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Key Points:  8 

• We develop and calibrate a river network carbon dioxide transport model for the 9 
continental United States to estimate emission fluxes  10 

• Compared to previous methods, this model simulates 25% lower carbon dioxide 11 
emissions using the same data constraints  12 

• Stream corridor respiration dominates over groundwater sources, but better source 13 
constraints are needed for accurate forward predictions     14 



manuscript submitted to AGU Advances  

Abstract  15 

Inland waters emit significant amounts of carbon dioxide (CO2) to the atmosphere; however, the 16 
global magnitude and source distribution of inland water CO2 emissions remain uncertain. These 17 
fluxes have previously been ‘statistically upscaled’ by independently estimating dissolved CO2 18 
concentrations and gas exchange velocities to calculate fluxes. This scaling, while robust and 19 
defensible, has known limitations in representing carbon source limitations and spatial 20 
variability. Here, we develop and calibrate a CO2 transport model for the continental United 21 
States, simulating carbon transport and transformation in >22 million hydraulically connected 22 
rivers, lakes, and reservoirs. We estimate 25% lower CO2 fluxes compared to upscaling estimates 23 
forced by the same observational calibration data. While precise CO2 source distribution 24 
estimates are limited by the resolution of model parameterizations, our model suggests that 25 
stream corridor CO2 production dominates over groundwater inputs at the continental scale. Our 26 
results further suggest that the lack of observational networks for groundwater CO2 and scalable 27 
metabolic models of aquatic CO2 production remain the most salient barriers to further coupling 28 
of our model with other Earth system components. 29 

 30 

Plain Language Summary  31 

Inland water CO2 emissions are recognized as an important but highly uncertain component of 32 
the global carbon cycle. Estimates rely on methods that statistically upscale point observations 33 
that are unable to account for the distribution and limits of CO2 sources. Here we present a first 34 
step towards distributed process-based models that link CO2 fluxes to water transport in 35 
connected rivers, lakes, and reservoirs at the continental scale. We show that using the same data 36 
constraints, incorporating water transport results in a 25% reduction relative to previous methods 37 
in estimated inland water CO2 fluxes over the continental United States. We identify barriers to 38 
monitoring and prediction that will enable the incorporation of inland water carbon into earth 39 
system models and global budgets.  40 

1 Introduction  41 

Inland waters, here comprising rivers, lakes, and reservoirs, are an integral component of 42 
the global carbon cycle, particularly in their role in emitting CO2 to the atmosphere. Recent 43 
estimates of CO2 fluxes from inland waters are on the order of 1.5 Pg-C yr-1 (Lauerwald et al., 44 
2023b), roughly 15% of anthropogenic emissions (Friedlingstein et al., 2022) and similar to the 45 
net terrestrial carbon sink (Cavallaro et al., 2018; Keenan & Williams, 2018). These estimates 46 
have steadily risen over the past decade (Drake et al., 2018) with increasing satellite resolution of 47 
lotic environments (Allen & Pavelsky, 2018) and extensive sampling campaigns in tropical 48 
environments (Borges et al., 2015; Sawakuchi et al., 2017). Despite our growing knowledge, 49 
estimates remain highly uncertain due to the inherent challenges of upscaling point 50 
measurements of stream CO2 concentrations, which can vary by orders of magnitude over short 51 
reaches (Duvert et al., 2018; Johnson et al., 2008; Lupon et al., 2019), and due to a lack of 52 
representation of inland water CO2 fluxes in global carbon cycle models (Friedlingstein et al., 53 
2022). Additional uncertainty is derived from systematic errors associated with physical 54 
hydraulic constraints on dissolved CO2 concentrations (Rocher-Ros et al., 2019; Saccardi & 55 
Winnick, 2021) and the artificial separation of lotic and lentic environment flux estimates 56 
(Brinkerhoff et al., 2021). A number of studies have thus called for process-based models to 57 
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advance total flux estimates and to better facilitate monitoring and prediction efforts to gauge the 58 
response of inland water carbon cycling to climate change (Battin et al., 2023; Duvert et al., 59 
2018).  60 

Inland water CO2 fluxes represent the culmination of CO2 transported from soil and 61 
groundwater environments, as well as CO2 produced internally via respiration in aquatic and 62 
hyporheic environments as balanced by photosynthetic uptake (Duvert et al., 2018; Gómez-63 
Gener et al., 2021; Hotchkiss et al., 2015).  Evasion fluxes of CO2  64 
(FCO2; mol m-2 s-1) from inland waters are calculated as,  65 

  𝐹!"# = 𝑘!"#$𝐶𝑂#(%&) − 𝐶%()(	    (Eq. 1),   66 

where kCO2 is the gas exchange velocity of CO2 (m s-1), CO2(aq) is the dissolved CO2  67 
concentration (mol m-3), and Catm is the atmospheric-equilibrated concentration of CO2 (mol m-68 
3). Current best estimates of global CO2 contributions from inland waters (Butman & Raymond, 69 
2011; Lauerwald et al., 2015, 2023a, 2023b; Liu, Kuhn, et al., 2022; Raymond et al., 2013) rely 70 
on ‘statistical upscaling’ methods, in which water pCO2 is scaled using regional observational 71 
averages (Butman et al., 2016; Butman & Raymond, 2011; Lauerwald et al., 2023a, 2023b; 72 
Raymond et al., 2013) or by relating observations of CO2 concentrations to watershed 73 
characteristics and applying those statistical relationships globally (Horgby et al., 2019; 74 
Lauerwald et al., 2015; Liu, Kuhn, et al., 2022). kCO2 is typically estimated by applying empirical 75 
relationships from observational studies via stream discharge and slope (Raymond et al., 2012; 76 
Ulseth et al., 2019) and scaled as a single value across entire watersheds (Butman et al., 2016; 77 
Butman & Raymond, 2011; Raymond et al., 2013). Despite the significant progress that 78 
statistical upscaling has enabled, independent treatment of CO2(aq) and kCO2 within upscaling 79 
calculations is not consistent with established hydraulic controls on kCO2  (Brinkerhoff et al., 80 
2022; Raymond et al., 2012; Ulseth et al., 2019) or recent work  showing CO2(aq) rarely reaches 81 
elevated levels when kCO2 is high (Rocher-Ros et al., 2019; Saccardi & Winnick, 2021) (Fig. 1). 82 
The absence of high stream CO2(aq) values under turbulent, high kCO2 conditions is due to source 83 
limitations on CO2 inputs that are unable to keep pace with evasion rates, and studies have 84 
shown that statistical models’ inability to account for these limitations may lead to overestimates 85 
in global CO2 fluxes by as much as 50% (Rocher-Ros et al., 2019; Saccardi & Winnick, 2021). 86 
This potential error reflects that fact that under CO2 source limitations, the product of mean kCO2 87 
and mean CO2(aq) values (statistical upscaling methods) is higher than the mean of local kCO2 and 88 
CO2(aq) products. A recent study of global methane fluxes suggests that machine-learning 89 
algorithms are also subject to overestimating gas fluxes from turbulent reaches (Rocher-Ros et 90 
al., 2023).  91 

The distribution of inland water CO2 sources also represents a significant knowledge gap, 92 
both in terms of where CO2 is emitted (i.e. rivers v. lakes/reservoirs) and the balance of terrestrial 93 
versus internal CO2 production. Constraining the latter is particularly important to better gauge 94 
potential carbon cycle feedbacks, and previous work presents conflicting findings. Broadly, 95 
studies that focus on scaling CO2 fluxes based on direct concentration measurements and 96 
carbonate speciation calculations identify stream corridor production as the dominant source 97 
(Butman & Raymond, 2011; Kirk & Cohen, 2023; Rasilo et al., 2017; Saccardi & Winnick, 98 
2021), whereas stream metabolism measurements based on diel dissolved oxygen variations 99 
identify external groundwater inputs as dominating CO2 budgets (Hotchkiss et al., 2015). Stream 100 
reach and watershed scale studies of CO2 budgets, for example, suggest that stream corridor CO2 101 
sources may dominate in all but headwater stream systems (Kirk & Cohen, 2023; Rasilo et al., 102 
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2017; Saccardi & Winnick, 2021). Continental-scale CO2 flux estimates further suggest that 103 
terrestrial sources can only account for ~25% of inland water CO2 gas fluxes assuming relatively 104 
high groundwater pCO2 values of 25,000 ppm (Butman & Raymond, 2011). In contrast, 105 
comparison of dissolved oxygen-based stream metabolism estimates and CO2 fluxes at stream 106 
sites across the US suggest that terrestrial groundwater inputs dominate across all stream 107 
environments (Hotchkiss et al., 2015). Generally, oxygen-based estimates of stream net 108 
ecosystem production (NEP) of carbon are relatively low (Bernhardt et al., 2022), with global 109 
estimates of 0.27 Pg-C yr-1 (Battin et al., 2023) contributing only 18% of the estimated 1.5 Pg-C 110 
yr-1 global inland water CO2 emissions (Lauerwald et al., 2023a). Additionally, soil respiration 111 
metrics are among the strongest statistical predictors of stream pCO2 (Liu, Kuhn, et al., 2022).  112 

Process-based transport models with distributed CO2 source and sink representation, 113 
proper hydrographic representation, and explicit downstream routing have the potential to 114 
address many of these uncertainties and knowledge gaps. Specifically, transport models 115 
incorporate a hydrologic system’s upstream history and have been applied at the watershed scale 116 
to predict the downstream transport of CO2 (Brinkerhoff et al., 2021; Saccardi & Winnick, 2021), 117 
dissolved organic carbon (DOC) (Maavara et al., 2023), and other nutrients (Schmadel et al., 118 
2018, 2019; Segatto et al., 2023). These transport models also enable explicit modeling of river 119 
corridor connectivity, including lake and reservoir connectivity, to the river network 120 
(Brinkerhoff, 2024). The latter was recently shown to exert controls on carbon/nutrient transport 121 
through inland waters (Brinkerhoff et al., 2021; Liu, Maavara, et al., 2022; Maavara et al., 2023; 122 
Schmadel et al., 2018, 2019). Likewise, considerable progress has been made in mapping 123 
hydrography globally for millions of rivers, lakes, and reservoirs (Lehner et al., 2008; Lin et al., 124 
2021; Messager et al., 2016; R. B. Moore et al., 2019; Sikder et al., 2021; Wang et al., 2022), but 125 
the missing link to deploy these advances has been efficient computation for process-based 126 
transport models at scale. Here, we demonstrate the potential for coupled hydrologic and 127 
biogeochemical models that extend and expand upon statistical upscaling to advance our 128 
understanding of inland water CO2 fluxes.   129 

We calibrate and deploy a CO2 transport model for over 22 million rivers, lakes, and 130 
reservoirs across the continental United States (CONUS) at mean annual flow for 1970-2000, 131 
which explicitly simulates advection of CO2 from headwaters to the sea and reach-scale CO2 132 
production from net respiration within the stream channel (respiration – primary productivity), 133 
respiration within the stream corridor subsurface introduced via hyporheic exchange, and lateral 134 
groundwater CO2 inputs. We assess the difference in CONUS-scale fluxes between our transport 135 
model and previous statistical upscaling techniques using identical observational constraints. We 136 
further evaluate the magnitude and uncertainties of modelled CO2 source distributions (lotic v. 137 
lentic and external v. internal) and identify the most salient barriers towards providing robust 138 
CO2 estimates from process-based models that must be addressed moving forward.  139 

2 Materials and Methods  140 

To ask how the distributed nature of hydrography and CO2 sources along the stream-to-141 
ocean continuum impacts continental-scale CO2 flux estimates, we use the same CO2 data to 142 
drive two different models for the CONUS CO2 emissions and compare the differences in the 143 
resulting estimates. These two models are a process-based transport model and a traditional 144 
statistical upscaling model. A more detailed description of modeling methods is included in the 145 
Supplemental Information, and all model validation and calibration performance analyses are 146 
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detailed in Supplementary Figs. S9-S21 and Supplementary Table S3-S4. It is important to stress 147 
that we do not aim to reproduce CO2 concentrations in individual rivers, nor do we aim to rectify 148 
any biases in existing CO2 databases or statistical upscaling methods. By using the same CO2 data 149 
for all tested models, we specifically isolate the role that heterogeneous hydrography and CO2 150 
sources play in continental-scale flux estimates.  151 

2.1 Dissolved CO2 data  152 

All models presented are either run or calibrated using the same CO2 data. These data are 153 
obtained from the GLORICH database (Hartmann et al., 2014), which includes 1.27 million 154 
samples from across the world. Riverine CO2 is calculated from GLORICH measurements of 155 
alkalinity and pH, although there is a long-standing concern for overestimation of CO2 via this 156 
approach in acidic waters as small errors in pH leads to large errors in calculated CO2 (Abril et 157 
al., 2015; Liu et al., 2020). To address this problem in this study, we filtered GLORICH for 158 
samples with a pH >5.4, and took the median value at an individual sample location resulting in 159 
6,324 CO2 estimates across the CONUS. We then mapped these 6,324 samples to US regions 160 
using an inverse distance weighted approach to make an interpolated grid with 0.5x0.5 degree 161 
resolution following previous similar work (Raymond et al., 2013). This grid was cut to each 162 
CONUS region as defined by our hydrography and the mean CO2 was calculated and used for 163 
model calibration and/or forcing. To obtain lake/reservoir CO2 estimates, we follow the method 164 
described in Raymond et al. (2013) using CO2 data from the GLORICH database. This method 165 
requires estimates of lake surface area and dissolved organic carbon (DOC) per region. We 166 
calculate lake surface area for each region from the global lakes and wetlands database (GLWD) 167 
(Lehner & Döll, 2004) by summing the estimated surface area of five lake size classes. We 168 
calculate each size class surface area by multiplying the estimated cumulative abundance by 169 
mean surface area. We estimate the lake DOC for each region by taking the DOC value at the 170 
river mouth with the largest discharge from the GLOBALNEWS dataset (Mayorga et al., 2010). 171 
If the region does not discharge into the ocean directly, we use the DOC of the region it 172 
discharged into. For endorheic basins, we use a median lake pCO2 of 340 ppm following the 173 
Raymond et al. (2013) analysis.  174 

2.2 CO2 Transport Model  175 

The underlying hydrology and hydrography are an extension of a previously developed 176 
river/lake/reservoir CO2 routing framework (Brinkerhoff et al., 2021), which explicitly coupled 177 
rivers, lakes and reservoirs into a routing scheme that enabled offline solute transport modeling 178 
in the Connecticut River watershed. Here, we extend this framework to CONUS using the USGS 179 
National Hydrography Dataset High-Resolution (R. B. Moore et al., 2019) (NHD-HR), excluding 180 
the Mexican and Canadian basins that do not directly flow into CONUS. Additionally, the NHD-181 
HR is discretized into ‘reaches’, or mass-conserved segments of river, lake, or reservoir. 182 
Network topology is maintained through lakes/reservoirs via artificial flowlines. We assign 183 
fractions of lakes/reservoir morphometry to the artificial flow lines to account for complex 184 
waterbodies with multiple inflows (Brinkerhoff et al., 2021). Further details on preprocessing the 185 
NHD-HR for our modeling are provided in the Supplementary Information.  186 

The NHD-HR features a nested basin scheme. We run our analysis at the 4th level 187 
(HUC4) due to computation, data availability, and ease of interpretation. We split the 4th-level 188 
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basin for coastal Washington State into two separate basins (coastal catchments on either side of 189 
the Columbia River) to ease computation requirements (the two sub-basins are added back 190 
together as a single basin in our presented results). CO2 data are calibrated at the 2nd watershed 191 
level (HUC2), which are regional amalgamations of 4th level basins. We also run our statistical 192 
upscaling analysis at the 2nd level.  193 

To run the model on a drainage network, we use estimates of reach-level discharge 194 
(Q, m3s-1), surface area (A, m2), hydraulic residence time (𝜏,	s), bed slope (S, m m-1), mean depth 195 
(𝐻,	m), and additionally for rivers, width (W, m) and mean flow velocity (𝑈,	m	s-1). S is provided 196 
in the NHD-HR and calculated from a digital elevation model, and for missing values we use the 197 
average S across the immediately upstream reaches. We use the mean annual discharge model 198 
provided with the NHD-HR, described in detail in the SI (R. B. Moore et al., 2019). We validate 199 
the discharge model against observed mean annual flow for 1970-2018 in reaches with 200 
corresponding stream gauges (Fig. S10). For ‘emergent’ streams we set the emergent discharge 201 
at the upstream end of the reach to reflect initial streamflow conditions for the start of the 202 
network. We use a consistent emergent stream width of approximately 30cm, identified in 203 
headwater networks around the world (Allen et al., 2018). The remaining variables are calculated 204 
based on hydraulic geometry and global database fitting as discussed in the Supplement.  205 

We adapt a previously developed CO2 stream network model (Saccardi & Winnick, 206 
2021) to incorporate lakes and reservoirs, as,  207 

		𝑑𝐶
𝑑𝑡
= −𝑈 𝑑𝐶

𝑑𝑋
+ 1

𝐴
𝑑𝑄
𝑑𝑋
$𝐶𝑔𝑤 − 𝐶( −

𝑘𝐶𝑂2
𝐻
(𝐶 − 𝐶𝑎𝑡𝑚) +

𝑘ℎ𝑧
𝐻
𝐶ℎ𝑧 + 𝐹𝑤𝑐           (Eq. 2), 208 

where C is the concentration of dissolved CO2 (mol m-3), x is distance along a reach (m), Cgw and 209 
Catm are dissolved CO2 concentrations of groundwater and atmosphere-equilibrated water (mol 210 
m-3), respectively, Chz is the difference in dissolved CO2 between the stream and the hyporheic 211 
zone (mol m-3), Fwc is the water column net respiration rate (mol m-3 s-1), and khz is the hyporheic 212 
exchange velocity (m s-1).  213 

 Based on our model framework, CO2 sources are classified as (1) upland groundwater 214 
inputs, representing terrestrial respiration and subsurface water-rock interactions that scale with 215 
upstream contributing area and a set groundwater CO2 concentration; (2) net respiration within 216 
the surface water column, and (3) respiration within the subsurface stream corridor environment 217 
comprising stream benthic zones, the hyporheic zone, and near-stream riparian zones and 218 
floodplains (Fig. S1). In terms of stream corridor subsurface respiration, these input fluxes are 219 
modeled via turbulent exchange across the stream’s sediment-water-interface (e.g. Grant, 220 
Azizian, et al., 2018; Winnick, 2021), where elevated CO2 concentrations at the sediment-water-221 
interface represent the accumulated respiration from the subsurface stream corridor. As these Chz 222 
values are calibrated based on observational stream CO2(aq) data, along with FWC, they physically 223 
represent the integrated stream corridor respiration needed to match regional CO2 observations in 224 
excess of upland groundwater inputs. 225 

 226 
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 This model, based on traditional solute transport frameworks (e.g. Bencala & Walters, 227 
1983), represents downstream solute advection, solute inputs from lateral groundwater inputs, 228 
atmospheric equilibration, solute inputs from the subsurface stream corridor environment 229 
facilitated by hyporheic exchange, and net solute production within the water column. Within 230 
stream environments, kCO2 is parameterized using the empirical relationships from Ulseth et al. 231 
(2019), calculated based on channel slope and water depth. Hyporheic exchange rates (khz) in 232 
this model represent turbulence-driven exchange across the sediment-water-interface based on 233 
surface renewal theory (Grant, Gomez-Velez, et al., 2018) that dominate overall water exchange 234 
fluxes (Grant, Azizian, et al., 2018; Harvey et al., 2019). The adaption to lakes and reservoirs is 235 
achieved by rearranging Eq. 2 such that it is based on 𝜏 rather than 𝑈, by incorporating 236 
alternative parameterizations for kCO2 and khz for lakes/reservoirs (Lorke & Peeters, 2006; 237 
Raymond et al., 2013; Read et al., 2012) (see SI for details). We note that khz for lakes/reservoirs 238 
represents benthic water-sediment fluxes (Lorke & Peeters, 2006). Lakes were assumed to be 239 
well mixed under long-term average conditions, meaning that lake stratification’s influence on 240 
residence time was not considered. We also assume that benthic and atmospheric lake interfaces 241 
were both equal to the lake’s surface area, acknowledging that many lakes have complicated and 242 
highly heterogenous morphologies. CO2 is converted between partial pressure and dissolved 243 
concentration using a temperature-dependent Henry’s constant. Within our modeling framework 244 
Chz and Fwc are free parameters, and the remaining variables are either fixed or calculated based 245 
on published scaling relationships (see SI for detailed parameterizations). 246 

We use a genetic algorithm (GA) to determine optimal parameter sets of Chz and Fwc to 247 
match GLORICH CO2 observations at the HUC2 scale. GAs do not rely on derivative 248 
information about one’s function a priori (unlike a gradient-based optimization method). Instead, 249 
GAs use many evolutions of parameter sampling to explore the solution space stochastically, 250 
though often they take a hybrid approach that leverages a gradient search within the GA. This is 251 
particularly useful for noisy solution spaces, problems that suffer from equifinality (multiple 252 
possible solutions to the same function due to due complex interactions of system processes- e.g. 253 
Beven, 1993), or when there is little prior knowledge of what the solution space looks like. 254 
Finally, because each ‘generation’ of GA evolution is composed of many independent model 255 
runs, GAs are readily parallelized and allow for straightforward computational scaling as 256 
required for the scale of this study (Mitchell, 1998). Our fitness function is specified as,  257 

 𝑐𝑜𝑠𝑡 = 2
|(5678&'()9:;<&'())|>|(5678*+,)*9:;<*+,)*)|

       (Eq. 3),  258 

which we sought to maximize, where pCO2,lake and pCO2,river are the model’s median HUC2 lake 259 
and river CO2 partial pressures, respectively, and callake and calriver are the upscaled CO2 partial 260 
pressures for lakes and rivers, respectively (Extended Data Table 2). The four parameters we 261 
calibrate are river Chz, lake/reservoir Chz, river Fwc, and lake/reservoir Fwc from equation 6. Cgw is 262 
held constant at 16,000 ppm (Kessler & Harvey, 2001; Macpherson, 2009) as groundwater was 263 
found to range from ~5,000 to 30,000 in the US and shallow groundwaters; however, we note we 264 
were not able to make groundwater spatially variable due to the lack of available groundwater 265 
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pCO2 data products. We note that these values are consistent with measured and calculated 266 
upland shallow groundwater pCO2 in stream carbon budget studies across a range of 267 
environments (Kirk & Cohen, 2023; Lupon et al., 2019; Saccardi & Winnick, 2021). We run the 268 
GA for 500 generations but terminate after 50 successive generations with no performance 269 
improvement. Each generation is composed of 25 individual runs. We terminate the calibration 270 
once the model cost goes below 10 ppm (or equivalently, 5 ppm per river or lake/reservoir). All 271 
modeling and geospatial analyses were run in R on the Unity Cluster at the Massachusetts Green 272 
High Performance Computing Center. Calibration results by basin are presented in 273 
Supplementary Figs. S11-S21.  274 

We define calibration uncertainty per basin as 𝛿FCO2,transport using equation 4, where 275 
kmedian is the median kCO2 across all reaches, Abasin is the total inland water surface area, and 276 
𝛿pCO2 is the calibration error for the median river/lake/reservoir. In effect, equation 4 applies the 277 
error in the median river/lake/reservoir pCO2 over the network’s entire surface area. We sum 278 
𝛿FCO2,transport across all basins to obtain a CONUS uncertainty estimate (error bar in Fig. 2c).  279 

𝛿𝐶𝑂8,@A;BC5DA@ = 𝑘EFGH;B𝛿𝑝𝐶𝑂8𝐴I;CHB                 (Eq. 4)  280 

 𝛿𝑝𝐶𝑂2	=	(1/𝑐𝑜𝑠𝑡)/2             (Eq. 5).  281 

2.3 Statistical Upscaling Model  282 

Our ‘statistical upscaling model’ is informed by previous approaches to estimating inland 283 
water CO2 emissions at large scales (Butman et al., 2016; Butman & Raymond, 2011; Lauerwald 284 
et al., 2023a; Liu, Kuhn, et al., 2022; Raymond et al., 2013). We calculate FCO2 using a 285 
regionally-lumped pCO2 and kCO2, separately for rivers and lakes/reservoirs. This regionally 286 
homogenous FCO2 is then applied to the region’s total inland water surface area to obtain a CO2 287 
emissions estimate. Following previous methods (Butman et al., 2016; Butman & Raymond, 288 
2011; Raymond et al., 2013), we calculate river lumped kCO2,upscale using mean kCO2 by stream 289 
order and then take the average of those values, weighted by stream order surface area (note that 290 
these approaches treat lakes/reservoirs as rivers during the stream order averaging- emissions are 291 
even higher when we remove them from the river network). This means that differences in FCO2 292 
estimates cannot come from different kCO2 equations, as kCO2 calculations are identical across all 293 
models. The only difference is the stream order averaging and lumping approach. We estimate 294 
this uncertainty (𝛿𝐹𝐶𝑂2,upscale) using equations 6-7, incorporating 𝑘CO2,upscale, and the total river 295 
surface area 𝐴river. In effect, equation 6 applies the error in 𝑘CO2,upscale over the network’s entire 296 
surface area. We sum 𝛿FCO2,upscale across all regions to obtain a CONUS uncertainty estimate 297 
(error bar in Fig. 1c).  298 

  𝛿𝐹𝐶𝑂8,X5C:;<F = 𝛿𝑘678𝑝𝐶𝑂8𝐴AHYFA                             (Eq. 6)  299 

    𝛿𝑘!"# = 𝑎𝑏𝑠$𝑘)*+,%- − 𝑘!"#,/012%3*(                        (Eq. 7).  300 

3 Results & Discussion 301 

3.1 Continental-scale flux estimates and regional patterns 302 
 303 



manuscript submitted to AGU Advances  

Following the calibration of our CO2 transport model production parameters, CONUS 304 
inland water emissions are estimated as 120±23 Tg-C yr-1 (Fig. 1) (uncertainty from Eq.’s 6,7).  305 
This estimate is larger than several previous CONUS estimates from statistical upscaling 306 
methods (Table S1), and results from our use of explicit, high-resolution NHD-HR hydrography 307 
rather than statistical river and pond size distributions for the smallest waterbodies. Specifically, 308 
NHD-HR hydrography features exponentially more small water bodies, in particular low Strahler 309 
order streams, with higher area-normalized fluxes than accounted for in previous studies. This 310 
result demonstrates the importance of using high resolution hydrography to capture the full 311 
extent of inland water surface area, as described in previous studies (e.g. Allen & Pavelsky, 312 
2018). To evaluate the direct impacts of incorporating transport constraints on CONUS CO2 313 
fluxes, we compare this estimate to one calculated using statistical upscaling techniques while 314 
applying the same gas exchange model to the same NHD-HR hydrography and interpolated 315 
average HUC2-level pCO2 values estimates, which yields total CONUS inland water fluxes of 316 
159+55 Tg-C yr-1 (Fig 1c) – a difference of 25%. 317 
 318 

Notably, the largest differences between the transport and statistical models occurs in the 319 
East and Midwest US where the transport model estimates significantly lower fluxes (p=0.008 320 
using paired samples Wilcoxon test). In the mountainous West, however, the transport model 321 
simulates slightly higher fluxes (Fig S2). Emission uncertainties due to model mechanics 322 
including calibration error for the transport model and uncertainties in stream order averaging for 323 
the upscaling model cannot alone explain the differences in flux estimates (Fig. 1c). Note that 324 
parameter uncertainty is identical between both models and so is not included here (see 325 
Methods). Instead, this difference in continental scale fluxes exclusively represents the transport 326 
model’s ability to reflect source limitations that result in lower CO2 concentrations in steep 327 
environments. This source limitation is demonstrated in Fig 1a, which plots model output 328 
distributions from the transport model, statistical model, and the global observational GLORICH 329 
dataset (Hartmann et al., 2014) in kCO2-pCO2 space overlaid on CO2 flux contours. As also 330 
shown in Fig. 1, the transport model provides a closer match to observed kCO2-pCO2 331 
distributions; the statistical model features higher average CO2 values for any given kCO2 value 332 
(and thus, higher fluxes), which is only partially offset by the lack of representation of high pCO2 333 
values at low kCO2 (i.e. reduced y-axis range of the blue contours). Together, these analyses 334 
suggest that incorporating realistic carbon source limitations via a hydrologic routing framework 335 
results in a significant reduction in total flux estimates relative to statistical models using the 336 
same observational constraints. Our estimated 25% reduction in total fluxes, though, is less than 337 
previously hypothesized (Rocher-Ros et al., 2019).  338 

Regionally, the transport model predicts that area-normalized inland water fluxes are 339 
highest in mountainous regions of the US (Fig. 2). This model result is driven by high kCO2 340 
values associated with steep topography coupled to elevated regional pCO2 observations in the 341 
GLORICH dataset. In the transport model, for example, rivers with slopes steeper than 0.03 342 
account for just 11% of stream surface area but contribute 46% of river emissions. The 343 
importance of mountainous environments has been previously demonstrated via statistical 344 
upscaling estimates (Horgby et al., 2019) and our median mountainous flux rates of 5.3 345 
kgC/m2/yr are comparable to median fluxes measured across the Swiss Alps of 3.5 kg-C/m2/yr 346 
(Horgby et al., 2019). We note that the continental-scale map in Fig. 2 visually overrepresents 347 
first order stream reaches with high fluxes (>10 kg-C/m2/yr) that feature the rapid degassing of 348 
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groundwater CO2 in steep terrain. These overall large fluxes simulated in the transport model 349 
may in part be due to biases in the GLORICH dataset that may not capture the steepest and most 350 
turbulent reaches with lower pCO2. This bias would lead to overestimates in regional pCO2 351 
averages in both the transport and statistical models (supplemental text 1.4 and 1.5). We also 352 
note that the hydrography underpinning our model is of a higher resolution than previous studies; 353 
we include many steep headwater streams that may lead to higher basin-aggregated flux 354 
estimates. Further, many of these headwaters are non-perennial streams (Brinkerhoff et al., 355 
2024a), which are a known uncertainty in global inland water CO2 emission estimates (Bretz et 356 
al., 2023; Lauerwald et al., 2023b) and may be underestimated globally (Keller et al., 2021; 357 
López-Rojo et al., 2024).While mountainous environments may feature reduced organic carbon 358 
for respiration, high erosion may provide increased particulate organic carbon substrate from the 359 
terrestrial environment (France-Lanord & Derry, 1997; Hilton & West, 2020) for stream corridor 360 
respiration. 361 

Regional patterns simulated in the transport model are susceptible to considerable 362 
uncertainty, particularly regarding the parameterization of constant groundwater pCO2 values.  363 
We simulate a constant groundwater pCO2 of 16,000 ppm based on a lack of robust spatial 364 
groundwater pCO2 data products and calibrate hyporheic zone CO2 transport and water column 365 
net respiration within both rivers and lake/reservoirs to match GLORICH pCO2 values at the 366 
HUC4 scale (see Methods). Based on this approach, our simulations do not incorporate direct 367 
mechanistic representations of CO2 production, but instead calibrate CO2 production parameters 368 
(net water column CO2 production rates and sediment-water-interface pCO2) within a 369 
mechanistic hydrologic framework (groundwater inputs, gas exchange velocity, downstream 370 
transport, and turbulent vertical hyporheic exchange) to find the production parameters that best 371 
match regionally representative stream CO2 observations. For example, if groundwater pCO2 372 
values are correlated with plant productivity via organic matter availability (Brook et al., 1983; 373 
Kessler & Harvey, 2001), we would expect lower groundwater pCO2 values in the mountainous 374 
West. While to first order this may result in reduced simulated montane CO2 fluxes, the model 375 
calibration would compensate for this reduced groundwater export with increased stream 376 
corridor CO2 production to best match the observational dataset. We note, however, that 377 
constraining spatial variability in groundwater pCO2 will provide better constraints on total 378 
inland water flux and source estimates.  379 

 380 
3.2 Sources of inland water CO2 emissions 381 

Stream corridor sources of CO2 make up the majority of emissions at the continental scale 382 
within the process-based model, especially in the West and in larger rivers (Fig 3a-c). These 383 
stream corridor sources, which include subsurface respiration within the benthic zone, hyporheic 384 
zone, and riparian subsurface, account for 84% of CO2 emissions across CONUS, with 385 
groundwater inputs accounting for the remaining 16%. We note that as above, these values are 386 
sensitive to our assumed groundwater pCO2; however, for groundwater sources to exceed stream 387 
corridor sources would require average groundwater pCO2 values of >50,000 ppm across 388 
CONUS, which is not supported by estimates of spatial soil pCO2 (Brook et al., 1983; Kessler & 389 
Harvey, 2001; Macpherson, 2009) or previous studies that have measured or calculated upland 390 
groundwater contributions to stream CO2 budgets (Kirk & Cohen, 2023; Lupon et al., 2019; 391 
Saccardi & Winnick, 2021). Our simulated stream corridor production of CO2 would require a 392 
terrestrial flux of organic carbon to inland waters of ~10 t C km-2 yr-1 from land surfaces to 393 
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sustain. This flux is within current estimates of terrestrial dissolved organic carbon exports of 1-394 
85 t C km-2 yr-1 in temperate and boreal regions (Hope et al., 1994; McCallister & del Giorgio, 395 
2012; T. R. Moore, 2003; Neff & Asner, 2001), which does not include additional particulate 396 
organic carbon and riparian zone soil processes that may further contribute to these fluxes, 397 
particularly in mountainous regions where physical erosion may enhance terrestrial contributions 398 
of particulate organic carbon (Hilton & West, 2020).  399 

Of these stream corridor CO2 sources, subsurface respiration within the stream corridor 400 
environment, facilitated by hyporheic exchange, is the largest simulated source of CO2 across 401 
CONUS, accounting for 82% of all carbon emitted by streams. Relative stream corridor source 402 
contributions show an east-west gradient with Western basin contributions averaging 87% 403 
compared to mean basin contributions of 57% in the East. Additionally, large rivers have greater 404 
proportional contributions from stream corridor subsurface respiration, with first through fifth 405 
orders receiving a median of 40%, 71%, 80%, 86%, and 90% of their CO2 from these sources, 406 
respectively (Fig 3d). This is consistent with previous studies that suggest internal CO2 407 
production becomes increasingly important at higher stream orders (Hotchkiss et al., 2015; 408 
Saccardi & Winnick, 2021) as proportional groundwater contributions to discharge decrease with 409 
stream size. This large proportion of stream corridor CO2 contributions aligns with upper 410 
estimates from mass balance considerations at the continental scale (~65-80%) (Butman & 411 
Raymond, 2011) and with a recent study finding that 87% of CO2 emissions are sourced from the 412 
stream corridor in a 5th order watershed in southeastern coastal plain Florida (Kirk & Cohen, 413 
2023). Notably, while our model parameterizes hyporheic exchange as occurring with the benthic 414 
zone of stream environments, the CO2 exchanged may integrate respiration occurring throughout 415 
the stream corridor environment including adjacent riparian zones as represented in Kirk & 416 
Cohen (2023) and described in our Methods. Based on model structure, this hyporheic CO2 417 
functionally represents the excess carbon needed beyond upland groundwater inputs to match 418 
regional mean riverine CO2 concentrations. Within the transport model, net water column 419 
respiration accounts for a relatively minor portion of total CO2 sources at 2%. This estimate is 420 
slightly below a previous CONUS estimate of ~4% (Butman & Raymond, 2011), which may be 421 
due to our incorporation of primary production into our net water column respiration term (see 422 
Methods). 423 

Overall, our finding that stream corridor sources account for the majority of riverine CO2 424 
emissions is consistent with previous studies that explicitly estimate upland groundwater CO2 425 
inputs to aquatic carbon budgets (Butman & Raymond, 2011; Kirk & Cohen, 2023; Rasilo et al., 426 
2017; Saccardi & Winnick, 2021). However, our modeled stream corridor CO2 production rates 427 
are significantly elevated relative to dissolved oxygen-based stream metabolism methods. For 428 
example, we simulate an average CONUS stream corridor net CO2 production rate of ~5.4 429 
gC/m2/d compared to median US stream metabolism NEP rates of 0.54 gC/m2/d (Bernhardt et 430 
al., 2022). Similarly, our estimate that 84% of CONUS riverine emissions reflect stream corridor 431 
respiration is significantly larger than Hotchkiss et al. (2015), who estimate that internally 432 
produced CO2 contributes 14% of emissions in small streams (<0.01m3s−1) and only 25-54% in 433 
large streams (>100m3 s−1) based on the difference between oxygen-based NEP and total CO2 434 
fluxes.  435 

Interestingly, these stream metabolism estimates (e.g. Appling et al., 2018; Battin et al., 436 
2023; Bernhardt et al., 2022; Hotchkiss et al., 2015) attribute oxygen under-saturation solely to 437 
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in-stream respiration, which potentially neglects inputs of low-oxygen groundwater associated 438 
with terrestrial respiration (e.g. Hall Jr. & Tank, 2005). Hotchkiss et al. (2015) and Kirk and 439 
Cohen (2023), for example, attribute measured CO2 emissions in excess of molar-equivalent 440 
oxygen uptake as reflecting groundwater and riparian zone CO2 inputs, respectively, with no 441 
associated oxygen deficit. Implicitly, this assumes that stream measurements of CO2 capture 442 
external terrestrial and near-stream inputs while oxygen measurements do not. While carbonate 443 
buffering reactions may allow for the retention of CO2 signals from discrete groundwater inputs 444 
for longer than dissolved oxygen signals (Stets et al., 2017) and may therefore integrate more 445 
upstream heterogeneity in production/input rates (Shangguan et al., 2024), these length scales are 446 
relatively small and do not impact steady-state CO2 versus dissolved oxygen concentrations in 447 
the case of diffuse groundwater inputs (Winnick & Saccardi, 2024). Notably, the explicit 448 
consideration of groundwater and near-stream oxygen deficits in stream metabolism budgets 449 
would likely increase the discrepancies between these carbon budgets based on dissolved oxygen 450 
versus ones that estimate upland groundwater contributions. Thus, reconciling our stream 451 
corridor respiration rates with stream metabolism measurements would require groundwater 452 
inputs to feature both extremely high pCO2 (~50,000 ppm to switch from stream corridor to 453 
groundwater-dominated fluxes and likely ~100,000 ppm to match median NEP observations) and 454 
near-atmospheric dissolved oxygen, which is not consistent with terrestrial respiration.  455 

This apparent paradox is reflective of what we see as a major gap between carbon 456 
budgets based on CO2 measurements versus dissolved oxygen measurements, which to our 457 
knowledge has not been previously articulated. As noted above, this gap is best represented by 458 
the fact that global inland carbon fluxes estimated from oxygen variations are only ~18% of 459 
carbon fluxes estimated from CO2 concentrations (Battin et al., 2023; Lauerwald et al., 2023b). 460 
While beyond the scope of this manuscript, this gap may reflect (1) systematic underestimates of 461 
carbon fluxes from oxygen variations, which may in part reflect metabolic study designs that 462 
seek to avoid reaches with discrete groundwater inputs; (2) systematic overestimates of carbon 463 
fluxes from CO2 variations; or (3) processes that significantly alter molar ratios of dissolved 464 
CO2:O2 such as carbonate buffering, alternative metabolic pathways including nitrification, 465 
denitrification, and methanogenesis, among others. This gap warrants further investigation, 466 
though we stress that despite being significantly larger than metabolism-based NEP, our stream 467 
corridor source contributions are consistent with other CO2 budget-based estimates (Butman & 468 
Raymond, 2011; Kirk & Cohen, 2023; Rasilo et al., 2017). 469 

Finally, our initial modeling confirms that rivers are the major sites of emission and are 470 
responsible for 94% of all emissions in the transport model results. Headwaters (first order 471 
streams) account for 15% of the river surface area but contribute 30% of total river CO2 472 
emissions (Fig. 3d). Larger rivers (fifth through eleventh orders) account for 55% of the stream 473 
surface area but only contribute 34% of total river CO2 emissions (Fig. 3d). This trend has been 474 
noted in other studies which find that first order streams are 7% of the surface area and 25% of 475 
river CO2 emissions (Raymond et al., 2013).  476 

Lakes and reservoirs contribute 6% of the modeled CONUS CO2 emissions and, on 477 
average across individual basins, contribute 9% of a basin’s CO2 emissions (Fig. 4). These 478 
numbers are smaller than previous estimates, as 1) we do not include the Great Lakes in our 479 
analysis, 2) we do not rely on statistical distributions for extrapolating pond sizes instead we use 480 
the NHD-HR which includes lakes down to 1 m2, and 3) we explicitly account for river/lake 481 
connectivity to avoid double counting of lakes as rivers. Additionally, we calibrate lakes using 482 
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HUC2 watersheds which are smaller and more representative of local conditions than earlier 483 
estimates as they do not extend to boreal and tropical regions which have elevated pCO2 in 484 
comparison to temperate regions (Sobek et al., 2005). Lakes and reservoirs exert a significant 485 
influence on CO2 emissions in lake-dense regions with high water tables. For example, 88% of 486 
emissions in south/central Florida and 70% in the Boundary Waters region come from 487 
lakes/reservoirs (Fig. 4). This trend is shown across CONUS, as percent lake emission 488 
contributions trend with the natural log of the total lake area per basin (R=0.45). Beyond the total 489 
lake area, field studies have noted that small lakes contribute proportionally more CO2 emissions 490 
than larger ones (Bogard & del Giorgio, 2016; Holgerson & Raymond, 2016; Schmadel et al., 491 
2019) due to their larger lakebed surface area to water volume ratio. This effect is simulated in 492 
our model, which explicitly represents these morphometric differences across lakes: small ponds 493 
(here defined as 0-0.1 km2) are only 11% of the total CONUS lake/reservoir surface area but are 494 
responsible for 65% of lake/reservoir CO2 emissions.  495 

Despite considerable uncertainty within our CONUS CO2 emissions estimates, CO2 496 
production parameterizations, and the associated breakdown of source contributions, the major 497 
takeaways from our analysis are unlikely to change. Specifically, (1) river emissions are an order 498 
of magnitude higher than lake/reservoir emissions at the continental scale, with some level of 499 
geographic variability associated with regional water table dynamics; (2) respiration within the 500 
subsurface stream corridor environment is the largest source of inland water CO2 emissions, 501 
followed by groundwater, with net water column respiration that accounts for the balance of 502 
respiration and primary production contributing a minor proportion of total emissions. While 503 
variability in groundwater pCO2 may alter regional partitioning estimates, average CONUS 504 
groundwater pCO2 would have to be >50,000 ppm to account for >50% of riverine CO2 fluxes 505 
assuming a 1:1 tradeoff in estimated groundwater v. stream corridor CO2 inputs and even higher 506 
to reconcile stream corridor respiration rates with oxygen-based NEP measurements. These 507 
elevated values appear unrealistic for the continental scale (Brook et al., 1983; Kessler & 508 
Harvey, 2001; Macpherson, 2009); however, the fundamental mismatch between carbon budgets 509 
based on CO2 fluxes versus those based on dissolved oxygen discussed above represents a 510 
significant uncertainty that should be investigated further. Taken together, our results suggest 511 
that the largest potential carbon cycle feedback mechanisms relate to hydraulic flow dynamics, 512 
which in turn alter terrestrial-aquatic connectivity, hyporheic exchange, and the export of 513 
terrestrial organic carbon that supports net aquatic respiration.  514 

 515 
4 Towards forward predictive models of CO2 emissions  516 

Our application of a hydrologic transport framework coupled to CO2 production rates 517 
represents a step towards fully integrating hydrologic and biogeochemical models at continental 518 
and global scales to predict inland water CO2 fluxes. Importantly, the presented framework 519 
provides a pathway to interrogate the mechanistic impacts of hydrology on flux estimates 520 
through direct representation of groundwater inputs, advection velocities, gas exchange 521 
velocities, and hyporheic exchange rates at stream reach scales. We emphasize that our results 522 
demonstrate the impacts of representing transport dynamics on estimates of fluxes and sources 523 
given the same data constraints as statistical upscaling models, and are not yet at the level of 524 
providing robust forward predications of inland water CO2 fluxes.  525 

Despite this progress, our ability to apply these models globally is still limited by a few 526 
issues. First is the lack of sufficient headwater representation in global hydrography data 527 
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products Spatial resolution of digital elevation models and remotely sensed imagery present a 528 
lower limit to the small streams we can observe and this has downstream effects on our ability to 529 
model solute exchange along river networks (Brinkerhoff 2024). Additionally, the majority of 530 
these small streams are non-perennial (Brinkerhoff et al., 2024; Messager et al., 2021), meaning 531 
they do not flow year-round and represent a critical nexus for terrestrial recruitment of solutes 532 
(Benstead & Leigh, 2012), including terrestrially-produced CO2 (Gómez-Gener et al., 2016; 533 
Silverthorn et al., 2024).  534 

Second, the largest barrier for moving towards more accurate continental-scale CO2 flux 535 
estimates is the paucity of observational datasets. This is particularly true for streams with the 536 
steepest topography as discussed above, which may lead to overestimates in CO2 fluxes from 537 
mountainous environments. Additionally, while recent advances have allowed for the direct 538 
measurements of pCO2 in surface waters, most published data including the GLORICH database 539 
used in our model calibration is based on carbonate speciation calculations using measured pH 540 
and alkalinity. Previous studies have shown that these methods are subject to significant error, 541 
particularly under low pH conditions (Abril et al., 2015; Raymond et al., 2013). While we have 542 
sought to minimize this potential error via filtering (Section 2.1), a cursory comparison of 543 
GLORICH data to the direct CO2 measurements used in Liu et al. (2022) suggests a potential 544 
overestimate of mean pCO2 based on speciation calculations (Supplementary Information); 545 
however, differences between GLORICH and Liu et al. (2022) data are not statistically 546 
significant given the large standard deviation of GLORICH values, and this difference is not 547 
present when comparing HUC2-averaged values with the Liu et al. (2022) dataset. While the 548 
potential for artificially high pCO2 may lead to lower total estimated fluxes as well as lower 549 
contributions from stream corridor respiration given the same parameterized groundwater CO2 550 
inputs, we note that these reductions in total fluxes are similar for the transport and statistical 551 
models (SI). 552 

At present, our ability to represent groundwater CO2 inputs is also limited by the lack of 553 
publicly available large-scale spatial groundwater chemistry data products and is thus a top 554 
priority for providing more accurate regional flux and source partitioning estimates. In particular, 555 
groundwater CO2 and dissolved oxygen datasets will be crucial to evaluating the large 556 
discrepancies between carbon source partitioning estimates from CO2 measurements versus 557 
stream metabolism calculations. As described above, robust spatially- and temporally-variable 558 
groundwater CO2 datasets would allow for both more robust flux estimates and source 559 
distributions within the presented calibration framework, and could also allow for predictive 560 
forward modelling with independently validated carbon input variables. We also note that while 561 
our calibration framework is flexible to incorporate additional CO2 inputs from connected 562 
wetland environments, provided they are adequately represented in the observational calibration 563 
datasets, these fluxes are tied via calibration to hyporheic exchange rates rather than groundwater 564 
input rates based on our current model framework. Future work is necessary to account for 565 
wetland-impacted groundwater input rates which have been shown to scale with degree of 566 
wetland connectivity across CONUS (Leibowitz et al., 2023).  567 

While the expansion of observational datasets is vital to providing accurate and validated 568 
estimates of average inland water CO2 emissions, forward predictions of emission fluxes will 569 
further require scalable biogeochemical models that capture spatiotemporal variability in carbon 570 
transformations. As noted, while our transport model incorporates direct estimates of advective 571 
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transport, groundwater inflow rates, gas exchange, and hyporheic exchange as a function of 572 
geomorphology and flow conditions, the CO2 concentrations associated with groundwater, 573 
hyporheic exchange, and in-stream processing are currently estimated and calibrated to 574 
observations. Recently, carbonate buffering dynamics have been incorporated into similar stream 575 
network carbon frameworks (Winnick & Saccardi, 2024), and may help to interrogate 576 
differences in oxygen- versus CO2-based carbon budgets. However, models that can accurately 577 
predict in-stream metabolism, terrestrial carbon exports via groundwater, and hyporheic zone 578 
processing across lotic and lentic environments with limited or coarse-resolution substrate data  579 
remain elusive are an important avenue towards predicting the response of inland water CO2 580 
emissions to anthropogenic climate change. 581 

 582 
Mechanistic biogeochemical models will also allow for estimating estimating temporal 583 

variability in CONUS-level CO2 dynamics, which may allow for more accurate total flux 584 
estimates. Specifically, studies suggest variable and non-linear changes in CO2 concentrations 585 
and fluxes in response to hydrologic changes including storm events (Aho & Raymond, 2019; 586 
Conroy et al., 2023; Crawford et al., 2017; Dinsmore et al., 2013; Dinsmore & Billett, 2008; 587 
Duvert et al., 2018). Thus, estimates of CO2 emissions under mean annual flow conditions may 588 
not represent mean CO2 fluxes that integrate temporal variability. Though our modeling 589 
framework can simulate the impacts of hydrologic variability on its own in terms of groundwater 590 
inputs, hyporheic exchange rates, and gas exchange rates, we cannot presently account for 591 
temporal changes in CO2 production parameters. As it relates to observational datasets that 592 
would allow for time-dependent calibration of CO2 production parameters, this limitation is 593 
unlikely to be addressed in the near future. Instead, the potential for providing time-variable 594 
simulations relies on either (1) the incorporation of process-based models for stream metabolism 595 
and groundwater CO2 variability; or (2) the application of machine learning techniques to 596 
provide time-varying estimates of these parameters.  597 
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Figure Captions 1056 

Figure 1. Process-based transport model emulates the distribution of in situ data: (A) pCO2 versus k600 for the 1057 
statistical upscaling model (blue lines) and our process based transport model (orange lines), both compared against 1058 
GLORICH data with data source locations mapped in (B). To aid in visualization, we plot these models and data as 1059 
the isolines for the bivariate kernel density space, showing 5 bands of equal relative likelihood that a pCO2-k600 pair 1060 
falls along that isoline. This probability increases with linewidth, i.e. the thicker isolines have more data. Note the 1061 
outermost region extends beyond the axis limits. For both models, we randomly sampled 1,000 reaches from each of 1062 
the 206 basins. All three use the same model for k600 (see Methods). Grey shading is the hypothetical FCO2 flux (at 1063 
20 degrees celsius) for all possible pairs of pCO2 and k600, i.e. FCO2 increases towards the upper-right corner of A. 1064 
(C) Comparison of total CO2 emissions from CONUS inland waters, estimated via both models. Colors match 1065 
subplot A. Error bars refer to model uncertainty (Eq 6,7) alone; parameter uncertainty is identical across both 1066 
models and so not included here (see Main text and Methods).  1067 
 1068 
Figure 2. River/lake/reservoir CO2 emissions for United States inland waters. Area-normalized FCO2 at mean 1069 
annual flow for over 22M inland waters. Lakes/reservoirs (and their associated CO2 fluxes) are also plotted in the 1070 
two smallest-scale inset maps to highlight hydrological connectivity. Reach width in the inset maps is scaled to 1071 
discharge- thicker lines have more flow. Note that at the continental scale, headwater streams with the highest 1072 
overall CO2 fluxes are visually overrepresented based on the number of individual reaches. 1073 

Figure 3. Sources of inland water CO2 emissions. A-C: Percent of CO2 lost from a basin that is attributed to stream 1074 
corridor subsurface respiration (A), upland groundwater CO2 (B), and net water-column respiration (C). D: Percent 1075 
of CO2 emissions attributed to the same mechanisms as A-C by stream order; boxplots are composed of the median 1076 
percent value per basin per stream order. See Methods for these calculations at the basin-scale (A-C) and the reach-1077 
scale (D). Note we lump high stream orders (seven and above) due to the small number of basins with this many 1078 
stream orders and to represent network main stems as a single boxplot. SFig. 9 separates D by eastern and western 1079 
CONUS basins.  1080 

Figure 4. Lake and reservoir influence on inland water CO2 emissions. Percent of CO2 emissions via 1081 
lakes/reservoirs and estimated using the process-based transport model.  1082 
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