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Key Points:

*  We develop and calibrate a river network carbon dioxide transport model for the
continental United States to estimate emission fluxes

* Compared to previous methods, this model simulates 25% lower carbon dioxide
emissions using the same data constraints

» Stream corridor respiration dominates over groundwater sources, but better source
constraints are needed for accurate forward predictions
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Abstract

Inland waters emit significant amounts of carbon dioxide (CO.) to the atmosphere; however, the
global magnitude and source distribution of inland water CO> emissions remain uncertain. These
fluxes have previously been ‘statistically upscaled’ by independently estimating dissolved CO>
concentrations and gas exchange velocities to calculate fluxes. This scaling, while robust and
defensible, has known limitations in representing carbon source limitations and spatial
variability. Here, we develop and calibrate a CO; transport model for the continental United
States, simulating carbon transport and transformation in >22 million hydraulically connected
rivers, lakes, and reservoirs. We estimate 25% lower CO; fluxes compared to upscaling estimates
forced by the same observational calibration data. While precise CO; source distribution
estimates are limited by the resolution of model parameterizations, our model suggests that
stream corridor CO; production dominates over groundwater inputs at the continental scale. Our
results further suggest that the lack of observational networks for groundwater CO and scalable
metabolic models of aquatic CO> production remain the most salient barriers to further coupling
of our model with other Earth system components.

Plain Language Summary

Inland water CO; emissions are recognized as an important but highly uncertain component of
the global carbon cycle. Estimates rely on methods that statistically upscale point observations
that are unable to account for the distribution and limits of CO» sources. Here we present a first
step towards distributed process-based models that link CO» fluxes to water transport in
connected rivers, lakes, and reservoirs at the continental scale. We show that using the same data
constraints, incorporating water transport results in a 25% reduction relative to previous methods
in estimated inland water CO; fluxes over the continental United States. We identify barriers to
monitoring and prediction that will enable the incorporation of inland water carbon into earth
system models and global budgets.

1 Introduction

Inland waters, here comprising rivers, lakes, and reservoirs, are an integral component of
the global carbon cycle, particularly in their role in emitting CO; to the atmosphere. Recent
estimates of CO; fluxes from inland waters are on the order of 1.5 Pg-C yr! (Lauerwald et al.,
2023b), roughly 15% of anthropogenic emissions (Friedlingstein et al., 2022) and similar to the
net terrestrial carbon sink (Cavallaro et al., 2018; Keenan & Williams, 2018). These estimates
have steadily risen over the past decade (Drake et al., 2018) with increasing satellite resolution of
lotic environments (Allen & Pavelsky, 2018) and extensive sampling campaigns in tropical
environments (Borges et al., 2015; Sawakuchi et al., 2017). Despite our growing knowledge,
estimates remain highly uncertain due to the inherent challenges of upscaling point
measurements of stream CO; concentrations, which can vary by orders of magnitude over short
reaches (Duvert et al., 2018; Johnson et al., 2008; Lupon et al., 2019), and due to a lack of
representation of inland water CO> fluxes in global carbon cycle models (Friedlingstein et al.,
2022). Additional uncertainty is derived from systematic errors associated with physical
hydraulic constraints on dissolved CO; concentrations (Rocher-Ros et al., 2019; Saccardi &
Winnick, 2021) and the artificial separation of lotic and lentic environment flux estimates
(Brinkerhoff et al., 2021). A number of studies have thus called for process-based models to



58
59
60
61
62
63
64
65

66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
&3
84
&5
86
87
38
89
90
91
92
93
94
95
96
97
98
99
100
101
102

manuscript submitted to AGU Advances

advance total flux estimates and to better facilitate monitoring and prediction efforts to gauge the
response of inland water carbon cycling to climate change (Battin et al., 2023; Duvert et al.,
2018).

Inland water CO» fluxes represent the culmination of CO; transported from soil and
groundwater environments, as well as CO; produced internally via respiration in aquatic and
hyporheic environments as balanced by photosynthetic uptake (Duvert et al., 2018; Gomez-
Gener et al., 2021; Hotchkiss et al., 2015). Evasion fluxes of CO;

(Fco2; mol m2 s7!) from inland waters are calculated as,

FCOZ = kCOZ(COZ(aq) - Catm) (Eq 1)9

where kco: is the gas exchange velocity of CO2 (m s™), CO:y is the dissolved CO,
concentration (mol m=), and Cusm is the atmospheric-equilibrated concentration of CO> (mol m-
3). Current best estimates of global CO» contributions from inland waters (Butman & Raymond,
2011; Lauerwald et al., 2015, 2023a, 2023b; Liu, Kuhn, et al., 2022; Raymond et al., 2013) rely
on ‘statistical upscaling’ methods, in which water pCO is scaled using regional observational
averages (Butman et al., 2016; Butman & Raymond, 2011; Lauerwald et al., 2023a, 2023b;
Raymond et al., 2013) or by relating observations of CO» concentrations to watershed
characteristics and applying those statistical relationships globally (Horgby et al., 2019;
Lauerwald et al., 2015; Liu, Kuhn, et al., 2022). kcoz is typically estimated by applying empirical
relationships from observational studies via stream discharge and slope (Raymond et al., 2012;
Ulseth et al., 2019) and scaled as a single value across entire watersheds (Butman et al., 2016;
Butman & Raymond, 2011; Raymond et al., 2013). Despite the significant progress that
statistical upscaling has enabled, independent treatment of COx(q) and kcoz within upscaling
calculations is not consistent with established hydraulic controls on kco2 (Brinkerhoff et al.,
2022; Raymond et al., 2012; Ulseth et al., 2019) or recent work showing COx(.q) rarely reaches
elevated levels when kcoo is high (Rocher-Ros et al., 2019; Saccardi & Winnick, 2021) (Fig. 1).
The absence of high stream COxq) values under turbulent, high kco2 conditions is due to source
limitations on CO; inputs that are unable to keep pace with evasion rates, and studies have
shown that statistical models’ inability to account for these limitations may lead to overestimates
in global CO; fluxes by as much as 50% (Rocher-Ros et al., 2019; Saccardi & Winnick, 2021).
This potential error reflects that fact that under CO: source limitations, the product of mean kco2
and mean COxq) values (statistical upscaling methods) is higher than the mean of local kco2 and
CO2(aq) products. A recent study of global methane fluxes suggests that machine-learning
algorithms are also subject to overestimating gas fluxes from turbulent reaches (Rocher-Ros et
al., 2023).

The distribution of inland water CO» sources also represents a significant knowledge gap,
both in terms of where CO; is emitted (i.e. rivers v. lakes/reservoirs) and the balance of terrestrial
versus internal CO; production. Constraining the latter is particularly important to better gauge
potential carbon cycle feedbacks, and previous work presents conflicting findings. Broadly,
studies that focus on scaling CO; fluxes based on direct concentration measurements and
carbonate speciation calculations identify stream corridor production as the dominant source
(Butman & Raymond, 2011; Kirk & Cohen, 2023; Rasilo et al., 2017; Saccardi & Winnick,
2021), whereas stream metabolism measurements based on diel dissolved oxygen variations
identify external groundwater inputs as dominating CO; budgets (Hotchkiss et al., 2015). Stream
reach and watershed scale studies of CO> budgets, for example, suggest that stream corridor CO>
sources may dominate in all but headwater stream systems (Kirk & Cohen, 2023; Rasilo et al.,
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2017; Saccardi & Winnick, 2021). Continental-scale CO; flux estimates further suggest that
terrestrial sources can only account for ~25% of inland water CO» gas fluxes assuming relatively
high groundwater pCO- values of 25,000 ppm (Butman & Raymond, 2011). In contrast,
comparison of dissolved oxygen-based stream metabolism estimates and CO; fluxes at stream
sites across the US suggest that terrestrial groundwater inputs dominate across all stream
environments (Hotchkiss et al., 2015). Generally, oxygen-based estimates of stream net
ecosystem production (NEP) of carbon are relatively low (Bernhardt et al., 2022), with global
estimates of 0.27 Pg-C yr'! (Battin et al., 2023) contributing only 18% of the estimated 1.5 Pg-C
yr'! global inland water CO, emissions (Lauerwald et al., 2023a). Additionally, soil respiration
metrics are among the strongest statistical predictors of stream pCO> (Liu, Kuhn, et al., 2022).

Process-based transport models with distributed CO; source and sink representation,
proper hydrographic representation, and explicit downstream routing have the potential to
address many of these uncertainties and knowledge gaps. Specifically, transport models
incorporate a hydrologic system’s upstream history and have been applied at the watershed scale
to predict the downstream transport of CO; (Brinkerhoff et al., 2021; Saccardi & Winnick, 2021),
dissolved organic carbon (DOC) (Maavara et al., 2023), and other nutrients (Schmadel et al.,
2018, 2019; Segatto et al., 2023). These transport models also enable explicit modeling of river
corridor connectivity, including lake and reservoir connectivity, to the river network
(Brinkerhoff, 2024). The latter was recently shown to exert controls on carbon/nutrient transport
through inland waters (Brinkerhoff et al., 2021; Liu, Maavara, et al., 2022; Maavara et al., 2023;
Schmadel et al., 2018, 2019). Likewise, considerable progress has been made in mapping
hydrography globally for millions of rivers, lakes, and reservoirs (Lehner et al., 2008; Lin et al.,
2021; Messager et al., 2016; R. B. Moore et al., 2019; Sikder et al., 2021; Wang et al., 2022), but
the missing link to deploy these advances has been efficient computation for process-based
transport models at scale. Here, we demonstrate the potential for coupled hydrologic and
biogeochemical models that extend and expand upon statistical upscaling to advance our
understanding of inland water CO> fluxes.

We calibrate and deploy a CO; transport model for over 22 million rivers, lakes, and
reservoirs across the continental United States (CONUS) at mean annual flow for 1970-2000,
which explicitly simulates advection of CO> from headwaters to the sea and reach-scale CO:
production from net respiration within the stream channel (respiration — primary productivity),
respiration within the stream corridor subsurface introduced via hyporheic exchange, and lateral
groundwater CO> inputs. We assess the difference in CONUS-scale fluxes between our transport
model and previous statistical upscaling techniques using identical observational constraints. We
further evaluate the magnitude and uncertainties of modelled COz source distributions (lotic v.
lentic and external v. internal) and identify the most salient barriers towards providing robust
CO; estimates from process-based models that must be addressed moving forward.

2 Materials and Methods

To ask how the distributed nature of hydrography and CO» sources along the stream-to-
ocean continuum impacts continental-scale CO» flux estimates, we use the same CO; data to
drive two different models for the CONUS CO: emissions and compare the differences in the
resulting estimates. These two models are a process-based transport model and a traditional
statistical upscaling model. A more detailed description of modeling methods is included in the
Supplemental Information, and all model validation and calibration performance analyses are
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detailed in Supplementary Figs. S9-S21 and Supplementary Table S3-S4. It is important to stress
that we do not aim to reproduce COx concentrations in individual rivers, nor do we aim to rectify
any biases in existing CO; databases or statistical upscaling methods. By using the same CO» data
for all tested models, we specifically isolate the role that heterogeneous hydrography and CO-
sources play in continental-scale flux estimates.

2.1 Dissolved CO; data

All models presented are either run or calibrated using the same CO- data. These data are
obtained from the GLORICH database (Hartmann et al., 2014), which includes 1.27 million
samples from across the world. Riverine COz is calculated from GLORICH measurements of
alkalinity and pH, although there is a long-standing concern for overestimation of CO; via this
approach in acidic waters as small errors in pH leads to large errors in calculated CO2 (Abril et
al., 2015; Liu et al., 2020). To address this problem in this study, we filtered GLORICH for
samples with a pH >5.4, and took the median value at an individual sample location resulting in
6,324 CO; estimates across the CONUS. We then mapped these 6,324 samples to US regions
using an inverse distance weighted approach to make an interpolated grid with 0.5x0.5 degree
resolution following previous similar work (Raymond et al., 2013). This grid was cut to each
CONUS region as defined by our hydrography and the mean CO; was calculated and used for
model calibration and/or forcing. To obtain lake/reservoir CO» estimates, we follow the method
described in Raymond et al. (2013) using CO: data from the GLORICH database. This method
requires estimates of lake surface area and dissolved organic carbon (DOC) per region. We
calculate lake surface area for each region from the global lakes and wetlands database (GLWD)
(Lehner & D611, 2004) by summing the estimated surface area of five lake size classes. We
calculate each size class surface area by multiplying the estimated cumulative abundance by
mean surface area. We estimate the lake DOC for each region by taking the DOC value at the
river mouth with the largest discharge from the GLOBALNEWS dataset (Mayorga et al., 2010).
If the region does not discharge into the ocean directly, we use the DOC of the region it
discharged into. For endorheic basins, we use a median lake pCO; of 340 ppm following the
Raymond et al. (2013) analysis.

2.2 CO; Transport Model

The underlying hydrology and hydrography are an extension of a previously developed
river/lake/reservoir COx routing framework (Brinkerhoff et al., 2021), which explicitly coupled
rivers, lakes and reservoirs into a routing scheme that enabled offline solute transport modeling
in the Connecticut River watershed. Here, we extend this framework to CONUS using the USGS
National Hydrography Dataset High-Resolution (R. B. Moore et al., 2019) (NHD-HR), excluding
the Mexican and Canadian basins that do not directly flow into CONUS. Additionally, the NHD-
HR is discretized into ‘reaches’, or mass-conserved segments of river, lake, or reservoir.
Network topology is maintained through lakes/reservoirs via artificial flowlines. We assign
fractions of lakes/reservoir morphometry to the artificial flow lines to account for complex
waterbodies with multiple inflows (Brinkerhoff et al., 2021). Further details on preprocessing the
NHD-HR for our modeling are provided in the Supplementary Information.

The NHD-HR features a nested basin scheme. We run our analysis at the 4th level
(HUC4) due to computation, data availability, and ease of interpretation. We split the 4th-level
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basin for coastal Washington State into two separate basins (coastal catchments on either side of
the Columbia River) to ease computation requirements (the two sub-basins are added back
together as a single basin in our presented results). CO, data are calibrated at the 2"¢ watershed
level (HUC2), which are regional amalgamations of 4th level basins. We also run our statistical
upscaling analysis at the 2" level.

To run the model on a drainage network, we use estimates of reach-level discharge
(O, m’s!), surface area (4, m?), hydraulic residence time (z, s), bed slope (S, m m™!), mean depth
(H,.m), and additionally for rivers, width (W, m) and mean flow velocity (U, m s7). S is provided
in the NHD-HR and calculated from a digital elevation model, and for missing values we use the
average S across the immediately upstream reaches. We use the mean annual discharge model
provided with the NHD-HR, described in detail in the SI (R. B. Moore et al., 2019). We validate
the discharge model against observed mean annual flow for 1970-2018 in reaches with
corresponding stream gauges (Fig. S10). For ‘emergent’ streams we set the emergent discharge
at the upstream end of the reach to reflect initial streamflow conditions for the start of the
network. We use a consistent emergent stream width of approximately 30cm, identified in
headwater networks around the world (Allen et al., 2018). The remaining variables are calculated
based on hydraulic geometry and global database fitting as discussed in the Supplement.

We adapt a previously developed CO; stream network model (Saccardi & Winnick,
2021) to incorporate lakes and reservoirs, as,

dc dc  1dQ k knz
= Ut aar Cow =€) = TF (€= Carn) + 37 Crat Fue - (Bq.2),

where C is the concentration of dissolved CO, (mol m™), x is distance along a reach (m), Cy,and
Cam are dissolved CO» concentrations of groundwater and atmosphere-equilibrated water (mol
m™), respectively, Cy. is the difference in dissolved CO; between the stream and the hyporheic
zone (mol m™), F\. is the water column net respiration rate (mol ms™!), and ;. is the hyporheic
exchange velocity (m s™!).

Based on our model framework, CO- sources are classified as (1) upland groundwater
inputs, representing terrestrial respiration and subsurface water-rock interactions that scale with
upstream contributing area and a set groundwater CO; concentration; (2) net respiration within
the surface water column, and (3) respiration within the subsurface stream corridor environment
comprising stream benthic zones, the hyporheic zone, and near-stream riparian zones and
floodplains (Fig. S1). In terms of stream corridor subsurface respiration, these input fluxes are
modeled via turbulent exchange across the stream’s sediment-water-interface (e.g. Grant,
Azizian, et al., 2018; Winnick, 2021), where elevated CO, concentrations at the sediment-water-
interface represent the accumulated respiration from the subsurface stream corridor. As these Cj.:
values are calibrated based on observational stream COq) data, along with Fyc, they physically
represent the integrated stream corridor respiration needed to match regional CO» observations in
excess of upland groundwater inputs.
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This model, based on traditional solute transport frameworks (e.g. Bencala & Walters,
1983), represents downstream solute advection, solute inputs from lateral groundwater inputs,
atmospheric equilibration, solute inputs from the subsurface stream corridor environment
facilitated by hyporheic exchange, and net solute production within the water column. Within
stream environments, kcoz is parameterized using the empirical relationships from Ulseth et al.
(2019), calculated based on channel slope and water depth. Hyporheic exchange rates (kn,) in
this model represent turbulence-driven exchange across the sediment-water-interface based on
surface renewal theory (Grant, Gomez-Velez, et al., 2018) that dominate overall water exchange
fluxes (Grant, Azizian, et al., 2018; Harvey et al., 2019). The adaption to lakes and reservoirs is
achieved by rearranging Eq. 2 such that it is based on 7 rather than U, by incorporating
alternative parameterizations for kco: and ki for lakes/reservoirs (Lorke & Peeters, 2006;
Raymond et al., 2013; Read et al., 2012) (see SI for details). We note that ;. for lakes/reservoirs
represents benthic water-sediment fluxes (Lorke & Peeters, 2006). Lakes were assumed to be
well mixed under long-term average conditions, meaning that lake stratification’s influence on
residence time was not considered. We also assume that benthic and atmospheric lake interfaces
were both equal to the lake’s surface area, acknowledging that many lakes have complicated and
highly heterogenous morphologies. CO: is converted between partial pressure and dissolved
concentration using a temperature-dependent Henry’s constant. Within our modeling framework
Ch: and F\,c are free parameters, and the remaining variables are either fixed or calculated based
on published scaling relationships (see SI for detailed parameterizations).

We use a genetic algorithm (GA) to determine optimal parameter sets of Cj. and F),. to
match GLORICH CO: observations at the HUC2 scale. GAs do not rely on derivative
information about one’s function a priori (unlike a gradient-based optimization method). Instead,
GAs use many evolutions of parameter sampling to explore the solution space stochastically,
though often they take a hybrid approach that leverages a gradient search within the GA. This is
particularly useful for noisy solution spaces, problems that suffer from equifinality (multiple
possible solutions to the same function due to due complex interactions of system processes- €.g.
Beven, 1993), or when there is little prior knowledge of what the solution space looks like.
Finally, because each ‘generation’ of GA evolution is composed of many independent model
runs, GAs are readily parallelized and allow for straightforward computational scaling as
required for the scale of this study (Mitchell, 1998). Our fitness function is specified as,

cost = L (Eq. 3),

[((pCO21qke—caligre) |+|(PCO21iper—calyiver)|

which we sought to maximize, where pCO: iuke and pCO2,iver are the model’s median HUC2 lake
and river COz partial pressures, respectively, and calue and calyiver are the upscaled CO> partial
pressures for lakes and rivers, respectively (Extended Data Table 2). The four parameters we
calibrate are river Cj, lake/reservoir Cy, river F,., and lake/reservoir F),. from equation 6. Cg, is
held constant at 16,000 ppm (Kessler & Harvey, 2001; Macpherson, 2009) as groundwater was
found to range from ~5,000 to 30,000 in the US and shallow groundwaters; however, we note we
were not able to make groundwater spatially variable due to the lack of available groundwater
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pCO; data products. We note that these values are consistent with measured and calculated
upland shallow groundwater pCO- in stream carbon budget studies across a range of
environments (Kirk & Cohen, 2023; Lupon et al., 2019; Saccardi & Winnick, 2021). We run the
GA for 500 generations but terminate after 50 successive generations with no performance
improvement. Each generation is composed of 25 individual runs. We terminate the calibration
once the model cost goes below 10 ppm (or equivalently, 5 ppm per river or lake/reservoir). All
modeling and geospatial analyses were run in R on the Unity Cluster at the Massachusetts Green
High Performance Computing Center. Calibration results by basin are presented in
Supplementary Figs. S11-S21.

We define calibration uncertainty per basin as § FCO: yanspors USing equation 4, where
Fkmedian 18 the median kco, across all reaches, Apqsin 1S the total inland water surface area, and
6pCO: is the calibration error for the median river/lake/reservoir. In effect, equation 4 applies the
error in the median river/lake/reservoir pCO: over the network’s entire surface area. We sum
OFCO:z transport across all basins to obtain a CONUS uncertainty estimate (error bar in Fig. 2c).

5602,transport = kmedian8pCOZAbasin (Eq 4)
6pCO2= (1/cost)/2 (Eq. 5).
2.3 Statistical Upscaling Model

Our ‘statistical upscaling model’ is informed by previous approaches to estimating inland
water CO; emissions at large scales (Butman et al., 2016; Butman & Raymond, 2011; Lauerwald
et al., 2023a; Liu, Kuhn, et al., 2022; Raymond et al., 2013). We calculate FCO:using a
regionally-lumped pCO; and kco2, separately for rivers and lakes/reservoirs. This regionally
homogenous FCO:is then applied to the region’s total inland water surface area to obtain a CO»
emissions estimate. Following previous methods (Butman et al., 2016; Butman & Raymond,
2011; Raymond et al., 2013), we calculate river lumped kcoz upscate using mean kcoz by stream
order and then take the average of those values, weighted by stream order surface area (note that
these approaches treat lakes/reservoirs as rivers during the stream order averaging- emissions are
even higher when we remove them from the river network). This means that differences in FCO;
estimates cannot come from different kcoz equations, as kcoz calculations are identical across all
models. The only difference is the stream order averaging and lumping approach. We estimate
this uncertainty (8F CO2,upscale) using equations 6-7, incorporating kcoz,upscale, and the total river
surface area Arver. In effect, equation 6 applies the error in kcoz upscale OVer the network’s entire
surface area. We sum §FCO: pscate across all regions to obtain a CONUS uncertainty estimate
(error bar in Fig. 1c¢).

8FC02,upscale = (SkCOZPCOZAriver (Eq 6)

Okcoz = abs(kmedian - kCOZ,upscale) (Eq. 7).
3 Results & Discussion

3.1 Continental-scale flux estimates and regional patterns



304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

339
340
341
342
343
344
345
346
347
348

manuscript submitted to AGU Advances

Following the calibration of our CO; transport model production parameters, CONUS
inland water emissions are estimated as 120+23 Tg-C yr'! (Fig. 1) (uncertainty from Eq.’s 6,7).
This estimate is larger than several previous CONUS estimates from statistical upscaling
methods (Table S1), and results from our use of explicit, high-resolution NHD-HR hydrography
rather than statistical river and pond size distributions for the smallest waterbodies. Specifically,
NHD-HR hydrography features exponentially more small water bodies, in particular low Strahler
order streams, with higher area-normalized fluxes than accounted for in previous studies. This
result demonstrates the importance of using high resolution hydrography to capture the full
extent of inland water surface area, as described in previous studies (e.g. Allen & Pavelsky,
2018). To evaluate the direct impacts of incorporating transport constraints on CONUS CO»
fluxes, we compare this estimate to one calculated using statistical upscaling techniques while
applying the same gas exchange model to the same NHD-HR hydrography and interpolated
average HUC2-level pCO; values estimates, which yields total CONUS inland water fluxes of
159+55 Tg-C yr'! (Fig 1¢) — a difference of 25%.

Notably, the largest differences between the transport and statistical models occurs in the
East and Midwest US where the transport model estimates significantly lower fluxes (p=0.008
using paired samples Wilcoxon test). In the mountainous West, however, the transport model
simulates slightly higher fluxes (Fig S2). Emission uncertainties due to model mechanics
including calibration error for the transport model and uncertainties in stream order averaging for
the upscaling model cannot alone explain the differences in flux estimates (Fig. 1¢). Note that
parameter uncertainty is identical between both models and so is not included here (see
Methods). Instead, this difference in continental scale fluxes exclusively represents the transport
model’s ability to reflect source limitations that result in lower CO2 concentrations in steep
environments. This source limitation is demonstrated in Fig 1a, which plots model output
distributions from the transport model, statistical model, and the global observational GLORICH
dataset (Hartmann et al., 2014) in kco2-pCO» space overlaid on CO; flux contours. As also
shown in Fig. 1, the transport model provides a closer match to observed kco2-pCO:>
distributions; the statistical model features higher average CO- values for any given kco> value
(and thus, higher fluxes), which is only partially offset by the lack of representation of high pCO»
values at low kco> (i.e. reduced y-axis range of the blue contours). Together, these analyses
suggest that incorporating realistic carbon source limitations via a hydrologic routing framework
results in a significant reduction in total flux estimates relative to statistical models using the
same observational constraints. Our estimated 25% reduction in total fluxes, though, is less than
previously hypothesized (Rocher-Ros et al., 2019).

Regionally, the transport model predicts that area-normalized inland water fluxes are
highest in mountainous regions of the US (Fig. 2). This model result is driven by high kco2
values associated with steep topography coupled to elevated regional pCO> observations in the
GLORICH dataset. In the transport model, for example, rivers with slopes steeper than 0.03
account for just 11% of stream surface area but contribute 46% of river emissions. The
importance of mountainous environments has been previously demonstrated via statistical
upscaling estimates (Horgby et al., 2019) and our median mountainous flux rates of 5.3
kgC/m?/yr are comparable to median fluxes measured across the Swiss Alps of 3.5 kg-C/m?/yr
(Horgby et al., 2019). We note that the continental-scale map in Fig. 2 visually overrepresents
first order stream reaches with high fluxes (>10 kg-C/m?/yr) that feature the rapid degassing of
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groundwater COz in steep terrain. These overall large fluxes simulated in the transport model
may in part be due to biases in the GLORICH dataset that may not capture the steepest and most
turbulent reaches with lower pCO». This bias would lead to overestimates in regional pCO-
averages in both the transport and statistical models (supplemental text 1.4 and 1.5). We also
note that the hydrography underpinning our model is of a higher resolution than previous studies;
we include many steep headwater streams that may lead to higher basin-aggregated flux
estimates. Further, many of these headwaters are non-perennial streams (Brinkerhoff et al.,
2024a), which are a known uncertainty in global inland water CO2 emission estimates (Bretz et
al., 2023; Lauerwald et al., 2023b) and may be underestimated globally (Keller et al., 2021;
Loépez-Rojo et al., 2024). While mountainous environments may feature reduced organic carbon
for respiration, high erosion may provide increased particulate organic carbon substrate from the
terrestrial environment (France-Lanord & Derry, 1997; Hilton & West, 2020) for stream corridor
respiration.

Regional patterns simulated in the transport model are susceptible to considerable
uncertainty, particularly regarding the parameterization of constant groundwater pCO> values.
We simulate a constant groundwater pCO; of 16,000 ppm based on a lack of robust spatial
groundwater pCO> data products and calibrate hyporheic zone CO> transport and water column
net respiration within both rivers and lake/reservoirs to match GLORICH pCO> values at the
HUCH4 scale (see Methods). Based on this approach, our simulations do not incorporate direct
mechanistic representations of CO2 production, but instead calibrate CO> production parameters
(net water column CO; production rates and sediment-water-interface pCO») within a
mechanistic hydrologic framework (groundwater inputs, gas exchange velocity, downstream
transport, and turbulent vertical hyporheic exchange) to find the production parameters that best
match regionally representative stream CO; observations. For example, if groundwater pCO>
values are correlated with plant productivity via organic matter availability (Brook et al., 1983;
Kessler & Harvey, 2001), we would expect lower groundwater pCO> values in the mountainous
West. While to first order this may result in reduced simulated montane CO> fluxes, the model
calibration would compensate for this reduced groundwater export with increased stream
corridor CO; production to best match the observational dataset. We note, however, that
constraining spatial variability in groundwater pCO; will provide better constraints on total
inland water flux and source estimates.

3.2 Sources of inland water CO» emissions

Stream corridor sources of CO2 make up the majority of emissions at the continental scale
within the process-based model, especially in the West and in larger rivers (Fig 3a-c). These
stream corridor sources, which include subsurface respiration within the benthic zone, hyporheic
zone, and riparian subsurface, account for 84% of CO» emissions across CONUS, with
groundwater inputs accounting for the remaining 16%. We note that as above, these values are
sensitive to our assumed groundwater pCO>; however, for groundwater sources to exceed stream
corridor sources would require average groundwater pCO> values of >50,000 ppm across
CONUS, which is not supported by estimates of spatial soil pCO> (Brook et al., 1983; Kessler &
Harvey, 2001; Macpherson, 2009) or previous studies that have measured or calculated upland
groundwater contributions to stream CO» budgets (Kirk & Cohen, 2023; Lupon et al., 2019;
Saccardi & Winnick, 2021). Our simulated stream corridor production of CO> would require a
terrestrial flux of organic carbon to inland waters of ~10 t C km™ yr'! from land surfaces to
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sustain. This flux is within current estimates of terrestrial dissolved organic carbon exports of 1-
85 t C km™ yr! in temperate and boreal regions (Hope et al., 1994; McCallister & del Giorgio,
2012; T. R. Moore, 2003; Neff & Asner, 2001), which does not include additional particulate
organic carbon and riparian zone soil processes that may further contribute to these fluxes,
particularly in mountainous regions where physical erosion may enhance terrestrial contributions
of particulate organic carbon (Hilton & West, 2020).

Of these stream corridor CO; sources, subsurface respiration within the stream corridor
environment, facilitated by hyporheic exchange, is the largest simulated source of CO> across
CONUS, accounting for 82% of all carbon emitted by streams. Relative stream corridor source
contributions show an east-west gradient with Western basin contributions averaging 87%
compared to mean basin contributions of 57% in the East. Additionally, large rivers have greater
proportional contributions from stream corridor subsurface respiration, with first through fifth
orders receiving a median of 40%, 71%, 80%, 86%, and 90% of their CO, from these sources,
respectively (Fig 3d). This is consistent with previous studies that suggest internal CO>
production becomes increasingly important at higher stream orders (Hotchkiss et al., 2015;
Saccardi & Winnick, 2021) as proportional groundwater contributions to discharge decrease with
stream size. This large proportion of stream corridor CO; contributions aligns with upper
estimates from mass balance considerations at the continental scale (~65-80%) (Butman &
Raymond, 2011) and with a recent study finding that 87% of CO; emissions are sourced from the
stream corridor in a 5™ order watershed in southeastern coastal plain Florida (Kirk & Cohen,
2023). Notably, while our model parameterizes hyporheic exchange as occurring with the benthic
zone of stream environments, the CO; exchanged may integrate respiration occurring throughout
the stream corridor environment including adjacent riparian zones as represented in Kirk &
Cohen (2023) and described in our Methods. Based on model structure, this hyporheic CO»
functionally represents the excess carbon needed beyond upland groundwater inputs to match
regional mean riverine CO:z concentrations. Within the transport model, net water column
respiration accounts for a relatively minor portion of total CO» sources at 2%. This estimate is
slightly below a previous CONUS estimate of ~4% (Butman & Raymond, 2011), which may be
due to our incorporation of primary production into our net water column respiration term (see
Methods).

Overall, our finding that stream corridor sources account for the majority of riverine CO>
emissions is consistent with previous studies that explicitly estimate upland groundwater CO»
inputs to aquatic carbon budgets (Butman & Raymond, 2011; Kirk & Cohen, 2023; Rasilo et al.,
2017; Saccardi & Winnick, 2021). However, our modeled stream corridor CO; production rates
are significantly elevated relative to dissolved oxygen-based stream metabolism methods. For
example, we simulate an average CONUS stream corridor net CO production rate of ~5.4
gC/m?/d compared to median US stream metabolism NEP rates of 0.54 gC/m?/d (Bernhardt et
al., 2022). Similarly, our estimate that 84% of CONUS riverine emissions reflect stream corridor
respiration is significantly larger than Hotchkiss et al. (2015), who estimate that internally
produced CO» contributes 14% of emissions in small streams (<0.01m3s™!) and only 25-54% in
large streams (>100m? s7!) based on the difference between oxygen-based NEP and total CO>
fluxes.

Interestingly, these stream metabolism estimates (e.g. Appling et al., 2018; Battin et al.,
2023; Bernhardt et al., 2022; Hotchkiss et al., 2015) attribute oxygen under-saturation solely to
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in-stream respiration, which potentially neglects inputs of low-oxygen groundwater associated
with terrestrial respiration (e.g. Hall Jr. & Tank, 2005). Hotchkiss et al. (2015) and Kirk and
Cohen (2023), for example, attribute measured CO; emissions in excess of molar-equivalent
oxygen uptake as reflecting groundwater and riparian zone CO; inputs, respectively, with no
associated oxygen deficit. Implicitly, this assumes that stream measurements of CO; capture
external terrestrial and near-stream inputs while oxygen measurements do not. While carbonate
buffering reactions may allow for the retention of CO> signals from discrete groundwater inputs
for longer than dissolved oxygen signals (Stets et al., 2017) and may therefore integrate more
upstream heterogeneity in production/input rates (Shangguan et al., 2024), these length scales are
relatively small and do not impact steady-state CO, versus dissolved oxygen concentrations in
the case of diffuse groundwater inputs (Winnick & Saccardi, 2024). Notably, the explicit
consideration of groundwater and near-stream oxygen deficits in stream metabolism budgets
would likely increase the discrepancies between these carbon budgets based on dissolved oxygen
versus ones that estimate upland groundwater contributions. Thus, reconciling our stream
corridor respiration rates with stream metabolism measurements would require groundwater
inputs to feature both extremely high pCO» (~50,000 ppm to switch from stream corridor to
groundwater-dominated fluxes and likely ~100,000 ppm to match median NEP observations) and
near-atmospheric dissolved oxygen, which is not consistent with terrestrial respiration.

This apparent paradox is reflective of what we see as a major gap between carbon
budgets based on CO, measurements versus dissolved oxygen measurements, which to our
knowledge has not been previously articulated. As noted above, this gap is best represented by
the fact that global inland carbon fluxes estimated from oxygen variations are only ~18% of
carbon fluxes estimated from CO; concentrations (Battin et al., 2023; Lauerwald et al., 2023b).
While beyond the scope of this manuscript, this gap may reflect (1) systematic underestimates of
carbon fluxes from oxygen variations, which may in part reflect metabolic study designs that
seek to avoid reaches with discrete groundwater inputs; (2) systematic overestimates of carbon
fluxes from CO> variations; or (3) processes that significantly alter molar ratios of dissolved
C02:02 such as carbonate buffering, alternative metabolic pathways including nitrification,
denitrification, and methanogenesis, among others. This gap warrants further investigation,
though we stress that despite being significantly larger than metabolism-based NEP, our stream
corridor source contributions are consistent with other CO; budget-based estimates (Butman &
Raymond, 2011; Kirk & Cohen, 2023; Rasilo et al., 2017).

Finally, our initial modeling confirms that rivers are the major sites of emission and are
responsible for 94% of all emissions in the transport model results. Headwaters (first order
streams) account for 15% of the river surface area but contribute 30% of total river CO>
emissions (Fig. 3d). Larger rivers (fifth through eleventh orders) account for 55% of the stream
surface area but only contribute 34% of total river CO; emissions (Fig. 3d). This trend has been
noted in other studies which find that first order streams are 7% of the surface area and 25% of
river CO> emissions (Raymond et al., 2013).

Lakes and reservoirs contribute 6% of the modeled CONUS CO; emissions and, on
average across individual basins, contribute 9% of a basin’s CO, emissions (Fig. 4). These
numbers are smaller than previous estimates, as 1) we do not include the Great Lakes in our
analysis, 2) we do not rely on statistical distributions for extrapolating pond sizes instead we use
the NHD-HR which includes lakes down to 1 m?, and 3) we explicitly account for river/lake
connectivity to avoid double counting of lakes as rivers. Additionally, we calibrate lakes using
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HUC2 watersheds which are smaller and more representative of local conditions than earlier
estimates as they do not extend to boreal and tropical regions which have elevated pCO> in
comparison to temperate regions (Sobek et al., 2005). Lakes and reservoirs exert a significant
influence on CO; emissions in lake-dense regions with high water tables. For example, 88% of
emissions in south/central Florida and 70% in the Boundary Waters region come from
lakes/reservoirs (Fig. 4). This trend is shown across CONUS, as percent lake emission
contributions trend with the natural log of the total lake area per basin (R=0.45). Beyond the total
lake area, field studies have noted that small lakes contribute proportionally more CO; emissions
than larger ones (Bogard & del Giorgio, 2016; Holgerson & Raymond, 2016; Schmadel et al.,
2019) due to their larger lakebed surface area to water volume ratio. This effect is simulated in
our model, which explicitly represents these morphometric differences across lakes: small ponds
(here defined as 0-0.1 km?) are only 11% of the total CONUS lake/reservoir surface area but are
responsible for 65% of lake/reservoir CO2 emissions.

Despite considerable uncertainty within our CONUS CO> emissions estimates, CO:
production parameterizations, and the associated breakdown of source contributions, the major
takeaways from our analysis are unlikely to change. Specifically, (1) river emissions are an order
of magnitude higher than lake/reservoir emissions at the continental scale, with some level of
geographic variability associated with regional water table dynamics; (2) respiration within the
subsurface stream corridor environment is the largest source of inland water CO> emissions,
followed by groundwater, with net water column respiration that accounts for the balance of
respiration and primary production contributing a minor proportion of total emissions. While
variability in groundwater pCO> may alter regional partitioning estimates, average CONUS
groundwater pCO> would have to be >50,000 ppm to account for >50% of riverine CO> fluxes
assuming a 1:1 tradeoff in estimated groundwater v. stream corridor CO» inputs and even higher
to reconcile stream corridor respiration rates with oxygen-based NEP measurements. These
elevated values appear unrealistic for the continental scale (Brook et al., 1983; Kessler &
Harvey, 2001; Macpherson, 2009); however, the fundamental mismatch between carbon budgets
based on CO> fluxes versus those based on dissolved oxygen discussed above represents a
significant uncertainty that should be investigated further. Taken together, our results suggest
that the largest potential carbon cycle feedback mechanisms relate to hydraulic flow dynamics,
which in turn alter terrestrial-aquatic connectivity, hyporheic exchange, and the export of
terrestrial organic carbon that supports net aquatic respiration.

4 Towards forward predictive models of CO: emissions

Our application of a hydrologic transport framework coupled to CO; production rates
represents a step towards fully integrating hydrologic and biogeochemical models at continental
and global scales to predict inland water CO> fluxes. Importantly, the presented framework
provides a pathway to interrogate the mechanistic impacts of hydrology on flux estimates
through direct representation of groundwater inputs, advection velocities, gas exchange
velocities, and hyporheic exchange rates at stream reach scales. We emphasize that our results
demonstrate the impacts of representing transport dynamics on estimates of fluxes and sources
given the same data constraints as statistical upscaling models, and are not yet at the level of
providing robust forward predications of inland water CO; fluxes.

Despite this progress, our ability to apply these models globally is still limited by a few
issues. First is the lack of sufficient headwater representation in global hydrography data
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products Spatial resolution of digital elevation models and remotely sensed imagery present a
lower limit to the small streams we can observe and this has downstream effects on our ability to
model solute exchange along river networks (Brinkerhoff 2024). Additionally, the majority of
these small streams are non-perennial (Brinkerhoff et al., 2024; Messager et al., 2021), meaning
they do not flow year-round and represent a critical nexus for terrestrial recruitment of solutes
(Benstead & Leigh, 2012), including terrestrially-produced CO> (Gémez-Gener et al., 2016;
Silverthorn et al., 2024).

Second, the largest barrier for moving towards more accurate continental-scale CO2 flux
estimates is the paucity of observational datasets. This is particularly true for streams with the
steepest topography as discussed above, which may lead to overestimates in CO, fluxes from
mountainous environments. Additionally, while recent advances have allowed for the direct
measurements of pCO; in surface waters, most published data including the GLORICH database
used in our model calibration is based on carbonate speciation calculations using measured pH
and alkalinity. Previous studies have shown that these methods are subject to significant error,
particularly under low pH conditions (Abril et al., 2015; Raymond et al., 2013). While we have
sought to minimize this potential error via filtering (Section 2.1), a cursory comparison of
GLORICH data to the direct CO> measurements used in Liu et al. (2022) suggests a potential
overestimate of mean pCO; based on speciation calculations (Supplementary Information);
however, differences between GLORICH and Liu et al. (2022) data are not statistically
significant given the large standard deviation of GLORICH values, and this difference is not
present when comparing HUC2-averaged values with the Liu et al. (2022) dataset. While the
potential for artificially high pCO2 may lead to lower total estimated fluxes as well as lower
contributions from stream corridor respiration given the same parameterized groundwater CO»
inputs, we note that these reductions in total fluxes are similar for the transport and statistical
models (SI).

At present, our ability to represent groundwater CO» inputs is also limited by the lack of
publicly available large-scale spatial groundwater chemistry data products and is thus a top
priority for providing more accurate regional flux and source partitioning estimates. In particular,
groundwater CO> and dissolved oxygen datasets will be crucial to evaluating the large
discrepancies between carbon source partitioning estimates from CO> measurements versus
stream metabolism calculations. As described above, robust spatially- and temporally-variable
groundwater CO; datasets would allow for both more robust flux estimates and source
distributions within the presented calibration framework, and could also allow for predictive
forward modelling with independently validated carbon input variables. We also note that while
our calibration framework is flexible to incorporate additional CO; inputs from connected
wetland environments, provided they are adequately represented in the observational calibration
datasets, these fluxes are tied via calibration to hyporheic exchange rates rather than groundwater
input rates based on our current model framework. Future work is necessary to account for
wetland-impacted groundwater input rates which have been shown to scale with degree of
wetland connectivity across CONUS (Leibowitz et al., 2023).

While the expansion of observational datasets is vital to providing accurate and validated
estimates of average inland water CO> emissions, forward predictions of emission fluxes will
further require scalable biogeochemical models that capture spatiotemporal variability in carbon
transformations. As noted, while our transport model incorporates direct estimates of advective
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transport, groundwater inflow rates, gas exchange, and hyporheic exchange as a function of
geomorphology and flow conditions, the CO2 concentrations associated with groundwater,
hyporheic exchange, and in-stream processing are currently estimated and calibrated to
observations. Recently, carbonate buffering dynamics have been incorporated into similar stream
network carbon frameworks (Winnick & Saccardi, 2024), and may help to interrogate
differences in oxygen- versus CO»-based carbon budgets. However, models that can accurately
predict in-stream metabolism, terrestrial carbon exports via groundwater, and hyporheic zone
processing across lotic and lentic environments with limited or coarse-resolution substrate data
remain elusive are an important avenue towards predicting the response of inland water CO»
emissions to anthropogenic climate change.

Mechanistic biogeochemical models will also allow for estimating estimating temporal
variability in CONUS-level CO2 dynamics, which may allow for more accurate total flux
estimates. Specifically, studies suggest variable and non-linear changes in CO; concentrations
and fluxes in response to hydrologic changes including storm events (Aho & Raymond, 2019;
Conroy et al., 2023; Crawford et al., 2017; Dinsmore et al., 2013; Dinsmore & Billett, 2008;
Duvert et al., 2018). Thus, estimates of CO> emissions under mean annual flow conditions may
not represent mean CO; fluxes that integrate temporal variability. Though our modeling
framework can simulate the impacts of hydrologic variability on its own in terms of groundwater
inputs, hyporheic exchange rates, and gas exchange rates, we cannot presently account for
temporal changes in CO: production parameters. As it relates to observational datasets that
would allow for time-dependent calibration of CO: production parameters, this limitation is
unlikely to be addressed in the near future. Instead, the potential for providing time-variable
simulations relies on either (/) the incorporation of process-based models for stream metabolism
and groundwater CO; variability; or (2) the application of machine learning techniques to
provide time-varying estimates of these parameters.
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Figure Captions

Figure 1. Process-based transport model emulates the distribution of in situ data: (A) pCO2 versus keoo for the
statistical upscaling model (blue lines) and our process based transport model (orange lines), both compared against
GLORICH data with data source locations mapped in (B). To aid in visualization, we plot these models and data as
the isolines for the bivariate kernel density space, showing 5 bands of equal relative likelihood that a pCO2-keoo pair
falls along that isoline. This probability increases with linewidth, i.e. the thicker isolines have more data. Note the
outermost region extends beyond the axis limits. For both models, we randomly sampled 1,000 reaches from each of
the 206 basins. All three use the same model for keoo (see Methods). Grey shading is the hypothetical FCO: flux (at
20 degrees celsius) for all possible pairs of pCO2 and keoo, i.e. FCO: increases towards the upper-right corner of A.
(C) Comparison of total CO2 emissions from CONUS inland waters, estimated via both models. Colors match
subplot A. Error bars refer to model uncertainty (Eq 6,7) alone; parameter uncertainty is identical across both
models and so not included here (see Main text and Methods).

Figure 2. River/lake/reservoir COz emissions for United States inland waters. Area-normalized FCOz at mean
annual flow for over 22M inland waters. Lakes/reservoirs (and their associated COz fluxes) are also plotted in the
two smallest-scale inset maps to highlight hydrological connectivity. Reach width in the inset maps is scaled to
discharge- thicker lines have more flow. Note that at the continental scale, headwater streams with the highest
overall CO: fluxes are visually overrepresented based on the number of individual reaches.

Figure 3. Sources of inland water CO2 emissions. A-C: Percent of CO2 lost from a basin that is attributed to stream
corridor subsurface respiration (A), upland groundwater CO:2 (B), and net water-column respiration (C). D: Percent
of COz emissions attributed to the same mechanisms as A-C by stream order; boxplots are composed of the median
percent value per basin per stream order. See Methods for these calculations at the basin-scale (A-C) and the reach-
scale (D). Note we lump high stream orders (seven and above) due to the small number of basins with this many
stream orders and to represent network main stems as a single boxplot. SFig. 9 separates D by eastern and western
CONUS basins.

Figure 4. Lake and reservoir influence on inland water CO2 emissions. Percent of COz emissions via
lakes/reservoirs and estimated using the process-based transport model.



