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ract

ally miscible bubbles (e.g., CO2) trapped inside a porous medium and surrounded by a wetting p

water) occur in a number of applications including underground hydrogen storage, geologic ca

stration, and the operation of electrochemcial devices such as fuel cells and electrolyzers. Such bub

e due to a process called Ostwald ripening that is driven by differences in their interfacial curvature

ical bubbles, small bubbles shrink and vanish while feeding into larger ones, resulting in one large bu

uilibrium. Within the confinement of a porous medium, however, bubbles can attain a distributio

at equilibrium that have identical curvature. This work concerns itself with the formulation of a ki

y that predicts the statistical evolution of bubble states, defined as the sizes of the pores within w

les are trapped and the extent to which those pores are saturated with bubbles. The theory consis

ulation balance equation and appropriate closure approximations. Systematic comparisons again

ously published pore network model (PNM) are conducted to validate the theory. Our theory genera

ng variants in the literature limited to spherical bubbles trapped in homogeneous media to non-sphe

rmed) bubbles inside microstructures with arbitrary heterogeneity and spatial correlation in pore/th

We discuss the applicability, limitations, and implications of the theory towards future extension

ords: Porous media; Ostwald ripening; Bubbles; Pore scale; Pore network; Kinetic theory

troduction

hen partially miscible bubbles nucleate or become trapped inside a porous medium, due to fluid-

cements for example, they dissolve into the surrounding wetting phase and exchange mass with

by a process called Ostwald ripening [1]. If the wetting phase is quiescent with uniform pressu

ed here, ripening is driven by differences in the interfacial curvature κ between bubbles, which s

cal equilibrium concentration of the dissolved species in the wetting phase immediately adjacent to

le. The higher a bubble’s curvature, thus pressure, the larger its adjacent concentration. Such differe

vature induce concentration gradients that drive Fickian diffusion through the wetting phase. The r

growth of some bubbles at the expense of others that shrink or dissolve completely. The implica

many subsurface and manufacturing applications from underground hydrogen storage [2], geologic
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stration [3], to the optimal design of fuel cells [4] and electrolyzers [5], where the occurrence of bub

its the storage capacity and hydraulic conductivity of the porous rock (during shut-in periods) or de

a bulk fluid, bubbles are always spherical in shape, and ripening leads to their gradual coarsening un

large bubble remains [6]. This is because curvature, κ, is a monotonically decreasing function of bu

e, V b. Hence, the smaller a bubble gets, the faster it dissolves into the surrounding fluid and vice v

ntrast, in a porous medium, bubbles can deform due to the geometric confinement imposed by the

. This renders the relationship between κ and V b non-monotonic [7, 8], and thereby promotes

ence of equilibrium states where large and small bubbles coexist with equal curvature [9, 10]. Re

etical work by the authors [11] has shown that the probability density function (PDF) of bubble

b) at equilibrium can be determined from its initial condition and the distribution of pore sizes in

s medium. This theory was later extended from the ripening of single-component bubbles to th

-component bubbles [2]. What this theory cannot predict is the timescale over which ripening oc

he evolution of the bubble-size PDF in time. This is precisely the subject we shall study herein.

r bubbles in a bulk fluid, the celebrated Lifshitz–Slyozov–Wagner (LSW) theory [12, 13] describes

istribution function of bubble radii, g(Rb), evolves in time during an asymptotic (self-similar) reg

lished after sufficient time has elapsed from the start of ripening. The quantity g(Rb) dRb is the num

bbles with radii between Rb and Rb + dRb. The theory consists of the population balance equatio

∂g

∂t
+

∂

∂Rb
(guR) = 0

where uR is the velocity in the statistical space of Rb. The latter is computed via:

uR =
dRb

dt
∝ σ

Rb
(
1

Rb
c

− 1

Rb
)

e σ is the surface tension and we have omitted the proportionality constant for clarity. The Rb
c den

ical radius, above which bubbles grow and below which bubbles shrink. A useful conceptual pic

t each bubble of radius Rb interacts with a mean field, whose equivalent bubble radius is Rb
c. N

urvature of spherical bubbles satisfies κ = 2/Rb (thus κc = 2/Rb
c) by the Young-Laplace equa

sing conservation of mass, contained in bubbles and the dissolved species, as a constraint on Eq.2 y

pression for Rb
c, which closes the theory. LSW derived an analytical expression for g and Rb

c u

milarity arguments, assuming g(Rb) = (Rb
c)

−4f(Rb/Rb
c) for some f(·), in the asymptotic regime [6

r bubbles in a porous medium, the LSW theory was generalized by Yu et al. [14] with the key limita

ubbles be spherical and the porous medium be homogeneous. The main modification to LSW occu

expression for uR in Eq.2, which was expressed as follows:

dV b

dt
∝ At

Lt
(κc − κ)

Lt and At are, respectively, the length and cross-sectional area of throats (or pipes) that connect p

xes) in a graph-based representation of the porous medium called a pore network. Given V b=4π(Rb

/Rb, and κc = 2/Rb
c hold for spherical bubbles, the main difference between Eqs.3 and 2 is that
2
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ultiplier 1/Rb is replaced with the bubble-size independent quantity At/Lt. In other words, the po

m imposes a fixed structure upon the spatial arrangement of bubbles, but does not cause deforma

ir shape. Following steps similar to LSW, Yu et al. [14] derived a self-similar solution for g.

this work, we propose a theory that generalizes that of [14] to porous materials with arbitrary

neity and spatial correlation in pore/throat sizes and to non-spherical bubble shapes deformed by

etric confinement of the void space. The main idea is to define g in terms of two coordinates in a sta

ase space, instead of just one (i.e., Rb). The first is the pore size, Rp, within which a bubble is confi

he second is the fraction of the pore’s volume, Vp, occupied by the bubble. The latter equals Sb=V

s referred to as the bubble saturation. The two coordinates define the state of each bubble as the

b, Rp). The population balance Eq.1 is then solved numerically on this 2D phase space, with the s

ity uR replaced by a vector us. Closure is achieved by writing an expression for us similar to Eq.3

se this step requires certain approximations (to be discussed), we present two variants of our th

heory-C, where spatial correlations in bubble states (thus pore sizes) are honored; and (2) Theor

such correlations are neglected. We validate Theory-C and -U systematically against an existing

rk model (PNM) [11] and show both perform well in uncorrelated microstructures but only Theo

rms well in correlated ones. We then highlight the limitations of Theory-C and discuss direction

e research. Chief among the shortcomings are the requirements that each bubble be confined to

ore and the initial configuration of bubbles in a correlated microstructure not be overly sparse.

e note that recent work on Ostwald ripening of bubbles in porous media has undergone rapid dev

s that includes an increasing array of experimental observations [9, 15–17], computational modelin

s [2, 8, 10, 11, 18] and level-set methods [19–21], and theoretical formulations geared towards statis

, 22] and macroscopic [23–27] descriptions of the physics. These works provide valuable and ro

works within which the proposed theory herein can be validated and extended further in the futu

he paper’s outline is as follows: In Section 2, we describe the conceptual problem to be solved. Se

iews the PNM by [11] used here to validate Theory-C/U and provide a mathematical basis for

lation. We next present Theory-C/U in Section 4, starting with definitions and the guiding hypoth

ed by the governing equations and closure approximations. Section 5 outlines the problem set ch

lidate the two theories against the PNM in Section 6. Lastly, we discuss the applicability, limitat

mplications of Theory-C/U in Section 7 and conclude with a summary of key takeaways in Section

roblem description

e conceptualize a porous microstructure with a network (or graph) of interconnected pores linked

wer channels called throats, as shown in Fig.1. The dimensions of both may be spatially heterogen

r correlated. All pores and throats are filled with a continuous, but stagnant (non-flowing), we

(e.g., water). Some pores are occupied by a single-component, perfectly non-wetting (contact a

o), and incompressible bubble or droplet (e.g., scCO2). The placement of bubbles is often determ
3
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id-fluid displacements that precede entrapment, such as cyclic injections in underground hydr

e [28]. We assume, for the sake of simplicity, that each bubble occupies no more than one pore

les are partially miscible in the wetting phase and in local equilibrium with the solution adjacen

interface. Since bubbles have different sizes, thus interfacial curvatures, they will be at equilibrium

of different concentration. The induced concentration gradient drives molecular diffusion and the

exchange between bubbles, a process known as Ostwald ripening. Our goal is formulate a theory

cts the evolution kinetics of an initial bubble population in a statistical sense. Concretely, we ai

ify how the joint distribution of bubble sizes and occupied pores evolves in time. This allows estima

mescale of ripening and its final equilibrium state. Existing theories are limited to predicting eithe

ics for spherical bubbles inside homogeneous media [14] or equilibrium states alone (no kinetics) [2

Section 3, we first review the pore-network model (PNM) by Mehmani & Xu [11] that simulates Ost

ing of bubbles within arbitrary pore networks under the assumptions stated above. The PNM’s gover

ions provide a basis to formulate the theory in Section 4 and validate it in Section 6. The theory, th

numerically, achieves orders of magnitude (×103−4) of speedup in computational cost compared t

and allows for the effective parameterization of upscaled (or Darcy) models [27]. Finally, while

NM and the proposed theory apply to networks with arbitrary geometric and topological comple

ulations herein are conducted on 2D lattice networks comprised of 3D pore/throat shapes.

1: Conceptualization of a porous microstructure by a computational graph or pore network, consisting of local geom

ements called pores linked via geometric bottlenecks called throats. The pores and throats are filled with a conti

agnant (non-flowing) wetting phase (e.g., H2O), with some pores also occupied by a partially miscible and perfectly

g (contact angle of 180o) bubble (e.g., scCO2). The bubbles dissolve and exchange mass through Ostwald ripening
4
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ore network model (PNM)

onsider a partially miscible bubble occupying pore i in a pore network, that is connected to zi neighbo

. The conservation of mass for such a bubble can be written as follows [2, 11]:

dni

dt
=

zi∑

j=1

Jij =

zi∑

j=1

DmAij

vwLij
(xj − xi)

ni is the bubble’s number of moles,1 Jij the diffusive flowrate between pores i and j, Dm the mole

ion coefficient of the dissolved species, vw the molar volume of the bulk wetting phase, and xi an

ncentrations of the dissolved species in units of mole fraction in pores i and j. The Aij and Lij de

ross-sectional area and length of throat ij connecting pores i and j, respectively. Eq.4 embeds F

hich assumes that dissolved concentrations are dilute. Since bubbles are assumed incompressib

n 2, they have constant molar volume vb. Thus, the accumulation term in Eq.4 can be expressed

1

vb

dV b
i

dt
=

zi∑

j=1

DmAij

vwLij
(xj − xi)

V b
i is the volume of the bubble in pore i.

close Eq.5, and to be able to solve it in terms of solute concentrations as the primary unknown

two constitutive equations that relate V b
i to xi. The first is the expression of thermodynamic equilib

en the dissolved concentration xi and the interfacial curvature κi of the bubble in pore i [23]:

ln
xi

xo
=

σκivb
RT

.6, xo is a reference taken to be the equilibrium concentration for a flat interface. The parameters σ

denote interfacial tension, universal gas constant, and temperature, respectively (all constants h

he second constitutive equation we need expresses the dependence between κi and V b
i , dictated

le’s size and geometric deformation of its shape due to confinement, as shown in Fig.2. This depend

-monotonic and exhibits a characteristic U-shape [7, 9] captured by the following equation:

κi = κi(V
b
i , Vp,i) =





κmin
i

(
Vc,i

V b
i

) 1
3

if V b
i < Vc,i

κmin
i

(
1 + a

V b
i − Vc,i

Vp,i − Vc,i
+ b

V b
i − Vc,i

Vp,i − V b
i

)
if V b

i ≥ Vc,i

was proposed by [8] for (“semi-”)cubic pores with a side-half length of Rp,i. Such a pore has a volum

(2Rp,i)
3 and a maximally inscribed sphere of radius Rp,i and volume Vc,i=4πR3

p,i/3. The κ
min
i =2/

es the curvature of the inscribed sphere, and a and b are empirical parameters (here a=1 and b=0

e Eq.7 consists of two branches. If V b
i <Vc,i, the bubble is spherical and does not touch the pore’s w

e PNM actually treats ni as the total number of moles in pore i, accounting for the amount in the bubble plus

ed in the wetting phase. We have omitted the dissolved contribution from the presentation here merely to simplif

ation of our theory later, and because its magnitude is relatively small. See also the discussion in Section 6.4 of [11
5
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2: Schematic of the characteristic U-shaped dependence between a bubble’s interfacial curvature, κ, and it volume

confined within a pore. Curves for two pore sizes are plotted via Eq.7. Each consists of a sub- and a super-critical br

ted by the critical volume, Vc (yellow dots). The sub-critical branches overlap, as they correspond to spherical bu

show that bubbles on the super-critical branch are deformed to different degrees in small (red) and large (black) p

as if V b
i >Vc,i, the bubble is non-spherical and is deformed by the pore geometry (see Fig.2). We

i
as the pore’s critical volume, and denote any bubble that satisfies V b

i <Vc,i as being sub-critical

ubble satisfying V b
i >Vc,i as super-critical. We also note that in single-component ripening, sub-cr

les are unstable because a small reduction in their size increases their capillary pressure, and wit

dissolution rate. This means that if one of two identical bubbles is perturbed in size, the syste

ed out of equilibrium and the smaller bubble disappears. By contrast, super-critical bubbles are s

ay equilibrate with other bubbles that have different shapes and sizes [7, 10], i.e., small perturba

uilibrated bubble sizes attenuate instead of amplifying. Fig.2 shows that the curvature κi of a su

al bubble depends not only on its volume V b
i but also on the confining pore’s size Vp,i (or equival

Coupling Eq.5 with Eqs.6-7 yields a nonlinear system of equations in terms of the pore concentra

hich we solve with a modified Newton scheme detailed in [11]. The solver is equipped with ada

stepping capabilities to capture rapid early-time and slow late-time dynamics of ripening. If p

not contain a bubble, the left-hand side of Eq.5 simplifies to (Vpi
/vw)dxi/dt, obtained from dnw

i /dt

xiVpi
/vw where nw

i is the number of dissolved moles in pore i. As a result, Eqs.6-7 are no longer nee

tension of the above PNM to multi-component, compressible gas bubbles was proposed in [2].

ipening theory

efinitions and guiding hypotheses

e formulate a theory that predicts the temporal evolution in the statistics of an initial bubble popula

ed inside a porous medium with arbitrary pore-size distribution (PSD) and spatial correlation.
6
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3: (Left) Spatial representation of bubbles with different volumes V b trapped inside a pore network with pore size

) Statistical representation of the bubbles in a phase space defined by Sb- and Rp-axes. Bubbles in this phase spa

ed by their state, s=(Sb, Rp), and their number is quantified by the distribution function g(s; t) (shaded area). Th

ution functions plotted along the bottom and right borders (pink) represent the marginal distributions of g(s; t).

sizes and color codes used for pores in the left panel are mapped and honored in the panel to the right. Notice one

s coincides with the maximally inscribed sphere in its yellow-colored pore, and thus has critical saturation Sc=Vc/

tion is driven entirely by Ostwald ripening. Specifically, and with reference to the left panel of Fig.3

er a pore network that has different pore sizes, Rp, containing an initial distribution of bubble volu

ince ripening is driven by gradients in bubble curvature, and curvature depends on V b and Rp thr

we define a bubble’s state as the point s=(V b, Rp) in a 2D statistical phase space with V b- and Rp-

alently, and to simplify later analysis, we denote bubble states via s=(Sb, Rp), where S
b=V b/Vp i

ied pore’s bubble saturation (recall Vp=8R3
p). The right panel of Fig.3 shows the phase space in t

Sb- and Rp-axes. We now introduce g(Sb, Rp; t) as the distribution function of bubbles defined

hase space, such that the quantity g(Sb, Rp; t) dS
bdRp denotes the number of bubbles residing in p

ave sizes between Rp and Rp + dRp and filled to saturations between Sb and Sb + dSb at time t.

s to compute g(Sb, Rp; t) at all t using information available only at t=0, including g(Sb, Rp; 0) and

l statistics of pore occupancy. For brevity, we shall refer to the foregoing joint distribution functio

, where the semicolon emphasizes that t is a parameter, not a random variable.

y replacing the spatial evolution problem of bubbles (left in Fig.3) with their statistical evolution (

.3), we circumvent the need for tracking individual bubbles as is done in the PNM. Instead, we t

le states shared among many bubbles, leading to dramatic speedup and upscaling. Specifically, the

oretical calculations does not depend on the domain size and number of bubbles in it, unlike PNM.

ss in formulating such an ensemble description hinges upon two guiding hypotheses: (1) the net
7
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ciently large for spatial and ensemble statistics to have converged; and (2) bubbles in state s int

a mean field, that in turn dictates how g(s; t) should evolve. This mean field is defined in the follo

ns. First, we propose a population balance equation for g(s; t) in Section 4.2 that is advected in p

via the velocity us. We then derive an explicit expression for us in Section 4.3. The proposed th

alizes the LSW theory for bubbles in bulk fluids [12, 13], and that of [14] for sub-critical bubbl

geneous porous media, to arbitrarily shaped bubbles in heterogeneous and correlated porous medi

opulation balance equation

t Ω(t) represent a closed region in the interior of the phase space in Fig.3. The integral of g(s; t)

enotes the number (not probability or fraction) of bubbles that have states within Ω. As bubbles ev

o Ostwald ripening, so does Ω(t), provided we keep track of the bubbles contained in it. So long as

ns within the interior of the phase space, and does not intersect the Sb=0 axis, the integral of g

(t) is a conserved quantity and, therefore, the Reynolds transport theorem yields:

d

dt

∫

Ω(t)

g(s, t) dΩ = 0 ⇒ ∂g

∂t
+∇ · (gus) =

∂g

∂t
+

∂

∂Sb
(guSb) +

∂

∂Rp
(guRp

) = 0

e us=(uSb , uRp
) is the velocity with which bubbles in state s move through the phase space. Not

al of g(s; t) over the whole phase space (i.e., number of all bubbles) is not conserved, because bub

anish during ripening by dissolving completely. When a bubble is in the process of vanishing, its vol

saturation, undergoes Sb → 0. Hence, if such a bubble is within Ω(t), the boundary of Ω(t) inter

b=0 axis. This is why Eq.8 holds strictly in the interior (not axes) of the phase space. We call

pulation balance equation and solve it numerically on a Cartesian grid that discretizes the phase sp

he state velocity us has two components uSb = dSb/dt and uRp
= dRp/dt. Given our assumptio

n 2 that bubbles are confined to only one pore each, and our further postulate here that bubbles do

go hydrodynamic mobilization during ripening, uRp
=0 must hold. These assumptions are consi

our PNM. That said, in many systems, bubbles do span multiple pores and can indeed mobilize bet

[8]. However, we defer these complexities to future extensions of the theory in the interest of kee

cope focused. With the uRp
= 0 simplification, Eq.8 decouples into a series of 1D equations for

Rp. Since Eq.8 is hyperbolic, we use a first-order upwind scheme with respect to uSb to discretiz

Eq.8 is also first-order, we only need one boundary condition (BC). In Section 2, we assumed

les span only one pore, so no bubbles can enter or exit the domain close to the Sb=1 boundary o

space. Due to the specific form of Eq.7 chosen, which possesses a vertical asymptote at Sb =1

), we are guaranteed (as seen later) that the horizontal component of the phase velocity points left

ifically uSb →−∞ as Sb→1). The implication is that to enforce a no-flux BC, it suffices to impose g

→1. The Sb=0 boundary of the phase space is open to outflux of g, as bubbles can vanish, so no

ded. We next turn our attention to deriving an expression for us=(uSb , 0), or equivalently dSb/d
8
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ean-field approximation

ere, we formulate an expression for dSb
s/dt, which determines the advective velocity us = (dSb

s/d

e distribution function g(s; t) in phase space (Fig.3). The subscript s in dSb
s/dt specifies the vel

gs to state s. We begin by reformulating Eq.5 of the PNM, and assume for the time being that a

boring pores are occupied by a bubble. We shall revisit and remove this latter assumption in a Rem

at the end of this section. Since xi/xo≈1 holds in practice [13], Eq.6 can be linearized as:

xi ≈ xo(1 +
σκivb
RT

)

, substituting Eq.9 for xi and xj into Eq.5, and using Sb
i =V b

i /Vp,i, we obtain:

dSb
i

dt
=

1

Vp,i

zi∑

j=1

v2bDmσxo

vwRT

Aij

Lij
(κj − κi) =

C

Vp,i

zi∑

j=1

Aij

Lij
(κj − κi)

C=(v2bDmσxo)/(vwRT ) is a constant.

ow let Is denote the index set of all bubbles with state s. Namely, bubbles in Is reside in pores that

Rp,s and filled to a saturation Sb
s. If ns is the number of members in Is, we define the state averag

(·)s =
1

ns

∑

i∈Is

(·)i

ating Eq.11 on both sides of Eq.10, and noticing Sb
i =Sb

s, κi=κs, and Vp,i=Vp,s ∀i∈ Is, we get:

dSb
s

dt
=

C

Vp,sns

∑

i∈Is

zi∑

j=1

Aij

Lij
(κj − κs)

ake further progress, we must express the right-hand side of Eq.12 in terms of the neighboring bu

s′, not pores j. This requires the introduction of a conditional probability p(s′|s; t), which quan

kelihood that a bubble in an adjacent pore is in state s′ given the current bubble is in state s. More

ge, or mean-field, properties must be assigned to bubbles and throats in each state. These includ

and Lss′ , denoting the average number of bubbles adjacent to a bubble in state s, and the cross-sect

and length of a throat connecting bubbles in states s and s′, respectively. With these probabi

tions in place, we can now write the following identity:

1

ns

∑

i∈Is

zi∑

j=1

Aij

Lij
(κj − κs) = zs

∫

s′
p(s′|s; t)Ass′

Lss′
(κs′ − κs) dΩ

the integral runs over all neighboring states s′ in phase space.

bstituting Eq.13 into Eq.12, followed by some algebraic manipulation, yields our final expression:

dSb
s

dt
=

Czs
Vp,s

(
A

L

)

s

(κc
s − κs) (

κc
s =

(
A

L

)−1

s

∫

s′
p(s′|s; t)Ass′

Lss′
κs′ dΩ ,

(
A

L

)

s

=

∫

s′
p(s′|s; t)Ass′

Lss′
dΩ (
9
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e Eq.14a is similar to the LSW relations in Eqs.2-3, except that it accounts for the spatial heteroge

orrelation induced by a confining pore space. Specifically, the conditional probability p(s′|s; t) is

bubbles in states s and s′ are proximate neighbors, but low otherwise. This is the case if pores

Rp and R′
p are physically connected to each other via throats; recall s=(Sb, Rp) and s′=(S′b, R′

p

a, kcs is the mean-field curvature with which all bubbles in state s exchange mass. Notice bubbl

state interact with a different mean field or kcs. Eq.14 is the most general form of our theory, prov

ught-after us=(dSb
s/dt, 0) for the population balance Eq.8. But unfortunately, Eq.14 is also the

ersome form as its numerical solution requires p(s′|s; t), a 4D array that must be stored and upd

; t) evolves. These tasks can be memory intensive and difficult to ensure computational tractabili

e therefore introduce two approximations to Eq.14 in the next sections, which lead to two simp

ts of our theory: Theory-C and Theory-U, where suffixes C and U stand for “correlated”

rrelated.” Theory-C accounts for spatial correlations, like Eq.14, but reduces the 4D array p(s′

e 2D array p(R′
p|Rp; t). Theory-U goes one step further and ignores all spatial correlations altoge

ing in the replacement of p(R′
p|Rp; t) with the 1D probability density function (PDF) p(R′

p; t).

ark. In deriving Eq.14a from Eq.12, we assumed the coordination number zs (or zi) repre

umber of bubble-occupied pores connected to bubble s (or pore i). This poses a problem because

boring pores of a bubble are empty, its saturation will cease to evolve (i.e., dSb
s/dt=0). But this ca

ven bubble s can still exchange mass with distant bubbles two or more pores away. The rigorous w

ss the shortcoming would be to account for such high-order interactions via p(s′|s; t), but this is ra
lt as discussed in Section 7 and beyond our scope. A partial remedy adopted here is to reinterpr

e coordination number of the pore network, i.e., the number of neighboring pores connected to bu

spective of whether they contain a bubble. This ensures bubble s continues to exchange mass with

field through all of its throats, as long as at least one of its neighboring pores remains occupied.

heory-C: preserving spatial correlations

e begin formulating Theory-C by simplifying the joint probability p(s′|s; t) as follows:

(s′|s; t) ≈ p(s′|Rp; t) = p(S′b, R′
p|Rp; t) = p(R′

p|Rp; t) p(S
′b|R′

p, Rp; t) ≈ p(R′
p|Rp; t) p(S

′b|R′
p; t)

we have assumed p(s′|s; t) ≈ p(s′|Rp; t) and p(S′b|R′
p, Rp; t) ≈ p(S′b|R′

p; t). The first approxima

s that a neighboring bubble’s state s′ depends chiefly on the current bubble’s pore size and not so m

e size of the current bubble itself. In other words, spatial correlations are assumed to arise mainly

ructure of the pore network, rather than from differences in bubble saturation. While artificial cou

ples violating this assumption can be easily conjured, in practice, the initial configuration of bubbl

ous medium is determined by trapping processes that follow fluid displacements and precede ripe

trappings are heavily influenced by the pore-network structure. The second approximation has a pa
10
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ing, namely, the probability of finding a bubble with saturation (or volume) S′b is controlled mor

ze of its confining pore R′
p and less by the size of its neighboring pore Rp.

addition to Eq.15, we postulate the following identities:

Ass′ ≈ ARpR′
p
, Lss′ ≈ LRpR′

p
, zs ≈ zRp

are reasonable because the cross-sectional area and length of a throat depend less on the volu

turations) of the two bubbles straddling it, and more on the sizes of the pores linked by the th

arly, the coordination number of a bubble at state s is dictated mainly by the size of the pore confinin

ss by the size of the bubble itself. Notice ARpR′
p
and LRpR′

p
represent statistical averages, because

fixing Rp and R′
p, the areas and lengths of the throats connecting such pore sizes exhibit distribut

ise, zRp is an ensemble average because fixing Rp does not guarantee a fixed coordination number

rmed with Eqs.15 and 16, we can now simplify Eq.14 as follows:

dSb
s

dt
=

CzRp

Vp,s

(
A

L

)

s

(κc
s − κs) (

κc
s =

(
A

L

)−1

s

∫

R′
p

p(R′
p|Rp; t)

ARpR′
p

LRpR′
p

κ̄R′
p
dR′

p ,

(
A

L

)

s

=

∫

R′
p

p(R′
p|Rp; t)

ARpR′
p

LRpR′
p

dR′
p (

κ̄R′
p
=

∫

S′b
p(S′b|R′

p; t)κs′dS
′b , p(S′b|R′

p; t) = g(S′b|R′
p; t)

(∫

S′b
g(S′b|R′

p; t)dS
′b
)−1

(

etailed derivations of Eqs.17b-c are given in Appendix A. Notice κ̄R′
p
is the average curvatu

les that occupy pores with size R′
p, which depends on p(S′b|R′

p; t). The latter is computed from g

e right expression in Eq.17c. The conditional probability p(R′
p|Rp; t) poses some challenges. For a g

network occupied by bubbles at t=0, we can easily calculate p(R′
p|Rp; 0) from the spatial informa

ded. But as bubbles evolve into later times, such spatial statistics is no longer available in our th

se only g(s; t) is solved by the population balance Eq.8. Yet, we must update p(R′
p|Rp; t), as it cap

l correlations in the bubble-occupied portion of the network, which is time dependent.

Appendix B, we show that if p(R′
p|Rp; 0) is known, p(R

′
p|Rp; t) can be readily computed via:

(R′
p|Rp; t) =

fR′
p
p(R′

p|Rp; 0)∫
R′

p
fR′

p
p(R′

p|Rp; 0) dR′
p

, fR′
p
=

g(R′
p; t)

g(R′
p; 0)

, g(R′
p; t) =

∫

S′b
g(S′b, R′

p; t)dS
′b

actice, p(R′
p|Rp; t) and g(Sb, Rp; t) are stored as matrices in computer memory and updated at

step that the population balance Eq.8 is evolved. In this format, Eq.18 is equivalent to performi

of row/column-scalings of the p(R′
p|Rp; t) matrix, and row/column-sums of the g(Sb, Rp; t) matri

summarize, Theory-C consists of computing dSb
s/dt via Eq.17a, where κ

c
s and (A/L)s are approxim

qs.17b-c and 18. First, p(R′
p|Rp; 0) is calculated from the spatial distribution of bubbles at t=0, w

umed to be known, and ARpR′
p
, LRpR′

p
, and zRp

are obtained from the spatial statistics of the net

At any later time t, as the population balance Eq.8 has been evolved to yield g(s; t), Eq.18 is use

ute p(R′
p|Rp; t). Substituting the latter into Eq.17 allows updating the phase velocity us=(dSb

s/d
11
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s in phase space. Finally, by inserting us back into Eq.8, we can evolve g(s; t) to the next time

that the evolutions of g(s; t) and p(R′
p|Rp; t) in time impact both (A/L)s and κc

s in Eq.17a.

heory-U: neglecting spatial correlations

heory-C requires the storage of matrices for p(R′
p|Rp; t) and ARpR′

p
/LRpR′

p
, with the former update

through time. Theory-U simplifies the formulation by reducing these quantities into 1D vectors.

ng point is the assumption that all spatial correlations can be neglected, leading to:

p(R′
p|Rp; t) ≈ p(R′

p; t)

over, the following approximation is introduced:

ARpR′
p

LRpR′
p

≈
(
A

L

)

Rp

:=

∫

R′
p

p(R′
p; 0)

ARpR′
p

LRpR′
p

dR′
p ≈

(
A

L

)

s

the second equality is a definition that assigns to each pore size Rp an average value (A/L)Rp .

iven Eqs.19 and 20, we can now simplify κc
s in Eq.17 as follows:

κc
s =

∫

R′
p

p(R′
p; t) κ̄R′

p
dR′

p =

∫

s′
p(s′; t)κs′ dΩ := κc

e κc
s does not depend on the bubble state s, hence we have renamed it to κc. This means in Theor

bbles interact with a single mean field. The expression for κ̄R′
p
remains the same as Eq.17c and

ssion for dSb
s/dt is the same as Eq.17a. The second equality in Eq.21 results from substituting κ̄R′

p∫
s′ dΩ=

∫
R′

p

∫
S′b dS

′bdR′
p. The PDF p(s′; t) is equal to g(s′; t)/nb, where nb is the number of bubbl

t, defined below. Notice the mean-field curvature κc in Theory-U equals the mean curvature comp

he entire phase space; not so for κc
s in Theory-C. The nuanced part again is computing p(R′

p; t).

Appendix C, we show that if p(R′
p; 0) is known, p(R

′
p; t) can be computed via:

p(R′
p; t) =

fR′
p
p(R′

p; 0)

F
, F =

nb

n0
b

, nb =

∫

s

g(s; t) dΩ , n0
b =

∫

s

g(s; 0) dΩ

nb and n0
b are the total number of bubbles in the pore space at the current and initial times, respecti

is the fraction of the surviving bubbles at any given time during Ostwald ripening. The quantity

efined in Eq.18. In Appendix C, we show that p(R′
p; 0) can be computed from g(s; 0) via:

p(R′
p; 0) =

g(R′
p; 0)

n0
b

g(R′
p; 0) was defined in Eq.18. Note that Eq.23, and Theory-U as a whole, does not require any sp

ation about the size or occupancy of bubbles in the pore network at t=0, unlike Theory-C.

ummary of the solution procedure

ppose an initial distribution of bubbles in phase space, g(s; 0), and their corresponding spatial d

n in a pore network are given. The latter is needed only in Theory-C. We execute the following ste
12
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4: The distribution and contour lines of bubble curvatures, κs, in phase space computed via Eq.7. Dark colors corres

curvatures, where bubble saturations are near their critical values (Sc=Vc/Vp = π/6) and/or pore sizes are larger.

: (1) Compute p(R′
p|Rp; 0) from the spatial information for Theory-C and compute p(R′

p; 0) via E

heory-U; (2) Calculate κs for every point in phase space using Eq.7, a visualization of which is giv

; (3) Use these to obtain κc
s via Eq.17b for Theory-C and κc via Eq.21 for Theory-U; (4) Compute dS

q.17a for Theory-C and Theory-U (use Eqs.20-21 for the latter), then insert in us=(dSb
s/dt, 0) to

hase velocity for the population balance Eq.8; (5) Discretize Eq.8 via a 1D finite volume method sub

e BC discussed in Section 4.2, then advance by one time step to obtain g(s; t); (6) Update p(R′
p|R

(R′
p; t) via Eqs.18 and 22 for Theory-C and Theory-U, respectively; (7) Repeat from Step 3.

alidation set

e validate Theory-C and -U against PNM simulations on pore networks that have different leve

ogeneity and spatial correlation in pore sizes, and are occupied by bubbles with different spatial

tion and total initial saturation Sb
t . We use Sb

t to denote the total saturation in a network an

entiate it from Sb used to denote the saturation of a single bubble inside a pore. The PNM present

n 3 has been validated itself against microfluidic experiments [11]. With reference to Fig.5, we con

ore-network types: (1) homogeneous, with a single pore size; (2) patterned, comprised of only two

(3) heterogeneous but spatially uncorrelated pore sizes; and (4) heterogeneous and spatially corre

sizes. The patterned networks themselves divide into 4×4, 8×8, and 16×16 arrangements of small

pores as shown in Fig.5. All networks are topologically 2D lattices made of a 50×50 array of p

, the coordination number of all pores is zi=4, except for boundary pores where the value is less.

e define the heterogeneity ratio as Rhet=Rp,max/Rp,min, where Rp,max and Rp,min are the maxim

inimum pore sizes in the network, respectively. For the homogeneous network, Rhet=1. All patte

rks have Rhet=4. For the remaining heterogeneous networks, we draw Rp from a uniform distribu
13
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5: Pore networks used to validate Theory-C/U. Top row: Patterned networks comprised of two pore sizes. They dec

tial correlation from left to right. Bottom row: Networks with homogeneous, heterogeneous but spatially uncorre

terogeneous and spatially correlated pore sizes drawn from a continuous distribution. All networks are 50×50 latti

en Rp,min and Rp,max, or U(Rp,min, Rp,max), and consider Rhet=4 and 8. To create spatially corre

rks, we first generate a random Gaussian field ξ ∼ N (µ,C(h)) with mean µ=0 and covariance func

C(h) = exp

(
h

a

)

a is the correlation length and h the distance between any two pores. The field consists of an arr

m numbers, ξ, defined at the pore centers. Notice Eq.24 entails a unit variance at h=0. We then

ich can take on negative values, onto the uniform pore-size distribution U using the inverse proba

al transform method. Namely, we compute Rp=F−1
U (FN (ξ)), where FN and FU are the cummul

bution functions of N and U , respectively. We consider a = 0.1Lt and 3Lt, where Lt is the la

g (i.e., throat length). The former yields a spatially uncorrelated network, and the latter a corre

rk, both illustrated in Fig.5. When varying Rhet between 4 and 8, we keep the generated ξ field fi

nly change the distribution function U . In other words, the only difference between Rhet=4 and

d a lies in the contrast between the pore sizes, not their relative spatial arrangements.

he above cases amount to a total of 8 networks, consisting of 1 homogeneous, 3 patterned, 2 he

us uncorrelated, and 2 heterogeneous correlated. For each, we consider two initial bubble satura

0% and 60%; for the homogeneous network we also probe 7.5% to allow comparison against an exi

y [14]. Table 1 summarizes these cases and establishes a shorthand for referencing them. For hom
14
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1: Validation set used to compare Theory-C and -U against the PNM. It consists of homogeneous, patterned, heteroge

elated, and heterogeneous correlated pore networks that are filled initially with bubbles up to different total satura

scription Correlation length (a) Rhet Sb
t Name

mogeneous, very low Sb
t - 1 7.5% Ho-S08

mogeneous, low Sb
t - 1 30% Ho-S30

mogeneous, high Sb
t - 1 60% Ho-S60

tterned, 4×4 13Lt 4 60% Pt-4

tterned, 8×8 6Lt 4 60% Pt-8

tterned, 16×16 3Lt 4 60% Pt-16

w Rhet, uncorrelated, low Sb
t 0.1Lt 4 30% R4-Unc-S3

w Rhet, uncorrelated, high Sb
t 0.1Lt 4 60% R4-Unc-S6

w Rhet, correlated, low Sb
t 3Lt 4 30% R4-Cor-S3

w Rhet, correlated, high Sb
t 3Lt 4 60% R4-Cor-S6

gh Rhet, uncorrelated, low Sb
t 0.1Lt 8 30% R8-Unc-S3

gh Rhet, uncorrelated, high Sb
t 0.1Lt 8 60% R8-Unc-S6

gh Rhet, correlated, low Sb
t 3Lt 8 30% R8-Cor-S3

gh Rhet, correlated, high Sb
t 3Lt 8 60% R8-Cor-S6

mplex bubble placement, uncorrelated 0.1Lt 4 32% Cmplx-Un

mplex bubble placement, correlated 3Lt 4 32% Cmplx-Co

me as Cmplx-Unc except with variable At/Lt 0.1Lt 4 32% vAL-Unc

me as Cmplx-Cor except with variable At/Lt 3Lt 4 32% vAL-Cor

networks, we use Ho-S30, for example, to denote Sb
t =30%. For patterned networks, we use Pt-4,

t-16 to denote the 4×4, 8×8, and 16×16 patterns in Fig.5. For other heterogeneous networks, we

or-S60, for example, to denote Rhet=8, correlated pore sizes with a=3Lt, and an initial bubble

of Sb
t =60%. As another example, R4-Unc-S30 means Rhet=4, uncorrelated pore sizes with a=0

b
t =30%. Unless stated otherwise, most networks are initialized by placing a bubble in all pores

cal Sb=V b/Vp equaling the global Sb
t . Finally, we consider two additional cases denoted by Cmplx

mplx-Cor in Table 1, whose pore networks are identical to R4-Unc and R4-Cor, respectively, ex

itial placement of bubbles is much more complex (described later).

he validations in Section 6 are organized according to the horizontal groupings of the cases in Tab

increase systematically in level of complexity. First, we focus on homogeneous networks, and com

ctions from Theory-C/U against the PNM and an existing theory by Yu et al. [14]. Since the latt

for very low (sub-critical) bubble saturations, we set Sb
t =7.5%. We also probe Sb

t =30% and 60%
15
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6: PNM predictions of early- and late-time spatial distributions of bubbles due to ripening in the patterned netwo

corresponding to the Pt-4, Pt-8, and Pt-16 cases in Table 1. Bubbles are depicted by circles whose radii are propor

bubbles’ sizes. Snapshots are taken at times 10 and 100hr for Pt-4, 1 and 10hr for Pt-8, and 1 and 10hr for Pt-16

the existing theory is not valid. Next, we consider patterned networks made from two pore sizes w

l correlations increase progressively from Pt-16 to Pt-8, then Pt-4. After that, we validate Theory-

st more complex heterogeneous networks, whose pore sizes are drawn from uniform distributions

l correlations are induced via Eq.24. Next, we focus on the impact of complex initial bubble placem

n the most heterogeneous networks from the previous grouping in Table 1. In all the above cases

At/Lt for all throats (cross-sectional area over length) is kept uniform to probe the sole impact of bu

(pore size and bubble saturation) on ripening dynamics. The final grouping in Table 1 introduce

complexity of having a variable At/Lt in the networks from the prior grouping. In all validations

, no parameter tuning of any sort is performed for Theory-C or -U, i.e., all predictions are blind.

guide the discussion, Figs.6 and 7 depict early- and late-time spatial distributions of bubbles obta

NM for the Ho-S30, Pt-4, Pt-8, Pt-16, R4-Unc-S60, and R4-Cor-S60 networks in Table 1. This subs

sentative of all other cases in Table 1. For simplicity, each bubble is depicted by a circle whose radi

rtional to the bubble’s size. Notice small bubbles initially in small pores (Fig.5) shrink and event

h during ripening, with their mass transferring to bubbles in larger pores. Our goal with Theory-C/

dict the statistical distribution function g(s; t) obtained numerically from the PNM. The latter inf

what bubble sizes reside in which pores. In all cases, the constant C in Eq.10 is 3.553×10−13cc/s.
16
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7: PNM predictions of early- and late-time spatial distributions of bubbles in the homogeneous and heteroge

ks of Fig.5, i.e., Ho-S30, R4-Unc-S60, and R4-Cor-S60 in Table 1. Bubbles are depicted by circles with radii propor

ir sizes. Snapshots are at times 0.1 and 1hr for Ho-S30, 10 and 103hr for R4-Unc-S60, and 10 and 104hr for R4-Co

esults

omparison against existing theory: spherical bubbles

ere, we compare Theory-C and -U against the PNM of Section 3 and an existing theory by Yu et al.

the theory of [14] is valid when all bubbles are spherical (or sub-critical), we use the low-satura

8 network in Table 1. The network is homogeneous with a pore size of Rp =5µm, a throat leng

0µm, and a throat cross-sectional area of At=19.6µm2. To trigger the onset of ripening, as sub-cr

les are unstable, we perturb the bubble saturations in each pore by initializing them randomly bet

nd 10%. At early to moderate times, when bubbles are still spherical with radius Rb, their curva

e computed via κ=2/Rb. But at late times, some bubbles become deformed by the pore walls, h

curvatures depend on the bubble volumes according to Eq.7. To enable one-to-one comparison ag

ub-critical theory of [14], we transform super-critical bubble volumes (or saturations) obtained

NM and Theory-C/U to Rb by replacing them with a sphere of the same volume. The latter is

gh a post-processing step, not during simulations or analytical calculations. In Yu et al.’s theory,

le interacts with a mean field that is represented by a virtual bubble of radius Rb
c, called the cr

s. This is similar to the mean-field curvatures κc
s and κc in Theory-C and -U, respectively. Notice

geneous network, the distribution function g(Sb, Rp; t) depends only on Sb, and Eqs.17b and 21 sim

ld κc
s =κc. At early to moderate times, when all bubbles are spherical, Rb

c =2/κc. But at late ti
17
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8: Comparison of the evolution of the mean bubble curvature (=2/Rb
c) through time predicted by the PNM in Sect

y-C and -U in Section 4, and an existing theory by Yu et al. [14] for spherical (or sub-critical) bubbles. The latter co

dictions for “sparse” and “dense” spatial configurations of bubbles. The curves for Theory-C and -U overlap perf

rtical green line marks the first time a bubble touches its pore’s walls, after which the theory by [14] is no longer v

t Rb
c to be the harmonic mean of all volume-equivalent Rb to allow one-to-one comparison with [1

et al. showed that, except for very early times, the ripening of sub-critical bubbles reaches an asy

regime where Rb
c scales as t1/4 provided the spatial arrangement of bubbles is sparse, and as t2/

rrangement is dense.2 These apply to topologically 2D networks like the ones herein. Both sca

lotted in Fig.8 alongside PNM simulations (used as a reference) and predictions via Theory-C/U

tency with results in later sections, the y-axis in Fig.8 is expressed in terms of mean curvature or 2

e that Theory-C and -U yield identical results that are in excellent agreement with PNM. In cont

heory by [14] agrees with the PNM only during intermediate times between 0.1 and 1hr, when

ptotic regime is dominant. Moreover, only the sparse limit of Yu et al.’s theory agrees with the P

likely because many sub-critical bubbles dissolve within 0.1hr of ripening leading to large inter-bu

ces. At ∼1hr from the start of ripening, marked by the vertical green line in Fig.8, the first bu

network touches its pore’s walls. After this time, not all bubbles are spherical and the theory of

tes significantly. Theory-C/U, however, capture this super-critical ripening regime accurately.

et al. also showed that the PDF of Rb/Rb
c is stationary (or time-independent) during the asymp

ing regime. This is plotted in Fig.9 and compared against the PNM simulations at three times: 0.0

, and 1hr. We remark that, unlike Fig.8, the stationary PDF of [14] does not depend on whethe

l arrangement of bubbles is sparse or dense. We see that a good agreement between Yu et al.’s th

bubbles were gaseous satisfying the ideal gas law vb=RT/pb and Henry’s law pb=Hxo, where pb is the bubble pre

is Henry’s constant, then the constant in Eq.10 becomes C =(vbDmσ)/(vwH). This constant is used in the theo

xcept it seems to have been mistakenly multiplied by xo therein, which we have corrected in Section 6.1.
18
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9: Comparison of PDFs of normalized bubble sizes versus time predicted by the PNM in Section 3, Theory-C and

n 4, and the theory of Yu et al. [14] for sub-critical bubbles. Super-critical bubble sizes from the PNM and Theory-C

r snapshot were obtained by computing volume-equivalent sphere radii. Normalization of Rb is done against the c

Rb
c. The theory by [14] agrees with the PNM at 0.1hr, after asymptotic regime has been established and before bu

the pore walls. At 0.01hr and 1hr, agreement is poor but captured well by Theory-C and -U, which overlap one an

he PNM is observed only at 0.1hr, namely, after the asymptotic regime has been established but b

ubbles have touched their pores’ walls. By contrast, Theory-C/U are in excellent agreement with

for the entire duration of ripening. We thus conclude that Theory-C/U successfully generalize

y by [14] from spherical bubbles in the asymptotic regime, to arbitrarily shaped bubbles in all regi

omogeneous network at higher saturations: beyond existing theory

e next go beyond the theory of [14] and consider the same homogeneous network as in Section 6.1

her bubble saturations: Sb
t =30% and 60% corresponding to the Ho-S30 and Ho-S60 cases in Tab

ctively. In Ho-S30, local bubble saturations in pores (=V b/Vp) are initialized randomly between 1

and in Ho-S60 between 30%–90%. Notice for local saturations >π/6 ≈ 52% (specific to the semi-c

herein), bubbles are super-critical and non-spherical in shape. In Fig.10, we compare predictions

ry-C/U and the PNM with respect to the mean curvature κ̄, average bubble volume V̄ b, and the fra

vived bubbles F defined in Eq.22 versus time. For reasons stated in Section 6.1, Theory-C and -U

ical results within the homogeneous network, and thus only the former is depicted in Fig.10.

g.10 shows that Theory-C is in good agreement with the PNM for both low and high bubble saturat

Sb
t =30%, most bubbles are initially sub-critical but become super-critical at late times; at which

of the bubbles survive. This is similar to the ultra-low saturation (Sb
t =7.5%) case of Section 6

ted in Fig.8. Except here, the transient spike in κ̄ at very early times is more pronounced tha

. The spike is due to a rapid decrease in the sizes of many sub-critical bubbles prior to their com

ution, after which κ̄ declines steadily. The effect is stronger when bubbles are larger initially (Sb
t =

ersus 7.5% in Section 6.1) because then curvatures have a lower starting point, thus a steeper climb

ast, when Sb
t =60%, most bubbles are initially super-critical and remain so well into late times; at w

of bubbles survive. In this case, changes in the average volume and survived fraction of bubble

standably small, as seen in Fig.10. But there is a sizable decline in κ̄ that is captured well by Theor
19
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10: Comparison between Theory-C and the PNM with respect to mean curvature κ̄, average bubble volume V̄ b, an

n of survived bubbles F versus time in the Ho-S30 and Ho-S60 networks of Table 1. The predictions from Theory-

d because they overlap with the results of Theory-C.

11: Comparison of PDFs of local bubble saturation in pores predicted by the PNM and Theory-C at three times (0

0hr) and two saturations (Sb
t =30% and 60%) in the Ho-S30 and Ho-S60 networks. Theory-U overlaps with The

thus omitted. These PDFs are different from those predicted by the asymptotic theory of [14] in Fig.9 for ultra-low

rigin of the slight deviations in the late-time values of κ̄ (and V̄ b & F ) are discussed in Section 7

g.11 further shows the corresponding PDFs of the local bubble saturations in pores at three times

at Theory-C, and the overlapping Theory-U omitted, are in good agreement with the PNM. Notic

are very different from the asymptotic-regime PDFs obtained from the theory of [14] in Fig.9.

eterogeneous networks with patterned microstructure

e now increase the level of complexity in our validation by considering the patterned networks Pt-4

Pt-16 in Table 1, which consist of two pore sizes (with contrast Rhet=4) arranged spatially accor

.5. The initial Sb
t in all three networks is 60%, which matches the local saturation in each pore. F
20
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12: Comparison of (left column) mean bubble volume, (middle column) mean bubble curvature, and (right column

n of survived bubbles versus time in the patterned networks Pt-4, Pt-8, and Pt-16 of Table 1 obtained via Theo

y-U, and the PNM. Spatial correlation decreases from Pt-4 to Pt-16, during which Theory-C asymptotes to Theory

and Table 1, the correlation lengths of the networks decrease systematically from Pt-4, to Pt-8,

. This allows testing whether spatial correlations captured via Theory-C are important, or if they

glected via the simpler Theory-U. Fig.12 illustrates the mean curvature κ̄, mean bubble volume V̄ b

action of survived bubbles F versus time obtained from Theory-C, Theory-U, and the PNM. Notic

curvature κ̄ entails the average of κs over the entire phase space (=
∫
s
κsg(s; t) dΩ/n

b) in Theory-C

spatial average of κi over the network in the PNM. In a heterogeneous network, like the ones here

fter, κ̄ is different from the mean-field curvature κc
s in Theory-C, but equal to the κc in Theory-U.

geneous network, like the ones considered in the previous two sections, κ̄=κc
s=κc holds.

g.12 shows Theory-C is in satisfactory agreement with the PNM for all correlation lengths, wh

ry-U agrees well only at a low correlation length (Pt-16). This is expected as Theory-U neglects sp

ations in bubble states (including pore sizes) as its central assumption. Also expected is the observa

the predictions from Theory-C asymptote to those of Theory-U in going from Pt-4 to Pt-16. G

etworks are ordered and consist of only two pore sizes, the PDFs of local bubble saturation in p
21
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ponding Fig.12 are difficult to interpret and convey redundant information with respect to Fig.12

thus included such plots in Appendix D, where we again find satisfactory agreement between Theo

he PNM in all networks, and Theory-U and the PNM in the low-correlation network Pt-16 only.

eterogeneous networks with random microstructure

e increase the difficulty of the validation further by considering the heterogeneous networks with uni

size distribution in Table 1, namely, R4-Unc-S30, R4-Unc-S60, R4-Cor-S30, R4-Cor-S60, R8-Unc

nc-S60, R8-Cor-S30, and R8-Cor-S60. These consist of continuous pore sizes that are spatially corre

or uncorrelated (Unc), have low (R4: Rhet=4) or high (R8: Rhet=8) contrast, and are occupie

les up to an initially low (S30: Sb
t =30%) or high (S60: Sb

t =60%) total saturation. At t=0, a bu

ced in all pores with a local saturation Sb (=V b/Vp) equal to Sb
t . Figs.13 and 14 show the evolu

mean curvature κ̄, mean bubble volume V̄ b, and the fraction of survived bubbles F in these netw

uted via Theory-C, Theory-U, and the PNM. Fig.13 depicts the results for Sb
t =30%, and Fig.1

0%. Theory-U yields identical results for correlated and uncorrelated networks, thus only one is plo

e see that Theory-C is in very good agreement with the PNM in all networks, whereas Theory-U a

the PNM in uncorrelated networks only. Specifically, the application of Theory-U to correlated netw

is seen to result in very large errors. As expected, Theory-C reduces to Theory-U in the uncorre

13: Comparison of (left column) mean bubble volume, (middle column) mean bubble curvature, and (right column

n of survived bubbles versus time in the heterogeneous networks R4-Unc-S30, R4-Cor-S30, R8-Unc-S30, and R8-Co

ted via Theory-C, Theory-U, and the PNM. The networks include correlated (red), uncorrelated (black), low-con

ow), and high-contrast (bottom row) pore sizes drawn from a uniform distribution. Initial bubble saturation is Sb
t =

ases. Theory-U yields identical results for correlated and uncorrelated networks, thus only one curve is plotted.
22
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14: Comparison of (left column) mean bubble volume, (middle column) mean bubble curvature, and (right column

n of survived bubbles versus time in the heterogeneous networks R4-Unc-S60, R4-Cor-S60, R8-Unc-S60, and R8-Co

ted via Theory-C, Theory-U, and the PNM. The networks include correlated (red), uncorrelated (black), low-con

ow), and high-contrast (bottom row) pore sizes drawn from a uniform distribution. Initial bubble saturation is Sb
t =

ases. Theory-U yields identical results for correlated and uncorrelated networks, thus only one curve is plotted.

rks. Notice from Figs.13-14 that ripening is much faster in uncorrelated networks than in corre

rks. This is because larger correlation lengths in pore size entail smaller spatial gradients in bu

ture, which ultimately drive ripening. Similar to Fig.10, we observe in Figs.13-14 deviations in κ̄ at

computed via Theory-C versus the PNM. We discuss the underlying causes for this in Section 7.

t us now examine the PDFs of the bubble states. Since both Rp and Sb are continuous variabl

ore networks considered, we compare the distribution function g(s; t) in the 2D phase space s=(Sb

uted via Theory-C/U and the PNM. For brevity, we focus on the uncorrelated R4-Unc-S60 and

ated R4-Cor-S60 networks, as all others yield similar results. Fig.15 shows three snapshots of g(s; t

nc-S60 at times 0hr, 20hr, and 1,116hr. Because R4-Unc-S60 is uncorrelated, Theory-C and Theo

identical results, thus only one is plotted in Fig.15. At t=0, all pores are saturated to Sb=Sb
t =

ing in bubble states that form a vertical stripe in Fig.15. At t>0, the agreement between the snaps

eory-C/U and PNM is excellent, which validates the accuracy of both theories in uncorrelated netw

g.16 shows the same plot as Fig.15 but for the correlated R4-Cor-S60 network. Since Theory-C an

different predictions in this case, they are plotted separately. The snapshots of g(s; t) correspond t

0hr, 20hr, and 200hr from the start of ripening. We see while Theory-C is in excellent agreement

NM, Theory-U is not. For this reason, we conclude that spatial correlations are indeed important t

into account via Theory-C and neglecting them via Theory-U can result in significant errors. Note
23
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15: Snapshots of the distribution function g(s; t) at three times (0, 20, and 1,116hr) in the phase space s=(Sb, R

-Unc-S60 network in Table 1 computed via Theory-C/U and the PNM. Since the network is uncorrelated, Theory-C

ld identical results. The colored areas correspond to the PNM and the white contours to Theory-C/U. The heat ma

use different shades of yellow, red, and black, in that order, to indicate decreasing values of g(s; t).

16: Snapshots of the distribution function g(s; t) at three times (0, 20, and 200hr) in the phase space s=(Sb, Rp) fo

r-S60 network in Table 1 computed via Theory-C/U and the PNM. Since the network is correlated, Theory-C (top

heory-U (bottom row) are shown separately. The colored areas correspond to PNM and white contours to Theory-

eat maps for PNM use different shades of yellow, red, and black, in that order, to indicate decreasing values of g(s;
24
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th Fig.15 and 16, small bubbles (i.e., in small Rp) dissolve and vanish due to their negative or left

ity (i.e., dSb/dt<0) in the phase space. The late-time snapshots correspond to a near-equilibrium

ich all bubbles have similar curvature and Ostwald ripening ceases to evolve bubbles significantly.

eterogeneous networks with complex initial bubble placements

ere, we increase the difficulty of our validation problem further by considering complex initial placem

bbles inside correlated and uncorrelated networks. Specifically, we consider the Cmplx-Unc and Cm

ases in Table 1 with Sb
t =32%, which have networks identical to R4-Unc and R4-Cor from the last se

t the initial bubble configurations are different. To initialize bubbles, we divide the pore sizes into t

(in number) groups. In the first group (largest Rp), we randomly set local bubble saturations Sb bet

. In the second (medium Rp), we set S
b between 35–65%, and in the third group (smallest Rp), w

tween 65–95%. Fig.17 shows the evolutions of the mean curvature κ̄, mean bubble volume V̄ b, and

on of survived bubbles F predicted by Theory-C and the PNM. Since Theory-U yields identical re

e correlated Cmplx-Cor and uncorrelated Cmplx-Unc, we only plot one of them. Fig.18 shows

ponding evolution of g(s; t) via three snapshots at times 0, 20, and 200hr and at equilibrium (t→
PDFs are shown for Theory-C and the PNM, but not Theory-U because it yields results identic

ry-C in the uncorrelated network and incurs significant errors in the correlated network. The snaps

0 clearly illustrate how bubbles are initialized in phase space. Notice by placing low-Sb bubbl

pores (high Rp) we have increased their chance of survival at late times compared to Figs.15-16.

nce again, Theory-C is in good agreement with the PNM in Figs.17-18. We remark that unlike the th

], Theory-C (and -U) accommodate complex initial conditions like those considered here, whereas

s only to asymptotic regimes where any memory of the initial condition has been long forgotten.

17: Comparison of (left) the mean bubble volume, (middle) mean bubble curvature, and (right) the fraction of sur

s versus time in the heterogeneous networks Cmplx-Unc and Cmplx-Cor in Table 1 computed via Theory-C, Theory-U

M. The networks are comprised of correlated (red) and uncorrelated (black) pore sizes drawn from a uniform distrib

het=4. Initial bubble saturation is Sb
t =32%. Theory-U yields identical results for correlated and uncorrelated netw

nly one curve is plotted.
25
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18: Snapshots of the distribution function g(s; t) at three times (0, 20, and 200hr) and at equilibrium in the

s=(Sb, Rp) for the Cmplx-Unc and Cmplx-Cor networks in Table 1 computed via Theory-C and the PNM. Theory

d because it yields results identical to Theory-C in the uncorrelated network (top row) and it deviates significantly

ted network (bottom row). The colored areas correspond to the PNM simulations and the white contours to Theo

eat maps for PNM use different shades of yellow, red, and black, in that order, to indicate decreasing values of g(s;

eterogeneous networks with variable throat properties

all cases considered thus far, the ratio At/Lt for all throats (cross-sectional area over length) was

rm to probe solely the impact of bubble states (Sb and Rp) on ripening dynamics. Here, we intro

er layer of complexity by allowing At/Lt to vary spatially. Specifically, we consider the vAL-Unc

Cor cases in Table 1, which are identical to Cmplx-Unc and Cmplx-Cor, respectively, except At/

le. Specifically, Rhet=4, Sb
t =32%, and the initial bubble placement is complex and the same as Se

hile there are many ways to set At/Lt, we proceed as follows: If Rp1
and Rp2

denote the sizes of the

straddling a given throat, we compute the throat radius via Rt=min{Rp1
, Rp2

}/2 then the throat

t=πR2
t . The throat length Lt is kept constant and equal to the lattice spacing. Thus, spatial variab

/Lt is introduced through At alone. Fig.19 shows the evolutions of the mean curvature κ̄, mean bu

e V̄ b, and the fraction of survived bubbles F versus time computed via Theory-C, Theory-U, and

. Since Theory-U yields identical results for correlated and uncorrelated networks, only one is plot

s before, predictions from Theory-C are in good agreement with the PNM except at late time

scussed). By comparison, Theory-U performs satisfactorily in the uncorrelated vAL-Unc network

y in the correlated vAL-Cor. Curiously, even in vAL-Unc, the prediction of F via Theory-U is off, w

ly because the parameter (A/L)s in Eq.20 is computed only once at t = 0 and never updated a

e Theory-C). The corresponding plot of g(s; t) versus time is similar to Fig.18 and thus omitted. G
26
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19: Comparison of (left) mean bubble volume, (middle) mean curvature, and (right) the fraction of survived bu

time in the heterogeneous networks vAL-Unc and vAL-Cor computed via Theory-C, Theory-U, and the PNM

ks are identical to those in Fig.17, except here throat dimensions (At/Lt) vary spatially. Pore sizes are drawn fr

m distribution with Rhet=4, and are either correlated (red) or uncorrelated (black). Initial bubble placement is com

ction 6.5) and Sb
t =32%. Theory-U yields identical results for correlated and uncorrelated networks, so only one is pl

etworks here constitute the most challenging of all in Table 1, we conclude that Theory-C is sup

eory-U in predicting ripening kinetics, especially when applied to correlated networks.

iscussion

ow to apply the bubble ripening theory

e have presented a theory to predict the Ostwald ripening kinetics of trapped bubbles in porous m

heory describes the evolution of a distribution function, g(s; t), of bubbles states, s, in time.

le state consists of a pair of coordinates (Sb, Rp) in a statistical phase space over which g(s; t) is defi

aturation Sb denotes the fraction of the pore’s volume the current bubble occupies, and Rp repre

ze of the pore within which the bubble resides. The quantity g(s; t)dΩ with dΩ=dSbdRp is the num

bbles in an infinitesimal patch of phase space centered at s. Our theory evolves g(s; t) tempo

a population balance Eq.8, whose phase velocity us is determined by the mean-field approximatio

. But since Eq.14 is difficult to evaluate, due to the four-dimensional conditional probability p(s′|
implifications were introduced that led to Theory-C and -U. Their main difference is that Theo

es spatial correlations while Theory-C preserves them. Section 6 demonstrated that Theory-C an

alize an existing theory by [14] for spherical bubbles in a homogeneous medium to deformed bubbl

erogeneous medium. Theory-C further extends to correlated microstructures, where Theory-U fail

apply Theory-C/U in practice, the starting point is often an X-ray µCT image of a porous mat

e network can be extracted from such an image using one of many available algorithms, e.g., max

29], medial axis [30], and the watershed transform [31]. The network will yield a distribution of

(Rp) and throat sizes (At/Lt), which feed into the computations of (A/L)s, κ
c
s, and κc via Eqs.17

ed to estimate the phase velocity us (or dSb
s/dt). An important assumption here, discussed furth

n 7.2, is that all pores are approximated to have the same shape, but not size. While we consid
27
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cubic pores throughout this work, whose local bubble curvatures obey Eq.7, other shapes are eq

le. In addition to pore-network statistics, the theory requires an initial condition. For Theory-U

l information is needed and a mere knowledge of g(s; 0) is sufficient. The latter allows computing

l number of bubbles n0
b via Eq.22 and the probability p(R′

p; 0) that a pore of size R′
p is occupie

ble at t = 0 via Eq.23. For Theory-C, we need some spatial information to be able to compute

tional probability p(R′
p|Rp; 0), which quantifies the likelihood that a bubble within a pore of size R

cted to another within a pore of size R′
p at t=0. Such information may be captured by the same X

image used to scan the specimen and visualize trapped bubbles, or simulated using a numerical m

PNM, lattice Boltzmann). Specifically, we need n0
R′

pRp
that quantifies the number of throats conne

le-occupied pores with sizes Rp and R′
p at t=0. Inserting this quantity into Eq.B.3 yields p(R′

p|R
parameterized, Theory-C and -U can predict ripening dynamics orders of magnitude faster than P

se their costs do not scale with the porous sample’s size or the number of bubbles tracked.

he evolution of g(s; t) so predicted informs which pores are occupied by bubbles, and to what satura

e t. When coupled to upscaled models of a porous medium, such bubble-occupancy statistics

how the macroscopic properties of the sample, like relative permeability [32], evolve over time.

cations of such predictive understanding would allow, e.g., estimating degradations or enhancemen

injection/withdrawal in underground hydrogen storage as well as water management in fuel cells.

imitations of the proposed theory

s discussed above, Theory-U is limited to porous media devoid of any spatial correlation. While Theo

es this limitation and allows predicting the evolution of bubble statistics within correlated micros

it has one glaring limitation: it does not account for interactions between bubbles that are separate

than one throat. Concretely, if a group of bubbles occupy pores of size Rp and another group occu

of size R′
p, the two cannot exchange mass via ripening if p(R′

p|Rp; 0)=0. This can occur if the net

related and the initial placement of bubbles in the porous medium is very sparse and non-random

n pore sizes are occupied but not others). Recall, p(R′
p|Rp; 0) represents the probability of comm

between a bubble and its adjacent, or first-order, neighbor but does not capture the communica

farther, or higher-order, neighbors. Under these conditions, bubbles in pore sizes Rp and R′
p ev

endently from each other. Fig.20 shows a contrived counterexample that amplifies this shortcomin

t t=0, sub-critical bubbles are placed in the largest 20% of pore sizes (Sb
s assigned randomly bet

) and super-critical bubbles in the smallest 20% of pore sizes (Sb
s assigned randomly between 65–9

op row of Fig.20 corresponds to a spatially uncorrelated network (R4-Unc in Table 1), while the bo

o a correlated pore network (R4-Cor in Table 1). In the uncorrelated network, the agreement bet

ry-C and the PNM is good. However, in the correlated network, bubbles in large and small pore

lly disconnected (i.e., there is more than one throat between them). Hence, p(R′
p|Rp; 0)= 0 hold

les occupying pore sizes Rp and R′
p. By Eq.18, this implies p(R′

p|Rp; t)=0 for all t>0. Physically,

s the two bubble groups evolve and equilibrate independently from each other as can be seen in Fi
28
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20: Counterexample highlighting the limitation of Theory-C in capturing bubble interactions between higher-

ors (i.e., more than one throat apart). Snapshots of the distribution function g(s; t) at three times (0, 10, and 100hr

ilibrium in the phase space s=(Sb, Rp) for uncorrelated (top row) and correlated (bottom row) networks with Rh

ted via Theory-C and the PNM. Theory-U is omitted because it yields results identical to Theory-C in the uncorre

k (top row) for both networks. The colored areas correspond to PNM simulations and the white contours to Theo

eat maps for PNM use different shades of yellow, red, and black, in that order, to indicate decreasing values of g(s;

ntrast, Theory-U yields the same prediction for both correlated and uncorrelated networks, whi

ical to that of Theory-C in the uncorrelated network (top row of Fig.20). In this sense, Theory

robust because even when it is wrong, its failure is not unphysical. The reason lies in the fact that

le in Theory-U interacts with the same mean field that is, in turn, informed by all the bubbles.

ently, every bubble pair in Theory-U has some non-zero communication, unlike Theory-C. We sus

hortcoming of Theory-C is the main reason for the larger late-time errors observed in Section 6

iddle plot of Fig.14). To rectify Theory-C, interactions between higher-order neighboring bubbles

ptured, which can be done by augmenting p(R′
p|Rp; t) to include the connectivity between bub

ple throats apart. The specifics are subject to ongoing research and outside the scope of this pape

second limitation, alluded to in Section 7.1, is that all pores are assumed to have the same shape.

rly not the case for a network extracted from an X-ray µCT image of a porous material. Each sha

iated with a constitutive relation different from Eq.7, describing the dependence of a trapped bub

ture κi on its volume V b
i . Currently, in Theory-C/U, an average pore shape must be assumed so

constitutive relation (Eq.7 or equivalent) can be applied to all pores. If pore-shape heterogeneity

captured explicitly, the bubble state s must include, aside from pore size and bubble saturation,

as an independent coordinate. This renders the phase space 3D, as opposed to 2D in its current f
29
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third limitation is that the wetting phase is assumed to be hydrodynamically immobile with uni

re. While this is an acceptable approximation to subsurface conditions where trapped bubbles int

ay from wells or during extended shut-in periods, months in hydrogen storage and years to cent

2 sequestration, it is a poor assumption otherwise. Background flow of the wetting phase introd

er mechanism for dissolved species to be transported between bubbles, which renders ripening not

dent on gradients in interfacial curvature but also on advection. Extending the PNM to accoun

advective mass transfer is straightforward [33], but generalizing Theory-C/U is more difficult.

he fourth and final limitation of Theory-C/U is that bubbles occupy only one pore each, which

hange over time during ripening. This is reflected by our approximation in Section 4.2 that the p

ity is us≈(dSb/dt, 0) with no vertical component (i.g., dRp/dt=0). The fact that bubbles occupy

ore also allowed us to use pore size, Rp, as one of the components of a bubble’s state, which w

wise be ill-defined. Previous work [8] showed even single-pore occupying bubbles can hydrodynami

ce from one pore to another during growth by ripening. Such displacements, called bubble disloca

in dRp/dt ̸=0 in phase space. From past experience, we suspect the frequency of dislocation-ind

es in bubble states to be negligible compared to ripening-induced changes, i.e., dSb/dt≫dRp/dt.

imitations of the validation process

side from inherent limitations of Theory-C/U in their present form outlined in Section 7.2, ther

comings to our validation process itself. These include the assumptions that bubbles are incompress

zero contact angle (i.e., perfectly non-wetting), pores have a semi-cubic shape that obey Eq.7, and

networks are topologically 2D (though geometrically 3D) with a fixed coordination number. We ex

of these to impair the predictive accuracy of Theory-C/U, but future work is needed to substan

extended ranges of applicability. Our rationale is based on the fact that pore shape and bubble con

alter only the specific form and regularity (i.e., continuity) of the κi–V
b
i relation in Eq.7 [11], and

ning equations for compressible bubbles (e.g., air, H2, CO2) assume a similar form as Section 4.3

if non-zero contact angles cause the emergence of disconnected pockets of wetting phase with diffe

res [21], then this would pose challenges intrinsic to our theory and not just the validation proces

mplications for continuum-scale modeling

ontinuum (or upscaled) representations of Ostwald ripening solve a saturation equation of the form

∂Sb
t

∂t
=

∂

∂x

(
K

∂Sb
t

∂x

)

K∼dPc/dS
b
t [24, 27] and Pc is the macroscopic capillary pressure of bubbles in the porous med

g Eq.25, by decomposing the porous domain into grid blocks and discretizing Eq.25, yields estimat

ing kinetics and the evolution of the upscaled saturation Sb
t at the macroscale. However, Eq.25 is

if all bubbles inside each grid block are in thermodynamic equilibrium (i.e., have identical interf

ture) at all time. This assumption is embedded in the existence of a static (in time) relationship bet
30
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d Sb
t . The kinetic theory formulated in this work pertains to the pore scale, and would yield estim

actly when such equilibration would take place within each macroscale grid block. If this tim

brium is larger than the timescale over which grid blocks exchange mass via ripening, Eq.25 is no lo

and a continuum PDE that captures some sort of temporal “memory” (e.g., convolution integ

es necessary. We note the final equilibrium state of bubbles (thus Pc and Sb
t ) can be computed

y proposed by [11], or by calculating the asymptotic value of g(s; t) in Theory-C/U herein as t→∞

onclusion

e presented a theory that predicts the evolution kinetics in the statistics of a population of tra

les inside a porous medium with arbitrary heterogeneity and spatial correlation in pore/throat

o Ostwald ripening. The theory consists of a population balance equation in terms of the distribu

ion g(s; t) of bubble states s, and a mean-field (or closure) approximation for the phase velocity us.

les s, g(s; t), and us are all defined on a 2D phase space that consists of two coordinates: (1) Rp, o

size occupied by each bubble; and (2) Sb, or the bubble saturation (i.e., volume fraction) occupying

The formulation of us led to two variants of our theory: (1) Theory-C, where spatial correlation

ed; an (2) Theory-U, where such correlations are neglected. We systematically validated Theory-

st pore-network (PNM) simulations of ripening in a range of homogeneous, heterogeneous, correl

ncorrelated microstructures that are initially occupied by bubbles with different saturations and sp

ments. In all cases, Theory-C was in good agreement with the PNM exhibiting superior predi

acy over Theory-U without any parameter calibration. By contrast, Theory-U was accurate only w

d to uncorrelated media. A key result was the comparison of Theory-C/U against an existing th

4] for homogeneous networks occupied by spherical bubbles, and the demonstration that Theory-

ssfully generalizes the latter to heterogeneous networks and non-spherical (deformed) bubbles.

espite its advantages, we highlighted and discussed key shortcomings of Theory-C. Chief among t

the inability to account for mass exchange between remote bubbles in a correlated network (separ

ore than one throat), the constraint that bubbles span no more than one pore, and for them to re

dynamically immobile during ripening. On the first limitation, an extreme (thus unlikely in prac

erexample was devised to demonstrate how Theory-C may fail in an unphysical way, while Theo

an inaccurate but physical result. The latter speaks to the robustness of Theory-U over The

ture research should aim at removing these limitations. Theory-C/U allow estimating the timesca

ing, quantifying which pores are occupied by bubbles and up to what fraction at any given time, and

’s impact on storage and hydraulic properties of porous media. The implications extend to applica

nderground H2 storage, geologic CO2 sequestration, and optimal design of fuel cells and electrolyz
31
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ndix A. Derivation of κc
s and (A/L)s in Theory-C

e derive the expressions in Eq.17 below. If we substitute Eqs.15 and 16 into Eq.14b and expand

al
∫
s′ dΩ=

∫
R′

p

∫
S′b dS

′bdR′
p, we can perform the following series of straightforward manipulations:

(
A

L

)−1

s

∫

s′
p(s′|s)Ass′

Lss′
κs′ dΩ

(
A

L

)−1

s

∫

R′
p

∫

S′b
p(R′

p|Rp) p(S
′b|R′

p)
ARpR′

p

LRpR′
p

κs′ dS
′bdR′

p

(
A

L

)−1

s

∫

R′
p

p(R′
p|Rp)

ARpR′
p

LRpR′
p

(

∫

S′b
p(S′b|R′

p)κs′dS
′b

︸ ︷︷ ︸
:=κ̄R′

p

)dR′
p =

(
A

L

)−1

s

∫

R′
p

p(R′
p|Rp)

ARpR′
p

LRpR′
p

κ̄R′
p
dR′

p (

proves the κc
s expression in Eq.17b. Similarly for (A/L)s, we can write the following:

(
A

L

)

s

=

∫

s′
p(s′|s)Ass′

Lss′
dΩ

≈
∫

R′
p

∫

S′b
p(R′

p|Rp) p(S
′b|R′

p)
ARpR′

p

LRpR′
p

dS′bdR′
p

=

∫

R′
p

p(R′
p|Rp)

ARpR′
p

LRpR′
p

(

∫

S′b
p(S′b|R′

p)dS
′b

︸ ︷︷ ︸
=1

)dR′
p =

∫

R′
p

p(R′
p|Rp)

ARpR′
p

LRpR′
p

dR′
p (

proves the second expression in Eq.17b.

ndix B. Derivation of p(R′
p|Rp; t) in Theory-C

derive Eq.18, we begin with a few definitions with reference to Fig.B.1. Consider two pore types

Rp and R′
p in a pore network. The ovals in Fig.B.1 represent the total number of bubble-occupied p

h category at t=0, denoted by n0
Rp

and n0
R′

p
. The total number of surviving bubbles in each pore

er times can be computed from the distribution function g(s; t) as follows:

Rp
= g(Rp; t) dRp =

∫

Sb

g(Sb, Rp; t)dS
b dRp , nR′

p
= g(R′

p; t) dR
′
p =

∫

S′b
g(S′b, R′

p; t)dS
′b dR′

p (
32
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B.1: Two pore types with sizes Rp (green) and R′
p (red) in a pore network. Each oval represents the total numb

-occupied pores in each category at t=0. At later times, a fraction of 1− fRp and 1− fR′
p
from each category dis

nishes due to ripening. The lines denote throats linking the vanished and surviving bubbles in each pore type to

Dashed throats are lost connections during this dissolution process, and are the ones subtracted from nRpR′
p
in Eq

e, the fraction of initial bubbles that have survived in each pore type at any given time is:

fRp
=

nRp

n0
Rp

, fR′
p
=

nR′
p

n0
R′

p

(

picted in Fig.B.1. The rest of the bubbles (fractions 1− fRp
and 1− fR′

p
) have dissolved and vani

o ripening. Let zbRp
and zbR′

p
be the average coordination number of each pore type, which only co

bors that are occupied by a bubble (i.e., not a property of the network, and a time-dependent quant

enote their initial values at t=0 by zbRp,0
and zbR′

p,0
. Finally, let nRpR′

p
represent the number of th

emanate from bubbles residing in pores with size Rp and terminate at bubbles residing in pores

′
p. Notice nRpR′

p
=nR′

pRp
must hold, as it is a symmetric quantity. Let n0

RpR′
p
be the value at t=0

ith these definitions in place, we can formulate p(R′
p|Rp; t) as follows:

p(R′
p|Rp; t) dR

′
p =

nR′
pRp∑

R′
p
nR′

pRp

=
nR′

pRp

nRpz
b
Rp

(

the denominator is the total number of throats that emanate from pore type Rp into bubble-occu

of any type. Note that given the symmetry of nRpR′
p
, the following identity must hold:

nRp
zbRp

p(R′
p|Rp; t) dR

′
p = nR′

p
zbR′

p
p(Rp|R′

p; t) dRp (

aluate Eq.B.3, we need an expression for nRpR′
p
. Fig.B.1 shows that if 1− fRp

and 1− fR′
p
fractio

les in each pore type vanish, then the throats depicted by the dashed lines are lost, which link bub

fRp to 1− fR′
p
, 1− fRp to fR′

p
, and 1− fRp to 1− fR′

p
. Subtracting the lost throats from n0

RpR′
p
yi

nR′
p,Rp = n0

R′
p,Rp

− fRp n
0
Rp

zbRp,0 p(R
′
p|Rp; 0) dR

′
p (1− fR′

p
)

− (1− fRp)n
0
Rp

zbRp,0 p(R
′
p|Rp; 0) dR

′
p fR′

p

− (1− fRp
)n0

Rp
zbRp,0 p(R

′
p|Rp; 0) dR

′
p (1− fR′

p
) (
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e nRp =fRpn
0
Rp

and (1− fRp)n
0
Rp

are the number of surviving and vanished bubbles in pore type

ctively. Multiplying them by zbRp,0
p(R′

p|Rp; 0) dR
′
p yields the number of throats emanating from

les and terminating at the initially bubble-occupied pores with size R′
p. A final multiplication by

fR′
p
yields the number of throats that correspond to the dashed lines in Fig.B.1.

.B.5 can be simplified by writing Eq.B.3 at t=0 as:

n0
R′

pRp
= n0

Rp
zbRp,0 p(R

′
p|Rp; 0) dR

′
p (

ubstituting it into Eq.B.5, followed by some algebraic manipulation, to obtain:

nR′
p,Rp

= fRp
fR′

p
n0
R′

p,Rp
(

ing this expression over all R′
p yields:

∑

R′
p

nR′
pRp

= fRp

∑

R′
p

fR′
p
n0
R′

pRp
= fRp

n0
Rp

zbRp,0

∫

R′
p

fR′
p
p(R′

p|Rp; 0) dR
′
p (

in the second equality, we have used Eq.B.6. Substituting Eqs.B.7 and B.8 into Eq.B.3, and ma

f Eq.B.6 once again, we obtain the final expression for p(Rp|R′
p; t) given by:

p(R′
p|Rp; t) =

fR′
p
p(R′

p|Rp; 0)∫
R′

p
fR′

p
p(R′

p|Rp; 0) dR′
p

(

is the same as Eq.18. While not used explicitly anywhere in Theory-C, we may estimate the bu

ied coordination number zbRp
at any given time as follows:

zbRp
=

∑
R′

p
nR′

pRp

nRp

=
fRpn

0
Rp

zbRp,0

∫
R′

p
fR′

p
p(R′

p|Rp; 0) dR
′
p

fRp
n0
Rp

= zbRp,0

∫

R′
p

fR′
p
p(R′

p|Rp; 0) dR
′
p (B

ndix C. Derivation of p(R′
p; t) in Theory-U

derive Eq.22, we first establish the following relation for p(R′
p; 0):

p(R′
p; 0) =

∫
S′b g(S

′b, R′
p; 0) dS

′b
∫
R′

p

∫
S′b g(S′b, R′

p; 0) dS
′b dR′

p

=
g(R′

p; 0)

n0
b

(

n0
b is the total number of bubbles in the pore network at t=0. Moreover, recall:

fR′
p
=

nR′
p

n0
R′

p

=
g(R′

p; t)

g(R′
p; 0)

(

s from the definitions in Eqs.B.1 and B.2.

sing Eq.C.1, Eq.C.2, and p(R′
p|Rp; t)≈p(R′

p; t) from Eq.19, we can approximate:

∫

R′
p

fR′
p
p(R′

p|Rp; 0) dR
′
p ≈

∫

R′
p

fR′
p
p(R′

p; 0) dR
′
p

=

∫

R′
p

g(R′
p; t)

g(R′
p; 0)

p(R′
p; 0) dR

′
p =

1

n0
b

∫

R′
p

g(R′
p; t) dR

′
p =

nb

n0
b

= F (
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e denominator of Eq.B.9. In the last three equalities, we have used the definitions of nb, n
0
b , an

uced in Eq.22. Using p(R′
p|Rp; t)≈p(R′

p; t) again for the numerator of Eq.B.9, we get:

p(R′
p; t) =

fR′
p
p(R′

p; 0)

F
(

is the same as Eq.22. This concludes our derivation.

ndix D. PDFs of bubble saturation in patterned networks

g.D.2 depicts the PDFs of the local bubble saturations in pores corresponding to the results in Fi

PDFs represent the marginal distribution g(Sb; t)/nb; where bubbles in both pore sizes are comb

single distribution function. At t= 0, the PDFs are Dirac deltas centered at Sb =60% as show

ertical green lines in Fig.D.2. At early and late times, the PDFs obtained from Theory-C capture

s observed from the PNM in all networks, whereas Theory-U captures the trend in the least corre

rk Pt-16. Specifically, Theory-C reproduces a short peak observed at early times in all networks, w

essively moves to the left as smaller bubbles vanish. This peak is also seen in the PNM, but its loca

s either earlier or later than that predicted by Theory-C. Given the networks are ordered, small erro

eories tend to amplify over time, rendering the interpretation of the results in Fig.D.2 difficult. N

again, predictions from Theory-C asymptote to those of Theory-U in going from Pt-4 to Pt-16.

D.2: Comparison of PDFs of local bubble saturation in pores predicted by the PNM, Theory-C, and Theory-U at

te times for the Pt-4 (4×4 pattern), Pt-8 (8×8 pattern), and Pt-16 (16×16 pattern) networks in Table 1. The early

me snapshots correspond to 4hr and 10hr in Pt-4, 1hr and 10hr in Pt-8, and 0.5hr and 4hr in Pt-16 from the st

g. The vertical green lines in the top row represent the initial conditions, which are Dirac deltas centered at Sb=6
35
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 Theory for predicting Ostwald ripening kinetics of bubbles in porous media proposed 

 The porous medium can have heterogeneous and spatially correlated pore/throat sizes 

 Bubble statistics evolved with a population balance equation subject to apt closure 

 Theory systematically validated against an existing pore network model for ripening 

 Limitations and paths for future extensions are highlighted and discussed 
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