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ABSTRACT
We give new data-dependent locality sensitive hashing schemes
(LSH) for the Earth Mover’s Distance (EMD), and as a result, im-
prove the best approximation for nearest neighbor search under
EMD by a quadratic factor. Here, the metric EMDB (R3 , ✓? ) con-
sists of sets of B vectors in R3 , and for any two sets G,~ of B
vectors the distance EMD(G,~) is the minimum cost of a perfect
matching between G,~, where the cost of matching two vectors
is their ✓? distance. Previously, Andoni, Indyk, and Krauthgamer
gave a (data-independent) locality-sensitive hashing scheme for
EMDB (R3 , ✓? ) when ? 2 [1, 2] with approximation $ (log2 B). By
being data-dependent, we improve the approximation to $̃ (log B).

Our main technical contribution is to show that for any dis-
tribution ` supported on the metric EMDB (R3 , ✓? ), there exists
a data-dependent LSH for dense regions of ` which achieves ap-
proximation $̃ (log B), and that the data-independent LSH actually
achieves a $̃ (log B)-approximation outside of those dense regions.
Finally, we show how to “glue” together these two hashing schemes
without any additional loss in the approximation.

Beyond nearest neighbor search, our data-dependent LSH also
gives optimal (distributional) sketches for the Earth Mover’s Dis-
tance. By known sketching lower bounds, this implies that our LSH
is optimal (up to poly(log log B) factors) among those that collide
close points with constant probability.
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1 INTRODUCTION
In the approximate nearest neighbor problem (ANN), we are given
a set % of = points in a metric space (- ,3- ), and the goal is to
build a data structure that, upon receiving a query point @ 2 - , can
quickly return a point ? 2 % such that 3 (?,@)  2 ·minG2- 3 (@, G),
for some approximation factor 2 � 1. The goal is to minimize 2
while answering queries as fast as possible—ideally, signi�cantly
faster than a linear scan. Nearest neighbor search is a fundamental
problem in computer science, with applications in areas such as
machine learning, data mining, information retrieval, computer
vision, andmany others. In this paper, we study approximate nearest
neighbor search for the Earth Mover’s Distance (EMD), also known
as the Optimal Transport or Wasserstein-1 metric.

Let (- ,3- ) be a “ground metric” (which, for us, will beR3 with
the ✓? -norm for ? 2 [1, 2]). Given two collections of B elements
from the ground metric, i.e., two multi-sets G = {G1, . . . , GB },~ =
{~1, . . . ,~B } ⇢ - of size B , the Earth Mover’s distance (EMD) be-
tween G and ~ is

EMD(G,~) = min
c : [B ]![B ]
bijection

=’
8=1

3- (G8 ,~c (8 ) ).

We will write EMDB (- ,3- ) to denote the metric space of size-B
subsets of the (- ,3- ) under the Earth Mover’s distance. Computa-
tional aspects of EMD have long been studied within the theoretical
computer science literature [1–4, 6, 7, 9, 13, 18, 23, 25, 26, 31, 37–
39, 41, 45, 47, 52–54]. It is a central problem in algorithms, since it
is a geometric version of bipartite matching. In addition, the Earth
Mover’s distance, and in particular nearest neighbor search under
EMD, has gained immense popularity in natural language pro-
cessing and machine learning [17, 19, 46, 50], where it is a popular
measure of distance between sets of embeddings (such asWord2Vec
or GloVe [49]).

The canonical approach for approximate nearest neighbor search
is to employ locality sensitive hashing (LSH). These are randomized
hash functions which partition the underlying metric space into
hash buckets such that closer points are more likely to collide. An
ANN data structure can then restrict its search to the hash buckets
which the query maps to. By now, the theory of LSH for basic
metrics like ✓1/✓2 is well understood; the best 2-approximations
have query time =1/2 for ✓1, and query time =1/(22

2
�1)+> (1) for

✓2 [5, 8, 10, 14, 40], leading to highly sublinear =n -time algorithms
which achieve constant-factor (i.e., 1/

p
n or 1/n) approximations.

Despite its popularity in theory and practice, LSH functions for
EMD are not nearly as accurate as for ✓? spaces. This is because
computing EMD, unlike ✓? , is signi�cantly more computationally
complex (for example, it does not decompose into a sum across
coordinates). Computing EMD exactly requires solving a min-cost
bipartite matching problem, achieved classically by the Hungarian

800

https://orcid.org/0000-0003-0332-6332
https://orcid.org/0000-0003-0097-7981
https://orcid.org/0009-0003-5852-902X
https://doi.org/10.1145/3618260.3649666
https://doi.org/10.1145/3618260.3649666
https://doi.org/10.1145/3618260.3649666
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618260.3649666&domain=pdf&date_stamp=2024-06-11


STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Rajesh Jayaram, Erik Waingarten, and Tian Zhang

algorithm (in$ (B3) time), and only recently in$ (B2+> (1) ) time [29].
In addition, a simple heuristic like greedily generating a matching
achieves a poor ⌦(=0.58...) approximation [51]. This makes EMD
di�cult to reason about, and computations involving EMD espe-
cially challenging for sublinear algorithms which are limited in
their computational abilities. The typical approach in sublinear al-
gorithms is to embed EMD into a “simpler” metric (usually ✓1) and
use LSH in the simpler metric. Indyk [39] gave such an embedding
of EMD into ✓1 with distortion $ (3 log�) (where � is the aspect
ratio and should be read as poly(B), as there is a simple reduction
to this case), leading to a $ (3 log B)-approximation. This was later
improved by [6], who gave a (randomized) embedding resulting
in a LSH with approximation $ (log B log(3�)) (i.e., $ (log2 B) as it
will also su�ce to consider 3 = poly(B)). However, despite signif-
icant and recent focus from the sublinear algorithms community
[16, 19, 20, 24, 27, 31], to date no further improvements to the
$ (log2 B)-approximation of [6] have been made. Our main result
is a nearly quadratic improvement in this approximation with the
same runtime.

T������ 1 (M��� R�����—I������� ������� �� T������ 8).
For any constant n > 0 and ? 2 [1, 2], there is a data structure
for nearest neighbor search in EMDB (R

3 , ✓? ), with approximation
$̃ (log B), pre-processing time =1+n · poly(B3), and query time =n ·

poly(B3).

With regards to the runtime, note that in nearest neighbor search
the primary goal is to have query time that signi�cantly sublinear
in =, which is the number of data points. In the context of EMD,
the parameter B (along with 3) is the description size of a single
point in the metric space; in fact, it takes $ (B3) time to simply
read a query. Thus, polynomial query time dependencies on B,3
are generally acceptable, however exponential dependency on B3
would be undesirable.

The key component of Theorem 1 is a new data-dependent
locality-sensitive hash family for EMD, which, as we expand on
next, is a relatively new algorithmic primitive for sublinear algo-
rithms in geometric spaces [8, 10–12, 14]. We believe these data-
dependent hash families are of independent interest, as they give
rise to new and space optimal sketches for EMD in a distributional
setting (see Section 8). Speci�cally, our LSH scheme gives a $̃ (log B)
approximation for this problem, nearly matching a ⌦(log B) lower
bound of [6]. In particular, this implies a ⌦(log B)-approximation
lower bound for any LSH family where close points collide with
constant probability (Theorem 10), which is a property our LSH
family satis�es.

Data-Dependent (Locality-Sensitive) Hashing for EMD. As
we further expand on in Section 1.1, the traditional guarantees of
LSH are “data-independent,” or “data-oblivious.” In particular, LSH
guarantees that, for any pair of points G,~ from the metric, G and
~ tend to collide if they are close, and separate if they are far. One
could imagine—and �rst successfully implemented in [8]—that the
hash function be speci�cally tailored to the dataset % , and that doing
so would improve the approximation. In data-dependent LSH, the
dataset is still arbitrary and worst-case; yet, by exploiting properties
of an arbitrary dataset, one may improve on the best approxima-
tions. Put succinctly, we show that every dataset of EMDB (R

3 , ✓? )

has special structure to exploit algorithmically which we cannot
capture with known (data-independent) LSH.

Sketching for Sets of Vectors. By now, there are various tech-
niques for dealing with computationally “simple” objectives of high-
dimensional vectors in sublinear regimes. For example, for ✓? -norms
we now have an essentially complete understanding of sketching
(i.e., communication complexity), locality-sensitive hashing, and
metric embeddings [9, 14, 21, 35, 44, 48]. This work, as well as
recent developments in geometric streaming [28, 30–32, 34] and
parallel algorithms [33, 42], aims to develop sketching techniques
(which were initially designed for a single high-dimensional vector)
to support objectives over entire collections of high-dimensional
vectors. In particular, an important technical contribution of this pa-
per is to generalize the probabilistic tree embeddings of [31] (which
were designed for streaming algorithms) to obtain an improved
data-dependent LSH family for nearest neighbor search. We believe
that the LSH families developed in this paper are an important step
towards closing the gap in our understanding between sketching
for individual vectors and sketching for sets of vectors.

1.1 Overview of Contributions and Techniques
We now overview the techniques involved in proving Theorem 1,
and additionally state our formal results for data-dependent LSH
(Theorem 3) and nearest neighbor search (Theorem 8). At a high
level, this work can be seen within a progression of works, starting
with [6] and continuing with [19, 31], on sketching for EMD via
probabilistic tree embeddings. We aim to explain this progression,
as it will highlight our main ideas (and the limitations of prior
work).

(Data-Independent) LSH for EMD. An LSH for a metric space
(- ,3- ) is a hash familyH which is so-called (A , 2A , ?1, ?2)-sensitive.
For a threshold A � 0, an approximation 2 � 1, and 0 < ?2 < ?1 < 1,
the guarantees are:

(1) Close Points Collide: Prh⇠H [h(G) = h(~)] � ?1 for every
G,~ 2 - with 3- (G,~)  A .

(2) Far Points Separate: Prh⇠H [h(G) = h(~)]  ?2 for every
G,~ 2 - with 3- (G,~) � 2A .

The seminal work of [38, 40] designed such LSH families for sev-
eral metric spaces (like (R3 , ✓? ) for ? 2 [1, 2]) and showed how
to use them for 2-approximate nearest neighbor with query time
and space complexity governed by the gap between ?1 and ?2 (see
Theorem 5). Using [6], one may construct an LSH for EMD with
an arbitrary threshold A , approximation 2 = $ (log2 B), and con-
stant 0 < ?2 < ?1 < 1 (resulting in a theorem like Theorem 1,
although with approximation $ (log2 B)). The (data-independent)
LSH for EMD crucially relies on a probabilistic metric embedding
k : R3

! T from the ground metric of the EMD into a randomized
tree metric 1, which satis�es that for any G,~ 2 EMDB (R

3 , ✓? )
(i) EMDT (k (G),k (~)) � EMD(G,~) with high probability, and (ii)
ET [EMDT (k (G),k (~))]  $ (log2 B) · EMD(G,~) .

The reason for embedding EMDB (R
3 , ✓? ) into EMDB (T,3T) is

that EMD over tree-metrics is a much simpler metric. In particular,

1 For applications in sublinear algorithms such as ours, it is important that the embed-
dings themselves can be e�ciently stored and e�ciently evaluated. Thus, the classical
works on probabilistic tree embeddings [22, 36] are not applicable.
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the greedy algorithm is optimal for EMD over trees, and as a con-
sequence there is a folklore isometric embedding of EMDB (T,3T)
into ✓1 [25, 39] (see Fact 7.1), thereby embedding a set of vectors
in a tree into a single vector in ✓1. Finally, after applying this em-
bedding into ✓1, one can apply the classic LSH functions for ✓1 [40]
(denoted as 5 below) to obtain a LSH function for EMDB (R

3 , ✓? ).
This process is shown in the diagram below, where the names of
the embeddings are shown on top of the arrows, and the distortion
of those embeddings is shown below:

R3 0 7!k (0)
������! T

EMD(R3 , ✓? )
G 7!k (G )

��������!
$ (log2 B )

EMD(T,3T )
folklore
������!
isometric

✓1
5
�! {hash buckets}

(1)

Since the second mapping is isometric, the distortion of the en-
tire embedding into ✓1 is $ (log2 B), thus the resulting LSH for
EMDB (R

3 , ✓? ) is a $ (log2 B) factor larger than the distortion in-
curred by the LSH 5 for ✓1.

Recently, [31] improved the probabilistic tree embedding of [6]
by being data-dependent. They show that, for an arbitrary subset ⌦
of< vectors in (R3 , ✓? ), there exists a probabilistic tree embedding
k⌦ : (⌦, ✓? ) ! (T⌦,3T⌦ ) which depends on ⌦, and that embeds
⌦ obtaining guarantees (i) and (ii) above as achieved by [6], ex-
cept with an expected distortion of $̃ (log(<B)), where < = |⌦ |

(see Lemma 4.3).2 This means that, if we wanted to use the above
embedding for nearest neighbor search, there are two immediate
challenges here:

• Challenge 1: In nearest neighbor search, the input is an
arbitrary dataset G1, . . . , G= 2 EMDB (R

3 , ✓? ), where each
G8 is a subset of (R3 , ✓? ) of B vectors. The natural choice is
⌦ =

–=
8=1 G8 . The resulting (data-dependent) probabilistic

tree (T⌦,3T⌦ ), and composition of the maps (with an LSH
for ✓1), would give an LSH family for EMD(⌦, ✓? ). By con-
struction, each G1, . . . , G= is inside EMD(⌦, ✓? ), so dataset
vectors can be hashed. However, the approximation increases
to $̃ (log(=B)), which is far from the claimed $̃ (log B)-bound,
and may be worse than the $ (log2 B) approximation of [6].

• Challenge 2: Even if we set⌦ to all vectors used byG1, . . . , G= ,
a crucial component of LSH involves applying the hash func-
tions to the (unknown) query point. In particular, the data
structure will hash the dataset during preprocessing, and
in the future, a query comes (which was unknown during
preprocessing) and needs to be hashed as well.

Warm-Up: Overcoming Challenge 2. We �rst show, as a
warm-up and independent contribution, that the second challenge
can be overcome by making [31] dynamic (Theorem 6 below, there
is a reduction to 3,� being poly(B)). The data structure sets ⌦ =–=

8=1 G8 , generates a tree embedding (T⌦,3T⌦ ), and constructs a
hash function to the dataset G1, . . . , G= . Then, when a query point
~ 2 EMD(R3 , ✓? ) comes, we �rst update the tree to (T⌦[~,3T⌦[~ )

(and corresponding hash functions) and identify the (few) dataset
points G8 whose hash value changes. This allows the algorithm to

2Similarly to Footnote 1, it is especially important that the embeddings be e�ciently
stored and evaluated.

maintain a view consistent with having preprocessed the dataset
with the tree (T⌦[~,3T⌦[~ ).

T������ 2 (D������ ��� D����D�������� P������������
T��� E��������). For a �xed 3 2 N and ? 2 [1, 2], there is a
data structure that maintains maintains a set ⌦ ⇢ [�]3 of< vectors
and an non-contracting embedding i : (⌦, ✓? ) ! T, with expected
distortion $̃ (log(<3�)) for any pair G,~ 2 ⌦. Moreover, it supports
the following operations in expected time $ (3 log(3�))

• Query: Given a vector G 2 ⌦, return the weighted path from
the root of T to i (G)

• Insertions/Deletions: Add or remove vectors from the set
⌦, and also return the updated weighted paths of every vector
E 2 ⌦ whose path weights changed from the insertion/deletion.

Main Task: Addressing Challenge 1. The above dynamic em-
bedding still su�ers a $̃ (log(=B)) distortion. We now proceed with
the main technical component, of designing a data-dependent LSH
for EMDB (R

3 , ✓? ). It turns out that for nearest neighbor search, it
su�ces to tailor (and relax) the second condition of LSH to an arbi-
trary �xed distribution (see De�nition 3.2 and Theorem 5 for how
data-dependent hashing implies nearest neighbor search). Speci�-
cally, a hash family H is (A , 2A , ?1, ?2)-sensitive for a distribution `
supported on a metric (- ,3- ) whenever:

(1) Close Points Collide: Prh⇠H[h(G) = h(~)] � ?1 for every
G,~ 2 - with 3- (G,~)  A .

(2) Far Points Separate on Average: For any G 2 - , the
probability over h ⇠ H and ~ ⇠ ` that h(G) = h(~) and
3- (G,~) � 2A is at most ?2.

The only di�erence is the second condition (2) above, where one
considers any G 2 - and ensures that a sampled point ~ ⇠ `
far from G collides with probability at most ?2 (see Section 3, for
comparison with [14]). It su�cient for us to prove the following
theorem, which by a reduction from approximate near neighbors
to data-dependent LSH (Theorem 5) implies Theorem 1 by setting
?2 to 1/10 and ?1 = 1 � n .

T������ 3 (D����D�������� H������ ��� EMD (T������ 7
+ L���� 5.1)). For any B,3 2 N, ? 2 [1, 2], a threshold A > 0, and
any 0 < ?2 < ?1 < 1, there exists a data structure with the following
guarantees:

• Preprocessing: The data structure receives sample access
to a distribution ` supported on EMDB (R

3 , ✓? ), and in time
poly(B3/((1�?1)?2)), initializes a draw h from a hash family
D (which depends on `) and is (A , 2A , ?1, ?2)-sensitive for `
(see De�nition 3.2), with

2 = $̃

✓
log B ·

log2 (1/?2)
1 � ?1

◆
.

• Query: Given any @ 2 EMDB (R
3 , ✓? ), the data structure

computes h(@) in time poly(B3).

The above is our main technical theorem, and most of the work
is devoted to that proof. Similarly to before, it will su�ce via a
simple reduction, to consider EMD over the hypercube {0, 1}3 with
✓1 distance, where 3  poly(B) and the threshold A = l (B) (see
Lemma 5.1). Then, the construction of the data-dependent hashing
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scheme from Theorem 3 can be split into three parts, which we
now describe.

Step 1: The S�����T��� Embedding.We will use the data-
dependent probabilistic trees of [31] on the union ⌦ of a small
number of< = poly(B) samples ~1, . . . ,~< ⇠ ` (i.e., ⌦ =

–<
8=1~8 ,

which is a subset of B ·< vectors in {0, 1}3 ). Composing the data-
dependent probabilistic tree T⌦ (which we will refer to as T) with
the isometric embedding de�nes an embedding of EMDB (⌦) into ✓1,
we aim to extend the embedding to the entire space EMDB ({0, 1}3 ):3

EMDB (⌦)
[31]

������!
$̃ (logB )

EMDB (T,3T )
folklore
������!
isometric

✓1 (2)

EMDB ({0, 1}3 )
desired new map in Section 7.1

����������������������������! ✓1 (3)

In the above diagram, (2) has expected $̃ (log B)-distortion from
EMDB (⌦) to ✓1 from [31] on the samples ~1, . . . ,~< ⇠ `. We then
de�ne the extension (3) of (2), which is a natural “hybrid” of [31]
and [6], that we call S�����T���(`,<) in Section 7.1. It is not too
di�cult to show that the embedding (3) given by S�����T���(`,<)

is non-contracting with high-probability (Lemma 7.3).
The more subtle argument, however, is upper bounding the

expansion. On the one hand, suppose G,~ 2 EMDB ({0, 1}3 ) are
two arbitrary points, and all vectors in G [ ~ happened to be in
⌦, then (3) inherits the $̃ (log B) expected distortion from (T,3T).
On the other hand, if all vectors of G [ ~ are very far from ⌦, then
the root-to-leaf paths of vectors in G and ~ in T are mostly disjoint
from those of ⌦. This means EMDT (G,~) is e�ectively always using
the data-independent weights, and similarly to the analysis of [6],
incurs distortion $ (log2 B).

Step 2(a): Extensions on Chamfer Neighborhoods. Our no-
tion of representation in EMDB ({0, 1}3 ) will consider the Chamfer
Distance, which is an (assymmetric) measure capturing dissimilar-
ity of subsets inR3 . Formally, given two subsets of vectors G, I in
{0, 1}3 , we use the Chamfer distance from G to I in {0, 1}3 with ✓1
distance,

Chamfer(G, I) =
’
02G

min
12I

k0 � 1k1 .

Chamfer lower bounds EMD(·, ·), since it relaxes the bijection con-
dition c : G ! I, and is much simpler to reason about. In the context
of the extension (3), it captures, for any point G 2 EMDB ({0, 1}3 ),
how far G is from ⌦ (and from the data-dependent edge weights in
S�����T���(`,<)), which leads to the following idea.

Key Idea 1: We demonstrate that, with a last modi�ca-
tion to S�����T���(`,<), all points G,~ in a Chamfer
neighborhoods of radius EMD(G,~) · poly(log B) (for
arbitrary constant power) around ⌦ still maintain a
$̃ (log B) expected distortion, and this will su�ce for
the remainder of the argument.

Speci�cally, in Lemma 7.2 (using Lemma 6.2), we argue that in
S�����T���(`,<), if in addition to taking< samples ~1, . . . ,~< ⇠

3In both cases, EMDB (⌦) and EMDB ({0, 1}3 ) refers to EMDB (⌦, ✓1 ) and
EMDB ({0, 1}3 , ✓1 ) , respectively. Furthermore, the map k : R3

! T is implicit
in the notation, so we write 3T (0,1 ) for 3T (k (0),k (1 ) ) and EMDT (G, ~) for
EMDT (k (G ),k (~) ) .

` and letting ⌦ =
–<

8=1~8 , we let

b⌦ = N��(⌦) =
n
10 2 {0, 1}3 : 91 2 ⌦, k1 � 10 k1  1

o
,

where |b⌦ |  poly(B) (recall< is poly(log B) and 3 is poly(B)), and
de�ne data-dependent weights with respect to b⌦, then we have the
crucial conclusion:

E
T
[EMDT (G, ~) ]  $̃ (log B ) · EMD(G, ~)

✓
1 + log

✓
Chamfer(G,⌦)

EMD(G, ~)
+ 1

◆◆
. (4)

Step 2(b): Locally Dense and non-Locally Dense Points.
Given the analysis of S�����T���(`,<), we may compose (3) with
a LSH for ✓1 to obtain a hash family which always satis�es the “?2-
property” (i.e., far points separate) because the S�����T���(`,<)

is non-contracting, but only satis�es the “?1-property” on close
pairs points G,~ where G is locally-dense with respect to ` (see
Lemma 5.4). As mentioned, the important property of “locally-
dense” is that, if we consider ~1, . . . ,~< ⇠ ` (where < is only
poly(log B)), then setting ⌦ =

–<
8=1~8 satis�es Chamfer(G,⌦) 

A · log10 B in expectation (we used 10 as an arbitrary setting of the
poly(log B) to illustrate the point-to-come).

Now divide ` into two regions: the locally-dense points, and the
remainder. The S�����T���(`,<) embedding composed with an
LSH for ✓1 handles the locally-dense region. The remaining region
is handled by the following observation.

We consider a pointG and sample from a (weak) data-independent
LSH of [6],H , which is (A , 2̃A , ?1, ?2)-sensitive with 2̃ = $ (log2 B).
Then, the “?1-property” still holds for any pair of points G,~, since
EMD(G,~)  A implies that h(G) = h(~) with probability at least ?1.
Moreover, the “?2-property” on points which are not locally-dense
for ` follow from the following

Key Idea 2: Suppose G is not locally-dense for `. Then
if we sample ~ ⇠ `, the point ~ is likely to satisfy
EMD(G,~) � A · log10 B ; otherwise, taking< � 1 addi-
tional samples to de�ne ⌦ (which includes ~) would
satisfy Chamfer(G,⌦)  EMD(G,~)  A · log10 B .
Thus if ~ ⇠ ` satis�es EMD(G,~) � A · log10 B , then
we can use the (weaker) data-independent LSH H .
Note that, EMD(G,~) � log10 B ·A is much larger than
2̃A , so G and ~ collide in H with probability at most
?2, since log10 B � 2̃ = log2 B .

In Section 5.2, we execute the above idea. We de�ne a collec-
tion of (data-independent) LSH families which appear to be weak
($ (log2 B)-approximation). These LSH families always satisfy the
“?1-property” (Lemma 6.1), but not a good “?2-property.” Then, we
connect failure of the ?2-property on these LSH families to the
expected Chamfer distance to a randomly sampled collection ⌦.
Namely, we consider a point G 2 EMDB ({0, 1}3 ), and we assume
that the hash families from Lemma 6.1 fail to separate randomly
sampled points from `. In Section 5.2, we call these points “locally-
dense” (De�nition 5.3), and show in Lemma 6.2 that these are points
whose expected Chamfer distance to ⌦ is at most A · poly(log B).

Step 3: Gluing LSH for Locally-Dense and Non-Locally
Dense Regions. The �nal step involves a “gluing” operation, which
uses various hash families (for di�erent regions of `) to de�ne a
single data-dependent LSH family for all `. Up to now, we have
constructed:
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• A hash family coming from S�����T���(`,<), which al-
ways has a good “?2-property,” but only has a good “?1-
property” on points G which are locally-dense for `.

• A collection of data-independent LSH families,H(g, ✓) for
(�xed) threshold g > 0 and each ✓ 2 {0, . . . , !} for ! =
$ (log3) in Lemma 5.2. Here, the level ✓ corresponds to a
level of the (data-independent) tree embedding, which is
then embedded into ✓1, and thereafter hashed via a ✓1 LSH
(see De�nition 6.1 for full details).

In Section 5.3, we glue these hash families together, and obtain a
data-dependent LSH which is (A , 2A , ?1, ?2)-sensitive for ` (proving
Theorem 3). The gluing proceeds as follows: for a �xed threshold
g > 0 (which depends on the parameters A , ?1 and ?2 which we wish
to obtain), we sample hash functions h1, . . . ,h! where h✓ ⇠ H(g, ✓)
for each ✓ 2 {0, . . . , !} and ! = $ (log3), as well as a hash func-
tion h⇤ resulting from S�����T���(`,<). Importantly, the hash
families H(g, ✓) are initialized to be (A , 2̃A , ?1/!, ?̃2)-sensitive for
an approximation 2̃ (which will be a large poly(log B)), and an ap-
propriate value of ?̃2 for Step 2 to go through (i.e., failure of the
“?̃2-property” for h1, . . . ,h! implies a bounded Chamfer distance to
⌦). Our �nal key observation is as follows:

Key Idea 3: For a hash familyH , distribution `, point
G , and a draw h ⇠ H , the point G can check whether
(a stronger version of) its own “?2-property” holds
given h. In particular, one hashes the point h(G) =
D, and for the (now �xed) h, one can computes the
probability that ~ ⇠ ` satis�es h(~) = D by simply
looking at the probability mass of points which hash
to the bucket D (if ` is the uniform distribution, this is
just proportional to the size of the hash bucket). If this
probability mass is at most ?2, then the “?2-property”
necessarily holds for G conditioned on h.

The above check is for a stronger “?2-property”, since we are
not also checking whether ~ ⇠ ` is far from G . Note that if this
‘?2-property” holds for some ✓ 2 {0, . . . , !}, then we can hash G to
this bucket and make signi�cant progress by reducing the size of
the dataset. Given the above observation, the gluing proceeds by
letting

h(G) = (◆ (G),h◆ (G ) (G)),

where ◆ (G) is the smallest ✓ 2 {0, . . . , !} where the above “?2-
property” check succeeds for G with the hash function h✓ . If it
always fails, then ◆ (G) = ⇤, thereby signifying that the hash out-
put will be determinined by the output of the S�����T��� data-
dependent LSH. Since each H(g, ✓) collides close points with prob-
ability ?1/!, we can union bound over the ! levels to ensure that a
close pair of points collide in all ! draws with probability at least
?1, thus ◆ (G) = ◆ (~) for a close pair (G,~) with probability at least
?1. Using this, the “?1-property” follows immediately whenever
✓ < ⇤. On the other hand, if ✓ = ⇤, this indicates a failure of the
?2 property for each of the data-independent families, which as
we have shown implies a bounded Chamfer distance from G to a
random sample ⌦, which in turn implies that G is locally dense and
therefore the ?1 property holds for G under the S�����T��� LSH
h⇤ (and thus holds for the full “glued” hash function). Finally, for
the “?2 property”, if ✓ (G) < ⇤ then by de�nition of ✓ (G) we have
split G from all but a ?2 fraction of `, and otherwise the hash of G

is determined by S�����T���, which always satis�es the desired
“?2 property”. Putting together the above arguments will complete
the proof of the Theorem 7.

2 PRELIMINARIES
Notation. For any integer = � 1, we write [=] = {1, 2, . . . ,=}, and
for two integers 0,1 2 Z, write [0 : 1] = {0,0 + 1, . . . ,1}. For
0,1 2 R and n 2 (0, 1), we use the notation 0 = (1 ± n)1 to denote
the containment of 0 2 [(1 � n)1, (1 + n)1]. We will use boldface
symbols to represent random variables and functions, and non-
boldface symbols for �xed values (potentially realizations of these
random variables) for instance f vs, 5 .

We denote the metric space consisting of multi-sets of B points
in a ground metric space (- ,3), where the distance between sets
is the Earth Mover’s Distance metric, by EMDB (- ,3). When the
distance over - is understood by context, we use EMD(G,~) to
denote the distance function of EMDB (R

3 , ✓1) or EMDB {0, 1}.
Given a rooted tree ) = (+ () ), ⇢ () )), all edges of ) will be

directed from parent to child, so an edge (D, E) 2 ⇢ () ) denotes an
edge from the parent D to the child E . We will often abuse notation
and write D 2 ) to denote that D 2 + () ). Given a rooted tree with
weighted edges ) = (+ () ), ⇢ () ),, () )), we abuse the notation )
to denote the tree metric (+ () ),3) ) where, forD, E 2 + () ),3) (0,1)
is de�ned as the length of the shortest weighted path between D, E .
We use EMD) to denote the metric function of EMDB (+ () ),3) ).

R����� 4 (O� E�������� ✓? ���� ✓1). For the remainder of the
paper, we will prove all our upper bounds for the case that the ground
metric is (R3 , ✓1). To extend this to general ? 2 [1, 2], we can use well-
known (data-independent) embeddings from (R3 , ✓? ) into (R3 0

, ✓1)
with 30 = $ (3) [43], which preserve all distances up to (1 ± n) for
any arbitrary constant n > 0. This embedding will only increase the
runtime by a multiplicative factor of $ (3), and increase the space by
an additive $ (32).

3 NEAREST NEIGHBORS, EMBEDDINGS, AND
DATA-DEPENDENT HASHING

In this section, we de�ne the approximate near neighbor search
problem and data-dependent hashing.

D��������� 3.1 (A���������� N��� N�������). Let (- ,3- ) be
a metric space, A > 0 be a threshold, and 2 > 1 be an approximation.
By a standard reduction (see [38]), it will su�ce to solve the (2, A )-
approximate near neighbor problem:

• Preprocessing: We receive a dataset % ⇢ - of = points to
preprocess into a data structure.

• Query: A query is speci�ed by any point @ 2 - , and a query
is correct whenever the following occurs. If there exists a point
? 2 % with 3- (?,@)  A , the data structure outputs a pointb? 2 % with 3- (b?,@)  2A .

A data structure solves the (2, A )-approximate near neighbor problem
if, for every (�xed) dataset % ⇢ - and query @ 2 - , following
preprocessing of % , the data structure answers correctly on @ with
probability at least 9/10 over the construction of the data structure.

We remark that he de�nition of data-dependent hashing (De�-
nition 3.2) that we obtain in this paper is slightly more stringent
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than the one presented in [15]. The one subtlety is that, because
our hashing family depends on the dataset, one must instantiate it
to the desired dataset before using it.

D��������� 3.2 (D����D��������H������). For ametric (- ,3- ),
a distribution ` over - , and a threshold A > 0, we say that a distribu-
tionD over maps⌘ : - ! * is (A , 2A , ?1, ?2)-sensitive for distribution
` if

• Close Points Collide: For any two points G,~ 2 - with
3- (G,~)  A , we have

Pr
h⇠D

[h(G) = h(~)] � ?1 .

• Far Points Separate on Average: For any point G 2 - , we
have

Pr
h⇠D
~⇠`


3- (G,~) > 2 · A ,
h(G) = h(~)

�
 ?2 .

D��������� 3.3 (D��� S�������� ��� D����D�������� H����
���). For a metric (- ,3- ), a data structure for data-dependent hash-
ing with a (A , 2A , ?1, ?2)-sensitive family satis�es:

• Preprocessing: The data structure preprocesses the descrip-
tion of a distribution ` supported on - , and maintains a draw
of h from a (A , 2A , ?1, ?2)-sensitive family for `.

• Query: Given any point @ 2 - , the data structure outputs the
value of h(@).

We let �h (=) denote the time of instantiating the data structure with a
distribution ` supported on = points, and let &h (=) denote the worst-
case query time.

T������ 5 (D����D�������� H������ �� A���������� N���
N��������). Let (- ,3- ) be a metric, A > 0 be a threshold, 2 > 1
be an approximation, and ?1, ?2 2 (0, 1) be two parameters, where
d 2 R is the parameter

d =
log(1/?1 )
log(1/?2 )

.

Suppose there is a data structure for data-dependent hashing with
a (A , 2A , ?1, ?2)-sensitive family with preprocessing time �h (=) and
query time &h (=). Then, there exists a data structure for the (2, A )-
approximate near neighbor problem which satis�es:

• Preprocessing Time: The data structure preprocesses a size-=
dataset in time at most

$
⇣
=d

/?1 · log1/?2 = · (�h (=) + = · &h (=) )
⌘
,

and therefore its space complexity is at most that amount.
• Query Time: A query is answered in time at most

$
⇣
=d

/?1 · log1/?2 = · &h (=)
⌘
.

4 DYNAMIC AND DATA-DEPENDENT
PROBABILISTIC TREE EMBEDDINGS

In this Section, we describe the dynamic, data-dependent probabilis-
tic tree embedding from Theorem 2. For simplicity in this Section,
we consider vectors which have integer coordinates G 2 [�]3 =
{1, 2, . . . ,�}3 .

T������ 6 (D������ ��� D����D�������� P������������
T��� E��������). For a �xed 3 2 N and ? 2 [1, 2], there is a data
structure supporting the following:

• Maintenance: The data structure maintains a set ⌦ ⇢ [�]3

of < vectors, as well as a rooted probabilistic tree metric T
(whose distribution depends on⌦), alongwith a non-contracting
embedding i : (⌦, ✓? ) ! T, such that for any G,~ 2 ⌦:

E
T
[3T (i (G),i (~))]  $̃ (log(<3�)) · kG � ~k? .

• Query: In time $ (3 log(3�)), we may query a vector G 2 ⌦
and obtain the weighted path from the root to i (G) in T.

• Insertions/Deletions: In$ (3 log(3�) + log2 (3�)) expected
time, the algorithm can add or remove vectors from the set ⌦,
and returns the updated weighted paths of every vector in ⌦
whose path changed from the insertion/deletion.

We show the data structure for Theorem 6 for the Hamming cube
{0, 1}3 with ✓1 metric (where we note that this sets � = 2). This
proof will already contain the major ideas, and subsequent sections
will utilize the main de�nition of the ���T��� sub-routine speci-
�ed below. It can be easily generalized to ( [�]3 , ✓? ) for ? 2 [1, 2].
See the full version for the analysis of the data structure and gener-
alization to ( [�]3 , ✓? ).

We consider a subset ⌦ ⇢ {0, 1}3 of = vectors in the Hamming
cube. For any (multi-)set of indices Æ8 = (81, 82, . . . , 8C ) 2 [3]C , de�ne
the projection ?Æ8 : {0, 1}

3
! {0, 1}C which maps a vector G 2

{0, 1}3 to ?Æ8 (G) = (G81 , G82 , . . . , G8C ). For any C 2 N, we consider the
hash familyHC,3 given by

HC,3 = {?Æ8 : Æ8 2 [3]C }. (5)

The construction of the (static) data-dependent probabilistic tree
metric T is described by the algorithm���T��� (in Figure 1). We
also allow ���T��� to take an additional scaling parameter b ,
which is not needed here and will be used in Section 7.

D��������� 4.1. For any subset ⌦ ⇢ {0, 1}3 and any draw of T
generated from an execution of Q���T���(⌦) (in Figure 1), we have
the following:

• For every vector G 2 {0, 1}3 , there is a unique root-to-leaf
path in T, given by the sequence of nodes E0 (G), . . . , E!+1 (G),
inductively de�ned by E0 (G) = E0 and

E✓ (G) is unique child ED of E✓�1 (G) with G 2 E���(ED ).

• The mapping i : {0, 1}3 ! T sends G 2 {0, 1}3 to E!+1 (G),
and since the path for each G 2 {0, 1}3 is unique, we abuse
notation and associate G 2 {0, 1}3 with its leaf G = E!+1 (G) 2
T.

• The tree metric (T,3T) is speci�ed by the edge weights inw (·, ·),
and for any G,~ 2 {0, 1}3 , the distance 3T (i (G),i (~)) is the
sum of edge-weightsw on the path from i (G) to i (~) in T.

Whenever we generate T from���T���(⌦) and we consider
G,~ 2 ⌦, the edge weight w (E✓�1 (G), E✓ (G)) always falls into the
�rst case in Step 4, —we will call these edges “data-dependent”.
When one of G or ~ is not in ⌦, then at least one edge along the
path i (G) to i (~) in T falls in the second case of Step 4 and has
w (·, ·) set to 3/2✓ · b—we will call these edges “data-independent.”
4As noted earlier, the symbol b in the description of w (E, ED ) can be arbitrary in
this section. Speci�cally, in this section, an edge of whose weight depends on b will
never be evaluated. Looking ahead, we have placed the parameter b as it will become
important in Section 7, where b will be set to$ (log B ) .
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Subroutine ���T���(⌦, b)

Input: A subset of vectors ⌦ ⇢ {0, 1}3 , and a scaling parameter b
(if unspeci�ed, set b = 1).
Output: A probabilistic weighted tree T.

(1) Initialize a root node E0 at depth 0. We will let ! = $ (log3)
(for a large enough constant, say 2) denote the depth of the
tree, and we de�ne the notation which will indicate, for a
node E , let E���(E) be the subset of {0, 1}3 which will
embed into the subtree at E . Initially, E���(E0) = {0, 1}3 .

(2) For each ✓ = 0, 1, . . . , ! � 1, sample a random hash function
5✓ ⇠ H2✓ , and let 5! : {0, 1}3 ! {0, 1}3 be the identity
mapping 5 (G) = G .

(3) For each ✓ = 0, . . . , !:
• For every node E at depth ✓ , and every D 2 {0, 1}2

✓
, we

initialize a child node ED to E (at depth ✓ + 1). We create
the edge (E, ED ), and set

E���(ED ) = E���(E) \ {G 2 {0, 1}3 | 5✓ (G) = D}.

The nodes at depths ! + 1 are leaves of T.
(4) For every edge (E, ED ) 2 T where E is at depth ✓ , we assign

the weight

w (E, ED ) =

8>>>><
>>>>:

E
c⇠E���(E)\⌦

c0⇠E���(ED )\⌦

[ kc � c 0 k1 ] E���(ED ) \ ⌦ < ;

3/2✓ · b otherwise.4

Figure 1: The Data-Dependent���T��� Embedding.

F��� 4.2 (D�������� �� T �������T���(⌦)). Let ⌦ ⇢ {0, 1}3
be any subset and let T be drawn from Q���T���(⌦). For any G,~ 2

{0, 1}3 and ✓ 2 {0, . . . , ! + 1}, we let S����✓ (G,~) denote the indicator
variable

S����✓ (G,~) = 1{E✓ (G) < E✓ (~)},

and note that we may write

3T0 (G,~) =
!+1’
✓=1

S����✓ (G,~) ·
⇣
FG +F~

⌘
(6)

whereFG = w (E✓�1 (G), E✓ (G)),F~ = w (E✓�1 (~), E✓ (~)).

We use the following lemma from [31].

L���� 4.3 (F������ ���� L���� 3.6 (���� 80 = 0) ��� L����
3.4 ���� [31]). For any set ⌦ ✓ {0, 1}3 of< vectors, and any two
0,1 2 ⌦, we have that, whenever T is generated from Q���T���(⌦),
we have

E
T
[3T (0,1)]  $̃ (log(<) + log(3)) · k0 � 1k1

Moreover, we have 3T (0,1) � k0 � 1k1 deterministically.

Note that Lemma 4.3 immediately implies that a draw of T from
���T���(⌦) satis�es the desired distortion guarantees.

D��������� 4.4. For any set ⌦ ⇢ {0, 1}3 , let T be generated from
an execution of Q���T���(⌦). We let T0 denote the tree metric whose
vertex set, edge set, and mapping i : {0, 1}3 ! T is the same as in T;
however, we modify the weights as follows:

Figure 2: Tree Embedding T Sampled from ���T���(⌦).
The root node is E0 and the tree is generated by the maps
50, . . . , 5! . Displayed are two vectors G,~ which map to the
leaves of the tree, whose lowest common ancestor is E✓ (G) =
E✓ (~).

• For each node E 2 T0, if E���(E) \ ⌦ < ;, we sample what
we call a representative R��(E) ⇠ E���(ED ) \ ⌦.

• For each edge (E, ED ) 2 T0 where E is at depth ✓ , we let

w0
(E, ED ) =

⇢
kR��(E) � R��(ED )k1 E���(ED ) \ ⌦ < ;

3/2✓ · b otherwise .

We similarly consider the tree metric (T0,3T0 ), and we have

3T0 (G,~) =
!+1’
✓=1

S����✓ (G,~) ·
⇣
F 0
G +F 0

~

⌘
(7)

whereF 0
G = w0

(E✓�1 (G), E✓ (G)),F 0
~ = w0

(E✓�1 (~), E✓ (~)) .

Data Structure for Dynamic, Data-Dependent Probabilistic Trees.
We can now describe the data structure which maintains the tree
T0, which samples T from ���T���(⌦) and uses the modi�ed
edge weights in De�nition 4.4. The data structure will maintain the
following information:

• We store the sampled functions 50, . . . , 5! (by storing the set
of indices sampled for each ✓ 2 {0, . . . , !}), and note that it
su�ces to store the set of indices samples, which has size at
most 3 always. This takes time $ (!3) during initialization.

• We also maintain the set ⌦, as well as the subtree of T0 of
nodes E for which E���(E) \⌦ is non-empty. For each such
node E , we maintain the set E���(E) \ ⌦, as well as the
sample R��(E) ⇠ E���(E) \ ⌦.

This completes the description of the data structure. Note that, each
vector G 2 ⌦ is naturally mapped to a leaf. Then, when updating
the set ⌦ by inserting or deleting a vector G 2 {0, 1}3 , we proceed
by:

• Insertion:We insert G to ⌦ and �nd the leaf i (G), consider-
ing the root-to-leaf path given by nodes E0 (G), . . . , E!+1 (G),
where one may need to initialize new nodes if E✓ (G) was
not stored in the stored subtree. For each node E = E✓ (G),
with probability 1/|E���(E) \ ⌦ | (note that ⌦ now includes
one more vector), we update R��(E) to G ; otherwise, do not
update R��(E). If the data structure updates R��(E), every
vector in E���(E) \ ⌦ has its weighted path modi�ed and
its change is reported.

• Deletion: We delete G to ⌦ and �nd the leaf i (G), consider-
ing the root-to-leaf path given by nodes E0 (G), . . . , E!+1 (G),
where one may need to initialize new nodes if E✓ (G) was
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not stored in the stored subtree. For each node E = E✓ (G),
if R��(E) = G , we update R��(E) by re-sampling from
E���(E)\⌦ or removing E if empty. If the data structure up-
dates R��(E), every vector in E���(E) \⌦ has its weighted
path modi�ed and its change is reported.

We claim the above data structure leads to the proof of Theorem 6.
We refer the reader to the full version of this paper for the analysis.

5 LOCALITY SENSITIVE HASH FAMILY FOR
EMD

Wewill proceed by (i) reducing data-dependent hashing over (R3 , ✓? )

to that of the hypercube {0, 1}3 , and then (ii) giving a data-dependent
hashing scheme for EMD over the hypercube.

5.1 Reduction to Data-Dependent LSH over the
Hypercube

By Remark 4, it su�ces to consider data-dependent hashing for
EMD over (R3 , ✓1). In the following Lemma, we reduce the problem
further to data-depedent hashing for EMD over the Hamming Cube
{0, 1}C .

L���� 5.1 (R�������� �� ��� D����D�������� H������ ��
EMDB ({0, 1}C )). For any parameters B, g � 0 and 2 > 3, X 2 (0, 1):

• Suppose that there exists a data structure for data-dependent
hashing over EMDB ({0, 1}C ) which is (A , 2A/3, ?1, ?2)-sensitive
for the parameter settings

C = ⇥(B222 log(1/X)) and A =
C

1.992
� l (B),

which has initialization time �h (=) and query time &h (=).
• Then, there exists a data structure for data-dependent hashing
over EMDB (R

3 , ✓1) which is (g, 2g, ?1 � X, ?2 + X)-sensitive
with initialization time �h (=) + = · poly(B3) and query time
&h (=) + poly(B3).

5.2 Three Crucial Ingredients for LSH for EMD
over the Hypercube

We will refer to “points” as the size-B tuples of vectors in {0, 1}3 ,
and “elements” to the points in {0, 1}3 which will be in the tuples.
We will need three ingredients

(1) The �rst ingredient is Lemma 5.2, which speci�es a sequence
of hash families whose hash functions maps points (i.e.,
size-B tuples of {0, 1}3 ) to buckets. These hash families are
parametrized by a so-called “level” ✓ , and we will let ✓ vary
among ! possible levels,5 for ! = ⇥(log3). As we will
see, these data-independent hash families have a good “?1”-
property.

(2) The second ingredient is De�nition 5.3, a point being “locally-
dense” with respect to a distribution ` over points. We de�ne
“local-density” as all hash families de�ned in Lemma 5.2
failing to have the “?2”-property; however, the important
consequence will be “many” of its elements 08 have a non-
trivial fraction of “nearby” elements from points in `

5These levels will correspond to the depth of the quadtree embeddings.

(3) The �nal ingredient will be the data-dependent hash family
which �lls in the gap. For all points, the data-dependent
hash family always has the desired “?2”-property, but it may
not have the “?1”-property. However, we will prove that the
data-dependent hash family has the property “?1”-property
whenever a point is locally-dense.

We now formally state the lemmas and de�nitions which capture
the three ingredients.

L���� 5.2. For any parameter ✓ 2 {0, . . . , !} and any g > 0,
we de�ne a hash familyH(g, ✓) (in De�nition 6.1). The hash family
H(g, ✓) satis�es that, for any two G,~ 2 EMDB ({0, 1}3 ),

Pr
h⇠H(g ,✓ )

[h(0) < h(1 ) ] 
EMD(G, ~)

g
.

In addition, there is a data structure which maintains a draw of
h ⇠ H(g, ✓) while supporting queries of h(G) in initialization and
query time $ (B3).

D��������� 5.3. Let ` denote a distribution supported on
EMDB ({0, 1}3 ). For parameters U, g > 0, we say that a point G 2

EMDB ({0, 1}3 ) is (U, g)-locally-dense with respect to ` if for all ✓ 2
{0, . . . , !},

Pr
u⇠`

h⇠H(g ,✓ )

[h(G ) = h(u ) ] � U .

L���� 5.4. Let ` be a distribution supported on EMDB ({0, 1}3 ),
and �x any U, g > 0. Then for any W > 0 and X 2 (0, 1), there exists a
hash family H(`, g,W, X) with the following properties:

• Close Points Collide: Let h ⇠ H(`, g,W, X). For any points
G,~ 2 EMDB ({0, 1}3 ), if G is (U, g)-locally-dense, then

Pr
h
[h(G ) < h(~) ]  _ ·

EMD(G, ~)

W

✓
1 + log

✓
g + B

EMD(G, ~)
+ 1

◆◆

Where _ = ⇠1 log
⇣
B3
XU

⌘ ⇣
log log

⇣
B3
XU

⌘⌘⇠2
for absolute con-

stants ⇠1,⇠2.
• Far Points Separate: Let h ⇠ H(`, g,W, X). For any points
G,~ 2 EMDB ({0, 1}3 ),

Pr
h
[h(G ) = h(~) ]  exp

✓
�
EMD(G, ~)

W

◆
+ X .

In addition, there is a data structure which maintains a draw h ⇠

H(`, g,W, X) while supporting queries of h(G) which has initialization
time = ·poly(B3/U) (where ` is supported on = points) and query time
poly(B3).

5.2.1 Main Theorems for Data Dependent Hashing and Nearest
Neighbor Search. With the above ingredients set in place, we are
ready to state the data-dependent hash family for EMD. The re-
mainder of the section is devoted to proving the main theorem
below.

T������ 7 (D����D�������� H������ ��� EMD). Fix any
0 < ?2 < ?1 < 1. There exists a data structure for a (A , 2A , ?1, ?2)-
sensitive data-dependent hashing family for EMDB ({0, 1}3 ) where
A > B for an approximation 2 > 1 which is

2 = $̃

✓
1

1 � ?1
· log

✓
1
?2

◆
· log

✓
B3

?2

◆◆
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The data structure has initialization time �h (=)  = ·poly(B3/((1�
?1)?2)) and query time poly(B3).

Our main result, for Data-Dependent LSH for EMDB (R
3 , ✓? ) for

any ? 2 [1, 2] (Theorem 3) follows from combining Theorem 7 with
Lemma 5.1. Setting ?1 = 1 � n and ?2 = ⇥(1) in Theorem 7, and
then applying Theorem 5, we obtain our main result on nearest
neighbor search under the Earth Mover’s Distance.

T������ 8 (A���������� N������ N������� S����� ���
EMD). For any B,3 2 N, ? 2 [1, 2] and n 2 (0, 1), there exists a data
structure for approximate nearest neighbor search over EMDB (R

3 , ✓? )

with approximation 2 = $̃ (
log B
n ) satisfying the following guarantees:

• PreprocessingTime: The data structure preprocesses a dataset
% of = points in EMDB (R

3 , ✓? ) in time =1+n · poly(B3n�1).
• Query Time: For a vector @ 2 EMDB (R

3 , ✓? ), we output a
2-approximate nearest neighbor of @ in % in time =n · poly(B3).

5.3 The Hash Family D in Theorem 7
Now that we have stated all of the preliminary ingredients, we show
how to construct the data-dependent hash familyD stated in Theo-
rem 7. Check the full version for the analysis. Let _ = $̃

⇣
log( B3XU )

⌘
be the parameter de�ned in Lemma 5.4. We now instantiate the
following parameters

g =
4 · (! + 1) · A

1 � ?1
, U =

(1 � ?1 ) · ?2
6

, 2 = log
✓
3
?2

◆
·
W

A
,

W =

⇣
_ log

⇣
20(!+1)
1�?1

⌘
+ log( 1

1�?1 )
⌘
· g

! + 1
, X =

?2
3

To sample sample a hash function h ⇠ D, we �rst sample a hash
functions h0, . . . ,h! , where h✓ ⇠ H(g, ✓) for each ✓ 2 {0, . . . , !},
and we next sample a hash function h⇤ ⇠ H(`, g,W, X). In order to
evaluate h on a point I 2 EMDB ({0, 1}3 ), we �rst check whether
there exists an index ✓ 2 {0, . . . , !} for which

Pr
u⇠`

[h✓ (I ) = h✓ (u ) ] 
?2
3
. (8)

If so, then we de�ne ◆ (I) to be the smallest index ✓ 2 {0, . . . , !}
where (8) holds. If no such index exists, we set ◆ (I) = ⇤. The �nal
hash function h ⇠ D then evaluates:

h(I ) =
�
◆ (I ),h◆ (I) (I )

�
.

6 INGREDIENTS 1 AND 2: THE HASH FAMILY
H(g, ✓) AND LOCALLY-DENSE POINTS

In this section, we give the �rst ingredient and prove Lemma 5.2.
We will �rst de�ne the hash family H(g, ✓), and derive the main
consequence of locally-dense points.

6.1 Hash FamilyH(g, ✓)
As in Subsection 5.2, the term “points” is used to denote size-B tuples
of vectors in {0, 1}3 . Each of the B vectors in {0, 1}3 is referred to
as an “element” of the point. We let ! = $ (log3), and we will refer
to ✓ 2 {0, . . . , !} as the “levels.”

D��������� 6.1 (T�� H��� F����� H(g, ✓)). For g > 0 and
✓ 2 {0, . . . , !}, the hash familyH(g, ✓) is speci�ed by the following

sampling procedure. A draw of a hash function h ⇠ H(g, ✓) proceeds
by:

(1) First, we sample 5 ⇠ H2✓ (as in Section 4) by sampling 2✓

coordinates i1, . . . , i2✓ ⇠ [3] and letting 5 : {0, 1}3 ! {0, 1}2
✓

be
5 (0) = (0i1 ,0i2 , . . . ,0i2✓ ) 2 {0, 1}2

✓
.

(2) Then, for each D 2 {0, 1}2
✓
and each : 2 [B], we let CD,: ⇠

Ber(3/(g2✓+1 ) ) .
(3) For a point G 2 EMDB ({0, 1}3 ), and D 2 {0, 1}2

✓
and : 2 [B],

we let 6 (G,D,:) 2 {0, 1} be

6 (G,D,:) = 1{at least : elements 0 2 G satisfy 5 (0) = D}.

With those de�nitions, we let

h(G) =
⇣
CD,: · 6 (G,D,:) : D 2 {0, 1}2

✓
,: 2 [B]

⌘
2 {0, 1}{0,1}

2✓
⇥ [B ] .

Data Structure Guarantees for h ⇠ H(g, ✓). It is important to
note that, for each G 2 EMDB ({0, 1}3 ), we may compute h(G) in
time $ (B3). This is because the vectors h(G) have at most B non-
zero coordinates. We may identify the at-most-B non-zero entries
of 6 (G,D,:) in $ (B3) time, and we can generate and store the
corresponding Bernoulli random variables CD,: with a constant-
time overhead per access.

We leave the proof of correctness, which will complete the proof
of Lemma 5.2, to the full version.

6.2 Locally-Dense Points
In this section, we give the main consequence of locally-dense
points, which will become a crucial ingredient in Lemma 5.4. We
will let ` denote a distribution over points in EMDB ({0, 1}3 ) and
refer to the hash familiesH(g, ✓) de�ned in De�nition 6.1.

L���� 6.2. Let ` denote a distribution on EMDB ({0, 1}3 ). If, for
parameters U, g > 0, a point G 2 EMDB ({0, 1}3 ) is (U, g)-locally
dense with respect to `, then as long as< = l (log(B3)/U),

E
~1,...,~<⇠`

"
Chamfer

 
G,

<ÿ
8=1

~8

!#
 (g + B ) · polylog(B3/U ) .

7 INGREDIENT 3: S�����T���
In this section, we sketch the proof of Lemma 5.4, which gives
the �nal ingredient of the data-dependent hashing scheme for
EMDB ({0, 1}3 ), and leads us to Theorem 7.

7.1 The S�����T��� Embedding and Hash
Family Construction

In this section, we specify the construction of the hash family
H(`, g,W, X). We will do so by �rst specifying the S�����T���
embedding, and then concatenating it with a locality-sensitive
hash function in ✓1. In particular, we �rst describe an algorithm,
S�����T���, which takes as input a distribution ` supported on
EMDB ({0, 1}3 ) and a parameter< (which, as per Lemma 6.2, will
be set to l (log(B3)/U)), and outputs a weighted tree T from an
execution to���T��� in Figure 1.

To describe S�����T��� algorithm, we introduce the notations
of neighborhood. For any element 4 2 {0, 1}3 , let the neighborhood
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Subroutine S�����T���(`,<)

Input: A distribution ` supported on EMDB ({0, 1}3 ), and positive
integer<.
Output: A weighted tree T.

(1) Take< random i.i.d. samples ~1, . . . ,~< ⇠ `. Let
⌦ =

–<
8=1~8 ⇢ {0, 1}3 and b⌦ = N��(⌦) .

(2) Run and return ���T���(b⌦, b) (Figure 1) where we set
b = ⇥(log(<B3/X)).

Figure 3: The S�����T��� Algorithm.

of 4 be
N��(4 ) B

n
? 2 {0, 1}3 | k4 � ? k1  1

o
We extend the above notation so that we can apply it to a set of
elements as we do in Figure 3. For any set ⌦ ✓ {0, 1}3 , let the
neighborhood of ⌦ be

N��(⌦) B
n
? 2 {0, 1}3 | 94 2 ⌦, k4 � ? k1  1

o

The S�����T��� sub-routine (in Figure 3) speci�es a tree metric
T, and a natural association of any element 0 2 {0, 1}3 to a leaf in
T (each element 0 2 {0, 1}3 maps to a unique leaf in T, since the
�nal hash function 5!+1 : {0, 1}3 ! {0, 1}3 is set to the identity).
Thus, we let EMDB (T) denote the metric space on size-B tuples
of leaves in T. We let G,~ 2 EMDB (T), with G = (G1, . . . , GB ) and
~ = (~1, . . . ,~B ) where G1, . . . , G=,~1, . . . ,~= are leaves in T, and

EMDT (G, ~) = min
c : [B ]![B ]
bijection

B’
8=1

3T (G8 , ~c (8 ) ),

where 3T (·, ·) denotes the length of the shortest path between
two leaves. We thus have the following (straight-forward) associ-
ation of points G 2 EMDB ({0, 1}3 ) to points in EMDB (T): if the
point G 2 EMDB ({0, 1}3 ) is speci�ed by the B elements G1, . . . , GB 2

{0, 1}3 , we consider the point G 0 2 EMDB (T) given by the B-tuple
of mapped elements G1, . . . , GB which are leaves in T. We abuse
notation and refer to G 2 EMDB ({0, 1}3 ) and G 2 EMDB (T) for
clarity—these are in bijective correspondence and should be clear
from context whether we will use the sampled tree T, or the original
representation in {0, 1}3 .

Data Structure Guarantees for S�����T���. It is important to note
(and similarly to De�nition 6.1) that the running time of naively
executing S�����T��� will incur exponential-in-3 factors, since
Line 3 of ���T��� iterates through D 2 {0, 1}2

✓
(where ✓ may

be as high as poly(3)). Therefore, the total number of edges in T
will incur exponential-in-3 factors. However, the number of edges
of T whose weight depends on the sample ~1, . . . ,~< ⇠ ` is only
<B · !, as there are at most B elements in each of the < points
~1, . . . ,~< and these go down ! edges; the rest of the edges have
weights are b · 3/2✓ , which only depend on the depth ✓ and thus
be (implicitly) maintained. Even though 2✓ may be larger than 3 ,
it su�ces to maintain the subset of sampled coordinates from [3]
(which takes $ (3) space). We thus have the following two facts,

which we will use to implicitly compute the embedding of points
in EMDB ({0, 1}3 ) into ✓1.

F��� 7.1 ((F�������) I�������� E�������� �� � T��� M�����
���� ✓1). Let T be any (rooted) weighted tree with : edges and depth
! + 1:

• There exists a mapkT : EMDB (T) ! R: which is an isometric
embedding into ✓1, i.e., for anyG,~ 2 EMDB (T), EMDT (G,~) =
kkT (G) �kT (~)k1 (implicit in Section 4 of [25]).

• For G 2 EMDB (T), the vector kT (G) 2 R: has (! + 1) · B
non-zero entries.

Note that, the data structure may then provide access to the root-
to-leaf path speci�ed by an element0 2 {0, 1}3 to the leaf ofTwhere
it mapped to. In order to maintain a draw T from S�����T���(`,<),
the data structure may �rst read ` (supported on = points) and
take< samples in $ (<=) time and then store the data-dependent
weights in $ (<B3!) time. Given a point G 2 EMDB ({0, 1}3 ), one
may then evaluate the sparse representation ofkT (G) by obtaining
its root-to-leaf path in poly(B3) time as well.

Expansion and Contraction of S�����T���. Given the above de-
scription of S�����T��� and the corresponding embedding that it
produces into ✓1, we state two lemmas below which bound the ex-
pansion and contraction of the S�����T��� embedding. The proof
of these two lemmas will constitute the bulk of the remainder of
the section, and assuming the two lemmas, the proof of Lemma 5.4
follows by concatenation with an ✓1 locality-sensitive hash function.

L���� 7.2 (E�������� �� S�����T���). Consider any pair of
points G,~ 2 EMDB ({0, 1}3 ), and suppose that G is (U, g)-locally
dense with respect to `. Then, as long as< = l (log(B3)/U),

E
T
[EMDT (G, ~) ]  EMD(G, ~) · $̃ (log(<B3/X ) )

✓
1 + log

✓
g + B

EMD(G, ~)
+ 1

◆◆
.

over a draw of T from S�����T���(`,<),

L���� 7.3 (N���C���������� �� S�����T���). For any X 2

(0, 1), consider executing Q���T��� (in Figure 1) with the parameter

b = ⌦(log(<B3/X)) .

Then, for any pair of points G,~ 2 EMDB ({0, 1}3 ), over a draw of T
from S�����T���(`,<),

Pr
T
[EMDT (G, ~) < EMD(G, ~) ]  X .

The proofs of Lemma 7.2 and Lemma 7.3 are in the full version.

7.1.1 Proof of Lemma 5.4 assuming Lemma 7.2 and Lemma 7.3. In
order to prove Lemma 5.4, we make use of Lemmas 7.2 and 7.3 in
order to embed into ✓1, and utilize a locality-sensitive hash function
in ✓1. In particular, classic works on locality-sensitive hashing [38,
40] give, for any parameterW > 0, a distribution over hash functions
5 : R:

! * which satis�es, for any G,~ 2 R:

Pr
5
[5 (G ) < 5 (~) ] 

kG � ~ k1
W

(9)

Pr
5
[5 (G ) = 5 (~) ]  exp

✓
�
kG � ~ k1

W

◆
. (10)

Furthermore, it is simple to construct a data structure which main-
tains a description of a hash function 5 which is generated “on-
demand,” such that, if the vector G 2 R: is sparse and written
as its sparse representation, the data structure can output 5 (G) in
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time which is linear in the description of G . Given these guaran-
tees, check both required properties of Lemma 5.4 whenever we let
h ⇠ H(`, g,W, X) denote the concatenation of

h : G 2 EMDB ({0, 1}3 )
Id
7�!G 2 EMDB (T)

kT
7�!kT (G ) 2 R: 5

7�!5 (kT (G ) ) 2 * ,

where the �rst (identity) map G 2 EMDB ({0, 1}3 ) to G 2 EMDB (T)
is the natural association of the elements of G as vectors in {0, 1}3
to elements of G as leaves of T, the second mapkT is the map from
Fact 7.1, and the third is the LSH for ✓1 speci�ed in (9) and (10). We
set< = poly(log(B3)/U), thus b = ⇥(log(B3/(XU)) when invoking
Lemma 7.2 and Lemma 7.3.

• Close PointsCollide:Given any pointsG,~ 2 EMDB ({0, 1}3 ),
if G is (U, g)-locally dense with respect to `, we have:

Pr
h⇠H(`,g ,W ,X )

[h(G ) < h(~) ]

= E
T


Pr
5
[5 (kT (G ) ) < 5 (kT (~) ) ]

�

(9)
 E

T


kkT (G ) �kT (~) k1

W

�

(7.1)
 E

T


EMDT (G, ~)

W

�

(7.2)


EMD(G, ~)

W
· $̃

✓
log

✓
B3

XU

◆◆
·

✓
1 + log

✓
g + B

EMD(G, ~)
+ 1

◆◆
,

where the last inequality simpli�ed< = poly(log(B3)/U).
• Far Points Separate: For points G,~ 2 EMDB ({0, 1}3 ), we
use a union bound and Lemma 7.3 to upper bound the prob-
ability that h(G) = h(~). Namely, we have

Pr
h⇠H(`,g ,W ,X )

[h(G ) = h(~) ]

 E
T


Pr
5
[5 (kT (G ) ) = 5 (kT (~) ) ] | EMDT (G, ~) � EMD(G, ~)

�

+ Pr
T
[EMDT (G, ~) < EMD(G, ~) ]

 E
T


exp

✓
�
EMDT (G, ~)

W

◆
| EMDT (G, ~) � EMD(G, ~)

�
+ X

 exp
✓
�
EMD(G, ~)

W

◆
+ X,

where above, we similarly use Fact 7.1 to embed EMDB (T)
into ✓1 isometrically, the expression (10) for 5, and �nally
Lemma 7.3.

8 DATA-DEPENDENT HASHING AND
SKETCHING LOWER BOUNDS

We now show that the data-dependent LSH (De�nition 3.2) con-
struction from Theorem 7 has an approximation factor of $̃ (log B)
which is best possible (up to the poly(log log B) factors) when ?1
and ?2 are constant. We do this by reducing data-dependent LSH
to sketching lower bounds, and apply the lower bound on [6].

D��������� 8.1 (EMD S�������� ��� D������������� EMD
S��������). For every B,3 2 N and every A > 0 and 2 > 1, we con-
sider the communication complexity of the following partial function,
whose inputs are sets G,~ 2 EMDB ({0, 1}3 ) which satis�es:

� (G, ~) =
⇢

1 EMD(G, ~)  A
0 EMD(G, ~) > 2A

.

In the EMD sketching communication problem, we assume that a
player Alice receives as input G 2 EMDB ({0, 1}3 ) and Bob receives an
input ~ 2 EMDB ({0, 1}3 ), and they must design a public-coin com-
munication protocol ⇧ whose outputs align with � with probability
at least 2/3, and which minimizes the communication.

Furthermore, we de�ne the distributional version of the EMD sketch-
ing problem to be the same as above, but when there is “far” distri-
bution `, known to both Alice and Bob, such that the inputs (G,~)
satisfy that either (1) G,~ are arbitrary such that EMD(G,~)  A and
the protocol should output 1, or (2) the inputs G,~ ⇠ ` are drawn
independently from ` and whenever EMD(G,~) � 2A the algorithm
should output 0 . Whenever EMD(G,~)  A or EMD(G,~) > 2A , then
the communication protocol must be correct with probability 2/3 over
it’s own randomness, and over the randomness of G,~ ⇠ ` (if this
inputs come from case (2)), and the output is allowed to be arbitrary
if A < EMD(G,~)  2A .

Theorem 4.1 and Theorem 4.8 of [6] indicates the following:

T������ 9 (T������ 4.1 ��� L���� 4.8 �� [6]). For any 3 2 N

and 1  2  3 , there exists a distribution ` on EMDB ({0, 1}3 ) with
B = 2⇥(3 ) with the following properties:

• If x,~ ⇠ ` are drawn independently, then EMD(x,~) �

B3/100 with probability at least 1 � 2�⌦ (3 ) .
• Another distribution d supported on pairs EMDB ({0, 1}3 ) ⇥
EMDB ({0, 1}3 ) for which (x,~) ⇠ d satis�es EMD(x,~) 

B3/(1002) with probability at least 1 � 2�⌦ (3/2 ) .
For any function 5 : EMDB ({0, 1}3 ) ! {0, 1},

Pr
x,~⇠`

[ 5 (x ) = 5 (~ ) ] + Pr
(x,~)⇠d

[ 5 (x ) < 5 (~ ) ] � 1 � 2�⌦ (3/2 ) .

Since any data-dependent LSH for EMD can easily been seen to
solve the distributional variant of sketching EMD, by constructing
the LSH dependending on the known “far” distribution `. It yields
the following.

T������ 10. Consider any �xed constants 0 < ?2 < ?1 < 1,
and suppose there exists some 2 > 1 such that, for all B,3 2 N and
A > 0, there is a data-dependent LSH which is (A , 2A , ?1, ?2)-sensitive
for EMDB ({0, 1}3 ). Then, 2 = ⌦(log B).
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