

1 **Towards Modeling Continental-Scale Inland Water Carbon Dioxide**
2 **Emissions**

3 **Brian Saccardi^{1†}, Craig B Brinkerhoff^{2†}, Colin J Gleason², Matthew J Winnick¹**

4 ¹Department of Earth, Geographic, and Climate Sciences, University of Massachusetts, Amherst

5 ²Department of Civil & Environmental Engineering, University of Massachusetts, Amherst

6 Corresponding author: Matthew J. Winnick (mwinnick@umass.edu)

7 [†]These authors contributed equally

8 **Key Points:**

- 9 • We develop and calibrate a river network carbon dioxide transport model for the
10 continental United States to estimate emission fluxes
- 11 • Compared to previous methods, this model simulates 25% lower carbon dioxide
12 emissions using the same data constraints
- 13 • Stream corridor respiration dominates over groundwater sources, but better source
14 constraints are needed for accurate forward predictions

15 Abstract

16 Inland waters emit significant amounts of carbon dioxide (CO₂) to the atmosphere; however, the
17 global magnitude and source distribution of inland water CO₂ emissions remain uncertain. These
18 fluxes have previously been ‘statistically upscaled’ by independently estimating dissolved CO₂
19 concentrations and gas exchange velocities to calculate fluxes. This scaling, while robust and
20 defensible, has known limitations in representing carbon source limitations and spatial
21 variability. Here, we develop and calibrate a CO₂ transport model for the continental United
22 States, simulating carbon transport and transformation in >22 million hydraulically connected
23 rivers, lakes, and reservoirs. We estimate 25% lower CO₂ fluxes compared to upscaling estimates
24 forced by the same observational calibration data. While precise CO₂ source distribution
25 estimates are limited by the resolution of model parameterizations, our model suggests that
26 stream corridor CO₂ production dominates over groundwater inputs at the continental scale. Our
27 results further suggest that the lack of observational networks for groundwater CO₂ and scalable
28 metabolic models of aquatic CO₂ production remain the most salient barriers to further coupling
29 of our model with other Earth system components.

30

31 Plain Language Summary

32 Inland water CO₂ emissions are recognized as an important but highly uncertain component of
33 the global carbon cycle. Estimates rely on methods that statistically upscale point observations
34 that are unable to account for the distribution and limits of CO₂ sources. Here we present a first
35 step towards distributed process-based models that link CO₂ fluxes to water transport in
36 connected rivers, lakes, and reservoirs at the continental scale. We show that using the same data
37 constraints, incorporating water transport results in a 25% reduction relative to previous methods
38 in estimated inland water CO₂ fluxes over the continental United States. We identify barriers to
39 monitoring and prediction that will enable the incorporation of inland water carbon into earth
40 system models and global budgets.

41 1 Introduction

42 Inland waters, here comprising rivers, lakes, and reservoirs, are an integral component of
43 the global carbon cycle, particularly in their role in emitting CO₂ to the atmosphere. Recent
44 estimates of CO₂ fluxes from inland waters are on the order of 1.5 Pg-C yr⁻¹ (Lauerwald et al.,
45 2023b), roughly 15% of anthropogenic emissions (Friedlingstein et al., 2022) and similar to the
46 net terrestrial carbon sink (Cavallaro et al., 2018; Keenan & Williams, 2018). These estimates
47 have steadily risen over the past decade (Drake et al., 2018) with increasing satellite resolution of
48 lotic environments (Allen & Pavelsky, 2018) and extensive sampling campaigns in tropical
49 environments (Borges et al., 2015; Sawakuchi et al., 2017). Despite our growing knowledge,
50 estimates remain highly uncertain due to the inherent challenges of upscaling point
51 measurements of stream CO₂ concentrations, which can vary by orders of magnitude over short
52 reaches (Duvert et al., 2018; Johnson et al., 2008; Lupon et al., 2019), and due to a lack of
53 representation of inland water CO₂ fluxes in global carbon cycle models (Friedlingstein et al.,
54 2022). Additional uncertainty is derived from systematic errors associated with physical
55 hydraulic constraints on dissolved CO₂ concentrations (Rocher-Ros et al., 2019; Saccardi &
56 Winnick, 2021) and the artificial separation of lotic and lentic environment flux estimates
57 (Brinkerhoff et al., 2021). A number of studies have thus called for process-based models to

58 advance total flux estimates and to better facilitate monitoring and prediction efforts to gauge the
 59 response of inland water carbon cycling to climate change (Battin et al., 2023; Duvert et al.,
 60 2018).

61 Inland water CO₂ fluxes represent the culmination of CO₂ transported from soil and
 62 groundwater environments, as well as CO₂ produced internally via respiration in aquatic and
 63 hyporheic environments as balanced by photosynthetic uptake (Duvert et al., 2018; Gómez-
 64 Gener et al., 2021; Hotchkiss et al., 2015). Evasion fluxes of CO₂
 65 (F_{CO_2} ; mol m⁻² s⁻¹) from inland waters are calculated as,

$$66 \quad F_{CO_2} = k_{CO_2} (CO_{2(aq)} - C_{atm}) \quad (\text{Eq. 1}),$$

67 where k_{CO_2} is the gas exchange velocity of CO₂ (m s⁻¹), $CO_{2(aq)}$ is the dissolved CO₂
 68 concentration (mol m⁻³), and C_{atm} is the atmospheric-equilibrated concentration of CO₂ (mol m⁻
³). Current best estimates of global CO₂ contributions from inland waters (Butman & Raymond,
 70 2011; Lauerwald et al., 2015, 2023a, 2023b; Liu, Kuhn, et al., 2022; Raymond et al., 2013) rely
 71 on ‘statistical upscaling’ methods, in which water pCO_2 is scaled using regional observational
 72 averages (Butman et al., 2016; Butman & Raymond, 2011; Lauerwald et al., 2023a, 2023b;
 73 Raymond et al., 2013) or by relating observations of CO₂ concentrations to watershed
 74 characteristics and applying those statistical relationships globally (Horgby et al., 2019;
 75 Lauerwald et al., 2015; Liu, Kuhn, et al., 2022). k_{CO_2} is typically estimated by applying empirical
 76 relationships from observational studies via stream discharge and slope (Raymond et al., 2012;
 77 Ulseth et al., 2019) and scaled as a single value across entire watersheds (Butman et al., 2016;
 78 Butman & Raymond, 2011; Raymond et al., 2013). Despite the significant progress that
 79 statistical upscaling has enabled, independent treatment of $CO_{2(aq)}$ and k_{CO_2} within upscaling
 80 calculations is not consistent with established hydraulic controls on k_{CO_2} (Brinkerhoff et al.,
 81 2022; Raymond et al., 2012; Ulseth et al., 2019) or recent work showing $CO_{2(aq)}$ rarely reaches
 82 elevated levels when k_{CO_2} is high (Rocher-Ros et al., 2019; Saccardi & Winnick, 2021) (Fig. 1).
 83 The absence of high stream $CO_{2(aq)}$ values under turbulent, high k_{CO_2} conditions is due to source
 84 limitations on CO₂ inputs that are unable to keep pace with evasion rates, and studies have
 85 shown that statistical models’ inability to account for these limitations may lead to overestimates
 86 in global CO₂ fluxes by as much as 50% (Rocher-Ros et al., 2019; Saccardi & Winnick, 2021).
 87 This potential error reflects that fact that under CO₂ source limitations, the product of mean k_{CO_2}
 88 and mean $CO_{2(aq)}$ values (statistical upscaling methods) is higher than the mean of local k_{CO_2} and
 89 $CO_{2(aq)}$ products. A recent study of global methane fluxes suggests that machine-learning
 90 algorithms are also subject to overestimating gas fluxes from turbulent reaches (Rocher-Ros et
 91 al., 2023).

92 The distribution of inland water CO₂ sources also represents a significant knowledge gap,
 93 both in terms of where CO₂ is emitted (i.e. rivers v. lakes/reservoirs) and the balance of terrestrial
 94 versus internal CO₂ production. Constraining the latter is particularly important to better gauge
 95 potential carbon cycle feedbacks, and previous work presents conflicting findings. Broadly,
 96 studies that focus on scaling CO₂ fluxes based on direct concentration measurements and
 97 carbonate speciation calculations identify stream corridor production as the dominant source
 98 (Butman & Raymond, 2011; Kirk & Cohen, 2023; Rasilo et al., 2017; Saccardi & Winnick,
 99 2021), whereas stream metabolism measurements based on diel dissolved oxygen variations
 100 identify external groundwater inputs as dominating CO₂ budgets (Hotchkiss et al., 2015). Stream
 101 reach and watershed scale studies of CO₂ budgets, for example, suggest that stream corridor CO₂
 102 sources may dominate in all but headwater stream systems (Kirk & Cohen, 2023; Rasilo et al.,

103 2017; Saccardi & Winnick, 2021). Continental-scale CO₂ flux estimates further suggest that
104 terrestrial sources can only account for ~25% of inland water CO₂ gas fluxes assuming relatively
105 high groundwater *p*CO₂ values of 25,000 ppm (Butman & Raymond, 2011). In contrast,
106 comparison of dissolved oxygen-based stream metabolism estimates and CO₂ fluxes at stream
107 sites across the US suggest that terrestrial groundwater inputs dominate across all stream
108 environments (Hotchkiss et al., 2015). Generally, oxygen-based estimates of stream net
109 ecosystem production (NEP) of carbon are relatively low (Bernhardt et al., 2022), with global
110 estimates of 0.27 Pg-C yr⁻¹ (Battin et al., 2023) contributing only 18% of the estimated 1.5 Pg-C
111 yr⁻¹ global inland water CO₂ emissions (Lauerwald et al., 2023a). Additionally, soil respiration
112 metrics are among the strongest statistical predictors of stream *p*CO₂ (Liu, Kuhn, et al., 2022).

113 Process-based transport models with distributed CO₂ source and sink representation,
114 proper hydrographic representation, and explicit downstream routing have the potential to
115 address many of these uncertainties and knowledge gaps. Specifically, transport models
116 incorporate a hydrologic system's upstream history and have been applied at the watershed scale
117 to predict the downstream transport of CO₂ (Brinkerhoff et al., 2021; Saccardi & Winnick, 2021),
118 dissolved organic carbon (DOC) (Maavara et al., 2023), and other nutrients (Schmadel et al.,
119 2018, 2019; Segatto et al., 2023). These transport models also enable explicit modeling of river
120 corridor connectivity, including lake and reservoir connectivity, to the river network
121 (Brinkerhoff, 2024). The latter was recently shown to exert controls on carbon/nutrient transport
122 through inland waters (Brinkerhoff et al., 2021; Liu, Maavara, et al., 2022; Maavara et al., 2023;
123 Schmadel et al., 2018, 2019). Likewise, considerable progress has been made in mapping
124 hydrography globally for millions of rivers, lakes, and reservoirs (Lehner et al., 2008; Lin et al.,
125 2021; Messager et al., 2016; R. B. Moore et al., 2019; Sikder et al., 2021; Wang et al., 2022), but
126 the missing link to deploy these advances has been efficient computation for process-based
127 transport models at scale. Here, we demonstrate the potential for coupled hydrologic and
128 biogeochemical models that extend and expand upon statistical upscaling to advance our
129 understanding of inland water CO₂ fluxes.

130 We calibrate and deploy a CO₂ transport model for over 22 million rivers, lakes, and
131 reservoirs across the continental United States (CONUS) at mean annual flow for 1970-2000,
132 which explicitly simulates advection of CO₂ from headwaters to the sea and reach-scale CO₂
133 production from net respiration within the stream channel (respiration – primary productivity),
134 respiration within the stream corridor subsurface introduced via hyporheic exchange, and lateral
135 groundwater CO₂ inputs. We assess the difference in CONUS-scale fluxes between our transport
136 model and previous statistical upscaling techniques using identical observational constraints. We
137 further evaluate the magnitude and uncertainties of modelled CO₂ source distributions (lotic v.
138 lentic and external v. internal) and identify the most salient barriers towards providing robust
139 CO₂ estimates from process-based models that must be addressed moving forward.

140 2 Materials and Methods

141 To ask how the distributed nature of hydrography and CO₂ sources along the stream-to-
142 ocean continuum impacts continental-scale CO₂ flux estimates, we use the same CO₂ data to
143 drive two different models for the CONUS CO₂ emissions and compare the differences in the
144 resulting estimates. These two models are a process-based transport model and a traditional
145 statistical upscaling model. A more detailed description of modeling methods is included in the
146 Supplemental Information, and all model validation and calibration performance analyses are

147 detailed in Supplementary Figs. S9-S21 and Supplementary Table S3-S4. It is important to stress
 148 that we do not aim to reproduce CO₂ concentrations in individual rivers, nor do we aim to rectify
 149 any biases in existing CO₂ databases or statistical upscaling methods. By using the same CO₂ data
 150 for all tested models, we specifically isolate the role that heterogeneous hydrography and CO₂
 151 sources play in continental-scale flux estimates.

152 2.1 Dissolved CO₂ data

153 All models presented are either run or calibrated using the same CO₂ data. These data are
 154 obtained from the GLORICH database (Hartmann et al., 2014), which includes 1.27 million
 155 samples from across the world. Riverine CO₂ is calculated from GLORICH measurements of
 156 alkalinity and pH, although there is a long-standing concern for overestimation of CO₂ via this
 157 approach in acidic waters as small errors in pH leads to large errors in calculated CO₂ (Abril et
 158 al., 2015; Liu et al., 2020). To address this problem in this study, we filtered GLORICH for
 159 samples with a pH >5.4, and took the median value at an individual sample location resulting in
 160 6,324 CO₂ estimates across the CONUS. We then mapped these 6,324 samples to US regions
 161 using an inverse distance weighted approach to make an interpolated grid with 0.5x0.5 degree
 162 resolution following previous similar work (Raymond et al., 2013). This grid was cut to each
 163 CONUS region as defined by our hydrography and the mean CO₂ was calculated and used for
 164 model calibration and/or forcing. To obtain lake/reservoir CO₂ estimates, we follow the method
 165 described in Raymond et al. (2013) using CO₂ data from the GLORICH database. This method
 166 requires estimates of lake surface area and dissolved organic carbon (DOC) per region. We
 167 calculate lake surface area for each region from the global lakes and wetlands database (GLWD)
 168 (Lehner & Döll, 2004) by summing the estimated surface area of five lake size classes. We
 169 calculate each size class surface area by multiplying the estimated cumulative abundance by
 170 mean surface area. We estimate the lake DOC for each region by taking the DOC value at the
 171 river mouth with the largest discharge from the GLOBALNEWS dataset (Mayorga et al., 2010).
 172 If the region does not discharge into the ocean directly, we use the DOC of the region it
 173 discharged into. For endorheic basins, we use a median lake *p*CO₂ of 340 ppm following the
 174 Raymond et al. (2013) analysis.

175 2.2 CO₂ Transport Model

176 The underlying hydrology and hydrography are an extension of a previously developed
 177 river/lake/reservoir CO₂ routing framework (Brinkerhoff et al., 2021), which explicitly coupled
 178 rivers, lakes and reservoirs into a routing scheme that enabled offline solute transport modeling
 179 in the Connecticut River watershed. Here, we extend this framework to CONUS using the USGS
 180 National Hydrography Dataset High-Resolution (R. B. Moore et al., 2019) (NHD-HR), excluding
 181 the Mexican and Canadian basins that do not directly flow into CONUS. Additionally, the NHD-
 182 HR is discretized into ‘reaches’, or mass-conserved segments of river, lake, or reservoir.
 183 Network topology is maintained through lakes/reservoirs via artificial flowlines. We assign
 184 fractions of lakes/reservoir morphometry to the artificial flow lines to account for complex
 185 waterbodies with multiple inflows (Brinkerhoff et al., 2021). Further details on preprocessing the
 186 NHD-HR for our modeling are provided in the Supplementary Information.

187 The NHD-HR features a nested basin scheme. We run our analysis at the 4th level
 188 (HUC4) due to computation, data availability, and ease of interpretation. We split the 4th-level

189 basin for coastal Washington State into two separate basins (coastal catchments on either side of
 190 the Columbia River) to ease computation requirements (the two sub-basins are added back
 191 together as a single basin in our presented results). CO₂ data are calibrated at the 2nd watershed
 192 level (HUC2), which are regional amalgamations of 4th level basins. We also run our statistical
 193 upscaling analysis at the 2nd level.

194 To run the model on a drainage network, we use estimates of reach-level discharge
 195 (Q , $m^3 s^{-1}$), surface area (A , m^2), hydraulic residence time (τ , s), bed slope (S , $m m^{-1}$), mean depth
 196 (H , m), and additionally for rivers, width (W , m) and mean flow velocity (U , $m s^{-1}$). S is provided
 197 in the NHD-HR and calculated from a digital elevation model, and for missing values we use the
 198 average S across the immediately upstream reaches. We use the mean annual discharge model
 199 provided with the NHD-HR, described in detail in the SI (R. B. Moore et al., 2019). We validate
 200 the discharge model against observed mean annual flow for 1970-2018 in reaches with
 201 corresponding stream gauges (Fig. S10). For ‘emergent’ streams we set the emergent discharge
 202 at the upstream end of the reach to reflect initial streamflow conditions for the start of the
 203 network. We use a consistent emergent stream width of approximately 30cm, identified in
 204 headwater networks around the world (Allen et al., 2018). The remaining variables are calculated
 205 based on hydraulic geometry and global database fitting as discussed in the Supplement.

206 We adapt a previously developed CO₂ stream network model (Saccardi & Winnick,
 207 2021) to incorporate lakes and reservoirs, as,

$$208 \frac{dC}{dt} = -U \frac{dC}{dx} + \frac{1}{A} \frac{dQ}{dx} (C_{gw} - C) - \frac{k_{CO2}}{H} (C - C_{atm}) + \frac{k_{hz}}{H} C_{hz} + F_{wc} \quad (\text{Eq. 2}),$$

209 where C is the concentration of dissolved CO₂ (mol m⁻³), x is distance along a reach (m), C_{gw} and
 210 C_{atm} are dissolved CO₂ concentrations of groundwater and atmosphere-equilibrated water (mol
 211 m⁻³), respectively, C_{hz} is the difference in dissolved CO₂ between the stream and the hyporheic
 212 zone (mol m⁻³), F_{wc} is the water column net respiration rate (mol m⁻³ s⁻¹), and k_{hz} is the hyporheic
 213 exchange velocity (m s⁻¹).

214 Based on our model framework, CO₂ sources are classified as (1) upland groundwater
 215 inputs, representing terrestrial respiration and subsurface water-rock interactions that scale with
 216 upstream contributing area and a set groundwater CO₂ concentration; (2) net respiration within
 217 the surface water column, and (3) respiration within the subsurface stream corridor environment
 218 comprising stream benthic zones, the hyporheic zone, and near-stream riparian zones and
 219 floodplains (Fig. S1). In terms of stream corridor subsurface respiration, these input fluxes are
 220 modeled via turbulent exchange across the stream’s sediment-water-interface (e.g. Grant,
 221 Azizian, et al., 2018; Winnick, 2021), where elevated CO₂ concentrations at the sediment-water-
 222 interface represent the accumulated respiration from the subsurface stream corridor. As these C_{hz}
 223 values are calibrated based on observational stream CO_{2(aq)} data, along with F_{WC} , they physically
 224 represent the integrated stream corridor respiration needed to match regional CO₂ observations in
 225 excess of upland groundwater inputs.

227 This model, based on traditional solute transport frameworks (e.g. Bencala & Walters,
 228 1983), represents downstream solute advection, solute inputs from lateral groundwater inputs,
 229 atmospheric equilibration, solute inputs from the subsurface stream corridor environment
 230 facilitated by hyporheic exchange, and net solute production within the water column. Within
 231 stream environments, k_{CO_2} is parameterized using the empirical relationships from Ulseth et al.
 232 (2019), calculated based on channel slope and water depth. Hyporheic exchange rates (k_{hz}) in
 233 this model represent turbulence-driven exchange across the sediment-water-interface based on
 234 surface renewal theory (Grant, Gomez-Velez, et al., 2018) that dominate overall water exchange
 235 fluxes (Grant, Azizian, et al., 2018; Harvey et al., 2019). The adaption to lakes and reservoirs is
 236 achieved by rearranging Eq. 2 such that it is based on τ rather than U , by incorporating
 237 alternative parameterizations for k_{CO_2} and k_{hz} for lakes/reservoirs (Lorke & Peeters, 2006;
 238 Raymond et al., 2013; Read et al., 2012) (see SI for details). We note that k_{hz} for lakes/reservoirs
 239 represents benthic water-sediment fluxes (Lorke & Peeters, 2006). Lakes were assumed to be
 240 well mixed under long-term average conditions, meaning that lake stratification's influence on
 241 residence time was not considered. We also assume that benthic and atmospheric lake interfaces
 242 were both equal to the lake's surface area, acknowledging that many lakes have complicated and
 243 highly heterogenous morphologies. CO_2 is converted between partial pressure and dissolved
 244 concentration using a temperature-dependent Henry's constant. Within our modeling framework
 245 C_{hz} and F_{wc} are free parameters, and the remaining variables are either fixed or calculated based
 246 on published scaling relationships (see SI for detailed parameterizations).

247 We use a genetic algorithm (GA) to determine optimal parameter sets of C_{hz} and F_{wc} to
 248 match GLORICH CO_2 observations at the HUC2 scale. GAs do not rely on derivative
 249 information about one's function a priori (unlike a gradient-based optimization method). Instead,
 250 GAs use many evolutions of parameter sampling to explore the solution space stochastically,
 251 though often they take a hybrid approach that leverages a gradient search within the GA. This is
 252 particularly useful for noisy solution spaces, problems that suffer from equifinality (multiple
 253 possible solutions to the same function due to due complex interactions of system processes- e.g.
 254 Beven, 1993), or when there is little prior knowledge of what the solution space looks like.
 255 Finally, because each 'generation' of GA evolution is composed of many independent model
 256 runs, GAs are readily parallelized and allow for straightforward computational scaling as
 257 required for the scale of this study (Mitchell, 1998). Our fitness function is specified as,

$$258 \quad cost = \frac{1}{|(pCO_{2,lake} - cal_{lake})| + |(pCO_{2,river} - cal_{river})|} \quad (\text{Eq. 3}),$$

259 which we sought to maximize, where $pCO_{2,lake}$ and $pCO_{2,river}$ are the model's median HUC2 lake
 260 and river CO_2 partial pressures, respectively, and cal_{lake} and cal_{river} are the upscaled CO_2 partial
 261 pressures for lakes and rivers, respectively (Extended Data Table 2). The four parameters we
 262 calibrate are river C_{hz} , lake/reservoir C_{hz} , river F_{wc} , and lake/reservoir F_{wc} from equation 6. C_{gw} is
 263 held constant at 16,000 ppm (Kessler & Harvey, 2001; Macpherson, 2009) as groundwater was
 264 found to range from ~5,000 to 30,000 in the US and shallow groundwaters; however, we note we
 265 were not able to make groundwater spatially variable due to the lack of available groundwater

266 $p\text{CO}_2$ data products. We note that these values are consistent with measured and calculated
 267 upland shallow groundwater $p\text{CO}_2$ in stream carbon budget studies across a range of
 268 environments (Kirk & Cohen, 2023; Lupon et al., 2019; Saccardi & Winnick, 2021). We run the
 269 GA for 500 generations but terminate after 50 successive generations with no performance
 270 improvement. Each generation is composed of 25 individual runs. We terminate the calibration
 271 once the model cost goes below 10 ppm (or equivalently, 5 ppm per river or lake/reservoir). All
 272 modeling and geospatial analyses were run in R on the Unity Cluster at the Massachusetts Green
 273 High Performance Computing Center. Calibration results by basin are presented in
 274 Supplementary Figs. S11-S21.

275 We define calibration uncertainty per basin as $\delta FCO_{2,transport}$ using equation 4, where
 276 k_{median} is the median k_{CO_2} across all reaches, A_{basin} is the total inland water surface area, and
 277 $\delta p\text{CO}_2$ is the calibration error for the median river/lake/reservoir. In effect, equation 4 applies the
 278 error in the median river/lake/reservoir $p\text{CO}_2$ over the network's entire surface area. We sum
 279 $\delta FCO_{2,transport}$ across all basins to obtain a CONUS uncertainty estimate (error bar in Fig. 2c).

$$280 \quad \delta CO_{2,transport} = k_{median} \delta p\text{CO}_2 A_{basin} \quad (\text{Eq. 4})$$

$$281 \quad \delta p\text{CO}_2 = (1/cost)/2 \quad (\text{Eq. 5}).$$

282 2.3 Statistical Upscaling Model

283 Our 'statistical upscaling model' is informed by previous approaches to estimating inland
 284 water CO_2 emissions at large scales (Butman et al., 2016; Butman & Raymond, 2011; Lauerwald
 285 et al., 2023a; Liu, Kuhn, et al., 2022; Raymond et al., 2013). We calculate FCO_2 using a
 286 regionally-lumped $p\text{CO}_2$ and k_{CO_2} , separately for rivers and lakes/reservoirs. This regionally
 287 homogenous FCO_2 is then applied to the region's total inland water surface area to obtain a CO_2
 288 emissions estimate. Following previous methods (Butman et al., 2016; Butman & Raymond,
 289 2011; Raymond et al., 2013), we calculate river lumped $k_{CO2,upscale}$ using mean k_{CO_2} by stream
 290 order and then take the average of those values, weighted by stream order surface area (note that
 291 these approaches treat lakes/reservoirs as rivers during the stream order averaging- emissions are
 292 even higher when we remove them from the river network). This means that differences in FCO_2
 293 estimates cannot come from different k_{CO_2} equations, as k_{CO_2} calculations are identical across all
 294 models. The only difference is the stream order averaging and lumping approach. We estimate
 295 this uncertainty ($\delta FCO_{2,upscale}$) using equations 6-7, incorporating $k_{CO2,upscale}$, and the total river
 296 surface area A_{river} . In effect, equation 6 applies the error in $k_{CO2,upscale}$ over the network's entire
 297 surface area. We sum $\delta FCO_{2,upscale}$ across all regions to obtain a CONUS uncertainty estimate
 298 (error bar in Fig. 1c).

$$299 \quad \delta FCO_{2,upscale} = \delta k_{CO_2} p\text{CO}_2 A_{river} \quad (\text{Eq. 6})$$

$$300 \quad \delta k_{CO_2} = \text{abs}(k_{median} - k_{CO2,upscale}) \quad (\text{Eq. 7}).$$

301 3 Results & Discussion

302 3.1 Continental-scale flux estimates and regional patterns

303

Following the calibration of our CO₂ transport model production parameters, CONUS inland water emissions are estimated as 120 \pm 23 Tg-C yr⁻¹ (Fig. 1) (uncertainty from Eq.'s 6,7). This estimate is larger than several previous CONUS estimates from statistical upscaling methods (Table S1), and results from our use of explicit, high-resolution NHD-HR hydrography rather than statistical river and pond size distributions for the smallest waterbodies. Specifically, NHD-HR hydrography features exponentially more small water bodies, in particular low Strahler order streams, with higher area-normalized fluxes than accounted for in previous studies. This result demonstrates the importance of using high resolution hydrography to capture the full extent of inland water surface area, as described in previous studies (e.g. Allen & Pavelsky, 2018). To evaluate the direct impacts of incorporating transport constraints on CONUS CO₂ fluxes, we compare this estimate to one calculated using statistical upscaling techniques while applying the same gas exchange model to the same NHD-HR hydrography and interpolated average HUC2-level *p*CO₂ values estimates, which yields total CONUS inland water fluxes of 159 \pm 55 Tg-C yr⁻¹ (Fig 1c) – a difference of 25%.

Notably, the largest differences between the transport and statistical models occurs in the East and Midwest US where the transport model estimates significantly lower fluxes ($p=0.008$ using paired samples Wilcoxon test). In the mountainous West, however, the transport model simulates slightly higher fluxes (Fig S2). Emission uncertainties due to model mechanics including calibration error for the transport model and uncertainties in stream order averaging for the upscaling model cannot alone explain the differences in flux estimates (Fig. 1c). Note that parameter uncertainty is identical between both models and so is not included here (see Methods). Instead, this difference in continental scale fluxes exclusively represents the transport model's ability to reflect source limitations that result in lower CO₂ concentrations in steep environments. This source limitation is demonstrated in Fig 1a, which plots model output distributions from the transport model, statistical model, and the global observational GLORICH dataset (Hartmann et al., 2014) in k_{CO_2} -*p*CO₂ space overlaid on CO₂ flux contours. As also shown in Fig. 1, the transport model provides a closer match to observed k_{CO_2} -*p*CO₂ distributions; the statistical model features higher average CO₂ values for any given k_{CO_2} value (and thus, higher fluxes), which is only partially offset by the lack of representation of high *p*CO₂ values at low k_{CO_2} (i.e. reduced y-axis range of the blue contours). Together, these analyses suggest that incorporating realistic carbon source limitations via a hydrologic routing framework results in a significant reduction in total flux estimates relative to statistical models using the same observational constraints. Our estimated 25% reduction in total fluxes, though, is less than previously hypothesized (Rocher-Ros et al., 2019).

Regionally, the transport model predicts that area-normalized inland water fluxes are highest in mountainous regions of the US (Fig. 2). This model result is driven by high k_{CO_2} values associated with steep topography coupled to elevated regional *p*CO₂ observations in the GLORICH dataset. In the transport model, for example, rivers with slopes steeper than 0.03 account for just 11% of stream surface area but contribute 46% of river emissions. The importance of mountainous environments has been previously demonstrated via statistical upscaling estimates (Horgby et al., 2019) and our median mountainous flux rates of 5.3 kgC/m²/yr are comparable to median fluxes measured across the Swiss Alps of 3.5 kg-C/m²/yr (Horgby et al., 2019). We note that the continental-scale map in Fig. 2 visually overrepresents first order stream reaches with high fluxes (>10 kg-C/m²/yr) that feature the rapid degassing of

349 groundwater CO₂ in steep terrain. These overall large fluxes simulated in the transport model
350 may in part be due to biases in the GLORICH dataset that may not capture the steepest and most
351 turbulent reaches with lower *p*CO₂. This bias would lead to overestimates in regional *p*CO₂
352 averages in both the transport and statistical models (supplemental text 1.4 and 1.5). We also
353 note that the hydrography underpinning our model is of a higher resolution than previous studies;
354 we include many steep headwater streams that may lead to higher basin-aggregated flux
355 estimates. Further, many of these headwaters are non-perennial streams (Brinkerhoff et al.,
356 2024a), which are a known uncertainty in global inland water CO₂ emission estimates (Bretz et
357 al., 2023; Lauerwald et al., 2023b) and may be underestimated globally (Keller et al., 2021;
358 López-Rojo et al., 2024). While mountainous environments may feature reduced organic carbon
359 for respiration, high erosion may provide increased particulate organic carbon substrate from the
360 terrestrial environment (France-Lanord & Derry, 1997; Hilton & West, 2020) for stream corridor
361 respiration.

362 Regional patterns simulated in the transport model are susceptible to considerable
363 uncertainty, particularly regarding the parameterization of constant groundwater *p*CO₂ values.
364 We simulate a constant groundwater *p*CO₂ of 16,000 ppm based on a lack of robust spatial
365 groundwater *p*CO₂ data products and calibrate hyporheic zone CO₂ transport and water column
366 net respiration within both rivers and lake/reservoirs to match GLORICH *p*CO₂ values at the
367 HUC4 scale (see Methods). Based on this approach, our simulations do not incorporate direct
368 mechanistic representations of CO₂ production, but instead calibrate CO₂ production parameters
369 (net water column CO₂ production rates and sediment-water-interface *p*CO₂) within a
370 mechanistic hydrologic framework (groundwater inputs, gas exchange velocity, downstream
371 transport, and turbulent vertical hyporheic exchange) to find the production parameters that best
372 match regionally representative stream CO₂ observations. For example, if groundwater *p*CO₂
373 values are correlated with plant productivity via organic matter availability (Brook et al., 1983;
374 Kessler & Harvey, 2001), we would expect lower groundwater *p*CO₂ values in the mountainous
375 West. While to first order this may result in reduced simulated montane CO₂ fluxes, the model
376 calibration would compensate for this reduced groundwater export with increased stream
377 corridor CO₂ production to best match the observational dataset. We note, however, that
378 constraining spatial variability in groundwater *p*CO₂ will provide better constraints on total
379 inland water flux and source estimates.
380

381 3.2 Sources of inland water CO₂ emissions

382 Stream corridor sources of CO₂ make up the majority of emissions at the continental scale
383 within the process-based model, especially in the West and in larger rivers (Fig 3a-c). These
384 stream corridor sources, which include subsurface respiration within the benthic zone, hyporheic
385 zone, and riparian subsurface, account for 84% of CO₂ emissions across CONUS, with
386 groundwater inputs accounting for the remaining 16%. We note that as above, these values are
387 sensitive to our assumed groundwater *p*CO₂; however, for groundwater sources to exceed stream
388 corridor sources would require average groundwater *p*CO₂ values of >50,000 ppm across
389 CONUS, which is not supported by estimates of spatial soil *p*CO₂ (Brook et al., 1983; Kessler &
390 Harvey, 2001; Macpherson, 2009) or previous studies that have measured or calculated upland
391 groundwater contributions to stream CO₂ budgets (Kirk & Cohen, 2023; Lupon et al., 2019;
392 Saccardi & Winnick, 2021). Our simulated stream corridor production of CO₂ would require a
393 terrestrial flux of organic carbon to inland waters of ~10 t C km⁻² yr⁻¹ from land surfaces to

394 sustain. This flux is within current estimates of terrestrial dissolved organic carbon exports of 1-
 395 $85 \text{ t C km}^{-2} \text{ yr}^{-1}$ in temperate and boreal regions (Hope et al., 1994; McCallister & del Giorgio,
 396 2012; T. R. Moore, 2003; Neff & Asner, 2001), which does not include additional particulate
 397 organic carbon and riparian zone soil processes that may further contribute to these fluxes,
 398 particularly in mountainous regions where physical erosion may enhance terrestrial contributions
 399 of particulate organic carbon (Hilton & West, 2020).

400 Of these stream corridor CO_2 sources, subsurface respiration within the stream corridor
 401 environment, facilitated by hyporheic exchange, is the largest simulated source of CO_2 across
 402 CONUS, accounting for 82% of all carbon emitted by streams. Relative stream corridor source
 403 contributions show an east-west gradient with Western basin contributions averaging 87%
 404 compared to mean basin contributions of 57% in the East. Additionally, large rivers have greater
 405 proportional contributions from stream corridor subsurface respiration, with first through fifth
 406 orders receiving a median of 40%, 71%, 80%, 86%, and 90% of their CO_2 from these sources,
 407 respectively (Fig 3d). This is consistent with previous studies that suggest internal CO_2
 408 production becomes increasingly important at higher stream orders (Hotchkiss et al., 2015;
 409 Saccardi & Winnick, 2021) as proportional groundwater contributions to discharge decrease with
 410 stream size. This large proportion of stream corridor CO_2 contributions aligns with upper
 411 estimates from mass balance considerations at the continental scale (~65-80%) (Butman &
 412 Raymond, 2011) and with a recent study finding that 87% of CO_2 emissions are sourced from the
 413 stream corridor in a 5th order watershed in southeastern coastal plain Florida (Kirk & Cohen,
 414 2023). Notably, while our model parameterizes hyporheic exchange as occurring with the benthic
 415 zone of stream environments, the CO_2 exchanged may integrate respiration occurring throughout
 416 the stream corridor environment including adjacent riparian zones as represented in Kirk &
 417 Cohen (2023) and described in our Methods. Based on model structure, this hyporheic CO_2
 418 functionally represents the excess carbon needed beyond upland groundwater inputs to match
 419 regional mean riverine CO_2 concentrations. Within the transport model, net water column
 420 respiration accounts for a relatively minor portion of total CO_2 sources at 2%. This estimate is
 421 slightly below a previous CONUS estimate of ~4% (Butman & Raymond, 2011), which may be
 422 due to our incorporation of primary production into our net water column respiration term (see
 423 Methods).

424 Overall, our finding that stream corridor sources account for the majority of riverine CO_2
 425 emissions is consistent with previous studies that explicitly estimate upland groundwater CO_2
 426 inputs to aquatic carbon budgets (Butman & Raymond, 2011; Kirk & Cohen, 2023; Rasilo et al.,
 427 2017; Saccardi & Winnick, 2021). However, our modeled stream corridor CO_2 production rates
 428 are significantly elevated relative to dissolved oxygen-based stream metabolism methods. For
 429 example, we simulate an average CONUS stream corridor net CO_2 production rate of ~5.4
 430 $\text{gC/m}^2/\text{d}$ compared to median US stream metabolism NEP rates of $0.54 \text{ gC/m}^2/\text{d}$ (Bernhardt et
 431 al., 2022). Similarly, our estimate that 84% of CONUS riverine emissions reflect stream corridor
 432 respiration is significantly larger than Hotchkiss et al. (2015), who estimate that internally
 433 produced CO_2 contributes 14% of emissions in small streams ($<0.01 \text{ m}^3 \text{s}^{-1}$) and only 25-54% in
 434 large streams ($>100 \text{ m}^3 \text{s}^{-1}$) based on the difference between oxygen-based NEP and total CO_2
 435 fluxes.

436 Interestingly, these stream metabolism estimates (e.g. Appling et al., 2018; Battin et al.,
 437 2023; Bernhardt et al., 2022; Hotchkiss et al., 2015) attribute oxygen under-saturation solely to

438 in-stream respiration, which potentially neglects inputs of low-oxygen groundwater associated
439 with terrestrial respiration (e.g. Hall Jr. & Tank, 2005). Hotchkiss et al. (2015) and Kirk and
440 Cohen (2023), for example, attribute measured CO₂ emissions in excess of molar-equivalent
441 oxygen uptake as reflecting groundwater and riparian zone CO₂ inputs, respectively, with no
442 associated oxygen deficit. Implicitly, this assumes that stream measurements of CO₂ capture
443 external terrestrial and near-stream inputs while oxygen measurements do not. While carbonate
444 buffering reactions may allow for the retention of CO₂ signals from discrete groundwater inputs
445 for longer than dissolved oxygen signals (Stets et al., 2017) and may therefore integrate more
446 upstream heterogeneity in production/input rates (Shangguan et al., 2024), these length scales are
447 relatively small and do not impact steady-state CO₂ versus dissolved oxygen concentrations in
448 the case of diffuse groundwater inputs (Winnick & Saccardi, 2024). Notably, the explicit
449 consideration of groundwater and near-stream oxygen deficits in stream metabolism budgets
450 would likely increase the discrepancies between these carbon budgets based on dissolved oxygen
451 versus ones that estimate upland groundwater contributions. Thus, reconciling our stream
452 corridor respiration rates with stream metabolism measurements would require groundwater
453 inputs to feature both extremely high *p*CO₂ (~50,000 ppm to switch from stream corridor to
454 groundwater-dominated fluxes and likely ~100,000 ppm to match median NEP observations) and
455 near-atmospheric dissolved oxygen, which is not consistent with terrestrial respiration.

456 This apparent paradox is reflective of what we see as a major gap between carbon
457 budgets based on CO₂ measurements versus dissolved oxygen measurements, which to our
458 knowledge has not been previously articulated. As noted above, this gap is best represented by
459 the fact that global inland carbon fluxes estimated from oxygen variations are only ~18% of
460 carbon fluxes estimated from CO₂ concentrations (Battin et al., 2023; Lauerwald et al., 2023b).
461 While beyond the scope of this manuscript, this gap may reflect (1) systematic underestimates of
462 carbon fluxes from oxygen variations, which may in part reflect metabolic study designs that
463 seek to avoid reaches with discrete groundwater inputs; (2) systematic overestimates of carbon
464 fluxes from CO₂ variations; or (3) processes that significantly alter molar ratios of dissolved
465 CO₂:O₂ such as carbonate buffering, alternative metabolic pathways including nitrification,
466 denitrification, and methanogenesis, among others. This gap warrants further investigation,
467 though we stress that despite being significantly larger than metabolism-based NEP, our stream
468 corridor source contributions are consistent with other CO₂ budget-based estimates (Butman &
469 Raymond, 2011; Kirk & Cohen, 2023; Rasilo et al., 2017).

470 Finally, our initial modeling confirms that rivers are the major sites of emission and are
471 responsible for 94% of all emissions in the transport model results. Headwaters (first order
472 streams) account for 15% of the river surface area but contribute 30% of total river CO₂
473 emissions (Fig. 3d). Larger rivers (fifth through eleventh orders) account for 55% of the stream
474 surface area but only contribute 34% of total river CO₂ emissions (Fig. 3d). This trend has been
475 noted in other studies which find that first order streams are 7% of the surface area and 25% of
476 river CO₂ emissions (Raymond et al., 2013).

477 Lakes and reservoirs contribute 6% of the modeled CONUS CO₂ emissions and, on
478 average across individual basins, contribute 9% of a basin's CO₂ emissions (Fig. 4). These
479 numbers are smaller than previous estimates, as 1) we do not include the Great Lakes in our
480 analysis, 2) we do not rely on statistical distributions for extrapolating pond sizes instead we use
481 the NHD-HR which includes lakes down to 1 m², and 3) we explicitly account for river/lake
482 connectivity to avoid double counting of lakes as rivers. Additionally, we calibrate lakes using

483 HUC2 watersheds which are smaller and more representative of local conditions than earlier
484 estimates as they do not extend to boreal and tropical regions which have elevated $p\text{CO}_2$ in
485 comparison to temperate regions (Sobek et al., 2005). Lakes and reservoirs exert a significant
486 influence on CO_2 emissions in lake-dense regions with high water tables. For example, 88% of
487 emissions in south/central Florida and 70% in the Boundary Waters region come from
488 lakes/reservoirs (Fig. 4). This trend is shown across CONUS, as percent lake emission
489 contributions trend with the natural log of the total lake area per basin ($R=0.45$). Beyond the total
490 lake area, field studies have noted that small lakes contribute proportionally more CO_2 emissions
491 than larger ones (Bogard & del Giorgio, 2016; Holgerson & Raymond, 2016; Schmadel et al.,
492 2019) due to their larger lakebed surface area to water volume ratio. This effect is simulated in
493 our model, which explicitly represents these morphometric differences across lakes: small ponds
494 (here defined as 0-0.1 km^2) are only 11% of the total CONUS lake/reservoir surface area but are
495 responsible for 65% of lake/reservoir CO_2 emissions.

496 Despite considerable uncertainty within our CONUS CO_2 emissions estimates, CO_2
497 production parameterizations, and the associated breakdown of source contributions, the major
498 takeaways from our analysis are unlikely to change. Specifically, (1) river emissions are an order
499 of magnitude higher than lake/reservoir emissions at the continental scale, with some level of
500 geographic variability associated with regional water table dynamics; (2) respiration within the
501 subsurface stream corridor environment is the largest source of inland water CO_2 emissions,
502 followed by groundwater, with net water column respiration that accounts for the balance of
503 respiration and primary production contributing a minor proportion of total emissions. While
504 variability in groundwater $p\text{CO}_2$ may alter regional partitioning estimates, average CONUS
505 groundwater $p\text{CO}_2$ would have to be >50,000 ppm to account for >50% of riverine CO_2 fluxes
506 assuming a 1:1 tradeoff in estimated groundwater v. stream corridor CO_2 inputs and even higher
507 to reconcile stream corridor respiration rates with oxygen-based NEP measurements. These
508 elevated values appear unrealistic for the continental scale (Brook et al., 1983; Kessler &
509 Harvey, 2001; Macpherson, 2009); however, the fundamental mismatch between carbon budgets
510 based on CO_2 fluxes versus those based on dissolved oxygen discussed above represents a
511 significant uncertainty that should be investigated further. Taken together, our results suggest
512 that the largest potential carbon cycle feedback mechanisms relate to hydraulic flow dynamics,
513 which in turn alter terrestrial-aquatic connectivity, hyporheic exchange, and the export of
514 terrestrial organic carbon that supports net aquatic respiration.

515 516 **4 Towards forward predictive models of CO_2 emissions**

517 Our application of a hydrologic transport framework coupled to CO_2 production rates
518 represents a step towards fully integrating hydrologic and biogeochemical models at continental
519 and global scales to predict inland water CO_2 fluxes. Importantly, the presented framework
520 provides a pathway to interrogate the mechanistic impacts of hydrology on flux estimates
521 through direct representation of groundwater inputs, advection velocities, gas exchange
522 velocities, and hyporheic exchange rates at stream reach scales. We emphasize that our results
523 demonstrate the impacts of representing transport dynamics on estimates of fluxes and sources
524 given the same data constraints as statistical upscaling models, and are not yet at the level of
525 providing robust forward predictions of inland water CO_2 fluxes.

526 Despite this progress, our ability to apply these models globally is still limited by a few
527 issues. First is the lack of sufficient headwater representation in global hydrography data

528 products Spatial resolution of digital elevation models and remotely sensed imagery present a
529 lower limit to the small streams we can observe and this has downstream effects on our ability to
530 model solute exchange along river networks (Brinkerhoff 2024). Additionally, the majority of
531 these small streams are non-perennial (Brinkerhoff et al., 2024; Messager et al., 2021), meaning
532 they do not flow year-round and represent a critical nexus for terrestrial recruitment of solutes
533 (Benstead & Leigh, 2012), including terrestrially-produced CO₂ (Gómez-Gener et al., 2016;
534 Silverthorn et al., 2024).

535 Second, the largest barrier for moving towards more accurate continental-scale CO₂ flux
536 estimates is the paucity of observational datasets. This is particularly true for streams with the
537 steepest topography as discussed above, which may lead to overestimates in CO₂ fluxes from
538 mountainous environments. Additionally, while recent advances have allowed for the direct
539 measurements of *p*CO₂ in surface waters, most published data including the GLORICH database
540 used in our model calibration is based on carbonate speciation calculations using measured pH
541 and alkalinity. Previous studies have shown that these methods are subject to significant error,
542 particularly under low pH conditions (Abril et al., 2015; Raymond et al., 2013). While we have
543 sought to minimize this potential error via filtering (Section 2.1), a cursory comparison of
544 GLORICH data to the direct CO₂ measurements used in Liu et al. (2022) suggests a potential
545 overestimate of mean *p*CO₂ based on speciation calculations (Supplementary Information);
546 however, differences between GLORICH and Liu et al. (2022) data are not statistically
547 significant given the large standard deviation of GLORICH values, and this difference is not
548 present when comparing HUC2-averaged values with the Liu et al. (2022) dataset. While the
549 potential for artificially high *p*CO₂ may lead to lower total estimated fluxes as well as lower
550 contributions from stream corridor respiration given the same parameterized groundwater CO₂
551 inputs, we note that these reductions in total fluxes are similar for the transport and statistical
552 models (SI).

553 At present, our ability to represent groundwater CO₂ inputs is also limited by the lack of
554 publicly available large-scale spatial groundwater chemistry data products and is thus a top
555 priority for providing more accurate regional flux and source partitioning estimates. In particular,
556 groundwater CO₂ and dissolved oxygen datasets will be crucial to evaluating the large
557 discrepancies between carbon source partitioning estimates from CO₂ measurements versus
558 stream metabolism calculations. As described above, robust spatially- and temporally-variable
559 groundwater CO₂ datasets would allow for both more robust flux estimates and source
560 distributions within the presented calibration framework, and could also allow for predictive
561 forward modelling with independently validated carbon input variables. We also note that while
562 our calibration framework is flexible to incorporate additional CO₂ inputs from connected
563 wetland environments, provided they are adequately represented in the observational calibration
564 datasets, these fluxes are tied via calibration to hyporheic exchange rates rather than groundwater
565 input rates based on our current model framework. Future work is necessary to account for
566 wetland-impacted groundwater input rates which have been shown to scale with degree of
567 wetland connectivity across CONUS (Leibowitz et al., 2023).

568 While the expansion of observational datasets is vital to providing accurate and validated
569 estimates of average inland water CO₂ emissions, forward predictions of emission fluxes will
570 further require scalable biogeochemical models that capture spatiotemporal variability in carbon
571 transformations. As noted, while our transport model incorporates direct estimates of advective

572 transport, groundwater inflow rates, gas exchange, and hyporheic exchange as a function of
573 geomorphology and flow conditions, the CO₂ concentrations associated with groundwater,
574 hyporheic exchange, and in-stream processing are currently estimated and calibrated to
575 observations. Recently, carbonate buffering dynamics have been incorporated into similar stream
576 network carbon frameworks (Winnick & Saccardi, 2024), and may help to interrogate
577 differences in oxygen- versus CO₂-based carbon budgets. However, models that can accurately
578 predict in-stream metabolism, terrestrial carbon exports via groundwater, and hyporheic zone
579 processing across lotic and lentic environments with limited or coarse-resolution substrate data
580 remain elusive are an important avenue towards predicting the response of inland water CO₂
581 emissions to anthropogenic climate change.

582

583 Mechanistic biogeochemical models will also allow for estimating temporal variability in CONUS-level CO₂ dynamics, which may allow for more accurate total flux
584 estimates. Specifically, studies suggest variable and non-linear changes in CO₂ concentrations
585 and fluxes in response to hydrologic changes including storm events (Aho & Raymond, 2019;
586 Conroy et al., 2023; Crawford et al., 2017; Dinsmore et al., 2013; Dinsmore & Bille, 2008;
587 Duvert et al., 2018). Thus, estimates of CO₂ emissions under mean annual flow conditions may
588 not represent mean CO₂ fluxes that integrate temporal variability. Though our modeling
589 framework can simulate the impacts of hydrologic variability on its own in terms of groundwater
590 inputs, hyporheic exchange rates, and gas exchange rates, we cannot presently account for
591 temporal changes in CO₂ production parameters. As it relates to observational datasets that
592 would allow for time-dependent calibration of CO₂ production parameters, this limitation is
593 unlikely to be addressed in the near future. Instead, the potential for providing time-variable
594 simulations relies on either (1) the incorporation of process-based models for stream metabolism
595 and groundwater CO₂ variability; or (2) the application of machine learning techniques to
596 provide time-varying estimates of these parameters.

597

599 Acknowledgments

600 We thank the USGS and many other workers for making their data and models freely available.
601 CB was supported by a NASA FINESST fellowship (80NSSC21K1591). This work was also
602 support by NSF awards EAR-2103520 to MJW and EAR-2318056 to MJW and CJG, as well as
603 NASA award 80NSSC20K1141 to CJG. We thank Eric Davidson, Robert Hall, and two
604 anonymous reviewers for comments and suggestions that improved an earlier version of this
605 manuscript.

606

607 Conflict of Interest

608 The authors declare no conflict of interests relevant to this study.

609

610 **Open Research**

611 Code used to run the model, generate results, and build figures is archived at

612 <https://zenodo.org/records/13144302> (Brinkerhoff et al., 2024b).

613

614 **References**

615 Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Ochieng

616 Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaere, P., & Borges, A. V. (2015).
617 Technical Note: Large overestimation of $p\text{CO}_2$ calculated from pH and alkalinity in
618 acidic, organic-rich freshwaters. *Biogeosciences*, 12(1), 67–78.

619 <https://doi.org/10.5194/bg-12-67-2015>

620 Aho, K. S., & Raymond, P. A. (2019). Differential Response of Greenhouse Gas Evasion to
621 Storms in Forested and Wetland Streams. *Journal of Geophysical Research:*
622 *Biogeosciences*, 124(3), 649–662. <https://doi.org/10.1029/2018JG004750>

623 Allen, G. H., & Pavelsky, T. M. (2018). Global extent of rivers and streams. *Science*, 361(6402),
624 585–588. <https://doi.org/10.1126/science.aat0636>

625 Allen, G. H., Pavelsky, T. M., Barefoot, E. A., Lamb, M. P., Butman, D., Tashie, A., & Gleason,
626 C. J. (2018). Similarity of stream width distributions across headwater systems. *Nature
627 Communications*, 9(1), 610. <https://doi.org/10.1038/s41467-018-02991-w>

628 Appling, A. P., Hall Jr., R. O., Yackulic, C. B., & Arroita, M. (2018). Overcoming Equifinality:
629 Leveraging Long Time Series for Stream Metabolism Estimation. *Journal of Geophysical
630 Research: Biogeosciences*, 123(2), 624–645. <https://doi.org/10.1002/2017JG004140>

631 Battin, T. J., Lauerwald, R., Bernhardt, E. S., Bertuzzo, E., Gener, L. G., Hall, R. O., Hotchkiss,
632 E. R., Maavara, T., Pavelsky, T. M., Ran, L., Raymond, P., Rosentreter, J. A., & Regnier,
633 P. (2023). River ecosystem metabolism and carbon biogeochemistry in a changing world.
634 *Nature*, 613(7944), Article 7944. <https://doi.org/10.1038/s41586-022-05500-8>

635 Bencala, K. E., & Walters, R. A. (1983). Simulation of solute transport in a mountain pool-and-
636 riffle stream: A transient storage model. *Water Resources Research*, 19(3), 718–724.
637 <https://doi.org/10.1029/WR019i003p00718>

638 Benstead, J. P., & Leigh, D. S. (2012). An expanded role for river networks. *Nature Geoscience*,
639 5(10), 678–679. <https://doi.org/10.1038/ngeo1593>

640 Bernhardt, E. S., Savoy, P., Vlah, M. J., Appling, A. P., Koenig, L. E., Hall, R. O., Arroita, M.,
641 Blaszczak, J. R., Carter, A. M., Cohen, M., Harvey, J. W., Heffernan, J. B., Helton, A.
642 M., Hosen, J. D., Kirk, L., McDowell, W. H., Stanley, E. H., Yackulic, C. B., & Grimm,
643 N. B. (2022). Light and flow regimes regulate the metabolism of rivers. *Proceedings of
644 the National Academy of Sciences*, 119(8), e2121976119.
645 <https://doi.org/10.1073/pnas.2121976119>

646 Beven, K. (1993). Prophecy, reality and uncertainty in distributed hydrological modelling.
647 *Advances in Water Resources*, 16(1), 41–51. [https://doi.org/10.1016/0309-1708\(93\)90028-E](https://doi.org/10.1016/0309-
648 1708(93)90028-E)

649 Bogard, M. J., & del Giorgio, P. A. (2016). The role of metabolism in modulating CO₂ fluxes in
650 boreal lakes. *Global Biogeochemical Cycles*, 30(10), 1509–1525.
651 <https://doi.org/10.1002/2016GB005463>

652 Borges, A. V., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamoooh, F., Geeraert, N.,
653 Omengo, F. O., Guérin, F., Lambert, T., Morana, C., Okuku, E., & Bouillon, S. (2015).

654 Globally significant greenhouse-gas emissions from African inland waters. *Nature*
655 *Geoscience*, 8(8), Article 8. <https://doi.org/10.1038/ngeo2486>

656 Bretz, K. A., Murphy, N. N., & Hotchkiss, E. R. (2023). Carbon Biogeochemistry and Export
657 Governed by Flow in a Non-Perennial Stream. *Water Resources Research*, 59(9),
658 e2022WR034004. <https://doi.org/10.1029/2022WR034004>

659 Brinkerhoff, C. B. (2024). The importance of source data in river network connectivity
660 modeling: A review. *Limnology and Oceanography*. <https://doi.org/10.1002/lno.12706>

661 Brinkerhoff, C. B., Gleason, C. J., Kotchen, M. J., Kysar, D. A., & Raymond, P. A. (2024).
662 Ephemeral stream water contributions to United States drainage networks. *Science*,
663 384(6703), 1476–1482. <https://doi.org/10.1126/science.adg9430>

664 Brinkerhoff, C. B., Gleason, C. J., Zappa, C. J., Raymond, P. A., & Harlan, M. E. (2022).
665 Remotely sensing river greenhouse gas exchange velocity using the SWOT satellite.
666 *Global Biogeochemical Cycles*, 36(10), e2022GB007419.

667 Brinkerhoff, C. B., Raymond, P. A., Maavara, T., Ishitsuka, Y., Aho, K. s., & Gleason, C. J.
668 (2021). Lake Morphometry and River Network Controls on Evasion of Terrestrially
669 Sourced Headwater CO₂. *Geophysical Research Letters*, 48(1), e2020GL090068.
670 <https://doi.org/10.1029/2020GL090068>

671 Brook, G. A., Folkoff, M. E., & Box, E. O. (1983). A world model of soil carbon dioxide. *Earth*
672 *Surface Processes and Landforms*, 8(1), 79–88. <https://doi.org/10.1002/esp.3290080108>

673 Butman, D., & Raymond, P. A. (2011). Significant efflux of carbon dioxide from streams and
674 rivers in the United States. *Nature Geoscience*, 4(12), Article 12.
675 <https://doi.org/10.1038/ngeo1294>

676 Butman, D., Stackpoole, S., Stets, E., McDonald, C. P., Clow, D. W., & Striegl, R. G. (2016).
677 Aquatic carbon cycling in the conterminous United States and implications for terrestrial
678 carbon accounting. *Proceedings of the National Academy of Sciences*, 113(1), 58–63.
679 <https://doi.org/10.1073/pnas.1512651112>

680 Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M. A., Najjar, R. G., Reed, S. C., Romero-
681 Lankao, P., & Zhu, Z. (2018). *Second State of the Carbon Cycle Report*. U.S. Global
682 Change Research Program. <https://doi.org/10.7930/Soccr2.2018>

683 Conroy, H. D., Hotchkiss, E. R., Cawley, K. M., Goodman, K., Hall Jr., R. O., Jones, J. B.,
684 Wollheim, W. M., & Butman, D. (2023). Seasonality Drives Carbon Emissions Along a
685 Stream Network. *Journal of Geophysical Research: Biogeosciences*, 128(8),
686 e2023JG007439. <https://doi.org/10.1029/2023JG007439>

687 Crawford, J. T., Stanley, E. H., Dornblaser, M. M., & Striegl, R. G. (2017). CO₂ time series
688 patterns in contrasting headwater streams of North America. *Aquatic Sciences*, 79(3),
689 473–486. <https://doi.org/10.1007/s00027-016-0511-2>

690 Dinsmore, K. J., & Billett, M. F. (2008). Continuous measurement and modeling of CO₂ losses
691 from a peatland stream during stormflow events. *Water Resources Research*, 44(12).
692 <https://doi.org/10.1029/2008WR007284>

693 Dinsmore, K. J., Wallin, M. B., Johnson, M. S., Billett, M. F., Bishop, K., Pumpanen, J., &
694 Ojala, A. (2013). Contrasting CO₂ concentration discharge dynamics in headwater
695 streams: A multi-catchment comparison. *Journal of Geophysical Research: Biogeosciences*,
696 118(2), 445–461. <https://doi.org/10.1002/jgrg.20047>

697 Drake, T. W., Raymond, P. A., & Spencer, R. G. M. (2018). Terrestrial carbon inputs to inland
698 waters: A current synthesis of estimates and uncertainty. *Limnology and Oceanography
699 Letters*, 3(3), 132–142. <https://doi.org/10.1002/lo2.10055>

700 Duvert, C., Butman, D. E., Marx, A., Ribolzi, O., & Hutley, L. B. (2018). CO₂ evasion along
701 streams driven by groundwater inputs and geomorphic controls. *Nature Geoscience*,
702 11(11), Article 11. <https://doi.org/10.1038/s41561-018-0245-y>

703 France-Lanord, C., & Derry, L. A. (1997). Organic carbon burial forcing of the carbon cycle
704 from Himalayan erosion. *Nature*, 390(6655), Article 6655. <https://doi.org/10.1038/36324>

705 Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le
706 Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshakl,
707 C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., ... Zheng,
708 B. (2022). Global Carbon Budget 2022. *Earth System Science Data*, 14(11), 4811–4900.
709 <https://doi.org/10.5194/essd-14-4811-2022>

710 Gómez-Gener, L., Obrador, B., Marcé, R., Acuña, V., Catalán, N., Casas-Ruiz, J. P., Sabater, S.,
711 Muñoz, I., & von Schiller, D. (2016). When Water Vanishes: Magnitude and Regulation
712 of Carbon Dioxide Emissions from Dry Temporary Streams. *Ecosystems*, 19(4), 710–
713 723. <https://doi.org/10.1007/s10021-016-9963-4>

714 Gómez-Gener, L., Rocher-Ros, G., Battin, T., Cohen, M. J., Dalmagro, H. J., Dinsmore, K. J.,
715 Drake, T. W., Duvert, C., Enrich-Prast, A., Horgby, Å., Johnson, M. S., Kirk, L.,
716 Machado-Silva, F., Marzolf, N. S., McDowell, M. J., McDowell, W. H., Miettinen, H.,
717 Ojala, A. K., Peter, H., ... Sponseller, R. A. (2021). Global carbon dioxide efflux from
718 rivers enhanced by high nocturnal emissions. *Nature Geoscience*, 14(5), Article 5.
719 <https://doi.org/10.1038/s41561-021-00722-3>

720 Grant, S. B., Azizian, M., Cook, P., Boano, F., & Rippy, M. A. (2018). Factoring stream
721 turbulence into global assessments of nitrogen pollution. *Science*, 359(6381), 1266–1269.
722 <https://doi.org/10.1126/science.aap8074>

723 Grant, S. B., Gomez-Velez, J. D., & Ghisalberti, M. (2018). Modeling the Effects of Turbulence
724 on Hyporheic Exchange and Local-to-Global Nutrient Processing in Streams. *Water
725 Resources Research*, 54(9), 5883–5889. <https://doi.org/10.1029/2018WR023078>

726 Hall Jr., R. O., & Tank, J. L. (2005). Correcting whole-stream estimates of metabolism for
727 groundwater input. *Limnology and Oceanography: Methods*, 3(4), 222–229.
728 <https://doi.org/10.4319/lom.2005.3.222>

729 Hartmann, J., Lauerwald, R., & Moosdorf, N. (2014). A Brief Overview of the GLObal RIver
730 Chemistry Database, GLORICH. *Procedia Earth and Planetary Science*, 10, 23–27.
731 <https://doi.org/10.1016/j.proeps.2014.08.005>

732 Harvey, J., Gomez-Velez, J., Schmadel, N., Scott, D., Boyer, E., Alexander, R., Eng, K., Golden,
733 H., Kettner, A., Konrad, C., Moore, R., Pizzuto, J., Schwarz, G., Soulsby, C., & Choi, J.
734 (2019). How Hydrologic Connectivity Regulates Water Quality in River Corridors.
735 *JAWRA Journal of the American Water Resources Association*, 55(2), 369–381.
736 <https://doi.org/10.1111/1752-1688.12691>

737 Hilton, R. G., & West, A. J. (2020). Mountains, erosion and the carbon cycle. *Nature Reviews
738 Earth & Environment*, 1(6), Article 6. <https://doi.org/10.1038/s43017-020-0058-6>

739 Holgerson, M. A., & Raymond, P. A. (2016). Large contribution to inland water CO₂ and CH₄
740 emissions from very small ponds. *Nature Geoscience*, 9(3), Article 3.
741 <https://doi.org/10.1038/ngeo2654>

742 Hope, D., Billett, M. F., & Cresser, M. S. (1994). A review of the export of carbon in river
743 water: Fluxes and processes. *Environmental Pollution*, 84(3), 301–324.
744 [https://doi.org/10.1016/0269-7491\(94\)90142-2](https://doi.org/10.1016/0269-7491(94)90142-2)

745 Horgby, Å., Segatto, P. L., Bertuzzo, E., Lauerwald, R., Lehner, B., Ulseth, A. J., Vennemann,
746 T. W., & Battin, T. J. (2019). Unexpected large evasion fluxes of carbon dioxide from
747 turbulent streams draining the world's mountains. *Nature Communications*, 10(1), Article
748 1. <https://doi.org/10.1038/s41467-019-12905-z>

749 Hotchkiss, E. R., Hall Jr, R. O., Sponseller, R. A., Butman, D., Klaminder, J., Laudon, H.,
750 Rosvall, M., & Karlsson, J. (2015). Sources of and processes controlling CO₂ emissions
751 change with the size of streams and rivers. *Nature Geoscience*, 8(9), Article 9.
752 <https://doi.org/10.1038/ngeo2507>

753 Johnson, M. S., Lehmann, J., Riha, S. J., Krusche, A. V., Richey, J. E., Ometto, J. P. H. B., &
754 Couto, E. G. (2008). CO₂ efflux from Amazonian headwater streams represents a
755 significant fate for deep soil respiration. *Geophysical Research Letters*, 35(17).
756 <https://doi.org/10.1029/2008GL034619>

757 Keenan, T. F., & Williams, C. A. (2018). The Terrestrial Carbon Sink. *Annual Review of*
758 *Environment and Resources*, 43(1), 219–243. <https://doi.org/10.1146/annurev-environ-102017-030204>

760 Keller, P. S., Marcé, R., Obrador, B., & Koschorreck, M. (2021). Global carbon budget of
761 reservoirs is overturned by the quantification of drawdown areas. *Nature Geoscience*,
762 14(6), 402–408. <https://doi.org/10.1038/s41561-021-00734-z>

763 Kessler, T. J., & Harvey, C. F. (2001). The global flux of carbon dioxide into groundwater.
764 *Geophysical Research Letters*, 28(2), 279–282. <https://doi.org/10.1029/2000GL011505>

765 Kirk, L., & Cohen, M. J. (2023). River Corridor Sources Dominate CO₂ Emissions From a
766 Lowland River Network. *Journal of Geophysical Research: Biogeosciences*, 128(1),
767 e2022JG006954. <https://doi.org/10.1029/2022JG006954>

768 Lauerwald, R., Allen, G. H., Deemer, B. R., Liu, S., Maavara, T., Raymond, P., Alcott, L.,
769 Bastviken, D., Hastie, A., Holgerson, M. A., Johnson, M. S., Lehner, B., Lin, P.,
770 Marzadri, A., Ran, L., Tian, H., Yang, X., Yao, Y., & Regnier, P. (2023a). Inland Water
771 Greenhouse Gas Budgets for RECCAP2: 1. State-Of-The-Art of Global Scale
772 Assessments. *Global Biogeochemical Cycles*, 37(5), e2022GB007657.
773 <https://doi.org/10.1029/2022GB007657>

774 Lauerwald, R., Allen, G. H., Deemer, B. R., Liu, S., Maavara, T., Raymond, P., Alcott, L.,
775 Bastviken, D., Hastie, A., Holgerson, M. A., Johnson, M. S., Lehner, B., Lin, P.,
776 Marzadri, A., Ran, L., Tian, H., Yang, X., Yao, Y., & Regnier, P. (2023b). Inland Water
777 Greenhouse Gas Budgets for RECCAP2: 2. Regionalization and Homogenization of
778 Estimates. *Global Biogeochemical Cycles*, 37(5), e2022GB007658.
779 <https://doi.org/10.1029/2022GB007658>

780 Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P., & Regnier, P. A. G. (2015). Spatial
781 patterns in CO₂ evasion from the global river network. *Global Biogeochemical Cycles*,
782 29(5), 534–554. <https://doi.org/10.1002/2014GB004941>

783 Lehner, B., & Döll, P. (2004). Development and validation of a global database of lakes,
784 reservoirs and wetlands. *Journal of Hydrology*, 296(1), 1–22.
785 <https://doi.org/10.1016/j.jhydrol.2004.03.028>

786 Lehner, B., Verdin, K., & Jarvis, A. (2008). New Global Hydrography Derived From Spaceborne
787 Elevation Data. *EOS Transactions*, 89, 93–94. <https://doi.org/10.1029/2008EO100001>

788 Leibowitz, S. G., Hill, R. A., Creed, I. F., Compton, J. E., Golden, H. E., Weber, M. H., Rains,
789 M. C., Jones, C. E., Lee, E. H., Christensen, J. R., Bellmore, R. A., & Lane, C. R. (2023).
790 National hydrologic connectivity classification links wetlands with stream water quality.
791 *Nature Water*, 1(4), 370–380. <https://doi.org/10.1038/s44221-023-00057-w>

792 Lin, P., Pan, M., Wood, E. F., Yamazaki, D., & Allen, G. H. (2021). A new vector-based global
793 river network dataset accounting for variable drainage density. *Scientific Data*, 8(1),
794 Article 1. <https://doi.org/10.1038/s41597-021-00819-9>

795 Liu, S., Butman, D. E., & Raymond, P. A. (2020). Evaluating CO₂ calculation error from
796 organic alkalinity and pH measurement error in low ionic strength freshwaters.
797 *Limnology and Oceanography: Methods*, 18(10), 606–622.
798 <https://doi.org/10.1002/lom3.10388>

799 Liu, S., Kuhn, C., Amatulli, G., Aho, K., Butman, D. E., Allen, G. H., Lin, P., Pan, M.,
800 Yamazaki, D., Brinkerhoff, C., Gleason, C., Xia, X., & Raymond, P. A. (2022). The
801 importance of hydrology in routing terrestrial carbon to the atmosphere via global
802 streams and rivers. *Proceedings of the National Academy of Sciences*, 119(11),
803 e2106322119. <https://doi.org/10.1073/pnas.2106322119>

804 Liu, S., Maavara, T., Brinkerhoff, C. B., & Raymond, P. A. (2022). Global Controls on DOC
805 Reaction Versus Export in Watersheds: A Damköhler Number Analysis. *Global
806 Biogeochemical Cycles*, 36(4), e2021GB007278. <https://doi.org/10.1029/2021GB007278>

807 López-Rojo, N., Datry, T., Peñas, F. J., Singer, G., Lamouroux, N., Barquín, J., Rodeles, A. A.,
808 Silverthorn, T., Sarremejane, R., del Campo, R., Estévez, E., Mimeau, L., Boyer, F.,
809 Künne, A., Dalvai Ragnoli, M., & Foulquier, A. (2024). Carbon emissions from inland
810 waters may be underestimated: Evidence from European river networks fragmented by

811 drying. *Limnology and Oceanography Letters*, n/a(n/a).

812 <https://doi.org/10.1002/lol2.10408>

813 Lorke, A., & Peeters, F. (2006). Toward a Unified Scaling Relation for Interfacial Fluxes.

814 *Journal of Physical Oceanography*, 36(5), 955–961. <https://doi.org/10.1175/JPO2903.1>

815 Lupon, A., Denfeld, B. A., Laudon, H., Leach, J., Karlsson, J., & Sponseller, R. A. (2019).

816 Groundwater inflows control patterns and sources of greenhouse gas emissions from

817 streams. *Limnology and Oceanography*, 64(4), 1545–1557.

818 <https://doi.org/10.1002/lno.11134>

819 Maavara, T., Brinkerhoff, C., Hosen, J., Aho, K., Logozzo, L., Saiers, J., Stubbins, A., &

820 Raymond, P. (2023). Watershed DOC uptake occurs mostly in lakes in the summer and

821 in rivers in the winter. *Limnology and Oceanography*, 68(3), 735–751.

822 <https://doi.org/10.1002/lno.12306>

823 Macpherson, G. L. (2009). CO₂ distribution in groundwater and the impact of groundwater

824 extraction on the global C cycle. *Chemical Geology*, 264(1), 328–336.

825 <https://doi.org/10.1016/j.chemgeo.2009.03.018>

826 Mayorga, E., Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W., Bouwman, A. F.,

827 Fekete, B. M., Kroeze, C., & Van Drecht, G. (2010). Global Nutrient Export from

828 WaterSheds 2 (NEWS 2): Model development and implementation. *Environmental*

829 *Modelling & Software*, 25(7), 837–853. <https://doi.org/10.1016/j.envsoft.2010.01.007>

830 McCallister, S. L., & del Giorgio, P. A. (2012). Evidence for the respiration of ancient terrestrial

831 organic C in northern temperate lakes and streams. *Proceedings of the National Academy*

832 *of Sciences*, 109(42), 16963–16968. <https://doi.org/10.1073/pnas.1207305109>

833 Messager, M. L., Lehner, B., Cockburn, C., Lamouroux, N., Pella, H., Snelder, T., Tockner, K.,

834 Trautmann, T., Watt, C., & Datry, T. (2021). Global prevalence of non-perennial rivers

835 and streams. *Nature*, 594(7863), 391–397. <https://doi.org/10.1038/s41586-021-03565-5>

836 Messager, M. L., Lehner, B., Grill, G., Nedeva, I., & Schmitt, O. (2016). Estimating the volume

837 and age of water stored in global lakes using a geo-statistical approach. *Nature Communications*, 7(1), 13603. <https://doi.org/10.1038/ncomms13603>

839 Mitchell, M. (1998). *An Introduction to Genetic Algorithms*. MIT Press.

840 <https://mitpress.mit.edu/9780262631853/an-introduction-to-genetic-algorithms/>

841 Moore, R. B., McKay, L. D., Rea, A. H., Bondelid, T. R., Price, C. V., Dewald, T. G., &

842 Johnston, C. M. (2019). User's guide for the national hydrography dataset plus

843 (NHDPlus) high resolution. In *Open-File Report* (2019–1096). U.S. Geological Survey.

844 <https://doi.org/10.3133/ofr20191096>

845 Moore, T. R. (2003). Dissolved organic carbon in a northern boreal landscape. *Global*

846 *Biogeochemical Cycles*, 17(4). <https://doi.org/10.1029/2003GB002050>

847 Neff, J. C., & Asner, G. P. (2001). Dissolved Organic Carbon in Terrestrial Ecosystems:

848 Synthesis and a Model. *Ecosystems*, 4(1), 29–48. <https://doi.org/10.1007/s100210000058>

849 Rasilo, T., Hutchins, R. H. S., Ruiz-González, C., & del Giorgio, P. A. (2017). Transport and

850 transformation of soil-derived CO₂, CH₄ and DOC sustain CO₂ supersaturation in small

851 boreal streams. *Science of The Total Environment*, 579, 902–912.

852 <https://doi.org/10.1016/j.scitotenv.2016.10.187>

853 Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman,

854 D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais,

855 P., & Guth, P. (2013). Global carbon dioxide emissions from inland waters. *Nature*,
856 503(7476), Article 7476. <https://doi.org/10.1038/nature12760>

857 Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mulholland, P., Laursen, A. E.,
858 McDowell, W. H., & Newbold, D. (2012). Scaling the gas transfer velocity and hydraulic
859 geometry in streams and small rivers. *Limnology and Oceanography: Fluids and*
860 *Environments*, 2(1), 41–53. <https://doi.org/10.1215/21573689-1597669>

861 Read, J. S., Hamilton, D. P., Desai, A. R., Rose, K. C., MacIntyre, S., Lengers, J. D., Smyth, R.
862 L., Hanson, P. C., Cole, J. J., Staehr, P. A., Rusak, J. A., Pierson, D. C., Brookes, J. D.,
863 Laas, A., & Wu, C. H. (2012). Lake-size dependency of wind shear and convection as
864 controls on gas exchange. *Geophysical Research Letters*, 39(9).
865 <https://doi.org/10.1029/2012GL051886>

866 Rocher-Ros, G., Sponseller, R. A., Lidberg, W., Mörth, C.-M., & Giesler, R. (2019). Landscape
867 process domains drive patterns of CO₂ evasion from river networks. *Limnology and*
868 *Oceanography Letters*, 4(4), 87–95. <https://doi.org/10.1002/1ol2.10108>

869 Rocher-Ros, G., Stanley, E. H., Loken, L. C., Casson, N. J., Raymond, P. A., Liu, S., Amatulli,
870 G., & Sponseller, R. A. (2023). Global methane emissions from rivers and streams.
871 *Nature*, 621(7979), 530–535.

872 Saccardi, B., & Winnick, M. (2021). Improving Predictions of Stream CO₂ Concentrations and
873 Fluxes Using a Stream Network Model: A Case Study in the East River Watershed, CO,
874 USA. *Global Biogeochemical Cycles*, 35(12), e2021GB006972.
875 <https://doi.org/10.1029/2021GB006972>

876 Sawakuchi, H. O., Neu, V., Ward, N. D., Barros, M. de L. C., Valerio, A. M., Gagne-Maynard,
877 W., Cunha, A. C., Less, D. F. S., Diniz, J. E. M., Brito, D. C., Krusche, A. V., & Richey,

878 J. E. (2017). Carbon Dioxide Emissions along the Lower Amazon River. *Frontiers in*
879 *Marine Science*, 4. <https://www.frontiersin.org/articles/10.3389/fmars.2017.00076>

880 Schmadel, N. M., Harvey, J. W., Alexander, R. B., Schwarz, G. E., Moore, R. B., Eng, K.,
881 Gomez-Velez, J. D., Boyer, E. W., & Scott, D. (2018). Thresholds of lake and reservoir
882 connectivity in river networks control nitrogen removal. *Nature Communications*, 9(1),
883 Article 1. <https://doi.org/10.1038/s41467-018-05156-x>

884 Schmadel, N. M., Harvey, J. W., Schwarz, G. E., Alexander, R. B., Gomez-Velez, J. D., Scott,
885 D., & Ator, S. W. (2019). Small Ponds in Headwater Catchments Are a Dominant
886 Influence on Regional Nutrient and Sediment Budgets. *Geophysical Research Letters*,
887 46(16), 9669–9677. <https://doi.org/10.1029/2019GL083937>

888 Segatto, P. L., Battin, T. J., & Bertuzzo, E. (2023). A Network-Scale Modeling Framework for
889 Stream Metabolism, Ecosystem Efficiency, and Their Response to Climate Change.
890 *Water Resources Research*, 59(3), e2022WR034062.
891 <https://doi.org/10.1029/2022WR034062>

892 Shangguan, Q., Payn, R. A., Hall Jr, R. O., Young, F. L., Valett, H. M., & DeGrandpre, M. D.
893 (2024). Divergent metabolism estimates from dissolved oxygen and inorganic carbon:
894 Implications for river carbon cycling. *Limnology and Oceanography*, 69(9), 2211–2228.
895 <https://doi.org/10.1002/lno.12666>

896 Sikder, Md., Wang, J., Allen, G., Sheng, Y., Yamazaki, D., Cretaux, J.-F., & Pavelsky, T.
897 (2021). *A Global-Scale Lake Topology for Harmonizing SWOT A Priori Lake and River*
898 *Databases*. 2021, H12I-01. AGU Fall Meeting Abstracts.

899 Silverthorn, T., López-Rojo, N., Sarremejane, R., Foulquier, A., Chanudet, V., Azougui, A., del
900 Campo, R., Singer, G., & Datry, T. (2024). River network-scale drying impacts the

901 spatiotemporal dynamics of greenhouse gas fluxes. *Limnology and Oceanography*, 69(4),
902 861–873. <https://doi.org/10.1002/lno.12531>

903 Sobek, S., Tranvik, L. J., & Cole, J. J. (2005). Temperature independence of carbon dioxide
904 supersaturation in global lakes. *Global Biogeochemical Cycles*, 19(2).
905 <https://doi.org/10.1029/2004GB002264>

906 Stets, E. G., Butman, D., McDonald, C. P., Stackpoole, S. M., DeGrandpre, M. D., & Striegl, R.
907 G. (2017). Carbonate buffering and metabolic controls on carbon dioxide in rivers.
908 *Global Biogeochemical Cycles*, 31(4), 663–677. <https://doi.org/10.1002/2016GB005578>

909 Ulseth, A. J., Hall, R. O., Boix Canadell, M., Madinger, H. L., Niayifar, A., & Battin, T. J.
910 (2019). Distinct air–water gas exchange regimes in low- and high-energy streams. *Nature
911 Geoscience*, 12(4), Article 4. <https://doi.org/10.1038/s41561-019-0324-8>

912 Wang, J., Walter, B. A., Yao, F., Song, C., Ding, M., Maroof, A. S., Zhu, J., Fan, C., McAlister,
913 J. M., Sikder, S., Sheng, Y., Allen, G. H., Crétaux, J.-F., & Wada, Y. (2022). GeoDAR:
914 Georeferenced global dams and reservoirs dataset for bridging attributes and
915 geolocations. *Earth System Science Data*, 14(4), 1869–1899.
916 <https://doi.org/10.5194/essd-14-1869-2022>

917 Winnick, M. J. (2021). Stream Transport and Substrate Controls on Nitrous Oxide Yields From
918 Hyporheic Zone Denitrification. *AGU Advances*, 2(4), e2021AV000517.
919 <https://doi.org/10.1029/2021AV000517>

920 Winnick, M. J., & Saccardi, B. (2024). Impacts of Carbonate Buffering on Atmospheric
921 Equilibration of CO₂, δ¹³CDIC, and Δ¹⁴CDIC in Rivers and Streams. *Global
922 Biogeochemical Cycles*, 38(2), e2023GB007860. <https://doi.org/10.1029/2023GB007860>

923

924 **Supporting Information References**

925 Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Ochieng
926 Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaere, P., & Borges, A. V. (2015).
927 Technical Note: Large overestimation of $p\text{CO}_2$ calculated from pH and alkalinity in
928 acidic, organic-rich freshwaters. *Biogeosciences*, 12(1), 67–78.
929 <https://doi.org/10.5194/bg-12-67-2015>

930 Allen, G. H., Pavelsky, T. M., Barefoot, E. A., Lamb, M. P., Butman, D., Tashie, A., & Gleason,
931 C. J. (2018). Similarity of stream width distributions across headwater systems. *Nature
932 Communications*, 9(1), 610. <https://doi.org/10.1038/s41467-018-02991-w>

933 Boodoo, K. S., Schelker, J., Trauth, N., Battin, T. J., & Schmidt, C. (2019). Sources and
934 variability of CO_2 in a prealpine stream gravel bar. *Hydrological Processes*, 33(17),
935 2279–2299. <https://doi.org/10.1002/hyp.13450>

936 Brinkerhoff, C. B., Gleason, C. J., & Ostendorf, D. W. (2019). Reconciling at-a-Station and at-
937 Many-Stations Hydraulic Geometry Through River-Wide Geomorphology. *Geophysical
938 Research Letters*, 46(16), 9637–9647. <https://doi.org/10.1029/2019GL084529>

939 Brinkerhoff, C. B., Gleason, C. J., Zappa, C. J., Raymond, P. A., & Harlan, M. E. (2022).
940 Remotely sensing river greenhouse gas exchange velocity using the SWOT satellite.
941 *Global Biogeochemical Cycles*, 36(10), e2022GB007419.

942 Brinkerhoff, C. B., Raymond, P. A., Maavara, T., Ishitsuka, Y., Aho, K. s., & Gleason, C. J.
943 (2021). Lake Morphometry and River Network Controls on Evasion of Terrestrially
944 Sourced Headwater CO_2 . *Geophysical Research Letters*, 48(1), e2020GL090068.
945 <https://doi.org/10.1029/2020GL090068>

946 Butman, D., & Raymond, P. A. (2011). Significant efflux of carbon dioxide from streams and
947 rivers in the United States. *Nature Geoscience*, 4(12), Article 12.
948 <https://doi.org/10.1038/ngeo1294>

949 Butman, D., Stackpoole, S., Stets, E., McDonald, C. P., Clow, D. W., & Striegl, R. G. (2016).
950 Aquatic carbon cycling in the conterminous United States and implications for terrestrial
951 carbon accounting. *Proceedings of the National Academy of Sciences*, 113(1), 58–63.
952 <https://doi.org/10.1073/pnas.1512651112>

953 Cael, B. B., & Seekell, D. A. (2016). The size-distribution of Earth's lakes. *Scientific Reports*,
954 6(1), 29633. <https://doi.org/10.1038/srep29633>

955

956 Donald D. Adams. (2005). *Diffuse Flux of Greenhouse Gases — Methane and Carbon Dioxide*
957 — at the Sediment-Water Interface of Some Lakes and Reservoirs of the World.
958 https://doi.org/https://doi.org/10.1007/978-3-540-26643-3_6

959 Efstratiadis, A., & Koutsoyiannis, D. (2010). One decade of multi-objective calibration
960 approaches in hydrological modelling: A review. *Hydrological Sciences Journal*, 55(1),
961 58–78. <https://doi.org/10.1080/02626660903526292>

962 Godsey, S. E., & Kirchner, J. W. (2014). Dynamic, discontinuous stream networks:
963 Hydrologically driven variations in active drainage density, flowing channels and stream
964 order. *Hydrological Processes*, 28(23), 5791–5803. <https://doi.org/10.1002/hyp.10310>

965 Grant, S. B., Azizian, M., Cook, P., Boano, F., & Rippy, M. A. (2018). Factoring stream
966 turbulence into global assessments of nitrogen pollution. *Science*, 359(6381), 1266–1269.
967 <https://doi.org/10.1126/science.aap8074>

968 Grant, S. B., Gomez-Velez, J. D., & Ghisalberti, M. (2018). Modeling the Effects of Turbulence
969 on Hyporheic Exchange and Local-to-Global Nutrient Processing in Streams. *Water
970 Resources Research*, 54(9), 5883–5889. <https://doi.org/10.1029/2018WR023078>

971 Hartmann, J., Lauerwald, R., & Moosdorf, N. (2014). A Brief Overview of the GLObal RIver
972 Chemistry Database, GLORICH. *Procedia Earth and Planetary Science*, 10, 23–27.
973 <https://doi.org/10.1016/j.proeps.2014.08.005>

974 Hoellein, T. J., Bruesewitz, D. A., & Richardson, D. C. (2013). Revisiting Odum (1956): A
975 synthesis of aquatic ecosystem metabolism. *Limnology and Oceanography*, 58(6), 2089–
976 2100. <https://doi.org/10.4319/lo.2013.58.6.2089>

977 Horgby, Å., Segatto, P. L., Bertuzzo, E., Lauerwald, R., Lehner, B., Ulseth, A. J., Vennemann,
978 T. W., & Battin, T. J. (2019). Unexpected large evasion fluxes of carbon dioxide from
979 turbulent streams draining the world's mountains. *Nature Communications*, 10(1), Article
980 1. <https://doi.org/10.1038/s41467-019-12905-z>

981 Kessler, T. J., & Harvey, C. F. (2001). The global flux of carbon dioxide into groundwater.
982 *Geophysical Research Letters*, 28(2), 279–282. <https://doi.org/10.1029/2000GL011505>

983 Kortelainen, P., Rantakari, M., Huttunen, J. T., Mattsson, T., Alm, J., Juutinen, S., et al. (2006).
984 Sediment respiration and lake trophic state are important predictors of large CO₂ evasion
985 from small boreal lakes. *Global Change Biology*, 12(8), 1554–1567.
986 <https://doi.org/10.1111/j.1365-2486.2006.01167.x>

987 Lauerwald, R., Allen, G. H., Deemer, B. R., Liu, S., Maavara, T., Raymond, P., Alcott, L.,
988 Bastviken, D., Hastie, A., Holgerson, M. A., Johnson, M. S., Lehner, B., Lin, P.,
989 Marzadri, A., Ran, L., Tian, H., Yang, X., Yao, Y., & Regnier, P. (n.d.). Inland water
990 greenhouse gas budgets for RECCAP2: 2. Regionalization and homogenization of

991 estimates. *Global Biogeochemical Cycles*, *n/a*(n/a), e2022GB007658.

992 <https://doi.org/10.1029/2022GB007658>

993 Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P., & Regnier, P. A. G. (2015). Spatial
994 patterns in CO₂ evasion from the global river network. *Global Biogeochemical Cycles*,
995 29(5), 534–554. <https://doi.org/10.1002/2014GB004941>

996 Lehner, B., & Döll, P. (2004). Development and validation of a global database of lakes,
997 reservoirs and wetlands. *Journal of Hydrology*, 296(1), 1–22.
998 <https://doi.org/10.1016/j.jhydrol.2004.03.028>

999 Liu, S., Butman, D. E., & Raymond, P. A. (2020). Evaluating CO₂ calculation error from
1000 organic alkalinity and pH measurement error in low ionic strength freshwaters.
1001 *Limnology and Oceanography: Methods*, 18(10), 606–622.
1002 <https://doi.org/10.1002/lom3.10388>

1003 Liu, S., Kuhn, C., Amatulli, G., Aho, K., Butman, D. E., Allen, G. H., Lin, P., Pan, M.,
1004 Yamazaki, D., Brinkerhoff, C., Gleason, C., Xia, X., & Raymond, P. A. (2022). The
1005 importance of hydrology in routing terrestrial carbon to the atmosphere via global
1006 streams and rivers. *Proceedings of the National Academy of Sciences*, 119(11),
1007 e2106322119. <https://doi.org/10.1073/pnas.2106322119>

1008 Lorke, A., & Peeters, F. (2006). Toward a Unified Scaling Relation for Interfacial Fluxes.
1009 *Journal of Physical Oceanography*, 36(5), 955–961. <https://doi.org/10.1175/JPO2903.1>

1010 Mayorga, E., Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W., Bouwman, A. F.,
1011 Fekete, B. M., Kroese, C., & Van Drecht, G. (2010). Global Nutrient Export from
1012 WaterSheds 2 (NEWS 2): Model development and implementation. *Environmental
1013 Modelling & Software*, 25(7), 837–853. <https://doi.org/10.1016/j.envsoft.2010.01.007>

1014 Moore, R. B., McKay, L. D., Rea, A. H., Bondelid, T. R., Price, C. V., Dewald, T. G., &
1015 Johnston, C. M. (2019). User's guide for the national hydrography dataset plus
1016 (NHDPlus) high resolution. In *Open-File Report* (2019-1096). U.S. Geological Survey.
1017 <https://doi.org/10.3133/ofr20191096>

1018 Plummer, L. N., & Busenberg, E. (1982). The solubilities of calcite, aragonite and vaterite in
1019 CO₂H₂O solutions between 0 and 90°C, and an evaluation of the aqueous model for the
1020 system CaCO₃-CO₂-H₂O. *Geochimica et Cosmochimica Acta*, 46(6), 1011–1040.
1021 [https://doi.org/10.1016/0016-7037\(82\)90056-4](https://doi.org/10.1016/0016-7037(82)90056-4)

1022 Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman,
1023 D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais,
1024 P., & Guth, P. (2013). Global carbon dioxide emissions from inland waters. *Nature*,
1025 503(7476), Article 7476. <https://doi.org/10.1038/nature12760>

1026 Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mulholland, P., Laursen, A. E.,
1027 McDowell, W. H., & Newbold, D. (2012). Scaling the gas transfer velocity and hydraulic
1028 geometry in streams and small rivers. *Limnology and Oceanography: Fluids and*
1029 *Environments*, 2(1), 41–53. <https://doi.org/10.1215/21573689-1597669>

1030 Read, J. S., Hamilton, D. P., Desai, A. R., Rose, K. C., MacIntyre, S., Lenters, J. D., Smyth, R.
1031 L., Hanson, P. C., Cole, J. J., Staehr, P. A., Rusak, J. A., Pierson, D. C., Brookes, J. D.,
1032 Laas, A., & Wu, C. H. (2012). Lake-size dependency of wind shear and convection as
1033 controls on gas exchange. *Geophysical Research Letters*, 39(9).
1034 <https://doi.org/10.1029/2012GL051886>

1035 Reisinger, A. J., Tank, J. L., Rosi-Marshall, E. J., Hall, R. O., & Baker, M. A. (2015). The
1036 varying role of water column nutrient uptake along river continua in contrasting

1037 landscapes. *Biogeochemistry*, 125(1), 115–131. <https://doi.org/10.1007/s10533-015-0118-z>

1038

1039 Rocher-Ros, G., Sponseller, R. A., Lidberg, W., Mörth, C.-M., & Giesler, R. (2019). Landscape

1040 process domains drive patterns of CO₂ evasion from river networks. *Limnology and*

1041 *Oceanography Letters*, 4(4), 87–95. <https://doi.org/10.1002/lol2.10108>

1042 Saccardi, B., & Winnick, M. (2021). Improving Predictions of Stream CO₂ Concentrations and

1043 Fluxes Using a Stream Network Model: A Case Study in the East River Watershed, CO,

1044 USA. *Global Biogeochemical Cycles*, 35(12), e2021GB006972.

1045 <https://doi.org/10.1029/2021GB006972>

1046 Ulseth, A. J., Hall, R. O., Boix Canadell, M., Madinger, H. L., Niayifar, A., & Battin, T. J.

1047 (2019). Distinct air–water gas exchange regimes in low- and high-energy streams. *Nature*

1048 *Geoscience*, 12(4), Article 4. <https://doi.org/10.1038/s41561-019-0324-8>

1049 Wanninkhof, R. (1992). Relationship between wind speed and gas exchange over the ocean.

1050 *Journal of Geophysical Research: Oceans*, 97(C5), 7373–7382.

1051 <https://doi.org/10.1029/92JC00188>

1052 Ward, N. D., Keil, R. G., Medeiros, P. M., Brito, D. C., Cunha, A. C., Dittmar, T., et al. (2013).

1053 Degradation of terrestrially derived macromolecules in the Amazon River. *Nature*

1054 *Geoscience*, 6(7), 530–533. <https://doi.org/10.1038/ngeo1817>

1055

1056 **Figure Captions**

1057 **Figure 1.** Process-based transport model emulates the distribution of in situ data: **(A)** $p\text{CO}_2$ versus k_{600} for the
 1058 statistical upscaling model (blue lines) and our process based transport model (orange lines), both compared against
 1059 GLORICH data with data source locations mapped in **(B)**. To aid in visualization, we plot these models and data as
 1060 the isolines for the bivariate kernel density space, showing 5 bands of equal relative likelihood that a $p\text{CO}_2$ - k_{600} pair
 1061 falls along that isoline. This probability increases with linewidth, i.e. the thicker isolines have more data. Note the
 1062 outermost region extends beyond the axis limits. For both models, we randomly sampled 1,000 reaches from each of
 1063 the 206 basins. All three use the same model for k_{600} (see Methods). Grey shading is the hypothetical FCO_2 flux (at
 1064 20 degrees celsius) for all possible pairs of $p\text{CO}_2$ and k_{600} , i.e. FCO_2 increases towards the upper-right corner of **A**.
 1065 **(C)** Comparison of total CO_2 emissions from CONUS inland waters, estimated via both models. Colors match
 1066 subplot **A**. Error bars refer to model uncertainty (Eq 6,7) alone; parameter uncertainty is identical across both
 1067 models and so not included here (see Main text and Methods).

1068

1069 **Figure 2.** River/lake/reservoir CO_2 emissions for United States inland waters. Area-normalized FCO_2 at mean
 1070 annual flow for over 22M inland waters. Lakes/reservoirs (and their associated CO_2 fluxes) are also plotted in the
 1071 two smallest-scale inset maps to highlight hydrological connectivity. Reach width in the inset maps is scaled to
 1072 discharge- thicker lines have more flow. Note that at the continental scale, headwater streams with the highest
 1073 overall CO_2 fluxes are visually overrepresented based on the number of individual reaches.

1074 **Figure 3.** Sources of inland water CO_2 emissions. **A-C:** Percent of CO_2 lost from a basin that is attributed to stream
 1075 corridor subsurface respiration (**A**), upland groundwater CO_2 (**B**), and net water-column respiration (**C**). **D:** Percent
 1076 of CO_2 emissions attributed to the same mechanisms as **A-C** by stream order; boxplots are composed of the median
 1077 percent value per basin per stream order. See Methods for these calculations at the basin-scale (**A-C**) and the reach-
 1078 scale (**D**). Note we lump high stream orders (seven and above) due to the small number of basins with this many
 1079 stream orders and to represent network main stems as a single boxplot. SFig. 9 separates **D** by eastern and western
 1080 CONUS basins.

1081 **Figure 4.** Lake and reservoir influence on inland water CO_2 emissions. Percent of CO_2 emissions via
 1082 lakes/reservoirs and estimated using the process-based transport model.

1083

1084