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16 Partially miscible bubbles (e.g., CO32) trapped inside a porous medium and surrounded by a wetting phase
1; (e.g., water) occur in a number of applications including underground hydrogen storage, geologic carbon
1
19 sequestration, and the operation of electrochemcial devices such as fuel cells and electrolyzers. Such bubbles
;2 evolve due to a process called Ostwald ripening that is driven by differences in their interfacial curvature. For
22 spherical bubbles, small bubbles shrink and vanish while feeding into larger ones, resulting in one large bubble
23

at equilibrium. Within the confinement of a porous medium, however, bubbles can attain a distribution of

24
25 sizes at equilibrium that have identical curvature. This work concerns itself with the formulation of a kinetic
26
27 theory that predicts the statistical evolution of bubble states, defined as the sizes of the pores within which
;g bubbles are trapped and the extent to which those pores are saturated with bubbles. The theory consists of
30 a population balance equation and appropriate closure approximations. Systematic comparisons against a
gé previously published pore network model (PNM) are conducted to validate the theory. Our theory generalizes
33 existing variants in the literature limited to spherical bubbles trapped in homogeneous media to non-spherical
34
35 (deformed) bubbles inside microstructures with arbitrary heterogeneity and spatial correlation in pore/throat
36 sizes. We discuss the applicability, limitations, and implications of the theory towards future extensions.
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50 s the local equilibrium concentration of the dissolved species in the wetting phase immediately adjacent to each
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sequestration [3], to the optimal design of fuel cells [4] and electrolyzers [5], where the occurrence of bubbles
inhibits the storage capacity and hydraulic conductivity of the porous rock (during shut-in periods) or device.

In a bulk fluid, bubbles are always spherical in shape, and ripening leads to their gradual coarsening until a
single large bubble remains [6]. This is because curvature, &, is a monotonically decreasing function of bubble
volume, V?. Hence, the smaller a bubble gets, the faster it dissolves into the surrounding fluid and vice versa.
By contrast, in a porous medium, bubbles can deform due to the geometric confinement imposed by the void
space. This renders the relationship between s and V® non-monotonic [7, 8], and thereby promotes the
emergence of equilibrium states where large and small bubbles coexist with equal curvature [9, 10]. Recent
theoretical work by the authors [11] has shown that the probability density function (PDF) of bubble sizes
(or V) at equilibrium can be determined from its initial condition and the distribution of pore sizes in the
porous medium. This theory was later extended from the ripening of single-component bubbles to that of
multi-component bubbles [2]. What this theory cannot predict is the timescale over which ripening occurs
and the evolution of the bubble-size PDF in time. This is precisely the subject we shall study herein.

For bubbles in a bulk fluid, the celebrated Lifshitz—Slyozov—Wagner (LSW) theory [12, 13] describes how
the distribution function of bubble radii, g(R"), evolves in time during an asymptotic (self-similar) regime,
established after sufficient time has elapsed from the start of ripening. The quantity g(R?) dR? is the number
of bubbles with radii between R? and R’ 4+ dR®. The theory consists of the population balance equation:

dg 0
hly =0 1
for g, where ug is the velocity in the statistical space of R?. The latter is computed via:
drR® o 1 1
ur ="y % (g~ ) @

where o is the surface tension and we have omitted the proportionality constant for clarity. The R’ denotes
a critical radius, above which bubbles grow and below which bubbles shrink. A useful conceptual picture
is that each bubble of radius R’ interacts with a mean field, whose equivalent bubble radius is R%. Notice
the curvature of spherical bubbles satisfies k = 2/R" (thus x° = 2/R%) by the Young-Laplace equation.
Imposing conservation of mass, contained in bubbles and the dissolved species, as a constraint on Eq.2 yields
an expression for R?, which closes the theory. LSW derived an analytical expression for g and RY using
self-similarity arguments, assuming g(R’) = (R%)~*f(R/R?%) for some f(-), in the asymptotic regime [6].

For bubbles in a porous medium, the LSW theory was generalized by Yu et al. [14] with the key limitations
that bubbles be spherical and the porous medium be homogeneous. The main modification to LSW occurred
in the expression for ur in Eq.2, which was expressed as follows:

avt A

Wocﬁ(mc—n) (3)

where L; and A; are, respectively, the length and cross-sectional area of throats (or pipes) that connect pores

(or boxes) in a graph-based representation of the porous medium called a pore network. Given V®=4x(R")3/3,

k=2/RP and k°=2/R’ hold for spherical bubbles, the main difference between Eqs.3 and 2 is that the
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pre-multiplier 1/R? is replaced with the bubble-size independent quantity A;/L;. In other words, the porous
medium imposes a fixed structure upon the spatial arrangement of bubbles, but does not cause deformation
in their shape. Following steps similar to LSW, Yu et al. [14] derived a self-similar solution for g.

In this work, we propose a theory that generalizes that of [14] to porous materials with arbitrary het-
erogeneity and spatial correlation in pore/throat sizes and to non-spherical bubble shapes deformed by the
geometric confinement of the void space. The main idea is to define g in terms of two coordinates in a statisti-
cal phase space, instead of just one (i.e., R?). The first is the pore size, R, within which a bubble is confined,
and the second is the fraction of the pore’s volume, V,,, occupied by the bubble. The latter equals S b=yb/ Vi
and is referred to as the bubble saturation. The two coordinates define the state of each bubble as the pair
s=(S% R,). The population balance Eq.1 is then solved numerically on this 2D phase space, with the scalar
velocity ug replaced by a vector us. Closure is achieved by writing an expression for u, similar to Eq.3, but
because this step requires certain approximations (to be discussed), we present two variants of our theory:
(1) Theory-C, where spatial correlations in bubble states (thus pore sizes) are honored; and (2) Theory-U,
where such correlations are neglected. We validate Theory-C and -U systematically against an existing pore
network model (PNM) [11] and show both perform well in uncorrelated microstructures but only Theory-C
performs well in correlated ones. We then highlight the limitations of Theory-C and discuss directions for
future research. Chief among the shortcomings are the requirements that each bubble be confined to only
one pore and the initial configuration of bubbles in a correlated microstructure not be overly sparse.

We note that recent work on Ostwald ripening of bubbles in porous media has undergone rapid develop-
ments that includes an increasing array of experimental observations [9, 15-17], computational modeling via
PNMs [2, 8, 10, 11, 18] and level-set methods [19-21], and theoretical formulations geared towards statistical
[2, 14, 22] and macroscopic [23-27] descriptions of the physics. These works provide valuable and robust
frameworks within which the proposed theory herein can be validated and extended further in the future.

The paper’s outline is as follows: In Section 2, we describe the conceptual problem to be solved. Section
3 reviews the PNM by [11] used here to validate Theory-C/U and provide a mathematical basis for their
formulation. We next present Theory-C/U in Section 4, starting with definitions and the guiding hypothesis,
followed by the governing equations and closure approximations. Section 5 outlines the problem set chosen
to validate the two theories against the PNM in Section 6. Lastly, we discuss the applicability, limitations,

and implications of Theory-C/U in Section 7 and conclude with a summary of key takeaways in Section 8.

2. Problem description

We conceptualize a porous microstructure with a network (or graph) of interconnected pores linked via
narrower channels called throats, as shown in Fig.1. The dimensions of both may be spatially heterogeneous
and/or correlated. All pores and throats are filled with a continuous, but stagnant (non-flowing), wetting
phase (e.g., water). Some pores are occupied by a single-component, perfectly non-wetting (contact angle

of 180°), and incompressible bubble or droplet (e.g., scCO3). The placement of bubbles is often determined
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by fluid-fluid displacements that precede entrapment, such as cyclic injections in underground hydrogen
storage [28]. We assume, for the sake of simplicity, that each bubble occupies no more than one pore. All
bubbles are partially miscible in the wetting phase and in local equilibrium with the solution adjacent to
their interface. Since bubbles have different sizes, thus interfacial curvatures, they will be at equilibrium with
fluids of different concentration. The induced concentration gradient drives molecular diffusion and thereby
mass exchange between bubbles, a process known as Ostwald ripening. Our goal is formulate a theory that
predicts the evolution kinetics of an initial bubble population in a statistical sense. Concretely, we aim to
quantify how the joint distribution of bubble sizes and occupied pores evolves in time. This allows estimating
the timescale of ripening and its final equilibrium state. Existing theories are limited to predicting either the
kinetics for spherical bubbles inside homogeneous media [14] or equilibrium states alone (no kinetics) [2].

In Section 3, we first review the pore-network model (PNM) by Mehmani & Xu [11] that simulates Ostwald
ripening of bubbles within arbitrary pore networks under the assumptions stated above. The PNM’s governing
equations provide a basis to formulate the theory in Section 4 and validate it in Section 6. The theory, though
solved numerically, achieves orders of magnitude (x103~*) of speedup in computational cost compared to the
PNM and allows for the effective parameterization of upscaled (or Darcy) models [27]. Finally, while both
the PNM and the proposed theory apply to networks with arbitrary geometric and topological complexity,
all simulations herein are conducted on 2D lattice networks comprised of 3D pore/throat shapes.

Lij
>

Throat -

Figure 1: Conceptualization of a porous microstructure by a computational graph or pore network, consisting of local geometric
enlargements called pores linked via geometric bottlenecks called throats. The pores and throats are filled with a continuous
but stagnant (non-flowing) wetting phase (e.g., H2O), with some pores also occupied by a partially miscible and perfectly non-

wetting (contact angle of 180°) bubble (e.g., scCO2). The bubbles dissolve and exchange mass through Ostwald ripening.
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3. Pore network model (PNM)

Consider a partially miscible bubble occupying pore i in a pore network, that is connected to z; neighboring

pores. The conservation of mass for such a bubble can be written as follows [2, 11]:

dn; <« L DA
dt - JZJU - Z UwLi

z
=1 j=1

j_j (zj — ;) (4)

where n; is the bubble’s number of moles,! .J;; the diffusive flowrate between pores i and j, D,, the molecular
diffusion coefficient of the dissolved species, v,, the molar volume of the bulk wetting phase, and z; and x;
the concentrations of the dissolved species in units of mole fraction in pores ¢ and j. The A;; and L;; denote
the cross-sectional area and length of throat ij connecting pores i and j, respectively. Eq.4 embeds Fick’s
law, which assumes that dissolved concentrations are dilute. Since bubbles are assumed incompressible in
Section 2, they have constant molar volume v,. Thus, the accumulation term in Eq.4 can be expressed as:

1dVy S DA
Uy dt = UwLij

(; — i) (5)

where V? is the volume of the bubble in pore i.
To close Eq.5, and to be able to solve it in terms of solute concentrations as the primary unknowns, we
need two constitutive equations that relate V;* to z;. The first is the expression of thermodynamic equilibrium

between the dissolved concentration x; and the interfacial curvature ; of the bubble in pore ¢ [23]:

xT; OR;Up
In 2% = 6
. To RT (6)

In Eq.6, x, is a reference taken to be the equilibrium concentration for a flat interface. The parameters o, R,
and T denote interfacial tension, universal gas constant, and temperature, respectively (all constants here).
The second constitutive equation we need expresses the dependence between r; and V;’, dictated by a
bubble’s size and geometric deformation of its shape due to confinement, as shown in Fig.2. This dependence
is non-monotonic and exhibits a characteristic U-shape [7, 9] captured by the following equation:
i
KWW<M”>3 if V< Ve

A

wi = ki (VP Vi) = (7)

: VPV, V-V,
min 1 7 C,1 b 7 C,1 f Vb > Vci
K < +an,¢*Vc,z‘+ Vp,i—Vib> 1 5 = Ve,

Eq.7 was proposed by [8] for (“semi-")cubic pores with a side-half length of R, ;. Such a pore has a volume of
Vp.i=(2R,;)? and a maximally inscribed sphere of radius R, ; and volume V. ; =47R} ; /3. The x]""" =2/R), ;
denotes the curvature of the inscribed sphere, and a and b are empirical parameters (here a=1 and b=0.01).

Notice Eq.7 consists of two branches. If Vib < V.., the bubble is spherical and does not touch the pore’s walls,

IThe PNM actually treats n; as the total number of moles in pore i, accounting for the amount in the bubble plus that
dissolved in the wetting phase. We have omitted the dissolved contribution from the presentation here merely to simplify the

formulation of our theory later, and because its magnitude is relatively small. See also the discussion in Section 6.4 of [11].
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Figure 2: Schematic of the characteristic U-shaped dependence between a bubble’s interfacial curvature, r, and it volume, V',
when confined within a pore. Curves for two pore sizes are plotted via Eq.7. Each consists of a sub- and a super-critical branch,
separated by the critical volume, V. (yellow dots). The sub-critical branches overlap, as they correspond to spherical bubbles.

Insets show that bubbles on the super-critical branch are deformed to different degrees in small (red) and large (black) pores.

whereas if Vib >V, ;, the bubble is non-spherical and is deformed by the pore geometry (see Fig.2). We refer
to V., as the pore’s critical volume, and denote any bubble that satisfies Vib <V, as being sub-critical and
any bubble satisfying V> > V. ; as super-critical. We also note that in single-component ripening, sub-critical
bubbles are unstable because a small reduction in their size increases their capillary pressure, and with it,
their dissolution rate. This means that if one of two identical bubbles is perturbed in size, the system is
knocked out of equilibrium and the smaller bubble disappears. By contrast, super-critical bubbles are stable
and may equilibrate with other bubbles that have different shapes and sizes [7, 10], i.e., small perturbations
to equilibrated bubble sizes attenuate instead of amplifying. Fig.2 shows that the curvature k; of a super-
critical bubble depends not only on its volume V;* but also on the confining pore’s size V,,; (or equivalently
R, ;). Coupling Eq.5 with Eqs.6-7 yields a nonlinear system of equations in terms of the pore concentrations
x;, which we solve with a modified Newton scheme detailed in [11]. The solver is equipped with adaptive
time stepping capabilities to capture rapid early-time and slow late-time dynamics of ripening. If pore ¢
does not contain a bubble, the left-hand side of Eq.5 simplifies to (V}, /v.)dz;/dt, obtained from dn}’/dt and
ny =x;Vp, /vy, where n is the number of dissolved moles in pore i. As a result, Eqs.6-7 are no longer needed.

An extension of the above PNM to multi-component, compressible gas bubbles was proposed in [2].

4. Ripening theory

4.1. Definitions and guiding hypotheses

We formulate a theory that predicts the temporal evolution in the statistics of an initial bubble population

trapped inside a porous medium with arbitrary pore-size distribution (PSD) and spatial correlation. The
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Figure 3: (Left) Spatial representation of bubbles with different volumes V? trapped inside a pore network with pore sizes Ry.

(Right) Statistical representation of the bubbles in a phase space defined by Sb- and Rp-axes. Bubbles in this phase space are
identified by their state, s=(S?, Rp), and their number is quantified by the distribution function g(s;t) (shaded area). The 1D
distribution functions plotted along the bottom and right borders (pink) represent the marginal distributions of g(s;t). The
bubble sizes and color codes used for pores in the left panel are mapped and honored in the panel to the right. Notice one of the

bubbles coincides with the maximally inscribed sphere in its yellow-colored pore, and thus has critical saturation S.=V,/Vj.

evolution is driven entirely by Ostwald ripening. Specifically, and with reference to the left panel of Fig.3, we
consider a pore network that has different pore sizes, R,, containing an initial distribution of bubble volumes,
V®. Since ripening is driven by gradients in bubble curvature, and curvature depends on V? and R, through
Eq.7, we define a bubble’s state as the point s = (V?, R,) in a 2D statistical phase space with V- and R,-axes.
Equivalently, and to simplify later analysis, we denote bubble states via s=(S°, R,), where S*=V"/V,, is the
occupied pore’s bubble saturation (recall V,, :8R139). The right panel of Fig.3 shows the phase space in terms
of the Sb- and R,-axes. We now introduce g(S’, R,;t) as the distribution function of bubbles defined over
this phase space, such that the quantity g(S°, Rp;t) dS°dR, denotes the number of bubbles residing in pores
that have sizes between R, and R, 4+ dR,, and filled to saturations between SP and S° + dSY at time t. Our
goal is to compute g(S®, Rp;t) at all ¢ using information available only at =0, including g(S®, R,;0) and the
spatial statistics of pore occupancy. For brevity, we shall refer to the foregoing joint distribution function as
g(s;t), where the semicolon emphasizes that ¢ is a parameter, not a random variable.

By replacing the spatial evolution problem of bubbles (left in Fig.3) with their statistical evolution (right
in Fig.3), we circumvent the need for tracking individual bubbles as is done in the PNM. Instead, we track
bubble states shared among many bubbles, leading to dramatic speedup and upscaling. Specifically, the cost
of theoretical calculations does not depend on the domain size and number of bubbles in it, unlike PNM. The

success in formulating such an ensemble description hinges upon two guiding hypotheses: (1) the network
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is sufficiently large for spatial and ensemble statistics to have converged; and (2) bubbles in state s interact
with a mean field, that in turn dictates how g(s;t) should evolve. This mean field is defined in the following
sections. First, we propose a population balance equation for g(s;t) in Section 4.2 that is advected in phase
space via the velocity us. We then derive an explicit expression for u, in Section 4.3. The proposed theory
generalizes the LSW theory for bubbles in bulk fluids [12, 13|, and that of [14] for sub-critical bubbles in

homogeneous porous media, to arbitrarily shaped bubbles in heterogeneous and correlated porous media.

4.2. Population balance equation

Let Q(t) represent a closed region in the interior of the phase space in Fig.3. The integral of ¢(s;t) over
Q(t) denotes the number (not probability or fraction) of bubbles that have states within 2. As bubbles evolve
due to Ostwald ripening, so does (t), provided we keep track of the bubbles contained in it. So long as Q(t)
remains within the interior of the phase space, and does not intersect the S®=0 axis, the integral of g(s;t)

over §(t) is a conserved quantity and, therefore, the Reynolds transport theorem yields:

q
dt

/Q(t)g(s,t)dQ—O = g‘;]+v~(gus)—ggt]Jraasb(gqu)Jr(%)(guRp)—O (8)
where u, = (ugv,ug,) is the velocity with which bubbles in state s move through the phase space. Note the
integral of ¢(s;t) over the whole phase space (i.e., number of all bubbles) is not conserved, because bubbles
can vanish during ripening by dissolving completely. When a bubble is in the process of vanishing, its volume,
thus saturation, undergoes S® — 0. Hence, if such a bubble is within Q(¢), the boundary of Q(¢) intersects
the S®=0 axis. This is why Eq.8 holds strictly in the interior (not axes) of the phase space. We call Eq.8
the population balance equation and solve it numerically on a Cartesian grid that discretizes the phase space.

The state velocity ws has two components uge = dS°/dt and up, = dR,/dt. Given our assumption in
Section 2 that bubbles are confined to only one pore each, and our further postulate here that bubbles do not
undergo hydrodynamic mobilization during ripening, ug, =0 must hold. These assumptions are consistent
with our PNM. That said, in many systems, bubbles do span multiple pores and can indeed mobilize between
pores [8]. However, we defer these complexities to future extensions of the theory in the interest of keeping
the scope focused. With the ug, =0 simplification, Eq.8 decouples into a series of 1D equations for each
fixed R,. Since Eq.8 is hyperbolic, we use a first-order upwind scheme with respect to ugs to discretize it.
Given Eq.8 is also first-order, we only need one boundary condition (BC). In Section 2, we assumed that
bubbles span only one pore, so no bubbles can enter or exit the domain close to the S®=1 boundary of the
phase space. Due to the specific form of Eq.7 chosen, which possesses a vertical asymptote at S* =1 (i.e.,
Kk—00), we are guaranteed (as seen later) that the horizontal component of the phase velocity points leftward
(specifically ug, — —o0 as S —1). The implication is that to enforce a no-flux BC, it suffices to impose g—0
as S® —1. The S?=0 boundary of the phase space is open to outflux of g, as bubbles can vanish, so no BC

is needed. We next turn our attention to deriving an expression for u, = (ugs, 0), or equivalently dS®/dt.



O Joy U1 W

OO U U UITUI OO DB DB DEDASDLDDNWWWWWWWWWWNNNNONMNNNONMNNNNMNNNNR R ERERRR R e
AR WNRPOOVO®AIdNNTBEWNROWOW®O-JANUDRWNROWOWOJdNTORWNR,OWO®-JAAUAWNREOWO®O-TINU B WNDRF O WO

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

4.8. Mean-field approzimation

Here, we formulate an expression for dS?/dt, which determines the advective velocity us = (dS?/dt, 0)
for the distribution function g(s;t) in phase space (Fig.3). The subscript s in dS®/dt specifies the velocity
belongs to state s. We begin by reformulating Eq.5 of the PNM, and assume for the time being that all z;
neighboring pores are occupied by a bubble. We shall revisit and remove this latter assumption in a Remark

stated at the end of this section. Since x;/x,~1 holds in practice [13], Eq.6 can be linearized as:

T; %Io(l—F RT ) (9)

Then, substituting Eq.9 for z; and z; into Eq.5, and using St =V>/V,,.;, we obtain:

z

de 1 : v%Dmamo Ajj

C “ Aij
(;
dt V;m' =1 ’UwRT Lij

Vp,i = Lij

tg=1

— ki) = (kj — ki) (10)

where C'=(v2D,,02,)/(vwRT) is a constant.
Now let I denote the index set of all bubbles with state s. Namely, bubbles in I reside in pores that have

a size R, ; and filled to a saturation S;’. If ng is the number of members in I, we define the state average as:

(e = S00) (1)

S jel,

Operating Eq.11 on both sides of Eq.10, and noticing S?=S?, x;=ks, and Vp,i=Vp,s Vicl,, we get:

ast  C LAy
= o k) (12)

e io L

To make further progress, we must express the right-hand side of Eq.12 in terms of the neighboring bubble
states s', not pores j. This requires the introduction of a conditional probability p(s’|s;t), which quantifies
the likelihood that a bubble in an adjacent pore is in state s’ given the current bubble is in state s. Moreover,
average, or mean-field, properties must be assigned to bubbles and throats in each state. These include zs,
Ags, and L, denoting the average number of bubbles adjacent to a bubble in state s, and the cross-sectional
area and length of a throat connecting bubbles in states s and s’, respectively. With these probabilistic
definitions in place, we can now write the following identity:

T 5
n L;;

j Ass’
J_ (kj — ks) = zs/ p(s'|s;t) 7 (ks — Ks) dQ (13)
% il j=1 s’ 58

where the integral runs over all neighboring states s’ in phase space.

Substituting Eq.13 into Eq.12, followed by some algebraic manipulation, yields our final expression:

st Cz, (AN .
= () ww (14a)
p,s s
where .
c __ A B /.. ASS’ A _ ... Ass’
ms—(L)s [ o105 s ag, (L)S— [ i3 an (14b)
9
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Notice Eq.14a is similar to the LSW relations in Eqs.2-3, except that it accounts for the spatial heterogeneity
and correlation induced by a confining pore space. Specifically, the conditional probability p(s'|s;t) is high
when bubbles in states s and s’ are proximate neighbors, but low otherwise. This is the case if pores with
radii R, and R, are physically connected to each other via throats; recall s=(S° R,) and s'= (S, R},). In
Eq.14a, kS is the mean-field curvature with which all bubbles in state s exchange mass. Notice bubbles in
each state interact with a different mean field or kS. Eq.14 is the most general form of our theory, providing
the sought-after us=(dS%/dt,0) for the population balance Eq.8. But unfortunately, Eq.14 is also the most
cumbersome form as its numerical solution requires p(s’|s;t), a 4D array that must be stored and updated
as g(s;t) evolves. These tasks can be memory intensive and difficult to ensure computational tractability.
We therefore introduce two approximations to Eq.14 in the next sections, which lead to two simplified
variants of our theory: Theory-C' and Theory-U, where suffixes C and U stand for “correlated” and
“uncorrelated.” Theory-C accounts for spatial correlations, like Eq.14, but reduces the 4D array p(s’|s;t)
to the 2D array p(R},|Ry;t). Theory-U goes one step further and ignores all spatial correlations altogether,
resulting in the replacement of p(R;,|Ry;t) with the 1D probability density function (PDF) p(R};1).

Remark. In deriving Eq.14a from Eq.12, we assumed the coordination number z; (or z;) represents
the number of bubble-occupied pores connected to bubble s (or pore 7). This poses a problem because if all
neighboring pores of a bubble are empty, its saturation will cease to evolve (i.e., dS?/dt=0). But this cannot
be, given bubble s can still exchange mass with distant bubbles two or more pores away. The rigorous way to
address the shortcoming would be to account for such high-order interactions via p(s’|s;t), but this is rather
difficult as discussed in Section 7 and beyond our scope. A partial remedy adopted here is to reinterpret z,
as the coordination number of the pore network, i.e., the number of neighboring pores connected to bubble
s irrespective of whether they contain a bubble. This ensures bubble s continues to exchange mass with the

mean field through all of its throats, as long as at least one of its neighboring pores remains occupied.

4.4. Theory-C: preserving spatial correlations

We begin formulating Theory-C by simplifying the joint probability p(s’|s;t) as follows:
p(s'|s;t) = p(s'| Rp;t) = p(S", Ry| Rpi t) = p(Ry | Ry; t) (S| Ry, Ryi t) = p(Ry | Ry; ) p(S”|Ryit) — (15)

where we have assumed p(s’'|s;t) =~ p(s'|Rp;t) and p(S’b|R;,Rp;t) %p(S’b|R;;t). The first approximation
means that a neighboring bubble’s state s’ depends chiefly on the current bubble’s pore size and not so much
on the size of the current bubble itself. In other words, spatial correlations are assumed to arise mainly from
the structure of the pore network, rather than from differences in bubble saturation. While artificial counter
examples violating this assumption can be easily conjured, in practice, the initial configuration of bubbles in
a porous medium is determined by trapping processes that follow fluid displacements and precede ripening.

Such trappings are heavily influenced by the pore-network structure. The second approximation has a parallel

10
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meaning, namely, the probability of finding a bubble with saturation (or volume) S is controlled more by
the size of its confining pore R;, and less by the size of its neighboring pore R,,.

In addition to Eq.15, we postulate the following identities:

Ass’ ~ ARPR;’ Lss’ ~ LRPRP Zs X ZR (16)

‘P

which are reasonable because the cross-sectional area and length of a throat depend less on the volumes

(or saturations) of the two bubbles straddling it, and more on the sizes of the pores linked by the throat.

Similarly, the coordination number of a bubble at state s is dictated mainly by the size of the pore confining it,

and less by the size of the bubble itself. Notice Ar, R, and Lg, Rr;, Tepresent statistical averages, because even

after fixing R, and R),, the areas and lengths of the throats connecting such pore sizes exhibit distributions.

Likewise, zg, is an ensemble average because fixing R, does not guarantee a fixed coordination number.
Armed with Egs.15 and 16, we can now simplify Eq.14 as follows:

st Czp, (AN .
R (L)Sms—ns) (17a)

where

A -1 , AR R’ A AR R
=17 , it)——"FRp dR, —) = "\R -t > IR 17b
" <L> /R;I’(RP'RP’ Ty 5B (L> /R;p(R,,mp, by, (1m)

! U
P p P

= [ oS eas”, S = o ([ imgaast) e
The detailed derivations of Eqgs.17b-c are given in Appendix A. Notice & r;, is the average curvature of
bubbles that occupy pores with size R, which depends on p(S’b|R;,; t). The latter is computed from g(s;t)
via the right expression in Eq.17c. The conditional probability p(RI’D|Rp; t) poses some challenges. For a given
pore network occupied by bubbles at t=0, we can easily calculate p(R;|R,;0) from the spatial information
provided. But as bubbles evolve into later times, such spatial statistics is no longer available in our theory,
because only g(s;1) is solved by the population balance Eq.8. Yet, we must update p(R},|Rp;t), as it captures
spatial correlations in the bubble-occupied portion of the network, which is time dependent.

In Appendix B, we show that if p(R},|R);0) is known, p(R,|R,;t) can be readily computed via:

fry p(R|Rp; 0) g(R};t)
/ 1) = P P , = P’ /'t :/ /b /'td /b 1

In practice, p(R,|Rp;t) and g(S% R,;t) are stored as matrices in computer memory and updated at each
time step that the population balance Eq.8 is evolved. In this format, Eq.18 is equivalent to performing a
series of row/column-scalings of the p(R}|R,;t) matrix, and row/column-sums of the g(S°, Ry;t) matrix.
To summarize, Theory-C consists of computing dS%/dt via Eq.17a, where ¢ and (A/L), are approximated
via Eqs.17b-c and 18. First, p(R|R;;0) is calculated from the spatial distribution of bubbles at ¢=0, which
is assumed to be known, and ARPR;, LRPR;, and zg, are obtained from the spatial statistics of the network
itself. At any later time ¢, as the population balance Eq.8 has been evolved to yield g(s;t), Eq.18 is used to
compute p(R|Ry;t). Substituting the latter into Eq.17 allows updating the phase velocity us = (dS?/dt,0)

11
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at all s in phase space. Finally, by inserting u, back into Eq.8, we can evolve g(s;t) to the next time step.

Note that the evolutions of g(s;t) and p(R|R,;t) in time impact both (A/L), and x§ in Eq.17a.

4.5. Theory-U: neglecting spatial correlations

Theory-C requires the storage of matrices for p(R|Ry;t) and Ag, R, /LR, Ry, with the former updated via
Eq.18 through time. Theory-U simplifies the formulation by reducing these quantities into 1D vectors. The

starting point is the assumption that all spatial correlations can be neglected, leading to:
P(R,|Ryit) ~ p(R},;t) (19)

Moreover, the following approximation is introduced:

AR, R A , Ar,r, A
Pp ~ — = : L ~ = 2
Lrm, ( L>R,, /R p(R,;0) Lrm, dR,, < L>5 (20)

’
P

where the second equality is a definition that assigns to each pore size R, an average value (A/L)g, .
Given Egs.19 and 20, we can now simplify ¢ in Eq.17 as follows:

KS = / p(Ry;it) R dR), = / p(s'st) kg dY = K (21)
Ry, ‘

S

Notice ¢ does not depend on the bubble state s, hence we have renamed it to x°. This means in Theory-U,
all bubbles interact with a single mean field. The expression for KRy remains the same as Eq.17c and the
expression for dS%/dt is the same as Eq.17a. The second equality in Eq.21 results from substituting & R, and
using [, dQ:fR;) Jg dS™°dR;,. The PDF p(s';t) is equal to g(s';t)/ny, where n is the number of bubbles at
time ¢, defined below. Notice the mean-field curvature x¢ in Theory-U equals the mean curvature computed
over the entire phase space; not so for x5 in Theory-C. The nuanced part again is computing p(Ry,; t).

In Appendix C, we show that if p(R);;0) is known, p(R};t) can be computed via:

' p(R.;0
p(%ﬂhw, F=2 nbz/g(S;t)dQ, n2=/g(s;0)dﬂ (22)

nb s
where n, and n are the total number of bubbles in the pore space at the current and initial times, respectively,

and F is the fraction of the surviving bubbles at any given time during Ostwald ripening. The quantity fr,

was defined in Eq.18. In Appendix C, we show that p(R,,;0) can be computed from g(s;0) via:

9(R};0)
p(R,;0) = T% (23)
b
where g(R;; 0) was defined in Eq.18. Note that Eq.23, and Theory-U as a whole, does not require any spatial

information about the size or occupancy of bubbles in the pore network at ¢=0, unlike Theory-C.

4.6. Summary of the solution procedure

Suppose an initial distribution of bubbles in phase space, g(s;0), and their corresponding spatial distri-

bution in a pore network are given. The latter is needed only in Theory-C. We execute the following steps in

12
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Figure 4: The distribution and contour lines of bubble curvatures, ks, in phase space computed via Eq.7. Dark colors correspond

to low curvatures, where bubble saturations are near their critical values (S.=V./Vp = 7/6) and/or pore sizes are larger.

order: (1) Compute p(R,|R,;0) from the spatial information for Theory-C and compute p(R};0) via Eq.23
for Theory-U; (2) Calculate x4 for every point in phase space using Eq.7, a visualization of which is given in
Fig.4; (3) Use these to obtain x¢ via Eq.17b for Theory-C and k¢ via Eq.21 for Theory-U; (4) Compute dS®/dt
via Eq.17a for Theory-C and Theory-U (use Eqs.20-21 for the latter), then insert in us=(dS%/dt,0) to yield
the phase velocity for the population balance Eq.8; (5) Discretize Eq.8 via a 1D finite volume method subject
to the BC discussed in Section 4.2, then advance by one time step to obtain g(s;t); (6) Update p(R)|Ry;t)
and p(R);t) via Eqs.18 and 22 for Theory-C and Theory-U, respectively; (7) Repeat from Step 3.

5. Validation set

We validate Theory-C and -U against PNM simulations on pore networks that have different levels of
heterogeneity and spatial correlation in pore sizes, and are occupied by bubbles with different spatial con-
figuration and total initial saturation S?. We use S? to denote the total saturation in a network and to
differentiate it from S® used to denote the saturation of a single bubble inside a pore. The PNM presented in
Section 3 has been validated itself against microfluidic experiments [11]. With reference to Fig.5, we consider
four pore-network types: (1) homogeneous, with a single pore size; (2) patterned, comprised of only two pore
sizes; (3) heterogeneous but spatially uncorrelated pore sizes; and (4) heterogeneous and spatially correlated
pore sizes. The patterned networks themselves divide into 4x4, 8x8, and 16x16 arrangements of small and
large pores as shown in Fig.5. All networks are topologically 2D lattices made of a 50x50 array of pores.
Thus, the coordination number of all pores is z; =4, except for boundary pores where the value is less.

We define the heterogeneity ratio as Rpet = Rp maz/Rp min, Where Ry mar and Ry min are the maximum
and minimum pore sizes in the network, respectively. For the homogeneous network, Ry.; =1. All patterned

networks have Rj; =4. For the remaining heterogeneous networks, we draw R, from a uniform distribution

13
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Figure 5: Pore networks used to validate Theory-C/U. Top row: Patterned networks comprised of two pore sizes. They decrease
in spatial correlation from left to right. Bottom row: Networks with homogeneous, heterogeneous but spatially uncorrelated,

and heterogeneous and spatially correlated pore sizes drawn from a continuous distribution. All networks are 50x50 lattices.

between Ry min and Rp maz, Or U(Rp min, Rpmaz), and consider Ry =4 and 8. To create spatially correlated

networks, we first generate a random Gaussian field £ ~ N (u, C(h)) with mean p=0 and covariance function:

C(h) = exp (Z) (24)
where a is the correlation length and h the distance between any two pores. The field consists of an array of
random numbers, &, defined at the pore centers. Notice Eq.24 entails a unit variance at h=0. We then map
&, which can take on negative values, onto the uniform pore-size distribution & using the inverse probability
integral transform method. Namely, we compute R,=Fy; L(Fnr(€)), where Fiy and Fyy are the cummulative
distribution functions of A and U, respectively. We consider a = 0.1L; and 3L;, where L; is the lattice
spacing (i.e., throat length). The former yields a spatially uncorrelated network, and the latter a correlated
network, both illustrated in Fig.5. When varying Rp.: between 4 and 8, we keep the generated ¢ field fixed,
and only change the distribution function ¢. In other words, the only difference between Rp.; =4 and 8 for
a fixed a lies in the contrast between the pore sizes, not their relative spatial arrangements.

The above cases amount to a total of 8 networks, consisting of 1 homogeneous, 3 patterned, 2 hetero-
geneous uncorrelated, and 2 heterogeneous correlated. For each, we consider two initial bubble saturations
SP=30% and 60%; for the homogeneous network we also probe 7.5% to allow comparison against an existing

theory [14]. Table 1 summarizes these cases and establishes a shorthand for referencing them. For homoge-
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Table 1: Validation set used to compare Theory-C and -U against the PNM. It consists of homogeneous, patterned, heterogeneous

uncorrelated, and heterogeneous correlated pore networks that are filled initially with bubbles up to different total saturations.

Description Correlation length (a) Rpet SP Name
Homogeneous, very low S? - 1 7.5% Ho-S08
Homogeneous, low S? - 1 30% Ho-S30
Homogeneous, high S? - 1 60% Ho-S60
Patterned, 4x4 13L, 4 60% Pt-4
Patterned, 8x8 6L, 4 60% Pt-8
Patterned, 16x16 3L, 4 60% Pt-16

Low Rpet, uncorrelated, low S? 0.1L; 4 30% R4-Unc-S30
Low Rjes, uncorrelated, high S? 0.1L, 4 60% R4-Unc-S60
Low Ry, correlated, low S? 3L, 4 30% R4-Cor-S30
Low Rpet, correlated, high S? 3L, 4 60% R4-Cor-S60
High Rjet, uncorrelated, low S? 0.1L; 8 30% R8-Unc-S30
High Rj,.t, uncorrelated, high S? 0.1L, 8 60% R8-Unc-S60
High Rpet, correlated, low S? 3L 8 30% R8-Cor-S30
High Rj:, correlated, high Sf 3L, 8 60% R8-Cor-S60
Complex bubble placement, uncorrelated 0.1L; 4 32%  Cmplx-Unc
Complex bubble placement, correlated 3L 4 32%  Cmplx-Cor
Same as Cmplx-Unc except with variable A;/L; 0.1, 4 32% vAL-Unc
Same as Cmplx-Cor except with variable A;/L; 3L; 4 32%  vAL-Cor

neous networks, we use Ho-S30, for example, to denote S? =30%. For patterned networks, we use Pt-4, Pt-8,
and Pt-16 to denote the 4x4, 8x8, and 16x16 patterns in Fig.5. For other heterogeneous networks, we use
R8-Cor-S60, for example, to denote Rj.; =8, correlated pore sizes with a=3L;, and an initial bubble satu-
ration of Sf =60%. As another example, R4-Unc-S30 means Ry,.; =4, uncorrelated pore sizes with a=0.1L;,
and S? =30%. Unless stated otherwise, most networks are initialized by placing a bubble in all pores with
the local S®=V"/V,, equaling the global S?. Finally, we consider two additional cases denoted by Cmplx-Unc
and Cmplx-Cor in Table 1, whose pore networks are identical to R4-Unc and R4-Cor, respectively, except
the initial placement of bubbles is much more complex (described later).

The validations in Section 6 are organized according to the horizontal groupings of the cases in Table 1,
which increase systematically in level of complexity. First, we focus on homogeneous networks, and compare
predictions from Theory-C/U against the PNM and an existing theory by Yu et al. [14]. Since the latter is
valid for very low (sub-critical) bubble saturations, we set S? =7.5%. We also probe S =30% and 60% for

15
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Figure 6: PNM predictions of early- and late-time spatial distributions of bubbles due to ripening in the patterned networks of
Fig.5, corresponding to the Pt-4, Pt-8, and Pt-16 cases in Table 1. Bubbles are depicted by circles whose radii are proportional
to the bubbles’ sizes. Snapshots are taken at times 10 and 100hr for Pt-4, 1 and 10hr for Pt-8, and 1 and 10hr for Pt-16.

which the existing theory is not valid. Next, we consider patterned networks made from two pore sizes whose
spatial correlations increase progressively from Pt-16 to Pt-8, then Pt-4. After that, we validate Theory-C/U
against more complex heterogeneous networks, whose pore sizes are drawn from uniform distributions and
spatial correlations are induced via Eq.24. Next, we focus on the impact of complex initial bubble placements
within the most heterogeneous networks from the previous grouping in Table 1. In all the above cases, the
ratio A; /L, for all throats (cross-sectional area over length) is kept uniform to probe the sole impact of bubble
states (pore size and bubble saturation) on ripening dynamics. The final grouping in Table 1 introduces the
added complexity of having a variable A;/L; in the networks from the prior grouping. In all validations that
follow, no parameter tuning of any sort is performed for Theory-C or -U, i.e., all predictions are blind.

To guide the discussion, Figs.6 and 7 depict early- and late-time spatial distributions of bubbles obtained
via PNM for the Ho-S30, Pt-4, Pt-8, Pt-16, R4-Unc-S60, and R4-Cor-S60 networks in Table 1. This subset is
representative of all other cases in Table 1. For simplicity, each bubble is depicted by a circle whose radius is
proportional to the bubble’s size. Notice small bubbles initially in small pores (Fig.5) shrink and eventually
vanish during ripening, with their mass transferring to bubbles in larger pores. Our goal with Theory-C/U is
to predict the statistical distribution function g(s;t) obtained numerically from the PNM. The latter informs

us of what bubble sizes reside in which pores. In all cases, the constant C' in Eq.10 is 3.553x10~3¢cc/s.
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Figure 7: PNM predictions of early- and late-time spatial distributions of bubbles in the homogeneous and heterogeneous
networks of Fig.5, i.e., Ho-S30, R4-Unc-S60, and R4-Cor-S60 in Table 1. Bubbles are depicted by circles with radii proportional
to their sizes. Snapshots are at times 0.1 and 1hr for Ho-S30, 10 and 103hr for R4-Unc-S60, and 10 and 10*hr for R4-Cor-S60.

6. Results

6.1. Comparison against existing theory: spherical bubbles

Here, we compare Theory-C and -U against the PNM of Section 3 and an existing theory by Yu et al. [14].
Since the theory of [14] is valid when all bubbles are spherical (or sub-critical), we use the low-saturation
Ho-S08 network in Table 1. The network is homogeneous with a pore size of R, =5um, a throat length of
L,=10wm, and a throat cross-sectional area of A; =19.6um?. To trigger the onset of ripening, as sub-critical
bubbles are unstable, we perturb the bubble saturations in each pore by initializing them randomly between
5% and 10%. At early to moderate times, when bubbles are still spherical with radius R®, their curvatures
can be computed via k=2/RP. But at late times, some bubbles become deformed by the pore walls, hence
their curvatures depend on the bubble volumes according to Eq.7. To enable one-to-one comparison against
the sub-critical theory of [14], we transform super-critical bubble volumes (or saturations) obtained from
the PNM and Theory-C/U to R’ by replacing them with a sphere of the same volume. The latter is done
through a post-processing step, not during simulations or analytical calculations. In Yu et al.’s theory, each
bubble interacts with a mean field that is represented by a virtual bubble of radius RY, called the critical
radius. This is similar to the mean-field curvatures x¢ and ¢ in Theory-C and -U, respectively. Notice in a
homogeneous network, the distribution function g(S°, R,;t) depends only on S°, and Egs.17b and 21 simplify

to yield k¢ =k°. At early to moderate times, when all bubbles are spherical, R%=2/x°. But at late times,
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Figure 8: Comparison of the evolution of the mean bubble curvature (=2/R2) through time predicted by the PNM in Section 3,
Theory-C and -U in Section 4, and an existing theory by Yu et al. [14] for spherical (or sub-critical) bubbles. The latter consists
of predictions for “sparse” and “dense” spatial configurations of bubbles. The curves for Theory-C and -U overlap perfectly.

The vertical green line marks the first time a bubble touches its pore’s walls, after which the theory by [14] is no longer valid.

we set R? to be the harmonic mean of all volume-equivalent R’ to allow one-to-one comparison with [14].

Yu et al. showed that, except for very early times, the ripening of sub-critical bubbles reaches an asymp-
totic regime where R® scales as t'/4 provided the spatial arrangement of bubbles is sparse, and as t?/11 if
the arrangement is dense.? These apply to topologically 2D networks like the ones herein. Both scalings
are plotted in Fig.8 alongside PNM simulations (used as a reference) and predictions via Theory-C/U. For
consistency with results in later sections, the y-axis in Fig.8 is expressed in terms of mean curvature or 2/R®.
We see that Theory-C and -U yield identical results that are in excellent agreement with PNM. In contrast,
the theory by [14] agrees with the PNM only during intermediate times between 0.1 and 1hr, when the
asymptotic regime is dominant. Moreover, only the sparse limit of Yu et al.’s theory agrees with the PNM,
most likely because many sub-critical bubbles dissolve within 0.1hr of ripening leading to large inter-bubble
distances. At ~1hr from the start of ripening, marked by the vertical green line in Fig.8, the first bubble
in the network touches its pore’s walls. After this time, not all bubbles are spherical and the theory of [14]
deviates significantly. Theory-C/U, however, capture this super-critical ripening regime accurately.

Yu et al. also showed that the PDF of R”/R? is stationary (or time-independent) during the asymptotic
ripening regime. This is plotted in Fig.9 and compared against the PNM simulations at three times: 0.01Ar,
0.1hr, and 1hr. We remark that, unlike Fig.8, the stationary PDF of [14] does not depend on whether the

spatial arrangement of bubbles is sparse or dense. We see that a good agreement between Yu et al.’s theory

2If bubbles were gaseous satisfying the ideal gas law vy = RT/p® and Henry’s law p® = Hz,, where p® is the bubble pressure
and H is Henry’s constant, then the constant in Eq.10 becomes C = (vp Dino)/(vwH). This constant is used in the theory by

[14], except it seems to have been mistakenly multiplied by z, therein, which we have corrected in Section 6.1.
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Figure 9: Comparison of PDFs of normalized bubble sizes versus time predicted by the PNM in Section 3, Theory-C and -U in
Section 4, and the theory of Yu et al. [14] for sub-critical bubbles. Super-critical bubble sizes from the PNM and Theory-C/U in
the 1hr snapshot were obtained by computing volume-equivalent sphere radii. Normalization of R? is done against the critical
radius RY. The theory by [14] agrees with the PNM at 0.1hr, after asymptotic regime has been established and before bubbles
touch the pore walls. At 0.01hr and 1hr, agreement is poor but captured well by Theory-C and -U, which overlap one another.

and the PNM is observed only at 0.1hr, namely, after the asymptotic regime has been established but before
any bubbles have touched their pores’ walls. By contrast, Theory-C/U are in excellent agreement with the
PNM for the entire duration of ripening. We thus conclude that Theory-C/U successfully generalize the
theory by [14] from spherical bubbles in the asymptotic regime, to arbitrarily shaped bubbles in all regimes.

6.2. Homogeneous network at higher saturations: beyond existing theory

We next go beyond the theory of [14] and consider the same homogeneous network as in Section 6.1 but
at higher bubble saturations: S?=30% and 60% corresponding to the Ho-S30 and Ho-S60 cases in Table 1,
respectively. In Ho-S30, local bubble saturations in pores (=V?*/ V) are initialized randomly between 10%—
50%, and in Ho-S60 between 30%-90%. Notice for local saturations >7/6 ~ 52% (specific to the semi-cubic
pores herein), bubbles are super-critical and non-spherical in shape. In Fig.10, we compare predictions from
Theory-C/U and the PNM with respect to the mean curvature %, average bubble volume Vb, and the fraction
of survived bubbles F' defined in Eq.22 versus time. For reasons stated in Section 6.1, Theory-C and -U yield
identical results within the homogeneous network, and thus only the former is depicted in Fig.10.

Fig.10 shows that Theory-C is in good agreement with the PNM for both low and high bubble saturations.
When S?=30%, most bubbles are initially sub-critical but become super-critical at late times; at which only
50% of the bubbles survive. This is similar to the ultra-low saturation (S? =7.5%) case of Section 6.1 as
depicted in Fig.8. Except here, the transient spike in k& at very early times is more pronounced than in
Fig.8. The spike is due to a rapid decrease in the sizes of many sub-critical bubbles prior to their complete
dissolution, after which & declines steadily. The effect is stronger when bubbles are larger initially (S?=30%
here versus 7.5% in Section 6.1) because then curvatures have a lower starting point, thus a steeper climb. By
contrast, when S? =60%, most bubbles are initially super-critical and remain so well into late times; at which
97.5% of bubbles survive. In this case, changes in the average volume and survived fraction of bubbles are

understandably small, as seen in Fig.10. But there is a sizable decline in & that is captured well by Theory-C.
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Figure 10: Comparison between Theory-C and the PNM with respect to mean curvature &, average bubble volume V_”7 and the
fraction of survived bubbles F' versus time in the Ho-S30 and Ho-S60 networks of Table 1. The predictions from Theory-U are
omitted because they overlap with the results of Theory-C.
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Figure 11: Comparison of PDFs of local bubble saturation in pores predicted by the PNM and Theory-C at three times (0, 0.1,
and 1.0hr) and two saturations (S? =30% and 60%) in the Ho-S30 and Ho-S60 networks. Theory-U overlaps with Theory-C
and is thus omitted. These PDFs are different from those predicted by the asymptotic theory of [14] in Fig.9 for ultra-low Sf.

The origin of the slight deviations in the late-time values of % (and Vb & F) are discussed in Section 7.

Fig.11 further shows the corresponding PDF's of the local bubble saturations in pores at three times. We
see that Theory-C, and the overlapping Theory-U omitted, are in good agreement with the PNM. Notice the
PDFs are very different from the asymptotic-regime PDFs obtained from the theory of [14] in Fig.9.

6.3. Heterogeneous networks with patterned microstructure

We now increase the level of complexity in our validation by considering the patterned networks Pt-4, Pt-
8, and Pt-16 in Table 1, which consist of two pore sizes (with contrast Rj.; =4) arranged spatially according

to Fig.5. The initial S? in all three networks is 60%, which matches the local saturation in each pore. From
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Figure 12: Comparison of (left column) mean bubble volume, (middle column) mean bubble curvature, and (right column) the
fraction of survived bubbles versus time in the patterned networks Pt-4, Pt-8, and Pt-16 of Table 1 obtained via Theory-C,
Theory-U, and the PNM. Spatial correlation decreases from Pt-4 to Pt-16, during which Theory-C asymptotes to Theory-U.

Fig.5 and Table 1, the correlation lengths of the networks decrease systematically from Pt-4, to Pt-8, then
Pt-16. This allows testing whether spatial correlations captured via Theory-C are important, or if they can
be neglected via the simpler Theory-U. Fig.12 illustrates the mean curvature <, mean bubble volume Vb, and
the fraction of survived bubbles F' versus time obtained from Theory-C, Theory-U, and the PNM. Notice the
mean curvature £ entails the average of ks over the entire phase space (= fs ksg(s;t) dQ/n’) in Theory-C/U,
or the spatial average of k; over the network in the PNM. In a heterogeneous network, like the ones here and
hereafter, % is different from the mean-field curvature ¢ in Theory-C, but equal to the ¢ in Theory-U. In a
homogeneous network, like the ones considered in the previous two sections, k=x¢=x° holds.

Fig.12 shows Theory-C is in satisfactory agreement with the PNM for all correlation lengths, whereas
Theory-U agrees well only at a low correlation length (Pt-16). This is expected as Theory-U neglects spatial
correlations in bubble states (including pore sizes) as its central assumption. Also expected is the observation
that the predictions from Theory-C asymptote to those of Theory-U in going from Pt-4 to Pt-16. Given

the networks are ordered and consist of only two pore sizes, the PDFs of local bubble saturation in pores
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corresponding Fig.12 are difficult to interpret and convey redundant information with respect to Fig.12. We
have thus included such plots in Appendix D, where we again find satisfactory agreement between Theory-C

and the PNM in all networks, and Theory-U and the PNM in the low-correlation network Pt-16 only.

6.4. Heterogeneous networks with random microstructure

We increase the difficulty of the validation further by considering the heterogeneous networks with uniform
pore-size distribution in Table 1, namely, R4-Unc-S30, R4-Unc-S60, R4-Cor-S30, R4-Cor-S60, R8-Unc-S30,
R8-Unc-S60, R8-Cor-S30, and R8-Cor-S60. These consist of continuous pore sizes that are spatially correlated
(Cor) or uncorrelated (Unc), have low (R4: Rper =4) or high (R8: Rp.t =8) contrast, and are occupied by
bubbles up to an initially low (S30: S? =30%) or high (S60: S?=60%) total saturation. At ¢=0, a bubble
is placed in all pores with a local saturation S® (=V?/V,,) equal to SP. Figs.13 and 14 show the evolutions
of the mean curvature 5, mean bubble volume V_b, and the fraction of survived bubbles F' in these networks
computed via Theory-C, Theory-U, and the PNM. Fig.13 depicts the results for S? =30%, and Fig.14 for
S?=60%. Theory-U yields identical results for correlated and uncorrelated networks, thus only one is plotted.

We see that Theory-C is in very good agreement with the PNM in all networks, whereas Theory-U agrees
with the PNM in uncorrelated networks only. Specifically, the application of Theory-U to correlated networks

(red) is seen to result in very large errors. As expected, Theory-C reduces to Theory-U in the uncorrelated

%108

3.5 2400 1
> PNM, a=0.1
3 - PNM,a=3 2200
' —Theory-C, a=0.1 E o) 0.8
3 ——Theory-C, a=3 2 =
225" - Theory-U 2000 2 -
E g 506 -
o
ER ‘gmou & 3"
°
> 3 204
g o.
§1.5 2 1600 H 1N
= 3 Boa L
1 = 1400 -
05 e | | il 2o LI LIV VNN EIRRD rme d TR ]I o LU UG 30 o
1072 10° 10? 10* 102 10° 10? 10° 102 10° 10? 10*
Time (hr) Time (hr) Time (hr)
-7
25 %10 1600 1
- 2 E 1400 —~08
£ L I
S = S
© 15 2 1200 $0.6
£ 2 [
3 g &
[=]
> 9 3 1000 § 0.4
c 5 2
0.5 S 800 D o2
ol gog LU LI |1 . .= 0 Al LG LU i
1072 10° 10% 10* 102 10° 10? 10° 102 10° 10% 10
Time (hr) Time (hr) Time (hr)

Figure 13: Comparison of (left column) mean bubble volume, (middle column) mean bubble curvature, and (right column) the
fraction of survived bubbles versus time in the heterogeneous networks R4-Unc-S30, R4-Cor-S30, R8-Unc-S30, and R8-Cor-S30
computed via Theory-C, Theory-U, and the PNM. The networks include correlated (red), uncorrelated (black), low-contrast
(top row), and high-contrast (bottom row) pore sizes drawn from a uniform distribution. Initial bubble saturation is S? =30%

in all cases. Theory-U yields identical results for correlated and uncorrelated networks, thus only one curve is plotted.
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Figure 14: Comparison of (left column) mean bubble volume, (middle column) mean bubble curvature, and (right column) the
fraction of survived bubbles versus time in the heterogeneous networks R4-Unc-S60, R4-Cor-S60, R8-Unc-S60, and R8-Cor-S60
computed via Theory-C, Theory-U, and the PNM. The networks include correlated (red), uncorrelated (black), low-contrast
(top row), and high-contrast (bottom row) pore sizes drawn from a uniform distribution. Initial bubble saturation is S? =60%

in all cases. Theory-U yields identical results for correlated and uncorrelated networks, thus only one curve is plotted.

networks. Notice from Figs.13-14 that ripening is much faster in uncorrelated networks than in correlated
networks. This is because larger correlation lengths in pore size entail smaller spatial gradients in bubble
curvature, which ultimately drive ripening. Similar to Fig.10, we observe in Figs.13-14 deviations in % at late
times computed via Theory-C versus the PNM. We discuss the underlying causes for this in Section 7.

Let us now examine the PDFs of the bubble states. Since both R, and S® are continuous variables in
the pore networks considered, we compare the distribution function g(s; ) in the 2D phase space s=(S°, R,)
computed via Theory-C/U and the PNM. For brevity, we focus on the uncorrelated R4-Unc-S60 and the
correlated R4-Cor-S60 networks, as all others yield similar results. Fig.15 shows three snapshots of g(s;t) for
R4-Unc-S60 at times Ohr, 20hr, and 1,116hr. Because R4-Unc-S60 is uncorrelated, Theory-C and Theory-U
yield identical results, thus only one is plotted in Fig.15. At ¢t=0, all pores are saturated to S°=S? =60%,
resulting in bubble states that form a vertical stripe in Fig.15. At ¢ >0, the agreement between the snapshots
of Theory-C/U and PNM is excellent, which validates the accuracy of both theories in uncorrelated networks.

Fig.16 shows the same plot as Fig.15 but for the correlated R4-Cor-S60 network. Since Theory-C and -U
yield different predictions in this case, they are plotted separately. The snapshots of g(s;t) correspond to the
times Ohr, 20hr, and 200hr from the start of ripening. We see while Theory-C is in excellent agreement with
the PNM, Theory-U is not. For this reason, we conclude that spatial correlations are indeed important to be

taken into account via Theory-C and neglecting them via Theory-U can result in significant errors. Note that
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Figure 15: Snapshots of the distribution function g(s;t) at three times (0, 20, and 1,116hr) in the phase space s=(S%, R,) for
the R4-Unc-S60 network in Table 1 computed via Theory-C/U and the PNM. Since the network is uncorrelated, Theory-C and
-U yield identical results. The colored areas correspond to the PNM and the white contours to Theory-C/U. The heat maps for

PNM use different shades of yellow, red, and black, in that order, to indicate decreasing values of g(s;t).
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Figure 16: Snapshots of the distribution function g(s;t) at three times (0, 20, and 200hr) in the phase space s=(S%, R;) for the
R4-Cor-S60 network in Table 1 computed via Theory-C/U and the PNM. Since the network is correlated, Theory-C (top row)
and Theory-U (bottom row) are shown separately. The colored areas correspond to PNM and white contours to Theory-C/U.

The heat maps for PNM use different shades of yellow, red, and black, in that order, to indicate decreasing values of g(s;t).

24



O Jo Ul b wdN

OO U U OGO OO DB DB DD DNWWWWWWWWWWNRNNRNONNRNONNRNONNNNR F R PR R R
AR WNRPOO®®IONTREWNROWOW®O-JAUDRWNROWO-JdJNUEWNRPROW®-JOUEWNROWG®-TJU S WN R O WO

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

in both Fig.15 and 16, small bubbles (i.e., in small R,) dissolve and vanish due to their negative or leftward
velocity (i.e., dS?/dt <0) in the phase space. The late-time snapshots correspond to a near-equilibrium state

in which all bubbles have similar curvature and Ostwald ripening ceases to evolve bubbles significantly.

6.5. Heterogeneous networks with complex initial bubble placements

Here, we increase the difficulty of our validation problem further by considering complex initial placements
of bubbles inside correlated and uncorrelated networks. Specifically, we consider the Cmplx-Unc and Cmplx-
Cor cases in Table 1 with S? =32%, which have networks identical to R4-Unc and R4-Cor from the last section
except the initial bubble configurations are different. To initialize bubbles, we divide the pore sizes into three
equal (in number) groups. In the first group (largest R,,), we randomly set local bubble saturations S between
5-35%. In the second (medium R,,), we set S between 35-65%, and in the third group (smallest R,,), we set
S® between 65-95%. Fig.17 shows the evolutions of the mean curvature &, mean bubble volume Vb, and the
fraction of survived bubbles F' predicted by Theory-C and the PNM. Since Theory-U yields identical results
for the correlated Cmplx-Cor and uncorrelated Cmplx-Unc, we only plot one of them. Fig.18 shows the
corresponding evolution of g(s;t) via three snapshots at times 0, 20, and 200hr and at equilibrium (£ — 00).
These PDFs are shown for Theory-C and the PNM, but not Theory-U because it yields results identical to
Theory-C in the uncorrelated network and incurs significant errors in the correlated network. The snapshots
at t = 0 clearly illustrate how bubbles are initialized in phase space. Notice by placing low-S? bubbles in
larger pores (high R,) we have increased their chance of survival at late times compared to Figs.15-16.

Once again, Theory-C is in good agreement with the PNM in Figs.17-18. We remark that unlike the theory
of [14], Theory-C (and -U) accommodate complex initial conditions like those considered here, whereas [14]

applies only to asymptotic regimes where any memory of the initial condition has been long forgotten.
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Figure 17: Comparison of (left) the mean bubble volume, (middle) mean bubble curvature, and (right) the fraction of survived
bubbles versus time in the heterogeneous networks Cmplx-Unc and Cmplx-Cor in Table 1 computed via Theory-C, Theory-U, and
the PNM. The networks are comprised of correlated (red) and uncorrelated (black) pore sizes drawn from a uniform distribution
with Rp.t=4. Initial bubble saturation is Sé’ =32%. Theory-U yields identical results for correlated and uncorrelated networks,

thus only one curve is plotted.
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Figure 18: Snapshots of the distribution function g(s;t) at three times (0, 20, and 200hr) and at equilibrium in the phase
space s=(S% R,) for the Cmplx-Unc and Cmplx-Cor networks in Table 1 computed via Theory-C and the PNM. Theory-U is
omitted because it yields results identical to Theory-C in the uncorrelated network (top row) and it deviates significantly in the
correlated network (bottom row). The colored areas correspond to the PNM simulations and the white contours to Theory-C.

The heat maps for PNM use different shades of yellow, red, and black, in that order, to indicate decreasing values of g(s;t).

6.6. Heterogeneous networks with variable throat properties

In all cases considered thus far, the ratio A;/L; for all throats (cross-sectional area over length) was kept
uniform to probe solely the impact of bubble states (S° and R,) on ripening dynamics. Here, we introduce
another layer of complexity by allowing A;/L; to vary spatially. Specifically, we consider the vAL-Unc and
vAL-Cor cases in Table 1, which are identical to Cmplx-Unc and Cmplx-Cor, respectively, except A;/L; is
variable. Specifically, Rpe; =4, S? =32%, and the initial bubble placement is complex and the same as Section
6.5. While there are many ways to set A;/L;, we proceed as follows: If R,,, and R,, denote the sizes of the two
pores straddling a given throat, we compute the throat radius via Ry =min{R,,, R,,}/2 then the throat area
via A;=nR2. The throat length L; is kept constant and equal to the lattice spacing. Thus, spatial variability
in A;/L; is introduced through A; alone. Fig.19 shows the evolutions of the mean curvature &, mean bubble
volume V?, and the fraction of survived bubbles F versus time computed via Theory-C, Theory-U, and the
PNM. Since Theory-U yields identical results for correlated and uncorrelated networks, only one is plotted.

As before, predictions from Theory-C are in good agreement with the PNM except at late times (to
be discussed). By comparison, Theory-U performs satisfactorily in the uncorrelated vAL-Unc network, but
poorly in the correlated vAL-Cor. Curiously, even in vAL-Unc, the prediction of F' via Theory-U is off, which
is likely because the parameter (A/L), in Eq.20 is computed only once at t =0 and never updated again

(unlike Theory-C). The corresponding plot of g(s;t) versus time is similar to Fig.18 and thus omitted. Given
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Figure 19: Comparison of (left) mean bubble volume, (middle) mean curvature, and (right) the fraction of survived bubbles
versus time in the heterogeneous networks vAL-Unc and vAL-Cor computed via Theory-C, Theory-U, and the PNM. The
networks are identical to those in Fig.17, except here throat dimensions (A¢/L¢) vary spatially. Pore sizes are drawn from a
uniform distribution with Rpet =4, and are either correlated (red) or uncorrelated (black). Initial bubble placement is complex

(as Section 6.5) and Stb =32%. Theory-U yields identical results for correlated and uncorrelated networks, so only one is plotted.

the networks here constitute the most challenging of all in Table 1, we conclude that Theory-C is superior

to Theory-U in predicting ripening kinetics, especially when applied to correlated networks.

7. Discussion

7.1. How to apply the bubble ripening theory

We have presented a theory to predict the Ostwald ripening kinetics of trapped bubbles in porous media.
The theory describes the evolution of a distribution function, g(s;t), of bubbles states, s, in time. Each
bubble state consists of a pair of coordinates (S, R,) in a statistical phase space over which g(s;t) is defined.
The saturation S® denotes the fraction of the pore’s volume the current bubble occupies, and R, represents
the size of the pore within which the bubble resides. The quantity g(s;t)dQ2 with dQ2=dS*dR,, is the number
of bubbles in an infinitesimal patch of phase space centered at s. Our theory evolves g(s;t) temporally
using a population balance Eq.8, whose phase velocity u, is determined by the mean-field approximation in
Eq.14. But since Eq.14 is difficult to evaluate, due to the four-dimensional conditional probability p(s’|s;t),
two simplifications were introduced that led to Theory-C and -U. Their main difference is that Theory-U
ignores spatial correlations while Theory-C preserves them. Section 6 demonstrated that Theory-C and -U
generalize an existing theory by [14] for spherical bubbles in a homogeneous medium to deformed bubbles in
a heterogeneous medium. Theory-C further extends to correlated microstructures, where Theory-U fails.

To apply Theory-C/U in practice, the starting point is often an X-ray uCT image of a porous material.
A pore network can be extracted from such an image using one of many available algorithms, e.g., maximal
ball [29], medial axis [30], and the watershed transform [31]. The network will yield a distribution of pore
sizes (R,) and throat sizes (A:/L:), which feed into the computations of (A/L),, x¢, and k¢ via Eqs.17 and
21 used to estimate the phase velocity u, (or dS%/dt). An important assumption here, discussed further in

Section 7.2, is that all pores are approximated to have the same shape, but not size. While we considered
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semi-cubic pores throughout this work, whose local bubble curvatures obey Eq.7, other shapes are equally
possible. In addition to pore-network statistics, the theory requires an initial condition. For Theory-U, no
spatial information is needed and a mere knowledge of g(s;0) is sufficient. The latter allows computing the
initial number of bubbles nj via Eq.22 and the probability p(R);0) that a pore of size R), is occupied by
a bubble at ¢t =0 via Eq.23. For Theory-C, we need some spatial information to be able to compute the
conditional probability p(R;|R;;0), which quantifies the likelihood that a bubble within a pore of size R, is
connected to another within a pore of size R), at t=0. Such information may be captured by the same X-ray
1CT image used to scan the specimen and visualize trapped bubbles, or simulated using a numerical model
(e.g., PNM, lattice Boltzmann). Specifically, we need n%g R, that quantifies the number of throats connecting
bubble-occupied pores with sizes R, and R, at t=0. Inserting this quantity into Eq.B.3 yields p(R,|R,;0).
Once parameterized, Theory-C and -U can predict ripening dynamics orders of magnitude faster than PNM
because their costs do not scale with the porous sample’s size or the number of bubbles tracked.

The evolution of g(s;t) so predicted informs which pores are occupied by bubbles, and to what saturation,
at time t. When coupled to upscaled models of a porous medium, such bubble-occupancy statistics can
inform how the macroscopic properties of the sample, like relative permeability [32], evolve over time. The
implications of such predictive understanding would allow, e.g., estimating degradations or enhancements of

fluid injection/withdrawal in underground hydrogen storage as well as water management in fuel cells.

7.2. Limitations of the proposed theory

As discussed above, Theory-U is limited to porous media devoid of any spatial correlation. While Theory-C
removes this limitation and allows predicting the evolution of bubble statistics within correlated microstruc-
tures, it has one glaring limitation: it does not account for interactions between bubbles that are separated by
more than one throat. Concretely, if a group of bubbles occupy pores of size R, and another group occupies
pores of size R;,, the two cannot exchange mass via ripening if p(R;\Rp; 0)=0. This can occur if the network
is correlated and the initial placement of bubbles in the porous medium is very sparse and non-random (i.e.,
certain pore sizes are occupied but not others). Recall, p(R;|Ry;0) represents the probability of communi-
cation between a bubble and its adjacent, or first-order, neighbor but does not capture the communication
with farther, or higher-order, neighbors. Under these conditions, bubbles in pore sizes R, and R; evolve
independently from each other. Fig.20 shows a contrived counterexample that amplifies this shortcoming.

At t=0, sub-critical bubbles are placed in the largest 20% of pore sizes (S° assigned randomly between
5-35%) and super-critical bubbles in the smallest 20% of pore sizes (S° assigned randomly between 65-95%).
The top row of Fig.20 corresponds to a spatially uncorrelated network (R4-Unc in Table 1), while the bottom
row to a correlated pore network (R4-Cor in Table 1). In the uncorrelated network, the agreement between
Theory-C and the PNM is good. However, in the correlated network, bubbles in large and small pore sizes
are fully disconnected (i.e., there is more than one throat between them). Hence, p(R,|R,;;0) =0 holds for
bubbles occupying pore sizes R, and R),. By Eq.18, this implies p(R},|Rp;t)=0 for all >0. Physically, this

means the two bubble groups evolve and equilibrate independently from each other as can be seen in Fig.20.
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Figure 20: Counterexample highlighting the limitation of Theory-C in capturing bubble interactions between higher-order
neighbors (i.e., more than one throat apart). Snapshots of the distribution function g(s;t) at three times (0, 10, and 100hr) and
at equilibrium in the phase space s=(S?, R,) for uncorrelated (top row) and correlated (bottom row) networks with Rpe; =4
computed via Theory-C and the PNM. Theory-U is omitted because it yields results identical to Theory-C in the uncorrelated
network (top row) for both networks. The colored areas correspond to PNM simulations and the white contours to Theory-C.

The heat maps for PNM use different shades of yellow, red, and black, in that order, to indicate decreasing values of g(s;t).

By contrast, Theory-U yields the same prediction for both correlated and uncorrelated networks, which is
identical to that of Theory-C in the uncorrelated network (top row of Fig.20). In this sense, Theory-U is
more robust because even when it is wrong, its failure is not unphysical. The reason lies in the fact that each
bubble in Theory-U interacts with the same mean field that is, in turn, informed by all the bubbles. Put
differently, every bubble pair in Theory-U has some non-zero communication, unlike Theory-C. We suspect
this shortcoming of Theory-C is the main reason for the larger late-time errors observed in Section 6 (e.g.,
top-middle plot of Fig.14). To rectify Theory-C, interactions between higher-order neighboring bubbles must
be captured, which can be done by augmenting p(R;|Rp;t) to include the connectivity between bubbles
multiple throats apart. The specifics are subject to ongoing research and outside the scope of this paper.

A second limitation, alluded to in Section 7.1, is that all pores are assumed to have the same shape. This
is clearly not the case for a network extracted from an X-ray pCT image of a porous material. Each shape is
associated with a constitutive relation different from Eq.7, describing the dependence of a trapped bubble’s
curvature #; on its volume V;°. Currently, in Theory-C/U, an average pore shape must be assumed so the
same constitutive relation (Eq.7 or equivalent) can be applied to all pores. If pore-shape heterogeneity were
to be captured explicitly, the bubble state s must include, aside from pore size and bubble saturation, pore

shape as an independent coordinate. This renders the phase space 3D, as opposed to 2D in its current form.
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A third limitation is that the wetting phase is assumed to be hydrodynamically immobile with uniform
pressure. While this is an acceptable approximation to subsurface conditions where trapped bubbles interact
far away from wells or during extended shut-in periods, months in hydrogen storage and years to centuries
in CO9 sequestration, it is a poor assumption otherwise. Background flow of the wetting phase introduces
another mechanism for dissolved species to be transported between bubbles, which renders ripening not just
dependent on gradients in interfacial curvature but also on advection. Extending the PNM to account for
such advective mass transfer is straightforward [33], but generalizing Theory-C/U is more difficult.

The fourth and final limitation of Theory-C/U is that bubbles occupy only one pore each, which does
not change over time during ripening. This is reflected by our approximation in Section 4.2 that the phase
velocity is us ~(dS®/dt,0) with no vertical component (i.g., dR,/dt=0). The fact that bubbles occupy only
one pore also allowed us to use pore size, R, as one of the components of a bubble’s state, which would
otherwise be ill-defined. Previous work [8] showed even single-pore occupying bubbles can hydrodynamically
displace from one pore to another during growth by ripening. Such displacements, called bubble dislocation,
result in dR,/dt#0 in phase space. From past experience, we suspect the frequency of dislocation-induced

changes in bubble states to be negligible compared to ripening-induced changes, i.e., dSb/dt>>dRp/dt.

7.83. Limitations of the validation process

Aside from inherent limitations of Theory-C/U in their present form outlined in Section 7.2, there are
shortcomings to our validation process itself. These include the assumptions that bubbles are incompressible,
have zero contact angle (i.e., perfectly non-wetting), pores have a semi-cubic shape that obey Eq.7, and the
pore networks are topologically 2D (though geometrically 3D) with a fixed coordination number. We expect
none of these to impair the predictive accuracy of Theory-C/U, but future work is needed to substantiate
such extended ranges of applicability. Our rationale is based on the fact that pore shape and bubble contact
angle alter only the specific form and regularity (i.e., continuity) of the ﬁrVib relation in Eq.7 [11], and the
governing equations for compressible bubbles (e.g., air, Ha, CO2) assume a similar form as Section 4.3 [2].
Now, if non-zero contact angles cause the emergence of disconnected pockets of wetting phase with different

pressures [21], then this would pose challenges intrinsic to our theory and not just the validation process.

7.4. Implications for continuum-scale modeling

Continuum (or upscaled) representations of Ostwald ripening solve a saturation equation of the form:

b b

o2 (zc%i) (25)
where K ~dP,./dS? [24, 27] and P, is the macroscopic capillary pressure of bubbles in the porous medium.
Solving Eq.25, by decomposing the porous domain into grid blocks and discretizing Eq.25, yields estimates of
ripening kinetics and the evolution of the upscaled saturation S? at the macroscale. However, Eq.25 is only

valid if all bubbles inside each grid block are in thermodynamic equilibrium (i.e., have identical interfacial

curvature) at all time. This assumption is embedded in the existence of a static (in time) relationship between
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P. and S?. The kinetic theory formulated in this work pertains to the pore scale, and would yield estimates
of exactly when such equilibration would take place within each macroscale grid block. If this time-to-
equilibrium is larger than the timescale over which grid blocks exchange mass via ripening, Eq.25 is no longer
valid and a continuum PDE that captures some sort of temporal “memory” (e.g., convolution integrals)
becomes necessary. We note the final equilibrium state of bubbles (thus P. and Sf) can be computed via a

theory proposed by [11], or by calculating the asymptotic value of g(s;t) in Theory-C/U herein as t — co.

8. Conclusion

We presented a theory that predicts the evolution kinetics in the statistics of a population of trapped
bubbles inside a porous medium with arbitrary heterogeneity and spatial correlation in pore/throat sizes
due to Ostwald ripening. The theory consists of a population balance equation in terms of the distribution
function g(s;t) of bubble states s, and a mean-field (or closure) approximation for the phase velocity us. The
variables s, g(s;t), and u, are all defined on a 2D phase space that consists of two coordinates: (1) Ry, or the
pore size occupied by each bubble; and (2) S°, or the bubble saturation (i.e., volume fraction) occupying the
pore. The formulation of us led to two variants of our theory: (1) Theory-C, where spatial correlations are
honored; an (2) Theory-U, where such correlations are neglected. We systematically validated Theory-C/U
against pore-network (PNM) simulations of ripening in a range of homogeneous, heterogeneous, correlated,
and uncorrelated microstructures that are initially occupied by bubbles with different saturations and spatial
placements. In all cases, Theory-C was in good agreement with the PNM exhibiting superior predictive
accuracy over Theory-U without any parameter calibration. By contrast, Theory-U was accurate only when
applied to uncorrelated media. A key result was the comparison of Theory-C/U against an existing theory
by [14] for homogeneous networks occupied by spherical bubbles, and the demonstration that Theory-C/U
successfully generalizes the latter to heterogeneous networks and non-spherical (deformed) bubbles.

Despite its advantages, we highlighted and discussed key shortcomings of Theory-C. Chief among them
were the inability to account for mass exchange between remote bubbles in a correlated network (separated
by more than one throat), the constraint that bubbles span no more than one pore, and for them to remain
hydrodynamically immobile during ripening. On the first limitation, an extreme (thus unlikely in practice)
counterexample was devised to demonstrate how Theory-C may fail in an unphysical way, while Theory-U
yields an inaccurate but physical result. The latter speaks to the robustness of Theory-U over Theory-
C. Future research should aim at removing these limitations. Theory-C/U allow estimating the timescale of
ripening, quantifying which pores are occupied by bubbles and up to what fraction at any given time, and the
latter’s impact on storage and hydraulic properties of porous media. The implications extend to applications

like underground Hs storage, geologic CO4 sequestration, and optimal design of fuel cells and electrolyzers.
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2131 656 To derive Eq.18, we begin with a few definitions with reference to Fig.B.1. Consider two pore types with

55 7 sizes Ry and R, in a pore network. The ovals in Fig.B.1 represent the total number of bubble-occupied pores

gs 68 in each category at t=0, denoted by n%p and n%, . The total number of surviving bubbles in each pore type
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58 60 at later times can be computed from the distribution function g(s;t) as follows:
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Figure B.1: Two pore types with sizes R, (green) and R;, (red) in a pore network. Each oval represents the total number of
bubble-occupied pores in each category at t=0. At later times, a fraction of 1 — fr, and 1 — fR; from each category dissolves
and vanishes due to ripening. The lines denote throats linking the vanished and surviving bubbles in each pore type to each

other. Dashed throats are lost connections during this dissolution process, and are the ones subtracted from NR,R!, in Eq.B.5.

Hence, the fraction of initial bubbles that have survived in each pore type at any given time is:

nr nR:
pr = nOP ) fR;7 = nOP (B2)
Ry Ry,

as depicted in Fig.B.1. The rest of the bubbles (fractions 1 — fr, and 1 — fR;)) have dissolved and vanished
due to ripening. Let Z%p and zé’% be the average coordination number of each pore type, which only counts
neighbors that are occupied by a bubble (i.e., not a property of the network, and a time-dependent quantity).
We denote their initial values at t=0 by Z%p,o and Z?«‘g; .- Finally, let ng, g, represent the number of throats
that emanate from bubbles residing in pores with size R, and terminate at bubbles residing in pores with
size R]’D. Notice ng, R, =MNRR, must hold, as it is a symmetric quantity. Let n%p Ry be the value at t=0.

With these definitions in place, we can formulate p(R|R,;t) as follows:

NR' R NR' R
P(Ry|Ry;t) dR;, = 22— F (B.3)
ZR; NR,R,  TMR,ZR,

where the denominator is the total number of throats that emanate from pore type R, into bubble-occupied

pores of any type. Note that given the symmetry of ng, Ry the following identity must hold:
anz%p p(R,|Rp;t) dR), = ng zé’% p(Rp|R,;t) dR,, (B.4)

To evaluate Eq.B.3, we need an expression for ng, R)- Fig.B.1 shows that if 1 — fr, and 1 — fR; fractions of

bubbles in each pore type vanish, then the throats depicted by the dashed lines are lost, which link bubbles

from fr, to 1— fR;, 1— fg, to fR;, and 1 — fg, to 1 — fR;. Subtracting the lost throats from n%pR; yields:

NRy.R, = Ny R, — [R, W%, 21,0 P(RY|Ry; 0) dR, (1~ fry)
— (1= fr,) 0%, 2k, 0 P(Ry|Rp; 0) dR;, fr,

— (1= fr,) 'k, 2k o P(Ry|Ry;0)dR;, (1 — fr;) (B.5)
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Notice ng, = prn%p and (1 — fr,) nORp are the number of surviving and vanished bubbles in pore type R,
respectively. Multiplying them by Z%p,o p(R,|Ry;0) dR,, yields the number of throats emanating from such
bubbles and terminating at the initially bubble-occupied pores with size R),. A final multiplication by fry
orl—f R, yields the number of throats that correspond to the dashed lines in Fig.B.1.

Eq.B.5 can be simplified by writing Eq.B.3 at t=0 as:

n%;Rp = n%p Z?%p,o p(Ry,|Rp; 0) dR;, (B.6)
and substituting it into Eq.B.5, followed by some algebraic manipulation, to obtain:
_ 0
"Ry, R, = IR, fR; "R: R, (B.7)

Summing this expression over all R;) yields:
b
Y nmr, = fr, Y fry ' r, = fr, 0%, 25,0 /R Fry (| Ry; 0) dR, (B.8)
R! R/ »

where in the second equality, we have used Eq.B.6. Substituting Eqs.B.7 and B.8 into Eq.B.3, and making
use of Eq.B.6 once again, we obtain the final expression for p(Rp|R;; t) given by:

fry p(R,|Ry;0)
fR; fR;7 p(R;)|RPv O) dR;)

PRy | Ry t) = (B.9)

which is the same as Eq.18. While not used explicitly anywhere in Theory-C, we may estimate the bubble-

occupied coordination number z%p at any given time as follows:

ZR; MR/ R, B prn%p Z%p70 fR; fR; p(R;)|Rp; 0) dR;

0
nR, pr "R,

b _
ZRP_

= 21,0 /R/ fr P(R,|Ry; 0) AR, (B.10)

Appendix C. Derivation of p(R;; t) in Theory-U

To derive Eq.22, we first establish the following relation for p(Ry,;0):

(0) Jow 9(S™, R};0) dS™ 9(R,;0) 1)
p(R,;0) = = :
P Jr, Jsn 9(5", Ri;0) dS™ AR, ny
where nf is the total number of bubbles in the pore network at t=0. Moreover, recall:
nr,  g(Ry;t)
fR/ = 7P = 7p C.2
T, T g(Ry:0) (©2)
follows from the definitions in Eqs.B.1 and B.2.
Using Eq.C.1, Eq.C.2, and p(R,|Ry;t)~p(R,;t) from Eq.19, we can approximate:
fiy DR Ry 0) By ~ [ fiy p(Ri50)dR,
R, R,
:/ 9Ui1) (R’-O)dR’:i/ (Rit)dR, = "2 —F  (C.3)
ry, 9(R};0) s Py gy i Pony .
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for the denominator of Eq.B.9. In the last three equalities, we have used the definitions of ny, nY), and F

introduced in Eq.22. Using p(R,|Ry;t)~p(R,;t) again for the numerator of Eq.B.9, we get:

_ Jr, p(R};0)
F

p(Ry;t) = (C.4)

which is the same as Eq.22. This concludes our derivation.

Appendix D. PDFs of bubble saturation in patterned networks

Fig.D.2 depicts the PDFs of the local bubble saturations in pores corresponding to the results in Fig.12.
These PDFs represent the marginal distribution g(S%;t)/ny; where bubbles in both pore sizes are combined
into a single distribution function. At t =0, the PDFs are Dirac deltas centered at S® =60% as shown by
the vertical green lines in Fig.D.2. At early and late times, the PDFs obtained from Theory-C capture the
trends observed from the PNM in all networks, whereas Theory-U captures the trend in the least correlated
network Pt-16. Specifically, Theory-C reproduces a short peak observed at early times in all networks, which
progressively moves to the left as smaller bubbles vanish. This peak is also seen in the PNM, but its location
occurs either earlier or later than that predicted by Theory-C. Given the networks are ordered, small errors in
the theories tend to amplify over time, rendering the interpretation of the results in Fig.D.2 difficult. Notice

once again, predictions from Theory-C asymptote to those of Theory-U in going from Pt-4 to Pt-16.

4x4 pattern 8x8 pattern 16x16 pattern
120 T 140 140 T
[IPNM
100 - — Theory-C 120 120
- - Theory-U 100 100 -
g 80
£ o n 80 w 80"
>
< ° % 6o % 6o
8 a0
40 | 40
20 20 20 4
o r RaalNul L 0 S0 AL
04 045 05 055 06 065 07 04 045 05 055 06 065 0.7 04 045 05 055 06 065 07
Saturation, s® Saturation, s? Saturation, S°
150 100 100
80 \ 80 K
U
(] 100
£ , 60 60
o=m L 'y 'y
= g "\ =] =]
Q o '\ a a
© ) 40 40
- 50
) qL ) d k
0 Al __113‘1" 0= | 0
04 045 05 055 06 065 07 04 045 05 055 06 065 07 04 045 05 055 06 065 07

Saturation, s?

Saturation, s?

Saturation, s?

Figure D.2: Comparison of PDFs of local bubble saturation in pores predicted by the PNM, Theory-C, and Theory-U at early
and late times for the Pt-4 (4x4 pattern), Pt-8 (8x8 pattern), and Pt-16 (16x16 pattern) networks in Table 1. The early- and
late-time snapshots correspond to 4hr and 10hr in Pt-4, 1hr and 10hr in Pt-8, and 0.5hr and 4hr in Pt-16 from the start of

ripening. The vertical green lines in the top row represent the initial conditions, which are Dirac deltas centered at S =60%.
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Theory for predicting Ostwald ripening kinetics of bubbles in porous media proposed
The porous medium can have heterogeneous and spatially correlated pore/throat sizes
Bubble statistics evolved with a population balance equation subject to apt closure
Theory systematically validated against an existing pore network model for ripening
Limitations and paths for future extensions are highlighted and discussed
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