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Mid-infrared spectroscopic imaging

(MIRSI) is an emerging class of label-free techniques being leveraged

for digital histopathology. Modern histopathologic identification of ovarian cancer involves tissue staining

followed by morphological pattern recognition. This process is time-consuming and subjective and

requires extensive expertise. This paper presents the first label-free, quantitative, and automated histo-

logical recognition of ovarian tissue subtypes using a new MIRSI technique. This optical photothermal

infrared (O-PTIR) imaging technique provides a 10X enhancement in spatial resolution relative to prior

instruments. It enables sub-cellular spectroscopic investigation of tissue at biochemically important

fingerprint wavelengths. We demonstrate that the enhanced resolution of sub-cellular features, combined

with spectroscopic information, enables reliable classification of ovarian cell subtypes achieving a classifi-

cation accuracy of 0.98. Moreover, we present a statistically robust analysis from 78 patient samples with

over 60 million data points. We show that sub-cellular resolution from five wavenumbers is sufficient to

outperform state-of-the-art diffraction-limited techniques with up to 235 wavenumbers. We also
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1. Introduction

Epithelial ovarian cancer is the leading cause of death among
gynecological malignancies in the United States. Serous
ovarian cancer, its most common subtype, is often diagnosed
at a late stage (III or IV), where 5-year survival is 51% and 29%,
respectively." Standard treatment involves surgery and at least
six courses of chemotherapy.> Several novel compounds have
been studied and approved over the past 20 years; however,
none of them substantially modify overall survival.> The most
decisive prognostic factor remains the complete eradication of
neoplastic tissue through radical surgery.® Outcomes are
affected by (1) late diagnosis resulting in unresectable disease
and (2) unclear identification of neoplastic margins.
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propose two quantitative biomarkers based on the relative quantities of epithelia and stroma that exhibit
efficacy in early cancer diagnosis. This paper demonstrates that combining deep learning with intrinsic
biochemical MIRSI measurements enables quantitative evaluation of cancerous tissue, improving the rigor
and reproducibility of histopathology.

Therefore, the objective and early identification of neoplastic
tissue are essential for optimal surgical attempts.

Recent advances reveal the complex organization of the
ovarian tumor microenvironment, highlighting inter-cellular
pathways’ as potential treatment targets. New methods quanti-
fying biomolecular characteristics reveal detailed structural
and molecular changes that may reveal novel therapeutic
targets. The surgical pathological staging systems (The
International Federation of Gynecology and Obstetrics staging,
FIGO staging) continue to be the most crucial tool for deter-
mining the stages of ovarian cancer.® The FIGO staging criteria
for cancer are based on the extent of spread of tumor cells
from the ovary. This is determined using contrast-inducing
stains on biopsy sections, followed by microscopic examin-
ation by a pathologist, which is the current clinical standard
for ovarian cancer diagnosis. The hematoxylin and eosin
(H&E) stain is widely used to identify cellular and extracellular
components. Epithelial carcinoma is the most common histo-
logic type, accounting for about 90 percent of cancers of the
ovary, fallopian tube, and peritoneum.”'° In high-grade serous
carcinoma (HGSC), a pathologist identifies various architec-
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tural patterns, including complex papillary, glandular, micro-
cystic, and solid patterns. HGSC infiltrates, destroys, and/or
replaces the normal stroma. Therefore, histological identifi-
cation of cellular subtypes is an important step'’ in ovarian
cancer diagnosis and prognosis.

Inter-pathologist variability is a significant challenge,'? and
grading schemes have been proposed to reduce this
variability.”>™"> However, these methods have only been suc-
cessful in resource-rich hospitals with comprehensive train-
ing.'® Automated and semi-automated techniques to reduce
inter-pathologist variability, especially in lower-resource set-
tings, are critical for equitable care."”*® Automated tissue sub-
typing is an essential step in this effort.

Automated tissue classification into the epithelium and
stroma subtypes is challenging, and several techniques have
been proposed. Most use H&E>*"**> and immunohistochemical
staining”® combined with machine learning (ML). Staining
quality and variability can confound ML and lead to inconsist-
ent results."® Immunofluorescence staining has effectively
detected circulating tumor cells that can form micro-metas-
tases in other organs beyond the original tumor site,*"** but
the specificity of stains for a biomarker/cell type can render it
ineffective in detecting a different biomarker/cell type.
However, this issue has been addressed recently by employing
sequential fluorescence quenching and re-staining,”® effec-
tively allowing subsequent fluorescence staining targeting
different markers multiple times.>” However, this method is
limited by a number of antibodies that can be used for a
limited set of stains, and the process of staining itself can
cause a change in the structure and biochemical composition
of the tissue. Our goal is to perform label-free recognition of
tissue subtypes without using chemical contrast agents.
Moreover, we obtain intrinsic quantitative and repeatable bio-
chemical measurements that are independent of operator
tissue processing.

Spectroscopic techniques are used widely to identify mole-
cules with high sensitivity and specificity in chemical and bio-
chemical analysis.>® Vibrational spectroscopy is used routinely
to identify organic biomolecules by matching measurements
with large commercial spectral libraries containing over
260000 spectra.”® Prior work on label-free ovarian tissue ana-
lysis has utilized spectroscopy. Raman spectroscopy,>°* con-
ventional Fourier transform infrared (FTIR) spectroscopy,® >
and attenuated total reflection (ATR) FTIR spectroscopy>®’
have been applied to detect and diagnose ovarian cancer.
However, it lacks spatial specificity and requires long data col-
lection times. MALDI imaging®® has also been used to analyze
ovarian histotypes; however, this technique destroys the
sample. Second-harmonic generation (SHG) can identify col-
lagen in the stroma,**™*' and multi-photon microscopy** has
been used on murine tissue. Raman imaging has been used
for ovarian cancer diagnosis and tissue analysis, often with
added nanoparticles**** to obtain more robust signals. Taken
together, none of these techniques provide classified images
in an automated, label-free, quantitative, and non-destructive
manner.
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Mid-infrared spectroscopic imaging (MIRSI) can extract
spectral and spatial information without using contrast agents
by utilizing the intrinsic biochemical properties of tissues.
This technology is non-destructive and therefore compatible
with other technologies.*> Fourier transform infrared (FTIR)
spectroscopic imaging, the best known MIRSI technology, can
classify cell subtypes in a variety of diseases, including
breast,*® lung,”” prostate,*® and colon*® cancers. We hypoth-
esize that it is also helpful for ovarian cancer tissue subtyping.
HGSC is the marked cytologic atypia with prominent mitotic
activity in ovarian tissue. The atypical nuclei are hyperchro-
matic with an over threefold variation in nuclear size.
Phosphate spectroscopic peaks (1080, 1201, 1236, and
1262 cm™ ") corresponding to nucleic acids strongly correlate to
mitotic activity, and spectroscopic imaging has shown
increased phosphate signals in a variety of cancers.”® >

FTIR imaging is limited by the diffraction of mid-infrared
light (2.5 pm-11 pm). Since typical cells are 5 pm in size, FTIR
imaging cannot provide sub-cellular information potentially
important for analysis. Optical-photothermal infrared (O-PTIR)
imaging overcomes this resolution limitation. This technique
combines a visible laser beam and a mid-infrared beam in a
pump-probe architecture and estimates the absorbance of the
sample by measuring the change in the intensity of the visible
laser caused by the photothermal effect. Therefore, the image
resolution is determined by the wavelength of visible light
(0.5 pm), which is much shorter than the wavelength of IR
light incident on the sample, allowing a 5x to 22x improve-
ment in spatial resolution.>®>* The improved spatial resolution
is comparable with an optical microscope image, as demon-
strated in Fig. 1. This technology has been used previously for
studying the chemistry of inorganic 2D perovskites and
allowed us to understand the edge emission phenomenon in
inorganic 2D perovskites.>® O-PTIR has also been successfully
used in the chemical imaging of live human ovarian cancer

\ d Min
H&E O-PTIR
Stroma

H&E O-PTIR FT-IR
Epithelium

Fig. 1 Spatial differences between different cell types in the FTIR image
on the left, the H&E image in the center and the O-PTIR image on the
right. Cropped regions around pixels are from the same core in the
FT-IR and O-PTIR images collected at 1664 cm™.
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cells,”® where high resolution is needed for analyzing sub-cel-
lular structures in a small area. However, our work is the first
large-scale (78 cancer patients) study of clinical ovarian tissue
biopsy samples, each with large sample areas (1 mm diameter
each).

Machine learning algorithms, including random forest (RF)
and Bayesian classifiers, use individual spectra to classify
tissue from MIRSI data. These approaches do not leverage
spatial information, although MIRSI provides both spatial and
spectroscopic information. Convolutional neural networks
(CNNs) are deep learning architectures that learn local spatial
features. CNNs have been successful in hyperspectral®” and
mid-infrared spectroscopic classification of breast cancer
tissues.”® Traditional CNNs consist of alternating convolution
and pooling layers, followed by a fully connected classifier. In
this paper, we use CNNs to determine the impact of improved
O-PTIR resolution on classification. Previous work on ovarian
cancer spectroscopy relied on point spectra to identify malig-
nant tissue or grade tumors.***® We report the first application
of the O-PTIR tissue classification and the first reported appli-
cation of MIRSI and deep learning to ovarian histology.

1.1. O-PTIR imaging

Photothermal microscopy provides a measurement of sample
absorbance by estimating the thermal expansion caused by the
absorption of infrared light using a co-localized visible laser
beam. The visible and IR laser are incident on the sample col-
linearly, as shown in Fig. 2. The thermal expansion caused in
the sample due to IR absorbance causes variation in the refrac-
tive index due to the photothermal effect. This change in the
refractive index is detected by measuring the change in the
intensity of the back-reflected green laser (visible laser) using a
point detector.

1.1.1. Improved spatial resolution. FTIR has been the stan-
dard spectroscopic imaging technique for characterizing the
chemistry of materials. While FTIR provides spectral data

(a) (b)
QCL (IR) Green Laser Sample

Fig. 2 Schematic of the optical path of the IR and green (532 nm)
lasers in our O-PTIR instrument. A pulsed quantum cascade laser (QCL)
shown in (a) is the source of mid-IR light which acts as a pump causing
photothermal expansion in the sample. A continuous wave (CW) green
laser shown in (b) is incident collinearly on the sample and acts as a
probe beam. A dichroic mirror (c) combines the green and QCL light and
focuses them on sample (e) using a reflective Cassegrain objective (d).
The modulation in the intensity of the green light (f) scattered back
from the sample enables the measurement of its IR absorbance.
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across all mid-infrared wavenumbers, its spatial resolution is
diffraction limited by the long wavelengths of light, resulting
in modest image quality. O-PTIR overcomes this limitation
and provides higher spatial resolution (0.5 pm) images, with
data quality comparable to H&E stained microscopy images.
Fig. 1 compares the image quality of O-PTIR, FTIR, and H&E
on the same cancer tissue. The improved spatial resolution of
O-PTIR relative to FTIR is evident. Furthermore, O-PTIR data
quality is comparable with microscopy data after H&E staining
on an adjacent section. Finer spatial details in the epithelium
and stromal tissue regions are also observed in the O-PTIR
data presented in Fig. 1.

2. Materials and methods

An ovarian biopsy tissue microarray (TMA) was obtained from
Biomax US, Rockville, MD (TMA ID: BC11115c) and imaged
using O-PTIR. The TMA consisted of paraffin-embedded cores
mounted on a 1 mm thickness CaF2 substrate. These cores
were from separate patients with cases of normal, hyperplastic,
dysplastic, and malignant tumors. The patient cohort was
composed of women aged 29-69; ovarian tumor stages varied
between stage I and stage IIIC; the histological subtypes
included clear cell carcinoma, high-grade serous carcinoma,
and mucinous adenocarcinoma. Deparaffinization was per-
formed by following the protocol along the lines described in
a report®® before O-PTIR imaging. The paraffin-embedded
samples were deparaffinized by washing the sample in 100
percent xylene twice for 5 minutes each and then with 100
percent ethanol three times. The corresponding adjacent histo-
logical section was stained with H&E and examined by a path-
ologist expert. Cell subtypes were identified across disease
stages. We trained a random forest (RF) classifier, support
vector machine (SVM), k-nearest neighbor (KNN), and CNN
model using the cores on the left half of the TMA for training
and testing on the other cores on the right half of the TMA,
ensuring that training pixels and testing pixels came from
mutually exclusive cores on the TMA.

2.1. Data acquisition

FTIR images were acquired using an Agilent Stingray imaging
system equipped with a 680-IR spectrometer connected to a
620-IR imaging microscope with a numerical aperture of 0.62.
Each core was imaged with 16 co-additions in transmission
mode at a spectral resolution of 8 ecm™ truncated from
902 cm™" to 3892 cm™, and a pixel size of 1.1 pm. We col-
lected the background scan at 128 co-additions and ratioed it
to the single beam data to remove spectral contributions from
the substrate, atmosphere, and globar source.

The adjacent H&E stained TMA was imaged with a Nikon
inverted optical microscope with a 10%, 0.4NA objective in the
brightfield mode, and had a diffraction-limited spatial resolu-
tion in the visible range (0.4-0.7 pm).

The O-PTIR dataset was acquired using a Photothermal
mIRage microscope with silicon photodiode, a pixel size of
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0.5 pm x 0.5 pm and a 0.65 numerical aperture. A quantum
cascade laser (QCL) source swept through the range
902-1898 cm™'. Each core was imaged at five selected wave-
numbers (1162 cm™", 1234 ecm™*, 1396 cm ™", 1540 cm ™", and
1661 cm™"). An image of the entire TMA acquired at the amide
I band is shown in Fig. 3. Background spectra were collected
with 10 co-additions and used to normalize the raw data to cal-
culate the IR absorbance at each band. Band images were then
normalized with amide I (1664 cm™) to bring the data range
between 0 and 1. Note that some tissue biopsies are missing
because the collected data were corrupted. We used an Aperio
Scanscope system to acquire the light microscopy images of
the whole slide’s H&E chemically stained sections.

2.2. Feature selection

Since the O-PTIR signal was detected using a point detector,
the time taken to collect an image of a single core varies
between 90 and 100 minutes per wavenumber.’ Collecting a
hyperspectral data cube of a core at all wavenumbers
(900-1900 ecm™ at 2 cm™" spacing) would take approximately
35 days. We therefore collected fewer bands, focusing on
acquiring important biochemical information. These wave-
numbers were determined by analyzing FTIR spectra of
ovarian tissue to determine absorbance peaks corresponding
to functional groups relevant to ovarian tissue analysis based
on prior work. We acquired O-PTIR data at wavenumbers
1162 cm™%, 1234 cm™?, 1396 cm ™}, 1540 em™*, and 1661 cm ™!
(Fig. 4), which correspond to glycogen, amide III, nucleic acids
and lipids, amide II, and amide I, respectively.’®®°

2.3. Data annotation

Two pathologists labeled the areas in tissue cores as stroma or
epithelium using H&E-stained microscopy data. H&E with IR
images were aligned manually and the labels were transferred

Fig. 3 O-PTIR microarray (8 x 10) shown at band 1664 cm™. Data from
78 ovarian cancer patients are shown. The biochemical variations in
tissue are evident from the differences in color in the figure. Machine
learning algorithms combine biochemical data from multiple bands
enabling tissue subtype identification and disease diagnosis.
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Fig. 4 The figure shows the absorption spectrum of ovarian tissue col-
lected using O-PTIR. The spectrum shows the IR absorption values
(Y-axis) for the wavenumbers (X-axis) in the fingerprint region. The
marked peaks in the spectrum correspond to biochemically relevant
functional groups®® of glycogen at 1162 cm™, amide Ill at 1234 cm™,
nucleic acids and lipids at 1396 cm™, amide Il at 1540 cm™, and amide |
at 1661 cm™.

to O-PTIR images to create annotated data for machine learn-
ing. The TMA was divided into two halves. The right half was
used for training and the left for testing, with an equal
number of cores in each cohort.

2.4. Classification models and hyperparameters

The SVM classifier was trained on 10000 randomly selected
pixels per class from the training dataset (Table 1). An equal
number of data points was drawn from each class to balance
the training data and optimize classifier performance. The RF
classifier was trained with 100 trees using 10 000 samples per
class. Classifier inputs consisted of five-element vectors con-
taining the IR absorption values at each pixel and the corres-
ponding pixel label.

The CNN model uses the same general structure as our pre-
vious breast classifier.”® We optimized the network for O-PTIR
data classification using the following parameters. Inputs were
cropped into 32 x 32 regions around the center pixel to lever-
age the local spatial information. The network consisted of: (1)
a convolution layer with 32-feature maps; (2) a 2 x 2 max-

Table 1 The total number of O-PTIR pixels in the training and testing
datasets separated by class is presented. The TMA is split in half to
create the training and testing cohorts. A small, random data subset was
chosen during the first training step, and the classifier was optimized.
Equal numbers of pixels were selected from each class to prevent class
bias in training. 10 000 O-PTIR pixels per class were used in the SVM
and RF classifiers and 400 000 pixels per class for CNNs

Class Training Testing
Epithelium 22, 766, 257 19, 249, 625
Stroma 11, 001, 575 8,719, 719
Total 33, 767, 832 27, 969, 344
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pooling layer; (3) a convolution layer with 32-feature maps; (4)
a convolution layer with 64-feature maps; (5) and finally a fully
connected layer with 64 nodes and a softmax output for class
probabilities. The O-PTIR network contains an additional
32-feature convolution layer and a 2 x 2 max pooling layer
before the 64-feature convolution layers to adjust to the larger
input size, ensuring that the feature size in the final layers is
equivalent in both models (Fig. 5). The same architecture was
optimized for the FTIR data to make an apt comparison of the
classification results.

The following hyperparameters were used for our CNN
models:

1. Optimization: the Adam optimizer was used.®’

2. Dropout: the networks had a dropout layer before the
fully connected layer with a keep probability of 0.5. This layer
aids regularization and prevents overfitting by randomly dis-
abling nodes in the first and last layers in training. The
dropout layer was included before the softmax layer and before
the first 64-feature convolution layer.

3. Non-linearity: a rectified linear unit (ReLU) activation
function was used for each layer.

4. Weight initialization: the initial weights of Keras layers
were initialized using the random normal class from the built-
in initializer, which generates tensors with a normal distri-
bution with a mean of 0.0 and a standard deviation of 0.05.

5. Batch size: the networks were trained in batches of 128
images each of size 33 x 33 x 5.

6. Epochs: the networks were trained for 8 epochs, with
data randomly shuffled between epochs.

2.5. Implementation

All data pre-processing was performed using our open-source
SIproc, software®® implemented in C++ and CUDA. Training
and testing were performed using Python with open-source
software packages. The CNNs were implemented in Python
with the Keras library,®® built on TensorFlow.®* RF and SVM
classifiers and accuracy scores were computed using the Scikit-

Convolution
Filters: 3x3
Feature maps: 32

Convolution Fully
Filters: 3x3 Connected  Classes
Feature maps: 64 64 nodes

&a
G
Fig. 5 Schematic of the CNN architecture used for classification of
O-PTIR data. A spatial region of size 33 x 33 is cropped around each
pixel. Data cubes of size 33 x 33 x 5 are fed into the first convolution
layer. Each input is convolved with filters of size 3 x 3 outputting 32
feature maps. The following layer is a max pooling layer, which reduces
the spatial dimensions by half. Feature extraction continues with three
more convolution layers consisting of one 32 and two 64 feature maps
consecutively. The extracted features are then flattened and fed to a
fully connected layer with 128 units. The last layer, softmax, consisting
of 2 units (humber of classes), outputs a vector of class probabilities. In

the end, the maximum probability is used to map each input pixel to its
corresponding class labels.

§ Band images Input
33x33x5
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learn library.®® The performance of CNN classifiers was calcu-
lated by testing the classifiers on ten different sets of randomly
selected training pixels and averaging the overall accuracy run
on an NVIDIA Tesla K40m GPU. The computation time for
training the model with the aforementioned parameters is
10 minutes and for classification on the testing dataset is
30 minutes.

2.6. Cancer detection metrics

We define a pair of metrics that utilize tissue subtype classifi-
cation, aiming to aid early ovarian cancer detection. The
“stromal ratio” (SR) was calculated by dividing the number of
pixels classified as stroma by the total number of pixels in
each core. Similarly, the “epithelial ratio” (ER) is the number
of epithelial pixels divided by the total number of pixels in the
core.

3. Results

We evaluated classifier performance using the overall accuracy
(OA) and receiver operating characteristic (ROC) curves. The
OA is beneficial for binary and multi-class classification, repre-
senting the percentage of pixels mapped correctly to the appro-
priate class. The ROC curves delineate the correlation between
specificity and sensitivity to ascertain acceptable false positive
and true positive indicators.

We performed tissue segmentation using multiple machine
learning algorithms, including those based on spectra alone,
such as RFs and SVMs, and those that utilize both spatial and
spectral features, such as CNNs. The class-wise and overall
accuracy obtained after the classification of the testing dataset
are summarized in Table 2. CNNs outperform RF and SVM
classifiers in both class-wise and overall accuracy (by 40-50%).
The low OA scores for RF (53.21%) and SVM (45.57%) can be
attributed to using spectral information from only 5 wavenum-
bers instead of all the wavenumbers in the 900-1900 cm™*
range. Meanwhile, the high overall accuracy achieved by CNN
(94.61%) is due to the utilization of both spectral and spatial
features.

Results that characterize the performance of all classifiers
using the area under the curve (AUC) in a receiver operating
characteristic (ROC) plot are presented in Fig. 6. Our CNN clas-
sifier on O-PTIR data from 5 bands outperforms all others
with an AUC of 0.98. An RF classifier in the same O-PTIR data

Table 2 Accuracy scores for epithelium and stroma classification using
(@) SVM, (b) RF, and (c) CNNs averaged across 80 repetitions are pre-
sented below. CNNs utilize a combination of spatial and spectral fea-
tures and outperform SVMs and RFs that employ spectral features alone

Class SVM RF CNN

Epithelium 80.31 £ 0.18 60.18 = 0.29 95.33 +1.52
Stroma 29.84 + 0.26 44.27 £ 0.21 93.00 +1.97
Total 45.57 £ 0.3 53.21 £ 0.05 94.61 + 0.82
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Fig. 6 ROC curves and associated AUC values for binary classification
of the tissue type, separated by the classifier type and datasets used.
Due to the use of two-class models, each tissue class curve is a reflec-
tion of the curve from the other class, and thus the AUC values are
equal across tissue classes. CNN classifiers exhibit superior results to the
RF classifiers, indicating that spatial information is essential in dis-
tinguishing tissue types.

shows an AUC of 0.58. Since CNNs use spatial features and
RFs don’t, these results highlight the importance of combin-
ing spatial and spectroscopic information for improved tissue
classification. RF classification on FTIR data with 5 bands pro-
vides a poor AUC of 0.45. This AUC increases to 0.67 by incor-
porating the 235 fingerprint bands. Classification of FTIR data
from 5 bands using CNN yields an AUC of 0.6, which increases
to 0.9 when we include the 235 fingerprint bands. Comparing
CNN performance for FTIR with the fingerprint spectrum
(AUC = 0.9) and O-PTIR with 5 bands (AUC = 0.98) implies that
spatial details obtained from O-PTIR compensate for the loss
of spectroscopic information due to the reduction in the
number of bands.

Fig. 7 presents the results when the RF and CNN classifi-
cation models were used to segment ovarian tissue cores,
including regions outside annotated areas. The O-PTIR data
are consistent with H&E stained microscopy data, whereas the
RF results show poor concordance. These results show that
our CNN classification results extend beyond annotated data,
indicating effective tissue segmentation into the epithelium
and stroma.

We can utilize classification results to facilitate early
ovarian cancer detection. Fig. 8 presents plots of the stromal
ratio (SR) and epithelial ratio (ER) as a function of the
Federation Internationale de Gynecolgie et d’Obstetrique
(FIGO) cancer stage. SR and ER showed a non-linear relation-
ship with the FIGO stage and the curve fitting function was
calculated using non-linear least-squares on the ratios. We
observe a sharp reduction in the SR with increasing cancer
grade until grade II and a subsequent flattening of the curve.
Fig. 8(b) emphasizes the SR trend in the early cancer stages:
normal, grade I, IA, IB, IC, and II. There is a statistically signifi-
cant (P < 0.01) reduction in the SR from normal to grade I,
illustrating its effectiveness as an early detection biomarker. A
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(c) CNN

(a) H&E

(b) RF

Fig. 7 (a) H&E images of tissue cores are compared to O-PTIR classifi-
cation results from (b) RFs and (c) CNNs. There is a good correspon-
dence between O-PTIR class images in (c) and the corresponding H&E
images in (a), indicating that our classification results generalize beyond
annotated tissue regions. The correspondence between RF and H&E is
poor as expected from the AUC values.

complimentary trend was observed in the ER metric in (c). A
statistically significant (P < 0.01) increase in the ER was
observed with progressively worsening early-stage cancer in
(d). Pathologists have qualitatively observed changes in the
relative quantities of the stroma and epithelium in early
cancer stages. Our technique quantifies the number of epi-
thelial and stromal pixels, thereby enabling measurement of
quantitative trends in the aforementioned metrics in the early
stages of ovarian cancer, which is consistent with the earlier
studies made on the tumor-stroma ratio in ovarian cancer.®

4. Discussion

FTIR imaging measures tissue absorbance across all mid-IR
wavenumbers and constructs a hyperspectral data cube. The
technology does not allow the measurement of individual
wavenumbers. O-PTIR uses a tunable QCL to measure tissue
absorbance at discrete wavenumbers. We can measure only a
subset of mid-IR wavenumbers relevant to a specific appli-
cation, thereby reducing the data collection time. On the other
hand, O-PTIR uses a pump-probe architecture to obtain super-
resolution images. This improved resolution results in an
increase in the quantity of data and a corresponding increase
in data collection time for each image. The effects of the
improvement in resolution on tissue classification and the

This journal is © The Royal Society of Chemistry 2023
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Fig. 8 Stromal ratio (SR) and epithelial ratio (ER) are plotted as a func-
tion of the pathologist-assigned FIGO stage of ovarian cancer. These
ratios were calculated by dividing the number of pixels classified as the
stroma or epithelium by the total number of pixels in each biopsy core.
The trend line in plots (a) and (c) show a nonlinear fit for the SR and ER
as a function of the cancer stage. These trend lines show a substantial
reduction in the SR and an increase in the ER from normal to grade I,
but do not change appreciably from grades Il to IV. There is a statistically
significant (P < 0.01) decrease in the SR and a significant (P < 0.01)
increase in the ER during the early stage of cancer from normal tissue
until stage Il as presented in (b) and (d). The graphs show the mean SR
and ER vs. early cancer grade. The error bands correspond to one stan-
dard deviation (SD).

tradeoff between spatial and spectral resolution have not been
studied until this paper. Our results demonstrate that we can
maintain excellent tissue classification accuracy by reducing
the number of bands and increasing the spatial resolution.
This work presents a framework for making spatial-spectral
tradeoffs in spectroscopic imaging while retaining good tissue
segmentation accuracy.

Deep learning is used routinely in image classification.®
However, its application to hyperspectral data is limited.>®
Furthermore, it has never been applied to super-resolution
hyperspectral data, and our paper is the first to demonstrate
efficacy. Hyperspectral data being three-dimensional (3D)
require a large memory bandwidth. Super-resolution images
have finer spatial details and require larger convolutional
kernels to identify the same area as FTIR, increasing compu-
tational costs and making classification more challenging. We
have optimized our novel deep-learning architecture to achieve
an excellent tissue segmentation AUC of 0.98 despite these
challenges.

Our results were obtained on 78 independent cancer
patient cores and are statistically robust. Prior work often uti-
lizes pixels within the same set of tissue cores during
classification.®”®® This can lead to misleading results since
the machine learning algorithm may learn features that corres-
pond to specific patient traits that are challenging to general-
ize beyond the current dataset. We perform training and vali-
dation on mutually exclusive patient cores, achieving robust,
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generalizable results that enhance scientific rigor and
reproducibility.

The results in Fig. 6 show a significant improvement in
efficacy between RF (AUC = 0.58) and CNNs (AUC = 0.98) in the
same O-PTIR data. Since CNNs not only utilize spectroscopic
information but also extract spatial data, these results high-
light the advantages of combining spatial and spectral fea-
tures. This work builds on prior spatial-spectral FTIR classifi-
cation work® and affirms the validity of this research
approach.

The increased spatial resolution of O-PTIR leads to larger
within-class spectral variation. Spectra in FTIR imaging are
averaged over ~5 pm pixels, which is approximately the size of
one cell. On the other hand, spectra in O-PTIR correspond to
more localized (0.5 pm) sub-cellular features such as the cell
nucleus or Golgi apparatus, which have disparate biochemical
constituents. This leads to a larger spectra variation in O-PTIR
even within the same tissue class. A large within-class variance
can be a potential disadvantage in tissue segmentation and
analysis. However, our data analysis approach that combines
spatial-spectral features turns this variation into an advantage.

The performance of machine learning algorithms depends
critically on the quality and quantity of annotated data. Since
annotations were performed using images of stained adjacent
sections that are several microns away from the MIRSI section,
this imposes limitations on labeling accuracy. We mitigate
annotation errors by limiting our labeling to unambiguous
tissue areas and avoiding class boundaries. Furthermore, the
alignment of images from adjacent sections is challenging,®®
and we obtained the best fit through manual adjustment. The
five wavenumbers that we chose for O-PTIR imaging offer good
classification performance, but optimizing the set of wave-
numbers could lead to improved performance. We will explore
this optimization and the effects of improved spatial resolu-
tion on identifying other tissue subtypes in future work invol-
ving multi-class segmentation.

To our knowledge, this is the first large-scale analysis of
ovarian cancer tissue using mid-IR spectroscopic imaging.
This analysis affords quantitative insights into ovarian cancer.
Pathologists utilize the extent of epithelial infiltration into the
stroma and the relative proportion of the stroma or epithelium
to the rest of the tissue to subjectively assess cancer grade.
Since our approach can precisely quantify the number of
pixels of these subtypes, we can quantify these assessments
and observe trends in a reliable manner. Furthermore, we
analyze 78 cancer patients, enabling statistically robust ana-
lysis. Fig. 8(a) and (b) show that there is a statistically signifi-
cant (P < 0.01) reduction in the stromal ratio (SR) between
normal tissue (SR = 0.9) and early stage (grade I - SR < 0.4)
ovarian cancer. Furthermore, the SR reduces from grade I to II
and then shows no appreciable change from grade II to IV.
The grades were obtained directly from Biomax. A complemen-
tary trend was observed in the epithelium ratio (ER) in (c) and
(d). The ER for normal tissue is ~0.1 and that for grade I
cancer is >0.6. These results illustrate the utility of quantitative
tissue classification in cancer diagnosis. The SR and ER are
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quantitative biomarkers for early-stage ovarian cancer diagno-
sis and will be explored in greater detail in future work.

5. Conclusion

MIRSI is an emerging technology that has the ability to revolu-
tionize digital histopathology. Significant progress has been
made in overcoming the technological challenges impeding its
clinical adoption. O-PTIR solves the spatial resolution chal-
lenge of prior FTIR imaging technology, enabling label-free
sub-cellular tissue investigation. In this work, we present the
first label-free, automated histological classification of ovarian
tissue subtypes using MIRSI. We show that the improved
spatial resolution allows us to make fewer spectral band
measurements and still achieve reliable tissue segmentation
with an AUC of 0.98. These results are enabled using a novel
deep-learning architecture optimized for MIRSI data. The
results are statistically robust with validation over 78 cancer
patients and 60 million data points. We utilize tissue classifi-
cation and propose new quantitative biomarkers for early
ovarian cancer diagnosis. The combination of deep learning
and quantitative biochemical measurements using MIRSI
enables numerically precise evaluation of previously subjective
assessments, improving the rigor and reproducibility of histo-
pathology. O-PTIR was also used to perform measurements in
back-reflection geometry, making the instrument easy to use
on diverse tissue samples and facilitates future clinical
translation.
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