/2t

)∣∣∣
s
|t |−2dt ≤ 2

(

√
se−s(eC0 − ()+ < 2C0

√
se−s .

Small t . For 0 < u < ( , we have

sin u
u

=
∞∏

k=1

(
1 − u2

(k()2

)
≤ exp

(
−

∞∑

k=1

u2

(k()2

)
= e−u2/6. (28)

Fix 0 < θ < ( . Then, first using Lemma 11 and then (28), we obtain

∫

θ
√
s≤|t |≤(

√
s

∣∣∣φ
(
s−1/2t

)∣∣∣
s
|t |−2dt

≤
∫

θ
√
s≤|t |≤(

√
s

(∣∣∣∣
sin(s−1/2|t |)
s−1/2|t |

∣∣∣∣+
δ(δ + 2)

2

(
s−1/2|t |

)2)s

|t |−2dt

≤
∫

θ
√
s≤|t |≤(

√
s

(
e−|t |2/(6s) + δ(δ + 2)

2
(2

)s

|t |−2dt

≤
∫

|t |≥θ
√
s
e−|t |2/6

(
1+ δ(δ + 2)

2
(2e(2/6

)s

|t |−2dt .
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1174 A. Eskenazis et al.

Integrating using polar coordinates and invoking the standard tail bound

∫ ∞

u
e−y2/2dy ≤

√
(/2e−u2/2, u > 0,

the last integral gets upper bounded by

4(3/2

√
3
2
e−θ2s/6

(
1+ δ(δ + 2)

2
(2e(2/6

)s

< 4(3/2

√
3
2
e−θ2s/6(1+ 26δ(δ + 2)

)s
.

Summarising, we have shown that

1
2(2

∫

θ
√
s≤|t |≤(

√
s

∣∣∣φ
(
s−1/2t

)∣∣∣
s
|t |−2dt ≤

√
6
(

(
1+ 26δ(δ + 2)

)se−sθ2/6

≤
√

6
(
exp

{
−s

(
θ2

6
− 26δ(δ + 2)

)}
.

Very small t . Taylor-expanding φ at 0 with the Lagrange remainder,

∫

|t |≤θ
√
s

∣∣∣φ
(
s−1/2t

)∣∣∣
s
|t |−2dt

=
∫

|t |≤θ
√
s

∣∣∣∣∣∣
1 − 1

2
E
〈
X , s−1/2t

〉
2 + s−3/2

6

3∑

j,k,l=1

∂3φ

∂t j∂tk∂tl
(η)t j tk tl

∣∣∣∣∣∣

s

dt,

for some point η in the segment [0, s−1/2t]. To bound the error term, we note that

∣∣∣∣
∂3φ

∂t j∂tk∂tl
(η)

∣∣∣∣ ≤ E|X j Xk Xl |,

thus
∣∣∣∣∣∣

3∑

j,k,l=1

∂3φ

∂t j∂tk∂tl
(η)t j tk tl

∣∣∣∣∣∣
≤ E (|t1||X1| + |t2||X2| + |t3||X3|)3 ≤ |t |3E|X |3.

We also note that in the domain {|t | ≤ θ
√
s}, the leading term 1 − 1

2E
〈
X , s−1/2t

〉2 is
nonnegative, provided that 1

2θ
2E|X |2 ≤ 1. Since ‖X‖2 ≤ δ+ 1 under the assumption

(6), it suffices that θ <
√
2

1+δ . Assuming this, we thus get

∫

|t |≤θ
√
s

∣∣∣φ
(
s−1/2t

)∣∣∣
s
|t |−2dt

≤
∫

|t |≤θ
√
s

(
1 − 1

2
E
〈
X , s−1/2t

〉
2 + 1

6
|s−1/2t |3E|X |3

)s

|t |−2dt .
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Evoking (6), let ξ be uniform on S2 such that ‖X − ξ‖2 ≤ δ with respect to some
coupling. Then, for a fixed vector v in R3, we obtain the bound

‖〈X , v+‖2 ≥ ‖〈ξ, v+‖2 − ‖〈X − ξ, v+‖2 = 1√
3
|v| − ‖〈X − ξ, v+‖2 ≥ 1√

3
|v| − δ|v|.

Thus, provided that δ < 1√
3
, this yields

∫

|t |≤θ
√
s

∣∣∣φ
(
s−1/2t

)∣∣∣
s
|t |−2dt

≤
∫

|t |≤θ
√
s

(

1 − (1/
√
3 − δ)2

2s
|t |2 + θE|X |3

6s
|t |2

)s

|t |−2dt

≤
∫

R3
exp

(
−,|t |2/2

)
|t |−2dt = 2(

√
2(√
,

,

where we have set , = ( 1√
3

− δ)2 − 1
3θE|X |3 and assumed that , is positive in the

last equality (guaranteed by choosing θ sufficiently small). Then we finally obtain

1
2(2

∫

|t |≤θ
√
s

∣∣∣φ
(
s−1/2t

)∣∣∣
s
|t |−2dt ≤

√
2

(,
.

Putting these three bounds together gives the assertion. Note that we have imposed
the conditions δ < 1√

3
and δ < (15C0)

−2 when C0 > (
e , as well as θ < ( , θ <

√
2

1+δ

and θ < (1−δ
√
3)2

3E|X |3 . Since ‖X‖3 ≥ ‖X‖2 ≥ 1 − δ and δ < 1√
3
, we have (1−δ

√
3)2

3E|X |3 <

(1−δ
√
3)2

3(1−δ)3
= 1

3(1−δ)

(
1−δ

√
3

1−δ

)2
< 1

3−
√
3
< 0.79. Moreover,

√
2

1+δ >
√
2

1+1/
√
3
> 0.89, so

the condition θ < (1−δ
√
3)2

3E|X |3 implies the other two conditions on θ . ./

4.3 Bounds on the derivative of the special function

Lemma 14 Let X be a symmetric random vector in R3 with δ = W2(X , ξ) and char-
acteristic function φ satisfying (5) for some C0 > 0. Let / and /0 be defined through
(22) and (24) respectively. For every s ≥ 2, we have

|/′(s) − /′
0(s)| ≤ 27/4

3(

(
δ(δ + 2)

)1/4(C2
0 + 1

)3/4s−1/4

+ 1.04
(
δ(δ + 2)

)1/7(C3/2
0 + 1

)6/7s1/2.

Proof First we take the derivative,

/′(s) = d
ds

( √
s

2(2

∫

R3
|φ(t)|sdt

)
= 1

2s
/(s)+

√
s

2(2

∫

R3
|φ(t)|s log |φ(t)|dt .
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1176 A. Eskenazis et al.

For the resulting / − /0 term, we use Lemma 12. To bound the difference of the
integrals resulting from the second term, we fix T > 0 and split the integration into
two regions.
Small t . Using Lemmas 7 and 11, we obtain

∣∣∣∣

∫

|t |≤T

(
|φ(t)|s log |φ(t)| −

∣∣∣∣
sin |t |
|t |

∣∣∣∣
s

log
∣∣∣∣
sin |t |
|t |

∣∣∣∣

)
|t |−2dt

∣∣∣∣

≤
∫

|t |≤T

δ(δ + 2)
2

dt = 2(
3

δ(δ + 2)T 3.

Large t . Note that for s ≥ 2, and 0 < u < 1 we have,

|us log u| = |2us−1/2u1/2 log(u1/2)| ≤ 2
e
u3/2.

Thus,

∣∣∣∣

∫

|t |≥T

(
|φ(t)|s log |φ(t)| −

∣∣∣∣
sin |t |
|t |

∣∣∣∣
s

log
∣∣∣∣
sin |t |
|t |

∣∣∣∣

)
|t |−2dt

∣∣∣∣

≤ 2
e

∣∣∣∣∣

∫

|t |≥T

(

|φ(t)|3/2 +
∣∣∣∣
sin |t |
|t |

∣∣∣∣
3/2

)

|t |−2dt

∣∣∣∣∣

which, after applying the decay condition (5), gets upper bounded by

8(
e

∫ ∞

T

C3/2
0 + 1
t3/2

dt = 16(
e

(C3/2
0 + 1)T−1/2.

Adding up these two bounds and optimising over T yields

∣∣∣∣

∫

R3

(
|φ(t)|s log |φ(t)| −

∣∣∣∣
sin |t |
|t |

∣∣∣∣
s

log
∣∣∣∣
sin |t |
|t |

∣∣∣∣

)
|t |−2dt

∣∣∣∣

≤ 7 · 219/7(
3e6/7

(
δ(δ + 2)

)1/7(C3/2
0 + 1

)6/7
.

Going back to the difference of the derivatives, we arrive at the desired bound using

7 · 212/7
3e6/7(

< 1.04.

./
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4.4 Bounds on Ball’s special function

We will need two estimates on /0 defined in (24), that is

/0(s) =
2
(

∫ ∞

0

∣∣∣∣
sin(s−1/2t)
s−1/2t

∣∣∣∣
s

dt = 2
√
s

(

∫ ∞

0

∣∣∣∣
sin t
t

∣∣∣∣
s

dt, s > 1. (29)

First, we have a bound on the derivative near s = 2.

Lemma 15 For 2 ≤ s ≤ 2.01, we have /′
0(s) ≤ −0.02.

Second, on the complementary range, /0(s) is separated from its supremal value
/0(2).

Lemma 16 For s ≥ 2.01, we have /0(s) ≤ /0(2) − 2 · 10−4.

We begin with a numerical bound which will be used in the proofs of these
assertions.

Lemma 17 We have

∫ ∞

0

(
sin u
u

)2

log
∣∣∣∣
sin u
u

∣∣∣∣ du ≤ −0.48.

Proof Using (28), we get

∫ (

0

(
sin u
u

)2

log
∣∣∣∣
sin u
u

∣∣∣∣ du ≤ −1
6

∫ (

0
(sin u)2du = − (

12
.

Moreover,

∫ ∞

(

(
sin u
u

)2

log
∣∣∣∣
sin u
u

∣∣∣∣ du =
∞∑

k=1

∫ (k+1)(

k(

(
sin u
u

)2

log
∣∣∣∣
sin u
u

∣∣∣∣

≤
∞∑

k=1

∫ (k+1)(

k(

(
sin u

(k + 1)(

)2

log
∣∣∣∣
1
k(

∣∣∣∣ = − 1
2(

∞∑

k=1

log(k()
(k + 1)2

.

Therefore our integral is bounded above by

− (

12
− 1

2(

∞∑

k=1

log(k()
(k + 1)2

= −0.4867.. < −0.48.

./

We let

I (s) =
∫ ∞

0

∣∣∣∣
sin u
u

∣∣∣∣
s

du, s > 1. (30)
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Proof of Lemma 15 First we observe that

I ′(s) =
∫ ∞

0

∣∣∣∣
sin u
u

∣∣∣∣
s

log
∣∣∣∣
sin u
u

∣∣∣∣ du.

Note that I is decreasing. We have,

/′
0(s) =

2
(

(
I (s)
2
√
s
+ √

s I ′(s)
)

≤ 2
(

(
I (2)
2
√
s
+ √

s I ′(s)
)
= 1

2
√
s
+ 2

√
s

(
I ′(s),

since I (2) = (
2 . Moreover,

|I ′′(s)| =
∫ ∞

0

∣∣∣∣
sin u
u

∣∣∣∣
s

log2
∣∣∣∣
sin u
u

∣∣∣∣ du ≤
∫ ∞

0

∣∣∣∣
sin u
u

∣∣∣∣
2

log2
∣∣∣∣
sin u
u

∣∣∣∣ du

≤ sup
t∈(0,1)

(√
t log2 t

) ∫ ∞

0

∣∣∣∣
sin u
u

∣∣∣∣
3/2

du = 16e−2
∫ ∞

0

∣∣∣∣
sin u
u

∣∣∣∣
3/2

du

≤ 16e−2
(
1+

∫ ∞

1

1
u3/2

du
)
= 48e−2.

With the aid of Lemma 17, we therefore have

I ′(s) ≤ I ′(2)+ 48e−2(s − 2) < −0.48+ 48e−2(s − 2).

Thus, for 2 ≤ s ≤ 2.01, we have

/′
0(s) ≤ 1

2
√
s
+ 2

√
s

(
I ′(s) <

1
2
√
s
+ 2

√
s

(

(
− 0.48+ 48e−2(s − 2)

)

<
1

2
√
2
+ 2

√
2

(
(−0.48+ 48e−2(s − 2))

≤ 1

2
√
2
+ 2

√
2

(
(−0.48+ 48e−20.01) < −0.02,

where in the first inequality we used that the term in parenthesis is negative. ./

For the proof of Lemma 16, we need several more estimates. First, we record a
lower bound on the derivative of /0(s) for arbitrary s.

Lemma 18 For s ≥ 2, we have /′
0(s) ≥ − 12

√
s

(e .

Proof We have,

/′
0(s) =

2
(

(
I (s)
2
√
s
+ √

s I ′(s)
)

≥ 2
√
s

(
I ′(s),
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so it is enough to upper bound |I ′(s)|. Note that

|I ′(s)| =
∫ ∞

0

∣∣∣∣
sin u
u

∣∣∣∣
s (

− log
∣∣∣∣
sin u
u

∣∣∣∣

)
du

≤
∫ ∞

0

∣∣∣∣
sin u
u

∣∣∣∣
2 (

− log
∣∣∣∣
sin u
u

∣∣∣∣

)
du

≤ sup
t∈(0,1)

(−
√
t log t)

∫ ∞

0

∣∣∣∣
sin u
u

∣∣∣∣

3
2

du

≤ 2e−1
(
1+

∫ ∞

1

1

u
3
2

du
)
= 6e−1.

./
Second, we obtain a quantitative drop-off of the values of /0.

Lemma 19 Let a ∈ [1, (
3 ] and suppose that for some s0 ≥ 2, we have /0(s0) =

√
2
a .

Then

/0(s) ≤
√
2
a
, s ≥ s0. (31)

To prove this, we build on the argument of Nazarov and Podkorytov from [31]. For
a somewhat similar bound, we refer to Proposition 7 in König and Koldobsky’s work
[21] on maximal-perimeter sections of the cube. For convenience and completeness,
we include all arguments in detail. We consider functions

fa(x) = e− (
2 x

2a, g(x) =
∣∣∣∣
sin (x

(x

∣∣∣∣ , x > 0, (32)

and their distribution functions

Fa(y) = |{x > 0 : fa(x) > y}|, G(y) = |{x > 0 : g(x) > y}|, y > 0. (33)

Lemma 20 For a ∈ [1, (
3 ] the function Fa − G has precisely one sign change point

y0 and at this point changes sign from “−” to “+”.

Proof Note that Fa(y) = G(y) = 0 for y ≥ 1, so we only consider y ∈ (0, 1). We

have Fa(y) =
√

2
(a ln(

1
y ).

The function g(x) has zeros for x ∈ Z. For m ∈ N, let ym = max[m,m+1] g. We
clearly have ym < 1

(m and ym > g(m + 1
2 ) = 1

((m+ 1
2 )
. Thus ym ∈ ( 1

((m+ 1
2 )
, 1

(m ),

which shows that the sequence ym is decreasing. We have the following claims.

Claim 1. The function Fa − G is positive on (y1, 1).
Note that if g(x) > y1 then x ∈ (0, 1). Moreover g(x) ≤ fa(x) for x ∈ [0, 1],

since

g(x) = sin (x
(x

=
∞∏

k=1

(
1 − x2

k2

)
≤

∞∏

k=1

e− x2

k2 = e− (2
6 x2 ≤ e− (

2 ax
2 = fa(x).
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1180 A. Eskenazis et al.

Thus, for y ∈ (y1, 1), we have

G(y) = |{x ∈ (0, 1) : g(x) > y}| < |{x ∈ (0, 1) : fa(x) > y}| ≤ Fa(y).

Claim 2. The function Fa − G changes sign at least once in (0, 1).
Due to Claim 1 it is enough to show that Fa − G is sometimes negative. We have

Fa − G ≤ F1 − G and
∫∞
0 2y(F1(y) − G(y))dy =

∫
( f 21 − g2) = 0, so F1 − G can

be negative.

Claim 3. The function Fa − G is increasing on (0, y1).
Clearly F ′

a > F ′
1 and thus the claim follows from the fact that F1 −G is increasing

on (0, y1), which was proved in [31] (Chapter I, Step 5). ./

Proof of Lemma 19 The assumption /0(s0) =
√

2
a is equivalent to

∫ ∞

0

∣∣∣∣
sin (x

(x

∣∣∣∣
s0
dx =

∫ ∞

0

∣∣∣e− (
2 x

2a
∣∣∣
s0
dx .

After changing variables and using Lemma 20, we get from the Nazarov–Podkorytov
lemma (Chapter I, Step 4 in [31]) that for s ≥ s0

∫ ∞

0

∣∣∣∣
sin x
x

∣∣∣∣
s

dx ≤
∫ ∞

0

∣∣∣e− 1
2( x2a

∣∣∣
s
dx = (√

2as
.

./

Proof of Lemma 16 Take s0 = 2.01 and a = 2/0(s0)−2 in Lemma 19. Since /0(2) =√
2, Ball’s inequality gives that a ≥ 1. We need to check that a ≤ (

3 . From Lemma

18, we have that for s ∈ [2, 2.01], /′
0(s) ≥ − 12

√
2.01

(e > −2. Thus, /0(s0) ≥
/0(2) − 2(s0 − 2) =

√
2 − 0.02. Therefore, a < 2 · (

√
2 − 0.02)−2 < 1.03 < (

3 , as
needed. By Lemmas 19 and 15, we thus get that for s ≥ s0 = 2.01,

/0(s) ≤
√
2
a
= /0(s0) ≤ /0(2)+ sup

[2,2.01]
/′

0 · 0.01 ≤ /0(2) − 0.02 · 0.01.

./

4.5 Proof of Lemma 10

Recall that we assume X is a symmetric random vector in R3 with δ = W2(X , ξ) and
characteristic function φ satisfying (5), that is |φ(t)| ≤ C0/|t |, for all t ∈ R3\{0}. Let
C1 = max{C0, 1}. Our goal is to show that if (6) holds, that is

δ ≤ 10−38C−9
1 min

{
(E|X |3)−6, 1

}
,
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Distributional stability of the Szarek and Ball inequalities 1181

then /(s) ≤ /(2) for all s ≥ 2, where / is defined in (22). For the sake of clarity,
we shall be fairly lavish with choosing constants. Since C1 ≥ 1, the above assumes in
particular that δ ≤ 10−38. With this in mind, we note the following consequences of
Lemmas 12 and 14 respectively: for s ≥ 2,

|/(s) − /0(s)| ≤ 211/4

3(
s3/4

(
δ(δ + 2)

)1/4(C2
0 + 1

)3/4
< 2s3/4δ1/4C3/2

1 (34)

and similarly

|/′(s) − /′
0(s)| < s−1/4δ1/4C3/2

1 + 2.1 · s1/2δ1/7C9/7
1 . (35)

We also remark that ‖X‖3 ≥ ‖X‖2 ≥ ‖ξ‖2 − ‖X − ξ‖2 = 1 − δ ≥ 1 − 10−38.
We break the argument into several regimes for the parameter s.

Large s. With hindsight, we set

s0 = max
{
106(E|X |3)2, 2 logC1

}
(36)

In particular, s0 ≥ 105. Using Lemma 13, that is

/(s) ≤
√

6
(

(
(1 − δ

√
3)2 − θE|X |3

)−1/2

+
√

6
(
exp

{
−s

(
θ2

6
− 26δ(δ + 2)

)}

+ 2C0

(√
s + 2√

s

)
e−s = A1 + A2 + A3,

we will show that /(s) ≤ /(2) for all s ≥ s0. We take θ = 1
100E|X |3 which satisfies

the conditions of the lemma and then, for the first term A1, we use

A1 =
√

6
(

(
(1 − δ

√
3)2 − θE|X |3

)−1/2
≤
√

6
(

(
1 − 0.01

)−1/2
<

√
2 − 1

50
.

Thanks to (34), we also have

√
2 = /0(2) ≤ /(2)+ 27/4δ1/4C3/2

1 = /(2)+ A4,

so it suffices to show that each of the second and third terms A2, A3 as well as this
additional error A4 do not exceed 1

150 . Using δ < 10−38C−9
1 , we get

A4 ≤ 27/4 · 10−19/2C−3/4
1 <

1
150

.

For the exponent in the second term A2, observe that

26δ(δ + 2) < 53δ < 53 · 10−38C−9
1 (E|X |3)−6 ≤ 10−36(E|X |3)−2,
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1182 A. Eskenazis et al.

and, consequently,

θ2

6
− 26δ(δ + 2) ≥ 1

6 · 104(E|X |3)2 − 1
1036(E|X |3)2 ≥ 1

105(E|X |3)2 .

Thus, using s ≥ s0 ≥ 106(E|X |3)2, we get

A2 ≤
√

6
(
exp

{
− s0
105(E|X |3)2

}
≤
√

6
(
exp{−10} < 1

150
.

Finally, for the third term, since s ≥ s0 ≥ 105,

(√
s + 2√

s

)
e−s ≤ (

√
s + 1)e−s ≤ e

√
s−s ≤ 1

300
e−s/2,

therefore, since s ≥ s0 ≥ 2 logC1,

A3 ≤ 2C1

(√
s + 2√

s

)
e−s ≤ C1

150
e−s/2 ≤ 1

150
.

Moderate s. We now assume that 2.01 ≤ s ≤ s0. Using (34) twice and Lemma 16,

/(s) ≤ /0(s)+ 2s3/40 δ1/4C3/2
1 ≤ /0(2) − 2 · 10−4 + 2s3/40 δ1/4C3/2

1

≤ /(2) − 2 · 10−4 + 2 · 23/4δ1/4C3/2
1 + 2s3/40 δ1/4C3/2

1

≤ /(2) − 2 · 10−4 + 3s3/40 δ1/4C3/2
1 .

Inserting the bound on δ,

3s3/40 δ1/4C3/2
1 ≤ 3 · 10−19/2C−3/4

1 s3/40 ·min
{
(E|X |3)−3/2, 1

}

If s0 = 106(E|X |3)2, then using the (E|X |3)−3/2 term in theminimum andC−3/4
1 ≤ 1,

we get the above bounded by 3·10−19/2+9/2 = 3·10−5. If s0 = 2 logC1, then using the
other term in the minimum, we get the bound by 3 · 23/410−19/2C−3/4

1 (logC1)
3/4 <

3(2/e)3/410−19/2 < 10−4 since u−1 log u ≤ e−1 for u > 1. In either case, we get the
conclusion /(s) ≤ /(2).
Small s. We finally assume that 2 ≤ s ≤ 2.01. To argue that /(s) ≤ /(2), we will
show that /′(s) < 0. By virtue of (35) and Lemma 15,

/′(s) ≤ /′
0(s)+ s−1/4δ1/4C3/2

1 + 2.1 · s1/2δ1/7C9/7
1

< −0.02+ (δC6
1)

1/4 + 3
(
δC9

1
)1/7

.

Since δC6
1 ≤ δC9

1 ≤ 10−38, this is clearly negative and the proof is complete. !
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5 Concluding remarks

Remark 1 Assumption (3) seems natural: plainly, there are distributions which are not
close to the Rademacher one, for which the unit vector attaining inf E|∑ a j X j | is
different than a = ( 1√

2
, 1√

2
, 0, . . . , 0), for instance it is a = (1, 0, . . . , 0) for Gaussian

mixtures (see [1, 10]), or for the Rademacher distribution with a large atom at 0 (see
Theorem 4 and Remark 14 in [16]).

Remark 2 Handling the complementary case ‖a‖∞ > 1√
2
which is not covered by

Theorems 1 and 2 is a different story. The trivial convexity argument presented in the
introduction works in fact only for the Rademacher case, as it requires 1√

2
E|X1| ≥

E
∣∣∣ X1+X2√

2

∣∣∣, and only for the L1-norm (see Remark 21 in [6]). To circumvent this,
several different approaches have been used: Haagerup’s ad hoc approximation (see
§3 in [14]), Nazarov and Podkorytov’s induction with a strengthened hypothesis (see
Ch. II, Step 5 in [31]) which has also been adapted to other distributions (see [5,
6, 8]), and very recently a different inductive scheme near the extremiser (without
a strengthening) needed in a geometric context (see [12]). None of these techniques
appears amenable to the broad setting of general distributions that is treated in this
paper.

Remark 3 De, Diakonikolas and Servedio obtained in [9] a stable version of Szarek’s
inequality (1) with respect to the unit vector a, namely

E

∣∣∣∣∣∣

n∑

j=1

a jε j

∣∣∣∣∣∣
≥ E

∣∣∣∣
ε1 + ε2√

2

∣∣∣∣+ κ
√

δ(a) (37)

for a universal positive constant κ , where the deficit is given by δ(a) = |a −
( 1√

2
, 1√

2
, 0, . . . , 0)|2, assuming that a1 ≥ a2 ≥ · · · ≥ an ≥ 0. Note that in the

setting of Theorem 1, we have

∣∣∣∣∣∣
E

∣∣∣∣∣∣

n∑

j=1

a j X j

∣∣∣∣∣∣
− E

∣∣∣∣∣∣

n∑

j=1

a jε j

∣∣∣∣∣∣

∣∣∣∣∣∣
≤ δ0,

by a simple application of the triangle inequality and ‖ · ‖1 ≤ ‖ · ‖2. Thus, applying
this (twice) and the bound (37) of De Diakonikolas and Servedio, we conclude that
Theorem 1 also holds for unit vectors a with δ(a) ≥ (2δ0/κ)2. The same will apply to
Theorem 2 with the aid of Theorem 1.2 from [7], a strengthening of Ball’s inequality
(2) (see also [27]). See [12] for numerical values of the constants κ .

Remark 4 We have used the W2-distance in Theorems 1 and 2 for concreteness and
convenience. Of course, for every p ≥ 1, if we use theWp-distance in (3) and assume
that X1 is in L p

p−1
, then the proofs of Lemmas 5 and 11 go through with the Cauchy–

Schwarz inequality replaced by Hölder’s inequality and the rest of the proof remains
unchanged. It might be of interest to examine weaker distances in such statements.
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1184 A. Eskenazis et al.

Remark 5 Szarek’s sharp L1 − L2 inequality (1) was extended to sharp L p − L2
bounds for all p > 0 by Haagerup in [14], using Fourier-integral representations of
|x |p. It therefore seems plausible that our techniques allow to extend Theorem 1 to
sharp bounds on L p norms, but additional (nontrivial and technical) work is needed to
treat the analogues of the special function)0, (13), relevant to Haagerup’s L p bounds.
Similarly, the main result from [6] which extends (2) to sharp L p − L2 bounds for all
−1 < p < 0 could be a starting point for extensions of Theorem 2 to L p norms with
−1 < p < 0.
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