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Mid-infrared spectroscopic imaging (MIRSI) is an emerging class of label-free techniques being leveraged

for digital histopathology. Modern histopathologic identification of ovarian cancer involves tissue staining

followed by morphological pattern recognition. This process is time-consuming and subjective and

requires extensive expertise. This paper presents the first label-free, quantitative, and automated histo-

logical recognition of ovarian tissue subtypes using a new MIRSI technique. This optical photothermal

infrared (O-PTIR) imaging technique provides a 10× enhancement in spatial resolution relative to prior

instruments. It enables sub-cellular spectroscopic investigation of tissue at biochemically important

fingerprint wavelengths. We demonstrate that the enhanced resolution of sub-cellular features, combined

with spectroscopic information, enables reliable classification of ovarian cell subtypes achieving a classifi-

cation accuracy of 0.98. Moreover, we present a statistically robust analysis from 78 patient samples with

over 60 million data points. We show that sub-cellular resolution from five wavenumbers is sufficient to

outperform state-of-the-art diffraction-limited techniques with up to 235 wavenumbers. We also

propose two quantitative biomarkers based on the relative quantities of epithelia and stroma that exhibit

efficacy in early cancer diagnosis. This paper demonstrates that combining deep learning with intrinsic

biochemical MIRSI measurements enables quantitative evaluation of cancerous tissue, improving the rigor

and reproducibility of histopathology.

1. Introduction

Epithelial ovarian cancer is the leading cause of death among

gynecological malignancies in the United States. Serous

ovarian cancer, its most common subtype, is often diagnosed

at a late stage (III or IV), where 5-year survival is 51% and 29%,

respectively.1 Standard treatment involves surgery and at least

six courses of chemotherapy.2 Several novel compounds have

been studied and approved over the past 20 years; however,

none of them substantially modify overall survival.3 The most

decisive prognostic factor remains the complete eradication of

neoplastic tissue through radical surgery.4–6 Outcomes are

affected by (1) late diagnosis resulting in unresectable disease

and (2) unclear identification of neoplastic margins.

Therefore, the objective and early identification of neoplastic

tissue are essential for optimal surgical attempts.

Recent advances reveal the complex organization of the

ovarian tumor microenvironment, highlighting inter-cellular

pathways7 as potential treatment targets. New methods quanti-

fying biomolecular characteristics reveal detailed structural

and molecular changes that may reveal novel therapeutic

targets. The surgical pathological staging systems (The

International Federation of Gynecology and Obstetrics staging,

FIGO staging) continue to be the most crucial tool for deter-

mining the stages of ovarian cancer.8 The FIGO staging criteria

for cancer are based on the extent of spread of tumor cells

from the ovary. This is determined using contrast-inducing

stains on biopsy sections, followed by microscopic examin-

ation by a pathologist, which is the current clinical standard

for ovarian cancer diagnosis. The hematoxylin and eosin

(H&E) stain is widely used to identify cellular and extracellular

components. Epithelial carcinoma is the most common histo-

logic type, accounting for about 90 percent of cancers of the

ovary, fallopian tube, and peritoneum.9,10 In high-grade serous

carcinoma (HGSC), a pathologist identifies various architec-
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tural patterns, including complex papillary, glandular, micro-

cystic, and solid patterns. HGSC infiltrates, destroys, and/or

replaces the normal stroma. Therefore, histological identifi-

cation of cellular subtypes is an important step11 in ovarian

cancer diagnosis and prognosis.

Inter-pathologist variability is a significant challenge,12 and

grading schemes have been proposed to reduce this

variability.13–15 However, these methods have only been suc-

cessful in resource-rich hospitals with comprehensive train-

ing.16 Automated and semi-automated techniques to reduce

inter-pathologist variability, especially in lower-resource set-

tings, are critical for equitable care.17–19 Automated tissue sub-

typing is an essential step in this effort.

Automated tissue classification into the epithelium and

stroma subtypes is challenging, and several techniques have

been proposed. Most use H&E20–22 and immunohistochemical

staining23 combined with machine learning (ML). Staining

quality and variability can confound ML and lead to inconsist-

ent results.18 Immunofluorescence staining has effectively

detected circulating tumor cells that can form micro-metas-

tases in other organs beyond the original tumor site,24,25 but

the specificity of stains for a biomarker/cell type can render it

ineffective in detecting a different biomarker/cell type.

However, this issue has been addressed recently by employing

sequential fluorescence quenching and re-staining,26 effec-

tively allowing subsequent fluorescence staining targeting

different markers multiple times.27 However, this method is

limited by a number of antibodies that can be used for a

limited set of stains, and the process of staining itself can

cause a change in the structure and biochemical composition

of the tissue. Our goal is to perform label-free recognition of

tissue subtypes without using chemical contrast agents.

Moreover, we obtain intrinsic quantitative and repeatable bio-

chemical measurements that are independent of operator

tissue processing.

Spectroscopic techniques are used widely to identify mole-

cules with high sensitivity and specificity in chemical and bio-

chemical analysis.28 Vibrational spectroscopy is used routinely

to identify organic biomolecules by matching measurements

with large commercial spectral libraries containing over

260 000 spectra.29 Prior work on label-free ovarian tissue ana-

lysis has utilized spectroscopy. Raman spectroscopy,30–32 con-

ventional Fourier transform infrared (FTIR) spectroscopy,33–35

and attenuated total reflection (ATR) FTIR spectroscopy36,37

have been applied to detect and diagnose ovarian cancer.

However, it lacks spatial specificity and requires long data col-

lection times. MALDI imaging38 has also been used to analyze

ovarian histotypes; however, this technique destroys the

sample. Second-harmonic generation (SHG) can identify col-

lagen in the stroma,39–41 and multi-photon microscopy42 has

been used on murine tissue. Raman imaging has been used

for ovarian cancer diagnosis and tissue analysis, often with

added nanoparticles43,44 to obtain more robust signals. Taken

together, none of these techniques provide classified images

in an automated, label-free, quantitative, and non-destructive

manner.

Mid-infrared spectroscopic imaging (MIRSI) can extract

spectral and spatial information without using contrast agents

by utilizing the intrinsic biochemical properties of tissues.

This technology is non-destructive and therefore compatible

with other technologies.45 Fourier transform infrared (FTIR)

spectroscopic imaging, the best known MIRSI technology, can

classify cell subtypes in a variety of diseases, including

breast,46 lung,47 prostate,48 and colon49 cancers. We hypoth-

esize that it is also helpful for ovarian cancer tissue subtyping.

HGSC is the marked cytologic atypia with prominent mitotic

activity in ovarian tissue. The atypical nuclei are hyperchro-

matic with an over threefold variation in nuclear size.

Phosphate spectroscopic peaks (1080, 1201, 1236, and

1262 cm−1) corresponding to nucleic acids strongly correlate to

mitotic activity, and spectroscopic imaging has shown

increased phosphate signals in a variety of cancers.50–52

FTIR imaging is limited by the diffraction of mid-infrared

light (2.5 μm–11 μm). Since typical cells are 5 μm in size, FTIR

imaging cannot provide sub-cellular information potentially

important for analysis. Optical-photothermal infrared (O-PTIR)

imaging overcomes this resolution limitation. This technique

combines a visible laser beam and a mid-infrared beam in a

pump–probe architecture and estimates the absorbance of the

sample by measuring the change in the intensity of the visible

laser caused by the photothermal effect. Therefore, the image

resolution is determined by the wavelength of visible light

(0.5 μm), which is much shorter than the wavelength of IR

light incident on the sample, allowing a 5× to 22× improve-

ment in spatial resolution.53,54 The improved spatial resolution

is comparable with an optical microscope image, as demon-

strated in Fig. 1. This technology has been used previously for

studying the chemistry of inorganic 2D perovskites and

allowed us to understand the edge emission phenomenon in

inorganic 2D perovskites.55 O-PTIR has also been successfully

used in the chemical imaging of live human ovarian cancer

Fig. 1 Spatial differences between different cell types in the FTIR image

on the left, the H&E image in the center and the O-PTIR image on the

right. Cropped regions around pixels are from the same core in the

FT-IR and O-PTIR images collected at 1664 cm−1.
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cells,56 where high resolution is needed for analyzing sub-cel-

lular structures in a small area. However, our work is the first

large-scale (78 cancer patients) study of clinical ovarian tissue

biopsy samples, each with large sample areas (1 mm diameter

each).

Machine learning algorithms, including random forest (RF)

and Bayesian classifiers, use individual spectra to classify

tissue from MIRSI data. These approaches do not leverage

spatial information, although MIRSI provides both spatial and

spectroscopic information. Convolutional neural networks

(CNNs) are deep learning architectures that learn local spatial

features. CNNs have been successful in hyperspectral57 and

mid-infrared spectroscopic classification of breast cancer

tissues.58 Traditional CNNs consist of alternating convolution

and pooling layers, followed by a fully connected classifier. In

this paper, we use CNNs to determine the impact of improved

O-PTIR resolution on classification. Previous work on ovarian

cancer spectroscopy relied on point spectra to identify malig-

nant tissue or grade tumors.32,36 We report the first application

of the O-PTIR tissue classification and the first reported appli-

cation of MIRSI and deep learning to ovarian histology.

1.1. O-PTIR imaging

Photothermal microscopy provides a measurement of sample

absorbance by estimating the thermal expansion caused by the

absorption of infrared light using a co-localized visible laser

beam. The visible and IR laser are incident on the sample col-

linearly, as shown in Fig. 2. The thermal expansion caused in

the sample due to IR absorbance causes variation in the refrac-

tive index due to the photothermal effect. This change in the

refractive index is detected by measuring the change in the

intensity of the back-reflected green laser (visible laser) using a

point detector.

1.1.1. Improved spatial resolution. FTIR has been the stan-

dard spectroscopic imaging technique for characterizing the

chemistry of materials. While FTIR provides spectral data

across all mid-infrared wavenumbers, its spatial resolution is

diffraction limited by the long wavelengths of light, resulting

in modest image quality. O-PTIR overcomes this limitation

and provides higher spatial resolution (0.5 μm) images, with

data quality comparable to H&E stained microscopy images.

Fig. 1 compares the image quality of O-PTIR, FTIR, and H&E

on the same cancer tissue. The improved spatial resolution of

O-PTIR relative to FTIR is evident. Furthermore, O-PTIR data

quality is comparable with microscopy data after H&E staining

on an adjacent section. Finer spatial details in the epithelium

and stromal tissue regions are also observed in the O-PTIR

data presented in Fig. 1.

2. Materials and methods

An ovarian biopsy tissue microarray (TMA) was obtained from

Biomax US, Rockville, MD (TMA ID: BC11115c) and imaged

using O-PTIR. The TMA consisted of paraûn-embedded cores

mounted on a 1 mm thickness CaF2 substrate. These cores

were from separate patients with cases of normal, hyperplastic,

dysplastic, and malignant tumors. The patient cohort was

composed of women aged 29–69; ovarian tumor stages varied

between stage I and stage IIIC; the histological subtypes

included clear cell carcinoma, high-grade serous carcinoma,

and mucinous adenocarcinoma. Deparaûnization was per-

formed by following the protocol along the lines described in

a report50 before O-PTIR imaging. The paraûn-embedded

samples were deparaûnized by washing the sample in 100

percent xylene twice for 5 minutes each and then with 100

percent ethanol three times. The corresponding adjacent histo-

logical section was stained with H&E and examined by a path-

ologist expert. Cell subtypes were identified across disease

stages. We trained a random forest (RF) classifier, support

vector machine (SVM), k-nearest neighbor (KNN), and CNN

model using the cores on the left half of the TMA for training

and testing on the other cores on the right half of the TMA,

ensuring that training pixels and testing pixels came from

mutually exclusive cores on the TMA.

2.1. Data acquisition

FTIR images were acquired using an Agilent Stingray imaging

system equipped with a 680-IR spectrometer connected to a

620-IR imaging microscope with a numerical aperture of 0.62.

Each core was imaged with 16 co-additions in transmission

mode at a spectral resolution of 8 cm−1 truncated from

902 cm−1 to 3892 cm−1, and a pixel size of 1.1 μm. We col-

lected the background scan at 128 co-additions and ratioed it

to the single beam data to remove spectral contributions from

the substrate, atmosphere, and globar source.

The adjacent H&E stained TMA was imaged with a Nikon

inverted optical microscope with a 10×, 0.4NA objective in the

brightfield mode, and had a diffraction-limited spatial resolu-

tion in the visible range (0.4–0.7 μm).

The O-PTIR dataset was acquired using a Photothermal

mIRage microscope with silicon photodiode, a pixel size of

Fig. 2 Schematic of the optical path of the IR and green (532 nm)

lasers in our O-PTIR instrument. A pulsed quantum cascade laser (QCL)

shown in (a) is the source of mid-IR light which acts as a pump causing

photothermal expansion in the sample. A continuous wave (CW) green

laser shown in (b) is incident collinearly on the sample and acts as a

probe beam. A dichroic mirror (c) combines the green and QCL light and

focuses them on sample (e) using a reflective Cassegrain objective (d).

The modulation in the intensity of the green light (f ) scattered back

from the sample enables the measurement of its IR absorbance.
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0.5 μm × 0.5 μm and a 0.65 numerical aperture. A quantum

cascade laser (QCL) source swept through the range

902–1898 cm−1. Each core was imaged at five selected wave-

numbers (1162 cm−1, 1234 cm−1, 1396 cm−1, 1540 cm−1, and

1661 cm−1). An image of the entire TMA acquired at the amide

I band is shown in Fig. 3. Background spectra were collected

with 10 co-additions and used to normalize the raw data to cal-

culate the IR absorbance at each band. Band images were then

normalized with amide I (1664 cm−1) to bring the data range

between 0 and 1. Note that some tissue biopsies are missing

because the collected data were corrupted. We used an Aperio

Scanscope system to acquire the light microscopy images of

the whole slide’s H&E chemically stained sections.

2.2. Feature selection

Since the O-PTIR signal was detected using a point detector,

the time taken to collect an image of a single core varies

between 90 and 100 minutes per wavenumber.59 Collecting a

hyperspectral data cube of a core at all wavenumbers

(900–1900 cm−1 at 2 cm−1 spacing) would take approximately

35 days. We therefore collected fewer bands, focusing on

acquiring important biochemical information. These wave-

numbers were determined by analyzing FTIR spectra of

ovarian tissue to determine absorbance peaks corresponding

to functional groups relevant to ovarian tissue analysis based

on prior work. We acquired O-PTIR data at wavenumbers

1162 cm−1, 1234 cm−1, 1396 cm−1, 1540 cm−1, and 1661 cm−1

(Fig. 4), which correspond to glycogen, amide III, nucleic acids

and lipids, amide II, and amide I, respectively.50,60

2.3. Data annotation

Two pathologists labeled the areas in tissue cores as stroma or

epithelium using H&E-stained microscopy data. H&E with IR

images were aligned manually and the labels were transferred

to O-PTIR images to create annotated data for machine learn-

ing. The TMA was divided into two halves. The right half was

used for training and the left for testing, with an equal

number of cores in each cohort.

2.4. Classification models and hyperparameters

The SVM classifier was trained on 10 000 randomly selected

pixels per class from the training dataset (Table 1). An equal

number of data points was drawn from each class to balance

the training data and optimize classifier performance. The RF

classifier was trained with 100 trees using 10 000 samples per

class. Classifier inputs consisted of five-element vectors con-

taining the IR absorption values at each pixel and the corres-

ponding pixel label.

The CNN model uses the same general structure as our pre-

vious breast classifier.58 We optimized the network for O-PTIR

data classification using the following parameters. Inputs were

cropped into 32 × 32 regions around the center pixel to lever-

age the local spatial information. The network consisted of: (1)

a convolution layer with 32-feature maps; (2) a 2 × 2 max-

Fig. 3 O-PTIR microarray (8 × 10) shown at band 1664 cm−1. Data from

78 ovarian cancer patients are shown. The biochemical variations in

tissue are evident from the differences in color in the figure. Machine

learning algorithms combine biochemical data from multiple bands

enabling tissue subtype identification and disease diagnosis.

Fig. 4 The figure shows the absorption spectrum of ovarian tissue col-

lected using O-PTIR. The spectrum shows the IR absorption values

(Y-axis) for the wavenumbers (X-axis) in the fingerprint region. The

marked peaks in the spectrum correspond to biochemically relevant

functional groups60 of glycogen at 1162 cm−1, amide III at 1234 cm−1,

nucleic acids and lipids at 1396 cm−1, amide II at 1540 cm−1, and amide I

at 1661 cm−1.

Table 1 The total number of O-PTIR pixels in the training and testing

datasets separated by class is presented. The TMA is split in half to

create the training and testing cohorts. A small, random data subset was

chosen during the first training step, and the classifier was optimized.

Equal numbers of pixels were selected from each class to prevent class

bias in training. 10 000 O-PTIR pixels per class were used in the SVM

and RF classifiers and 400 000 pixels per class for CNNs

Class Training Testing

Epithelium 22, 766, 257 19, 249, 625
Stroma 11, 001, 575 8, 719, 719

Total 33, 767, 832 27, 969, 344
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pooling layer; (3) a convolution layer with 32-feature maps; (4)

a convolution layer with 64-feature maps; (5) and finally a fully

connected layer with 64 nodes and a softmax output for class

probabilities. The O-PTIR network contains an additional

32-feature convolution layer and a 2 × 2 max pooling layer

before the 64-feature convolution layers to adjust to the larger

input size, ensuring that the feature size in the final layers is

equivalent in both models (Fig. 5). The same architecture was

optimized for the FTIR data to make an apt comparison of the

classification results.

The following hyperparameters were used for our CNN

models:

1. Optimization: the Adam optimizer was used.61

2. Dropout: the networks had a dropout layer before the

fully connected layer with a keep probability of 0.5. This layer

aids regularization and prevents overfitting by randomly dis-

abling nodes in the first and last layers in training. The

dropout layer was included before the softmax layer and before

the first 64-feature convolution layer.

3. Non-linearity: a rectified linear unit (ReLU) activation

function was used for each layer.

4. Weight initialization: the initial weights of Keras layers

were initialized using the random normal class from the built-

in initializer, which generates tensors with a normal distri-

bution with a mean of 0.0 and a standard deviation of 0.05.

5. Batch size: the networks were trained in batches of 128

images each of size 33 × 33 × 5.

6. Epochs: the networks were trained for 8 epochs, with

data randomly shuüed between epochs.

2.5. Implementation

All data pre-processing was performed using our open-source

SIproc, software62 implemented in C++ and CUDA. Training

and testing were performed using Python with open-source

software packages. The CNNs were implemented in Python

with the Keras library,63 built on TensorFlow.64 RF and SVM

classifiers and accuracy scores were computed using the Scikit-

learn library.65 The performance of CNN classifiers was calcu-

lated by testing the classifiers on ten different sets of randomly

selected training pixels and averaging the overall accuracy run

on an NVIDIA Tesla K40m GPU. The computation time for

training the model with the aforementioned parameters is

10 minutes and for classification on the testing dataset is

30 minutes.

2.6. Cancer detection metrics

We define a pair of metrics that utilize tissue subtype classifi-

cation, aiming to aid early ovarian cancer detection. The

“stromal ratio” (SR) was calculated by dividing the number of

pixels classified as stroma by the total number of pixels in

each core. Similarly, the “epithelial ratio” (ER) is the number

of epithelial pixels divided by the total number of pixels in the

core.

3. Results

We evaluated classifier performance using the overall accuracy

(OA) and receiver operating characteristic (ROC) curves. The

OA is beneficial for binary and multi-class classification, repre-

senting the percentage of pixels mapped correctly to the appro-

priate class. The ROC curves delineate the correlation between

specificity and sensitivity to ascertain acceptable false positive

and true positive indicators.

We performed tissue segmentation using multiple machine

learning algorithms, including those based on spectra alone,

such as RFs and SVMs, and those that utilize both spatial and

spectral features, such as CNNs. The class-wise and overall

accuracy obtained after the classification of the testing dataset

are summarized in Table 2. CNNs outperform RF and SVM

classifiers in both class-wise and overall accuracy (by 40–50%).

The low OA scores for RF (53.21%) and SVM (45.57%) can be

attributed to using spectral information from only 5 wavenum-

bers instead of all the wavenumbers in the 900–1900 cm−1

range. Meanwhile, the high overall accuracy achieved by CNN

(94.61%) is due to the utilization of both spectral and spatial

features.

Results that characterize the performance of all classifiers

using the area under the curve (AUC) in a receiver operating

characteristic (ROC) plot are presented in Fig. 6. Our CNN clas-

sifier on O-PTIR data from 5 bands outperforms all others

with an AUC of 0.98. An RF classifier in the same O-PTIR data

Fig. 5 Schematic of the CNN architecture used for classification of

O-PTIR data. A spatial region of size 33 × 33 is cropped around each

pixel. Data cubes of size 33 × 33 × 5 are fed into the first convolution

layer. Each input is convolved with filters of size 3 × 3 outputting 32

feature maps. The following layer is a max pooling layer, which reduces

the spatial dimensions by half. Feature extraction continues with three

more convolution layers consisting of one 32 and two 64 feature maps

consecutively. The extracted features are then flattened and fed to a

fully connected layer with 128 units. The last layer, softmax, consisting

of 2 units (number of classes), outputs a vector of class probabilities. In

the end, the maximum probability is used to map each input pixel to its

corresponding class labels.

Table 2 Accuracy scores for epithelium and stroma classification using

(a) SVM, (b) RF, and (c) CNNs averaged across 80 repetitions are pre-

sented below. CNNs utilize a combination of spatial and spectral fea-

tures and outperform SVMs and RFs that employ spectral features alone

Class SVM RF CNN

Epithelium 80.31 ± 0.18 60.18 ± 0.29 95.33 ± 1.52
Stroma 29.84 ± 0.26 44.27 ± 0.21 93.00 ± 1.97

Total 45.57 ± 0.3 53.21 ± 0.05 94.61 ± 0.82
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shows an AUC of 0.58. Since CNNs use spatial features and

RFs don’t, these results highlight the importance of combin-

ing spatial and spectroscopic information for improved tissue

classification. RF classification on FTIR data with 5 bands pro-

vides a poor AUC of 0.45. This AUC increases to 0.67 by incor-

porating the 235 fingerprint bands. Classification of FTIR data

from 5 bands using CNN yields an AUC of 0.6, which increases

to 0.9 when we include the 235 fingerprint bands. Comparing

CNN performance for FTIR with the fingerprint spectrum

(AUC = 0.9) and O-PTIR with 5 bands (AUC = 0.98) implies that

spatial details obtained from O-PTIR compensate for the loss

of spectroscopic information due to the reduction in the

number of bands.

Fig. 7 presents the results when the RF and CNN classifi-

cation models were used to segment ovarian tissue cores,

including regions outside annotated areas. The O-PTIR data

are consistent with H&E stained microscopy data, whereas the

RF results show poor concordance. These results show that

our CNN classification results extend beyond annotated data,

indicating effective tissue segmentation into the epithelium

and stroma.

We can utilize classification results to facilitate early

ovarian cancer detection. Fig. 8 presents plots of the stromal

ratio (SR) and epithelial ratio (ER) as a function of the

Federation Internationale de Gynecolgie et d’Obstetrique

(FIGO) cancer stage. SR and ER showed a non-linear relation-

ship with the FIGO stage and the curve fitting function was

calculated using non-linear least-squares on the ratios. We

observe a sharp reduction in the SR with increasing cancer

grade until grade II and a subsequent flattening of the curve.

Fig. 8(b) emphasizes the SR trend in the early cancer stages:

normal, grade I, IA, IB, IC, and II. There is a statistically signifi-

cant (P < 0.01) reduction in the SR from normal to grade I,

illustrating its effectiveness as an early detection biomarker. A

complimentary trend was observed in the ER metric in (c). A

statistically significant (P < 0.01) increase in the ER was

observed with progressively worsening early-stage cancer in

(d). Pathologists have qualitatively observed changes in the

relative quantities of the stroma and epithelium in early

cancer stages. Our technique quantifies the number of epi-

thelial and stromal pixels, thereby enabling measurement of

quantitative trends in the aforementioned metrics in the early

stages of ovarian cancer, which is consistent with the earlier

studies made on the tumor–stroma ratio in ovarian cancer.8

4. Discussion

FTIR imaging measures tissue absorbance across all mid-IR

wavenumbers and constructs a hyperspectral data cube. The

technology does not allow the measurement of individual

wavenumbers. O-PTIR uses a tunable QCL to measure tissue

absorbance at discrete wavenumbers. We can measure only a

subset of mid-IR wavenumbers relevant to a specific appli-

cation, thereby reducing the data collection time. On the other

hand, O-PTIR uses a pump–probe architecture to obtain super-

resolution images. This improved resolution results in an

increase in the quantity of data and a corresponding increase

in data collection time for each image. The effects of the

improvement in resolution on tissue classification and the

Fig. 6 ROC curves and associated AUC values for binary classification

of the tissue type, separated by the classifier type and datasets used.

Due to the use of two-class models, each tissue class curve is a reflec-

tion of the curve from the other class, and thus the AUC values are

equal across tissue classes. CNN classifiers exhibit superior results to the

RF classifiers, indicating that spatial information is essential in dis-

tinguishing tissue types.

Fig. 7 (a) H&E images of tissue cores are compared to O-PTIR classifi-

cation results from (b) RFs and (c) CNNs. There is a good correspon-

dence between O-PTIR class images in (c) and the corresponding H&E

images in (a), indicating that our classification results generalize beyond

annotated tissue regions. The correspondence between RF and H&E is

poor as expected from the AUC values.
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tradeoff between spatial and spectral resolution have not been

studied until this paper. Our results demonstrate that we can

maintain excellent tissue classification accuracy by reducing

the number of bands and increasing the spatial resolution.

This work presents a framework for making spatial–spectral

tradeoffs in spectroscopic imaging while retaining good tissue

segmentation accuracy.

Deep learning is used routinely in image classification.66

However, its application to hyperspectral data is limited.58

Furthermore, it has never been applied to super-resolution

hyperspectral data, and our paper is the first to demonstrate

eûcacy. Hyperspectral data being three-dimensional (3D)

require a large memory bandwidth. Super-resolution images

have finer spatial details and require larger convolutional

kernels to identify the same area as FTIR, increasing compu-

tational costs and making classification more challenging. We

have optimized our novel deep-learning architecture to achieve

an excellent tissue segmentation AUC of 0.98 despite these

challenges.

Our results were obtained on 78 independent cancer

patient cores and are statistically robust. Prior work often uti-

lizes pixels within the same set of tissue cores during

classification.67,68 This can lead to misleading results since

the machine learning algorithm may learn features that corres-

pond to specific patient traits that are challenging to general-

ize beyond the current dataset. We perform training and vali-

dation on mutually exclusive patient cores, achieving robust,

generalizable results that enhance scientific rigor and

reproducibility.

The results in Fig. 6 show a significant improvement in

eûcacy between RF (AUC = 0.58) and CNNs (AUC = 0.98) in the

same O-PTIR data. Since CNNs not only utilize spectroscopic

information but also extract spatial data, these results high-

light the advantages of combining spatial and spectral fea-

tures. This work builds on prior spatial–spectral FTIR classifi-

cation work51 and aûrms the validity of this research

approach.

The increased spatial resolution of O-PTIR leads to larger

within-class spectral variation. Spectra in FTIR imaging are

averaged over ∼5 μm pixels, which is approximately the size of

one cell. On the other hand, spectra in O-PTIR correspond to

more localized (0.5 μm) sub-cellular features such as the cell

nucleus or Golgi apparatus, which have disparate biochemical

constituents. This leads to a larger spectra variation in O-PTIR

even within the same tissue class. A large within-class variance

can be a potential disadvantage in tissue segmentation and

analysis. However, our data analysis approach that combines

spatial–spectral features turns this variation into an advantage.

The performance of machine learning algorithms depends

critically on the quality and quantity of annotated data. Since

annotations were performed using images of stained adjacent

sections that are several microns away from the MIRSI section,

this imposes limitations on labeling accuracy. We mitigate

annotation errors by limiting our labeling to unambiguous

tissue areas and avoiding class boundaries. Furthermore, the

alignment of images from adjacent sections is challenging,69

and we obtained the best fit through manual adjustment. The

five wavenumbers that we chose for O-PTIR imaging offer good

classification performance, but optimizing the set of wave-

numbers could lead to improved performance. We will explore

this optimization and the effects of improved spatial resolu-

tion on identifying other tissue subtypes in future work invol-

ving multi-class segmentation.

To our knowledge, this is the first large-scale analysis of

ovarian cancer tissue using mid-IR spectroscopic imaging.

This analysis affords quantitative insights into ovarian cancer.

Pathologists utilize the extent of epithelial infiltration into the

stroma and the relative proportion of the stroma or epithelium

to the rest of the tissue to subjectively assess cancer grade.

Since our approach can precisely quantify the number of

pixels of these subtypes, we can quantify these assessments

and observe trends in a reliable manner. Furthermore, we

analyze 78 cancer patients, enabling statistically robust ana-

lysis. Fig. 8(a) and (b) show that there is a statistically signifi-

cant (P < 0.01) reduction in the stromal ratio (SR) between

normal tissue (SR ≈ 0.9) and early stage (grade I – SR < 0.4)

ovarian cancer. Furthermore, the SR reduces from grade I to II

and then shows no appreciable change from grade II to IV.

The grades were obtained directly from Biomax. A complemen-

tary trend was observed in the epithelium ratio (ER) in (c) and

(d). The ER for normal tissue is ∼0.1 and that for grade I

cancer is >0.6. These results illustrate the utility of quantitative

tissue classification in cancer diagnosis. The SR and ER are

Fig. 8 Stromal ratio (SR) and epithelial ratio (ER) are plotted as a func-

tion of the pathologist-assigned FIGO stage of ovarian cancer. These

ratios were calculated by dividing the number of pixels classified as the

stroma or epithelium by the total number of pixels in each biopsy core.

The trend line in plots (a) and (c) show a nonlinear fit for the SR and ER

as a function of the cancer stage. These trend lines show a substantial

reduction in the SR and an increase in the ER from normal to grade II,

but do not change appreciably from grades II to IV. There is a statistically

significant (P < 0.01) decrease in the SR and a significant (P < 0.01)

increase in the ER during the early stage of cancer from normal tissue

until stage II as presented in (b) and (d). The graphs show the mean SR

and ER vs. early cancer grade. The error bands correspond to one stan-

dard deviation (SD).
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quantitative biomarkers for early-stage ovarian cancer diagno-

sis and will be explored in greater detail in future work.

5. Conclusion

MIRSI is an emerging technology that has the ability to revolu-

tionize digital histopathology. Significant progress has been

made in overcoming the technological challenges impeding its

clinical adoption. O-PTIR solves the spatial resolution chal-

lenge of prior FTIR imaging technology, enabling label-free

sub-cellular tissue investigation. In this work, we present the

first label-free, automated histological classification of ovarian

tissue subtypes using MIRSI. We show that the improved

spatial resolution allows us to make fewer spectral band

measurements and still achieve reliable tissue segmentation

with an AUC of 0.98. These results are enabled using a novel

deep-learning architecture optimized for MIRSI data. The

results are statistically robust with validation over 78 cancer

patients and 60 million data points. We utilize tissue classifi-

cation and propose new quantitative biomarkers for early

ovarian cancer diagnosis. The combination of deep learning

and quantitative biochemical measurements using MIRSI

enables numerically precise evaluation of previously subjective

assessments, improving the rigor and reproducibility of histo-

pathology. O-PTIR was also used to perform measurements in

back-reflection geometry, making the instrument easy to use

on diverse tissue samples and facilitates future clinical

translation.
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