
Anonymous Complaint Aggregation
for Secure Messaging

Connor Bell
University of North Carolina at Chapel Hill

connorbe@cs.unc.edu

Saba Eskandarian
University of North Carolina at Chapel Hill

saba@cs.unc.edu

ABSTRACT

Private messaging platforms provide strong protection against plat-

form eavesdropping, butmalicious users can use privacy as cover for

spreading abuse and misinformation. In an attempt to identify the

sources of misinformation on private platforms, researchers have

proposed mechanisms to trace back the source of a user-reported

message (CCS ’19,’21). Unfortunately, the threat model considered

by initial proposals allowed a single user to compromise the pri-

vacy of another user whose legitimate content the reporting user

did not like. More recent work has attempted to mitigate this side

e�ect by requiring a threshold number of users to report a message

before its origins can be identi�ed (NDSS ’22). However, the state of

the art scheme requires the introduction of new probabilistic data

structures and only achieves a “fuzzy” threshold guarantee. More-

over, false positives, where the source of an unreported message is

identi�ed, are possible.

This paper introduces a new threshold source tracking technique

that allows a private messaging platform, with the cooperation of

a third-party moderator, to operate a threshold reporting scheme

with exact thresholds and no false positives. Unlike prior work, our

techniques require no modi�cation of the message delivery process

for a standard source tracking scheme, a�ecting only the abuse

reporting procedure, and do not require tuning of probabilistic data

structures.

1 INTRODUCTION

End-to-end encrypted (E2EE) messaging platforms allow users the

opportunity to communicate without possible eavesdropping by the

messaging platform itself. Widely deployed in Signal, WhatsApp,

iMessage, Android Messages, and Messenger Secret Conversations,

E2EE messaging has rapidly become the standard for privacy in

mobile communication.

Unfortunately, the strong privacy protections of end-to-end en-

cryption can also provide cover for malicious users who wish to

propagate hate speech or disinformation without repercussions

from platform moderators. In response to the pressing nature of

this problem, various countries, including India and Brazil, have

sought to introduce policies that compel messaging platforms to

reveal the sources of misinformation messages [5, 37, 43, 44, 46, 47].

The policies proposed by these governments have received condem-

nation from platforms, policymakers, and technologists because

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2024(3), 276–296

© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0078

they amount to roundabout ways of circumventing end-to-end

encryption [3, 31].

While a number of works have studied handling abuse reports

in E2EE messaging [8, 16, 20, 22, 28–30, 34, 48] or proactively

scanning encrypted messages for inappropriate content [6, 11, 33],

few works consider the problem of identifying the originators of

user-reported misinformation without violating E2EE guarantees

for non-reported messages. This problem has been studied un-

der the name traceback by Tyagi et al. [49] and source tracking by

Peale et al. [42] (we will refer to this functionality as source tracking

in this paper). In source tracking, clients can verify that a received

message, along with related metadata (e.g. the author), is traceable

back to the original sender, or the direct sender if the message was

not a forwarded message.

Unfortunately, allowing a single user report to reveal the source

of a message can be problematic, as any user who dislikes the

contents of a given forwarded message can reduce the privacy that

the platform provides to the author of that message. For example,

a user who receives widely-forwarded details about the time and

place of a planned protest can cause the platform to learn who sent

the messages planning the protest. This means that source tracking

allows users of a messaging platform to de-anonymize other users

to the platform, even if they have never communicated with each

other directly.

Recently, Liu et al. [35] have introduced FACTS, a scheme for

anonymous tallying of misinformation messages. FACTS allows for

a message to be reported to a platform for source tracking after

it is reported a certain number of times, in hopes of reducing the

risk posed by allowing a single user to deanonymize another. This

does not prevent a malicious user who receives a message from

directly revealing the necessary reporting data to the platform

operator out-of-band, but it provides a way for honest users to

prevent reporting of content whose objectionable status has not

yet been widely con�rmed. In the FACTS system, clients update a

probabilistic data structure each time they report a message, and

messages that have received roughly the correct number of reports

are revealed to the platform for source tracking. FACTS is the �rst

system to support this kind of threshold source tracking.

This paper introduces a new system for threshold source tracking.

Unlike FACTS, our system allows for exact thresholds for reporting

messages, never has false positives, and does not require locking

a global data structure for each report. Moreover, we make no

changes to how message processing or delivery is handled beyond

standard source tracking. The modest overhead introduced by our

scheme occurs only during the reporting process.

Our key technical contribution is a new two server anonymous

tally scheme, a primitive of independent interest. In the context of

source tracking, we split the work of handling anonymous report

276

Proceedings on Privacy Enhancing Technologies 2024(3) Connor Bell and Saba Eskandarian

Schemes that trace back a message to its source hop by hop [32, 49]

do not satisfy this requirement because the lack of a consistent

cryptographic identi�er for the forwarded message works against

the platform’s ability to aggregate reports.

A threshold source tracking scheme augments the source track-

ing process by adding a mechanism where messages are revealed

for source tracking after the servers have received a certain number

of complaints about a given message. The only known threshold

source tracking scheme is FACTS [35], where clients collaboratively

update a data structure hosted by the server to keep track of ap-

proximately how many times a message has been reported. When

clients detect that a message has been reported enough times, any

reporting client can make a �nal report to the moderator. The �-

nal report reveals the information necessary for source tracking

to the moderator. FACTS does not prevent users from submitting

multiple reports for the same message and may additionally leak

honest users’ intended reports to the platform when the platform

becomes aware of the report identi�er, both of which we aim to

address in this work. We also track exact, instead of approximate,

report counts. In both FACTS and our work, the focus is on allowing

a moderator to be noti�ed when a message has received enough

reports, not to prevent malicious clients from sharing reports with

malicious moderation servers out of band, as many source track-

ing schemes provide any recipient of a forwarded message with

su�cient information to report the message alone.

Threshold source tracking shares some common goals with elec-

tronic voting; in elections, votes should remain anonymous while

preventing any single voter from voting on the same issue twice. In

this work, we present de-duplication constructions which surface

common identifying strings if a malicious user attempts to report

the same message twice. Similar de�nitions were established for

unique ring signatures by Franklin and Zhang [25], where malicious

duplicate signatures will result in “a large common component”

between the signatures, which can be used to link the duplicate

signatures together. We include a further discussion in Appendix B

to compare anonymous report aggregation to electronic voting

more broadly and to illustrate why our solution takes a di�erent

approach than common electronic voting tools such as traceable

ring signatures [27].

3 ANONYMOUS TALLIES

This section introduces anonymous tallies and sketches their prop-

erties at a high level. Since anonymous tallies form the core of our

threshold source tracking scheme, we begin by introducing them

before showing how to integrate them with existing messaging

systems to support threshold source tracking.

A two-server anonymous tally scheme allows two servers to

blindly keep a count of user-reported messages. The servers can

learn the number of distinct user reports of a given message, but

they do not learn the messages themselves or the identity of the

user who �led each report.

The design of our scheme has the two servers playing distinct

roles. Users interact with the �rst server, (1, to send a report for

tallying. Server (1 sends batches of anonymized reports to (2, who

computes the anonymous tallies. For each report sent to the tallying

scheme, the server (2 can derive a duplication tag dupTag which

will be identical if the same user reports the same message more

than once. The dupTag can be used to detect and discard duplicate

reports. Server (2 also derives some hidden data hd which it can

send to (1 to enable recovery of report data rd sent by the client.

Server (2 can also prove to (1 that the tally for a given report has

passed a given threshold. This abstraction allows us to easily inte-

grate our anonymous tally scheme syntax with di�erent message

reporting schemes.

We require the following high-level security properties from an

anonymous tally scheme.

• Report con�dentiality: a single server behavingmaliciously,

potentially colluding with malicious users, cannot learn the

contents of honest users’ reports.

• Reporter anonymity: a single server behaving maliciously,

potentially colluding with malicious users, cannot learn

which honest user sent which report.

• Report uniqueness: if the servers behave honestly, no mali-

cious user should be able to contribute more than one report

to the tally for a given report.

• Threshold unforgeability: a malicious (2 cannot misrepre-

sent a given report as having more than a threshold number

of reports when it really does not.

• Deniability: even if user or server secrets are made public,

reports cannot be veri�ably tied back to a given user.

Looking ahead, our scheme will (necessarily) allow server (1
to learn the identities of all the users who send reports, but hide

which messages those users report. At the same time, server (2 will

learn the values being counted in the tally, but it will not be able to

connect any given report with a particular user. To further mask the

identities of the reporters, messaging clients can occasionally send

a report with random report data as cover tra�c for real reports.

In Section 5, we formalize these properties and discuss various

additional security considerations.

Security from splitting trust. Our scheme relies on splitting

trust between two non-colluding servers to achieve security. In

particular, a deployment must be able to set up two servers, e.g.,

the message platform itself and a third party moderator-run server,

who can be relied upon not to collude to violate the security of

the anonymous tally. Failure to satisfy this assumption in practice

allows the servers to deanonymize the author of any message after

a single report, reverting the scheme to a standard (non-threshold)

source tracking scheme.

While a two-server split trust setup may be di�cult to achieve

in many scenarios, recent large-scale deployments of split-trust

systems for private browser telemetry in Mozilla Firefox [4, 21] and

measurement of the e�ectiveness of the Apple/Google Covid-19

exposure noti�cation system [1, 2] provide reason for optimism

that this is a workable approach. The stakes in these deployments

are, however, considerably lower than those of anonymous mes-

saging, where potential privacy harms are not only the exposure

of consumers’ browsing or health data, but also persecution (and

potentially execution [7]) of dissidents.

Anonymous tally scheme syntax. More formally, a two-server

anonymous tally scheme consists of seven algorithms SKGen1,

278

Anonymous Complaint Aggregation for Secure Messaging Proceedings on Privacy Enhancing Technologies 2024(3)

SKGen2,UKGen,Verify, Reveal, S2Prove, and S1Verify, and an in-

teractive protocol Report.

• SKGen1(1_, pp) → (pk1, sk1, skB): The server controlled by

the messaging platform, (1, runs this algorithm at system

initialization. It takes in a security parameter 1_ and public

parameters ?? , and it generates 3 keys: public and secret

keys for interactions with the reporter, as well as a shared

secret key skB .

• SKGen2(1_, pp) → (pk2, sk2): The server controlled by the

3rd party, (2 runs this algorithm at system initialization.

It takes in a security parameter 1_ and public parameters

?? , and it generates public and secret keys for receiving

encrypted messages.

• UKGen(1_, pp) → (pkD , skD): A user runs this algorithm to

participate in the system. It takes in a security parameter 1_

and public parameters ?? , and it generates a user key pair

pkD , skD .

• Report:

⟨* (rep, rd, pkD , skD , pk1, pk2), (1 (pk1, skB , sk1, pkD)⟩ →

ct/⊥: this is a protocol run between a user * and the �rst

server (1. Each party has access to relevant public and pri-

vate keys, and the user* additionally holds values rep and

rd. The value rd can be, e.g., the contents of a report in a

source tracking scheme. rep is not the contents of a report

in the underlying source tracking scheme, but rather a value

that uniquely identi�es the report, e.g., its hash. To allow

for �exibility in use cases, there is no enforced relationship

between rep and rd in the anonymous tally scheme itself.

• Verify(skB , sk2, ct) → (rep, dupTag, hd)/⊥ : this algorithm

is run by server (2 to validate the contents of a report. The

algorithm takes as inputs the keys skB and sk2, as well as a

ciphertext ct. If the ciphertext passes the server’s veri�cation

process, the algorithm returns the values rep, dupTag, and

hd. dupTag is used for detecting duplicate reports. If the

same user sends the same rep twice, the second report will

result in the same dupTag as the �rst report.

• S2Prove(rep, pData, thresh) → cE : this algorithm allows

(2 to produce a proof cE that it has a report rep which has

been reported at least thresh number of times. The pData

input includes scheme-speci�c data needed by (2 to produce

this proof.

• S1Verify(rep, vData, dupTags, cE) → 0/1 : this allows (1 to

verify the output of an execution of S2Prove. The vData

input includes scheme-speci�c data needed by (1 to verify

this proof, and dupTags includes values of dupTag held by (2
for the reports. This allows (1 to ensure that (2 only reveals

messages that have exceeded the threshold.

• Reveal(sk1, hd) → rd: this algorithm is run by (1 to recover

report data rd from hidden data hd provided by (2.

We de�ne correctness for a two-server anonymous tally scheme

as follows.

De�nition 3.1 (Correctness (informal)). A two-server anonymous

tally scheme is correct if when the servers and all users follow

the scheme honestly, all algorithms and protocols fail (output ⊥)

with at most negligible probability, server 2 returns a duplicate

dupTag from Verify upon receiving a duplicate report for the same

message from the same honest user with probability one, and server

2 returns distinct dupTags for distinct user, message pairs with all

but negligible probability. Moreover, proofs produced by S2Prove

when run with a rep value that has thresh or more distinct reports

are accepted by S1Verify. Finally, if an hd value output by Verify

is given to Reveal(sk1, ·), the result will be the corresponding rd

value provided by the reporting client.

4 THRESHOLD SOURCE TRACKING VIA
ANONYMOUS TALLIES

A two-server anonymous tally scheme can be integrated into a mes-

saging system that supports source tracking to build a threshold

source tracking scheme with no changes to the underlying mes-

saging system and minimal changes to the message reporting �ow.

This process is depicted in Fig. 2.

4.1 From Tallies to Threshold Source Tracking

In our scheme, the messaging platform is composed of the �rst

party entity running the messaging service, who runs server (1,

and a third party entity who aids in the moderation process only,

who runs (2. Users only ever interact directly with the �rst party (1.

At system initialization, the servers will run SKGen1 and SKGen2

to set up their respective keys and user devices will run UKGen in

the process of registering to use the messaging platform (on top of

any other registration processes). Then users can send messages

using the underlying messaging scheme with no modi�cations,

until they want to report messages.

When a user wishes to report a message<, it computes the report

data rd for< via the source tracking scheme and hashes it with a

hash function � to get a hashed report rep← � (rd). Throughout

this paper, we will refer to the hashed report rep as the “report”

for the purposes of the tallying scheme. This hashed report rep, in

addition to the source tracking metadata rd itself, serves as user

* ’s input rep to the anonymous tally scheme’s Report protocol.

The user* sends the resulting ciphertext ct to (1 at the end of the

Report protocol.

Periodically (on a system-speci�ed schedule), the server (1 sends

a shu�ed batch of ciphertexts to (2. Server (2 runsVerify(B:B , sk2, ct)

to recover the report rep, a deduplication tag dupTag, and hidden

metadata hd for each ciphertext. Server (2 keeps a table of dupTags

and reports, and if a dupTag repeats, the report is dropped. Other-

wise, it increments the count for the report rep.

Once the count for a given report rep passes a system-speci�ed

threshold thresh, (2 will send the hidden metadata hd for the re-

ports to (1. (2 also runs S2Prove to provide proof that the message

in question received su�cient reports, while maintaining the pri-

vacy of the reporters by hiding the real set of reports among a list of

masking reports; these proofs are veri�ed by (1 in S1Verify. (1 will

then run Reveal and verify that a given revealed metadata entry

rd hashes to rep before proceeding further with processing the

source tracking information. Alternatively, the hidden data hd in

the anonymous tally scheme can be set to ⊥, and the server (1 can

solicit users to come forward with the corresponding rd to a given

rep once that message reaches the threshold. This latter approach

is roughly the one taken in FACTS, so our scheme strictly increases

�exibility in reporting options.

279

Anonymous Complaint Aggregation for Secure Messaging Proceedings on Privacy Enhancing Technologies 2024(3)

In the remainder of this section, we consider the setting where

threshold source tracking does provide additional security over

conventional source tracking: where users are reporting messages

not yet known to the servers.

Malicious users only. The anonymous tally’s report uniqueness

property ensures that, for a threshold of C reports to reveal a mes-

sage, a group of fewer than C malicious users do not cause a message

to be revealed. However, if an adversary has control of C or more

malicious users (or can create C fake users), a message sent to this

malicious group of users can always be revealed to the platform by

having each malicious user report the message.

Our scheme does not handle issues of user authentication and

validation, e.g., protecting against sybil attacks. An adversary who

controls many users can report a message once per user it controls.

We assume an external mechanism for authenticating users and

ensure that, within the protocol, a single user cannot repeatedly

report the same message to arti�cially increase its tally.

Malicious (2 (and malicious users). The report anonymity prop-

erty of the anonymous tally scheme, combined with the fact that

(1 shu�es and batches messages, ensures that (2 cannot learn the

identity of the sender of any given report. In a sense, (1 acts sim-

ilarly to a server in a mixnet [14], breaking the link between the

report sender and the next server to receive the report.

However, a malicious (2, potentially colluding with a malicious

user who has a message it wants reported, could attempt to bypass

the threshold mechanism by simply lying to (1 about when a re-

port has reached the threshold, bypassing the report uniqueness

protections of the tally scheme. This potential attack is blocked by

the veri�cation protocol (1 runs to protect against a malicious (2.

Observe that this means that while (1 can arbitrarily unmask the

identities of senders of known messages, (2 cannot. This is another

point where protections against fraudulent accounts are critical,

lest a malicious (2 create new fake accounts to arti�cially in�ate

the count of reports for a given message.

Malicious (1 (and malicious users). The report con�dentiality

property of the anonymous tally ensures that a malicious (1, po-

tentially colluding with some malicious users, cannot learn the

contents of the report of an honest user, so long as the server does

not already know the contents of the report. See above for the case

where the report contents are already known by the server.

Note that the con�dentiality property of the underlying source

tracking scheme implies that the contents of reports have high

entropy, or else an adversary against the underlying source tracking

scheme could simply guess-and-check reports for ciphertexts it

wants to decrypt, breaking any con�dentiality in the messaging

system. This means that even guessing message contents given a

ciphertext does not su�ce for (1 to predict the contents of rd.

5 SECURITY FOR ANONYMOUS TALLIES

We now discuss the formal security de�nitions for a two-server

anonymous tally scheme. This section fully describes and formally

de�nes our required security properties.

Recall that at a high level, our de�nitions will allow server (1
to learn who submits reports and server (2 to learn derivatives of

the reports themselves, but neither server will learn which user

made which report. At the same time, the servers need assurance

that malicious users cannot take advantage of their strong privacy

protections to fraudulently report a single message multiple times.

5.1 Notation

Before we continue, we formalize our notation. The following no-

tation is used to describe various operations in the de�nitions and

schemes presented in the rest of this paper.

Let G ← � (~) denote assignment of the output of � (~) to G , and

let G
'
←− (denote assignment to x of an element sampled uniformly

random from a set (. A bolded variable x denotes a vector, with

entries in the vector represented as (non-bolded) G1, ...G= . We use

A$ to denote that A has oracle access to some function(s) or can

participate in a given set of interactive protocols, and the adversary

A in our security experiments is allowed to be stateful. A function

negl(G) is negligible if for all 2 > 0, there is a G0 such that for

all G > G0, negl(G) <
1
G2 . We omit G if the parameter is implicit.

Finally, we use ⊥ to indicate an empty message or special character

indicating failure.

We de�ne an interaction between two parties using the notation

⟨%1 (params), %2 (params)⟩ → out1 .

The �rst party in the protocol acts according to the protocol de�ned

by %1 and the second party acts according to %2, and >DC1 represents

the output of the protocol. Only the �rst party has any output from

interactive protocols in this paper.

Our security de�nitions use tables to keep track of important

information about adversary queries. Tables are denoted with a

capital) and a subscript name, and store key/value pairs. To add

a key/value pair to a table, we use the notation) [:4~] ← E0;D4 .

We use standard set notation to check if a key is included in a table

(:4~ ∈)). Sets use the same notation as tables, but only store a set

of values. We use set(x) to convert a vector to a set of its unique

constituent elements. Tables and sets de�ned in a security experi-

ment are considered globally accessible by the experiment in the

oracles and protocols allowed to the adversary in that experiment.

5.2 Report Con�dentiality

Our �rst security property, report con�dentiality requires that a

malicious server (1 does not learn anything about the reports sent

through the system by honest users. This de�nition allows an adver-

sary to control (1 and an arbitrary number of malicious users while

also being allowed to register honest users and compel them to

report messages. At the core of this game is the adversary’s power

to run the Report protocol with a provided user, identi�ed by a user

id uid, and one of two potential messages. The experiment has an

input 1 that determines which report is actually sent.

At any point in the report con�dentiality experiment, the adver-

sarymay call a Process oracle, which plays the role of (2 on a set (of

ciphertexts and a reporting threshold provided by the adversary (1.

The set (consists of a subset of the ciphertexts returned by honest

users in the Report protocol, as well as any additional ciphertexts

the adversary chooses to send. The Process oracle veri�es each

ciphertext, discards duplicates, and keeps tallies for each report

rep. The oracle returns a table ' of reported messages and report

frequencies, as well as the (2 veri�cation proof cE if the provided

281

Proceedings on Privacy Enhancing Technologies 2024(3) Connor Bell and Saba Eskandarian

RANON[A,Π, _,1] :

(pk1, sk1,⊥) ← SKGen1(1_, pp)

(pk2, sk2, skB) ← A(1
_, pk1)

* ← {};'0 ← {};'1 ← {}

1′ ← A$ (1_)

AddHonUser(uid) :

if uid ∈ * : output ⊥

pkD , skD ← UKGen(1_, pp)

* [uid] ← (skD , pkD)

output pkD

MalReport(pkD) :

if (·, pkD) ∈ * : output ⊥

⟨A, (1 (pk1, skB , sk1, pkD) ⟩

HonReport(uid0, uid1, rep, rd) :

if uid0 ∉ * or uid1 ∉ * : output ⊥

(skD , pkD) ← * [uid1]

ct← ⟨* (rep, rd, pkD , skD , pk1, pk2), (1 (pk1, skB , sk1, pkD) ⟩

if ct = ⊥ : output ⊥

if (uid0, rep) ∈ '0 or (uid1, rep) ∈ '1 : output ⊥

'0 ← '0 ∪ {(uid0, rep) };'1 ← '1 ∪ {(uid1, rep) }

output ct

Figure 3: Reporter anonymity experiment RANON (De�nition 5.1).

threshold is exceeded for any message. In order to prevent trivial

wins, the experiment will abort and return 0 if the adversary calls

Process while the tally is in a state where there would be di�erent

numbers of reports from honest users if 1 = 0 vs 1 = 1 in an honest

execution of the protocol.

Note that the adversary in this game is stronger than is needed

in the threshold source tracking setting, where a malicious (1 (po-

tentially colluding with some users) does not know, and cannot

guess, the contents of honest users’ reports. The check that the

game makes to ensure that an honestly-generated ' would have

the same state regardless of whether 1 = 0 or 1 = 1 is there to rule

out attacks that would not be possible in threshold source tracking

due to the adversary not actually knowing rd and rep.

Due to space constraints, we state the formal de�nition for Report

Con�dentiality in Appendix A.

5.3 Reporter Anonymity

Whereas report con�dentiality protects against a malicious (1 learn-

ing which messages are reported, reporter anonymity protects

against a malicious (2 learning the identities of users reporting

messages. This de�nition allows an adversary to control (2 and

an arbitrary number of malicious users, who can interact with an

honest (1, while also being allowed to register honest users and

compel them to report messages. At the core of this game is the

adversary’s power to have one of two honest users of its choosing

interact with the honest (1 to submit a report of its choosing. The

HonReport(uid0, uid1, rep, rd) oracle takes in the identi�ers for two

honest users and has one of them, determined by an input bit 1,

send a report rep with report data rd to (1 via the Report protocol.

The resulting ciphertext ct output by the protocol is returned to

the adversary, as this is what (2 receives from (1 in our application.

After sending a number of reports of its choosing, the adversary

outputs a distinguishing bit 1 ′.

To prevent trivial wins, the HonReport oracle outputs ⊥ if the

adversary attempts to have an honest user submit a duplicate report.

Allowing duplicate reports trivially allow an adversary to distin-

guish 1 = 0 from 1 = 1. For example, an adversary who submits

HonReport(uid0, uid1, rep, rd) and HonReport(uid0, uid2, rep, rd),

will identify a duplicate report if 1 = 0 but not if 1 = 1. This

is an acceptable restriction because an honest user does not have

any reason to submit an identical report twice.

De�nition 5.1 (Reporter Anonymity). We de�ne the reporter

anonymity experiment RANON[A,Π, _, 1] with respect to a state-

ful adversary A, two-server anonymous tally scheme Π, security

parameter _, and a bit 1. The experiment is described in Figure 3.

We de�ne the anonymity advantage of A as

ANONAdv(A,Π, _)

=
�

�Pr[RANON[A,Π, _, 0] = 1]

− Pr[RANON[A,Π, _, 1] = 1]
�

�.

We say that a scheme Π satis�es reporter anonymity if for all PPT

adversaries A and security parameters _ ∈ N, it holds that

ANONAdv(A,Π, _) ≤ negl(_).

5.4 Report Uniqueness

The report uniqueness property ensures that honest servers (1
and (2 can keep accurate tallies, even in the presence of potentially

malicious users. In this experiment the adversary controls malicious

users who can interact with (1 via a MalReport oracle and compel

other honest users to make reports of its choosing via anHonReport

oracle. The adversary sees the ciphertexts that result from any of

these interactions and can choose the set (of ciphertexts that are

eventually sent to (2. This set could include some subset of the

ciphertexts outputs by oracle queries or new ciphertexts of the

adversary’s choosing. This experiment conservatively models a

group of malicious users with strong control over the network

between (1 and (2.

The adversary wins the report uniqueness experiment if, after

reports by honest users are subtracted from the total report tally,

1) there are more total tallies left than the adversary made calls to

MalReport or 2) there is any rep that has more tallies than there

are distinct malicious users, as counted by the number of distinct

public keys used with theMalReport oracle. The former situation

implies that the adversary was able to produce new report tallies

without interacting with (1, and the latter situation implies that the

adversarywas able to thwart the scheme’s duplicate tally prevention

mechanism.

Our report uniqueness de�nition implies stronger protection for

message senders than is available in FACTS [35]. FACTS does not

strictly prevent malicious users from submittingmultiple reports for

the same message, relying instead on out-of-protocol throttling on

the number of reports a user can make to ensure that no malicious

282

Anonymous Complaint Aggregation for Secure Messaging Proceedings on Privacy Enhancing Technologies 2024(3)

RUNIQ [A,Π, _] :

(pk1, sk1, skB) ← SKGen1(1_, pp)

(pk2, sk2) ← SKGen2(1_, pp)

* ← {};) ← {};(← {};" ← {}

win← 0; count← 0

A$ (1_)

output win

MalReport(pkD) :

if (·, pkD) ∈ * : output ⊥

if pkD ∉ " : " ← " ∪ {pkD }

⟨A, (1 (pk1, skB , sk1, pkD) ⟩

count← count + 1

Submit(ct) :

(← (∪ {ct}

AddHonUser(uid) :

if uid ∈ * : output ⊥

pkD , skD ← UKGen(1_, pp)

* [uid] ← (skD , pkD)

output pkD

HonReport(uid, rep, rd) :

if uid ∉ * : output ⊥

(skD , pkD) ← * [uid]

ct← ⟨* (rep, rd, pkD , skD , pk1, pk2),

(1 (pk1, skB , sk1, pkD) ⟩

) ←) ∪ {ct}

output ct

Process() :

' ← {};HonR← {};� ← {}

for ct ∈ (:

(rep, dupTag, hd) ← Verify(skB , sk2, ct)

if (rep, dupTag, hd) = ⊥ : continue

if (rep, dupTag) ∉ � :

� ← � ∪ {(rep, dupTag) }

' [rep] ← ' [rep] + 1

if ct ∈) :

HonR[rep] ← HonR[rep] + 1

count′ ← 0

for rep ∈ ' :

di� ← ' [rep] − HonR[rep]

if di� > |" | : win← 1

count′ ← count′ + di�

if count′ > count : win← 1

output '

Figure 4: Report uniqueness experiment RUNIQ (De�nition 5.2).

THFORG[A,Π, _] :

(pk1, sk1,⊥) ← SKGen1(1_, pp)

(pk2, sk2, skB) ← A(1
_, pk1)

* ← {};' ← {}

win← 0

A$ (1_)

output win

AddHonUser(uid) :

if uid ∈ * : output ⊥

pkD , skD ← UKGen(1_, pp)

* [uid] ← (skD , pkD)

output pkD

HonReport(uid, rep, rd) :

if uid ∉ * : output ⊥

(skD , pkD) ← * [uid]

ct← ⟨* (rep, rd, pkD , skD , pk1, pk2),

(1 (pk1, skB , sk1, pkD) ⟩

' [rep] ← ' [rep] + 1

output ct

Verify(rep, dupTags, cE) :

//get number of clauses in proof

thresh← |cE |

ver← S1Verify(rep, vData, dupTags, cE)

if thresh > R[rep] ∧ ver = 1 :

win← 1

Figure 5: Threshold unforgeability experiment THFORG (De�nition 5.3).

users can a�ect a message’s tally by too much. Report uniqueness

requires that no malicious user can contribute more than one report

to the tally for a given report.

De�nition 5.2 (Report Uniqueness). We de�ne the report unique-

ness experiment RUNIQ [A,Π, _,&O] with respect to a stateful

adversary A, a list of numbers &O setting upper limits on the

number of queries A makes to each of its oracles, a two-server

anonymous tally scheme Π, and a security parameter _. The exper-

iment is described in Figure 4.

We de�ne the report uniqueness advantage of A as

RUNIQAdv(A,Π, _,&O) = Pr
[

RUNIQ [A,Π, _,&O] = 1
]

and we say that the scheme Π satis�es report uniqueness if for all

e�cient adversariesA and security parameters _ ∈ N, it holds that

RUNIQAdv(A,Π, _,&O) ≤ negl(_).

5.5 Threshold Unforgeability

Threshold unforgeability prevents a malicious (2 from fraudulently

convincing (1 that a threshold number of reports have been re-

ceived. The adversary in this experiment controls a malicious (2

who can create honest users and compel them to make reports of

messages of its choosing via an HonReport oracle. The adversary

receives all the resulting ciphertexts and can attempt to fool (1
into accepting an incorrect cE proof via a Verify oracle. The ad-

versary wins the experiment if it can cause (1 to accept a proof

cE for a report rep where the threshold thresh is larger than the

number of times rep has been reported. The experiment does not

allow the adversary to control malicious users for bookkeeping

reasons: allowing adversary-controlled users to make reports hides

the rep being sent to (1 and makes it impossible to do the necessary

record keeping to determine whether the adversary has won the

experiment.

De�nition 5.3 (Threshold Unforgeability). Wede�ne the threshold

unforgeability experiment THFORG[A,Π, _,&O] with respect to

a stateful adversary A, a list of numbers &O setting upper limits

on the number of queries A makes to each of its oracles, a two-

server anonymous tally scheme Π, and a security parameter _. The

experiment is described in Figure 5. While not explicitly included in

the description, we assume that the experiment retains the relevant

283

Proceedings on Privacy Enhancing Technologies 2024(3) Connor Bell and Saba Eskandarian

transcript data from (1 in the Report protocol in order to produce

vData for S1Verify.

We de�ne the threshold unforgeability advantage of A as

THFORGAdv(A,Π, _,&O) = Pr
[

THFORG[A,Π, _,&O] = 1
]

,

and we say that the scheme Π satis�es threshold unforgeability if

for all e�cient adversaries A and security parameters _ ∈ N, it

holds that

THFORGAdv(A,Π, _,&O) ≤ negl(_) .

5.6 Deniability

The majority of the deniability needs for threshold source tracking

are handled by the deniability of the underlying source tracking

scheme. That said, deniability can be a valuable property for anony-

mous tallies as well. Deniability in an anonymous tally used for

threshold source tracking means that the individual reports made

toward reaching the source tracking threshold can be denied.

Deniability requires that even if user or server secrets are made

public, reports cannot be veri�ably tied back to a given user. Specif-

ically, we will consider two kinds of deniability.

(1) Server compromise deniability: even if all the server secrets

pk1, pk2, sk1, sk2, skB are made public, there should exist a

Forge(� algorithm that, given a user uid’s public key pkD and

the leaked secrets, generates a report that is indistinguishable

from a real report made by user uid.

(2) User compromise deniability: even if a user’s secret skD is

made public, there should exist a Forge*� algorithm that,

given a user uid’s public key pkD and leaked secret key skD ,

generates a report ct and decrypted (rep, dupTag) that are

indistinguishable from a real report made by user uid.

We do not formalize these de�nitions, but we will require them

from our scheme and will discuss how we achieve them.

6 TWO-SERVER ANONYMOUS TALLY

This section describes our main construction of a two-server anony-

mous tally scheme.

6.1 Building Up the Construction

A simple scheme. We begin with a scheme that satis�es our cor-

rectness requirements but fails to achieve our security goals and

ignores the report data rd. As explained previously, the Report

procedure begins with rep, which can be a hash of the original

report contents from the source tracking scheme. In the anony-

mous tally scheme, the user samples randomness A ←R Z@ and

sendsF ← rep + A ∈ Z@ and uid to the server (1. (1 computes and

returns a MAC f ← MAC.Sign(skB , (F, uid)). The user encrypts

ct← PKE.Enc(pk2, (rep, f, A, uid)) as the output of the Report pro-

tocol. In Verify, (2 decrypts this message, veri�es the MAC tag f ,

and sets dupTag← (rep, uid).

This scheme satis�es correctness because each user’s report re-

sults in a distinct dupTag. Unfortunately, while the Report protocol

does not reveal anything about rep to (1, it fails to satisfy other

security goals. In particular,

(1) A single user can lie about its value of uid, allowing it to

submit the same rep multiple times, breaking report unique-

ness.

(2) It fully reveals the identity of the user uid to (2, failing to

achieve reporter anonymity.

The solutions to these two problems seem to pull in di�erent

directions, forcing users to always use the same uid to protect report

uniqueness while trying to hide uid for reporter anonymity. We

show to achieve both properties together.

Adding report uniqueness. In order to add report uniqueness,

we need users to always send the same uid and make sure that no

malicious user can use another user’s uid to submit a report. Wewill

accomplish this by having each user select a secret key skD ←
R
Z@

and setting pkD ← 6skD . We will have pkD be tied to the user id

uid, where 6 is a generator of a prime order group� , |� | = @. Users

now compute F as F ← � (rep)A (so A still masks � (rep)), and

instead of sending (F, uid) to (1, they send (F, E) where E ← F skD .

Users also sends a proof of knowledge of skD to demonstrate that

they know the secret key being used. Verifying this proof gives (1
con�dence that a user is not assuming another user’s identity to

submit duplicate reports.

We can build the proof system needed to prove knowledge of skD
using a Chaum-Pedersen proof [15] made non-interactive in the ran-

dom oracle model [9, 24]. This proof allows the user to prove that it

knows the secret skD such thatF = � (rep)A , pkD = 6skD , E = F skD

form a DH tuple [19]. We denote proofs using the notation of Ca-

menisch and Stadler [13], where PoK{(skD), pkD = 6skD , E = F skD }

represents the Chaum-Pedersen proof, and require the standard

zero knowledge and knowledge extraction properties [12].

The work of (2 changes very little in this version of the protocol.

The ciphertext output by the user consists of the same plaintext con-

tents (rep, f, A, uid), and (2 only needs to change how it calculates

F to match the updated scheme.

The addition of a user secret and proof requirement means that a

malicious user cannot lie about its identity to (2 and will therefore

always have the same dupTag for the samemessage, ensuring report

uniqueness.

Adding reporter anonymity. Next, we add reporter anonymity.

The challenge of reporter anonymity is to replace the tag uid with

a tag C unique to each user for each message. This tag must be

user-dependent and deterministic, but must be unlinkable to uid.

To prevent (2 from identifying which set of reports have come from

the same user, the tag C must depend on both the identity of the

user and the content of rep.

Our solution is to have the server compute C as a PRF evaluation

of the user’s identity and the report rep. The challenge is to do this

without revealing rep to (1. Our �nal scheme has (1 compute C by

evaluating an oblivious PRF (OPRF) [26, 40] evaluation on E using

the secret key sk1, resulting in a tag C = Esk1 = F skDsk1 . As before,

the server (1 learns nothing about rep because � (rep) is masked

by A . Instead of computing f ← MAC.Sign(sk1, (F, uid)), (1 sets

f ← MAC.Sign(sk1, (F, C)). The tag C now depends on all three of

rep, skD , and sk1. To ensure that the server (1 does not misbehave, it

also sends a Chaum-Pedersen proof that it has honestly computed C .

284

Anonymous Complaint Aggregation for Secure Messaging Proceedings on Privacy Enhancing Technologies 2024(3)

At the end of the Report protocol, the user sets its output to ct←

PKE.Enc(pk2, (rep, C, f, A)).When runningVerify, (2 now computes

dupTag as dupTag ← C1/A , resulting in C being a deterministic

function of rep, skD , and sk1:

C1/A = � (rep)AskDsk1/A = � (rep)skDsk1 .

As intended, the dupTag now depends on the user and the mes-

sage. Assuming that the DDH problem is hard in � , � (rep)skDsk1

will appear uniformly randomly distributed in � , meaning that the

dupTag reveals nothing about uid to the server (2. Including the

server key sk1 in the exponent in C , while not strictly necessary

for the anonymity property, serves to ensure deniability, as we will

discuss below.

Adding veri�cation of (2. As speci�ed in Section 4, the platform

itself will host (1, allowing for internal audits andmonitoring, while

(2 is hosted by a third party. We now brie�y describe a protocol

that allows the platform to verify claims from (2 that a certain rep

has exceeded a given threshold thresh, without revealing which

users’ reports contributed to the threshold.

A naïve and insecure way for (2 to prove to (1 that users have

in fact sent thresh distinct instances of a particular report rep is for

(2 to reveal the (rep, A , dupTag) tuples for each report. Using this

information, (1 (who must keep the valuesF and C that it receives

in the Report protocol) can check if it previously saw values of

F = � (rep)A and C = dupTagA . Due to the collision-resistance of

� and the hardness of discrete log in � , (2 will be unable to forge

such reports, and the distinct dupTag values mean that (2 is sending

reports from distinct users. Unfortunately, directly revealing these

values to (1 allows linking which user made which report, which

would break report con�dentiality.

In order to go from the naïve solution to one that preserves report

con�dentiality, we modify the protocol so that (2 proves to (1 in

zero knowledge that it knows reports that satisfy the relationships

above, without revealing which reports they are. Instead of directly

revealing rep, A , and dupTag for each report, (2 reveals only rep

and dupTag, neither of which will have previously been seen by (1.

Then, it proves in zero knowledge that it knows the value A such

that � (rep)A = F and dupTagA = C for some (F, C) held by (1. This

proof is a standard OR-composition of Chaum-Pedersen proofs.

This OR proof is repeated for each of the thresh values of dupTag.

Thus (2 can convince (1 that the reports it has sent includes thresh

distinct reports of rep without revealing which clients’ interactions

with (1 produced those reports.

More precisely, for a report rep, threshold thresh and a batch

of reports of size B , (2 holds a vector (A1, ..., Athresh) and length-B

vectors w, t, and dupTag. We prove the statement

q = q1 ∧ ... ∧ qthresh,

where q8 is de�ned as

q8 = {
(

� (rep)A8 = F1 ∧ dupTag
A8
1
= C1

)

∨

∨
(

� (rep)A8 = FB ∧ dupTag
A8
B = CB

)

}.

Our veri�cation proof requires time and space$ (B · thresh). This

scheme allows for a privacy/performance tradeo� where the batch

size B is reduced to only subset of reports, thereby reducing the

anonymity set of each user whose report is included, but speeding

up and shrinking the communication required of the veri�cation

process.

Supporting report data. Finally, we complete the scheme by

adding support for including report data rd in a report. This is

achieved by simply having the user making a report encrypt rd

under a public key pk1rd held by (1 and include the corresponding

ciphertext hd as part of the plaintext encrypted to produce ct. Thus

(2 does not learn anything from hd when it decrypts ct, but when

(1 runs Reveal, it decrypts hd to recover rd. In our full scheme, the

keys sk1 and pk1 are split into two parts: sk1rep, pk1rep which are

used for reporting as described thus far, and sk1rd, pk1rd which are

used for encrypting and decrypting report data. Since each report

comes with its own copy of hd, (1 should check that any expected

relationship between the decrypted message and the report rep are

satis�ed, e.g., it should check that rd = � (rep).

6.2 Full Construction

We now formalize the construction described informally above.

Construction 6.1 (Two-server anonymous tally scheme). Our two-

server anonymous tally scheme Π, shown in Figure 6, is de�ned

with respect to a cyclic group � of prime order @ with generator

6 ∈ � where DDH is hard. The scheme uses the following tools:

• A CCA-secure public key encryption scheme PKE = (KGen,

Enc,Dec)

• An existentially unforgeable MAC scheme MAC = (Sign,

Verify)

• A hash function � : R → � modeled as a random oracle

• A non-interactive zero-knowledge proof of knowledge

(NIZKPoK) scheme for Di�e-Hellman triples

6.3 Security Analysis

We now brie�y discuss each security property and state the theo-

rems that we prove in Appendix D.

The correctness of the scheme follows largely from the correct-

ness of the underlying cryptographic tools. There is a possibility of

distinct honest users having duplicate dupTags if either two reps

happen to collide in � or if two users happen have the same skD .

These events occur with negligible probability in the size of � .

Intuitively, report con�dentiality follows from the fact that the

value of rep is masked by A when sent to (1 and encrypted when

the adversary sees it and decides whether or not to give it to (2.

However, we also need tomake sure that (1 cannot use the output of

the Process oracle to distinguish whichmessages are being reported.

The report con�dentiality experiment prevents (1 from using the

output of Process to achieve trivial wins, but we also need to show

that (1 cannot cleverly circumvent these measures.

The proof proceeds by a series of hybrids that �rst extract the

secret sk1rep used by the adversary before carefully converting

everything in the experiment that depends on the choice of 1 into

a random value, simulated proof, or encryption of 0. A probability

argument can then show that an adversary cannot succeed in using

Process in a way that circumvents protections against trivial wins.

Theorem 6.2 (Report con�dentiality). Assuming that the encryp-

tion scheme (Enc,Dec) is CCA-secure, that the proof system PoK is a

285

Proceedings on Privacy Enhancing Technologies 2024(3) Connor Bell and Saba Eskandarian

SKGen1(1_, pp) :

sk1rep ←
R
Z@

pk1rep ← 6sk1rep

(sk1rd, pk1rd) ← PKE.KGen(1_)

skB ←
R {0, 1}_

sk1 ← (sk1rep, sk1rd)

pk1 ← (pk1rep, pk1rd)

output (pk1, sk1, skB)

Verify(skB , sk2, ct) :

(rep, C, f, A, hd) ← PKE.Dec(sk2, ct)

F′ ← � (rep)A

if MAC.Ver(skB , (F
′, C), f) = 0 :

output ⊥

dupTag← C1/A

output (rep, dupTag, hd)

Reveal(sk1, hd) :

(sk1rep, sk1rd) ← sk1

rd← PKE.Dec(sk1rd, hd)

output rd

SKGen2(1_, pp) :

(sk2, pk2) ← PKE.KGen(1_)

output (pk2, sk2)

UKGen(1_, pp) :

skD ←
R
Z@

pkD ← 6skD

output (pkD , skD)

S2Prove(rep, pData, thresh) :

(r, dupTag,w, t) ← pData

cE ← PoK{(r), q } //q de�ned in text

output cE

S1Verify(rep, vData, dupTags, cE) :

(w, t) ← vData

if PoK.Ver(cE, (dupTags,w, t)) = 0 :

output 0

if |set(dupTags) | < |dupTags | :

output 0 //duplicate tags

else output 1

Report :

* (rep, rd, pkD , skD , pk1, pk2)

(pk1rep, pk1rd) ← pk1

A ←R Z@

F ← � (rep)A

E ← FskD

cD ← PoK{(skD),

pkD = 6skD ,

E = FskD }

F,E,cD
−−−−−−−−−−−−−−−−−−−−−−−−→

C,f,cB
←−−−−−−−−−−−−−−−−−−−−−−−−

if PoK.Ver(cB , (pk1rep, E, C)) = 0 :

output ⊥

hd← PKE.Enc(pk1rd, rd)

ct← PKE.Enc(pk2, (rep, C, f, A, hd))

output ct

(1 (pk1, skB , sk1, pkD)

(sk1rep, sk1rd) ← sk1

(pk1rep, pk1rd) ← pk1

if PoK.Ver(cD , (pkD , F, E)) = 0 :

output ⊥

C ← Esk1rep

cB ← PoK{(sk1rep),

pk1rep = 6sk1rep ,

C = Esk1rep }

f ← MAC.Sign(skB , (F, C))

Figure 6: Our two-server anonymous tally scheme (Construction 6.1).

zero knowledge proof of knowledge, that the DDH problem is hard in

the group � , and that the hash function � is modeled as a random

oracle, then our two-server anonymous tally scheme (Construction 6.1)

satis�es report con�dentiality (De�nition A.1).

Speci�cally, for every report uniqueness adversary A that attacks

our scheme Π and list &O specifying the number of queriesA makes

to each of its oracles, there exist adversaries against the tools used to

build the scheme such that for every _ (omitting adversary names

and security parameters),

RCONFAdv(A,Π, _,&O)

≤2&Report (PoKAdv(PoK) +&ProcessZKAdv(PoK))

+ 2CCAAdv(PKE) + 6DDHAdv(�) + negl.

Reporter anonymity follows almost immediately from the hard-

ness of DDH in� . Since the reporter anonymity adversary controls

(2, the only element of the adversary’s view that depends on a re-

porting user’s identity is the value C = � (rep)AskDsk1rep , from which

(2 derives dupTag = � (rep)skDsk1rep . Intuitively, the adversary

should not be able to distinguish between (� (rep), pkD , dupTag)

and (� (rep), pkD , ') for ' ←
R � . The proof formalizes this via a

reduction to DDH. Additionally, the fact that the report data rd

is encrypted under the public key of (1 means that the adversary

cannot learn anything from hd.

Theorem 6.3 (Reporter anonymity). Assuming that PoK has per-

fect completeness, that the DDH problem is hard in the group � , that

the encryption scheme (Enc,Dec) is CPA-secure, and that the hash

function � is modeled as a random oracle, then our two-server anony-

mous tally scheme (Construction 6.1) satis�es reporter anonymity

(De�nition 5.1).

Speci�cally, for every reporter anonymity adversaryA that attacks

our scheme Π, there exist DDH and CPA adversaries B and C such

that for every _,

ANONAdv(A,Π, _)

≤ 2 · DDHAdv(B,�, _) + 2 · CPAAdv(C, PKE).

For report uniqueness, we show that an adversary who cannot

break our scheme’s underlying primitives needs to roughly “follow

the rules” in the report uniqueness game, meaning the adversary has

no opportunities to deviate from the protocol and cause incorrect

outcomes. The only degrees of freedom a�orded to an adversary

are its choices of reports and randomness A for each report. We

show, via the hardness of discrete logarithm in� , that the adversary

cannot pick reports and corresponding randomnesses that lead to

colliding values of dupTag for di�erent users.

Theorem 6.4 (Report uniqueness). Assuming thatMAC is an ex-

istentially unforgeable MAC scheme, that the non-interactive proof

286

Anonymous Complaint Aggregation for Secure Messaging Proceedings on Privacy Enhancing Technologies 2024(3)

system PoK satis�es soundness and zero knowledge, that the encryp-

tion scheme (Enc,Dec) is CCA-secure, that the discrete logarithm

problem is hard in the group� , and that the hash function � is mod-

eled as a random oracle, then our two-server anonymous tally scheme

(Construction 6.1) satis�es report uniqueness (De�nition 5.2).

Speci�cally, for every report uniqueness adversary A that attacks

our scheme Π and list &O specifying the number of queriesA makes

to each of its oracles, there exist adversaries against the tools used to

build the scheme such that for every _ (omitting adversary names

and security parameters),

RUNIQAdv(A,Π, _,&O) ≤ &MalReport · PoKAdv(PoK)

+ CCAAdv(PKE) +MACAdv(MAC)

+&� · DLAdv(�) + negl.

Threshold unforgeability follows directly from the extractability

of the zero knowledge proof and the hardness of discrete logarithm

in � . If (2 can produce a false proof that there are more reports of

some rep than have actually been made, it must break a discrete

logarithm to pretend some report was for a di�erent message than

it really was.

Theorem 6.5 (Threshold unforgeability). Assuming that PoK is a

proof of knowledge, that the discrete logarithm problem is hard in

the group � , and that the hash function � is modeled as a random

oracle, then our two-server anonymous tally scheme (Construction 6.1)

satis�es threshold unforgeability (De�nition 5.3).

Speci�cally, for every threshold unforgeability adversary A that

attacks our scheme Π and list&O specifying the number of queriesA

makes to each of its oracles, there exist adversaries against the tools

used to build the scheme such that for every _ (omitting adversary

names and security parameters),

THFORGAdv(A,Π, _,&O)

≤ &Verify · PoKAdv(PoK) + 2&� · DLAdv(�) + negl.

Finally, we turn our attention to deniability. Recall that we want

two kinds of deniability: user compromise deniability and server

compromise deniability.

In server compromise deniability, all the server secret keys sk1 =

(sk1rep, sk1rd), sk2, skB are made public, and we wish to ensure that

no (rep, dupTag, hd) veri�ably ties a report to a particular user uid.

This is accomplished by showing that there exists an algorithm

Forge(� whose outputs are distributed indistinguishably from a

real (rep, dupTag, hd) for a report from the user uid. Since hd is an

encryption of rd under sk1rd, we need for the contents of rd to be

deniable via a forgery algorithm Forgerd that outputs a forged string

rd∗. Such an algorithm exists for source tracking schemes discussed

in this paper, such as that of Peale et al. [42]. The Forge(� algorithm

outputs (rep, ', PKE.Enc(pk1rd, rd
∗)) for ' ←R � . As we did in the

proof of reporter anonymity, we can show, via a reduction to the

DDH problem in � , that the distribution of (� (rep), pkD , dupTag)

is indistinguishable from that of (� (rep), pkD , ') as long as skD
remains secret (which is enforced by the zero-knowledge property

of the proof cD).

In user compromise deniability, the keys (skD , pkD) of a user uid

are made public, and we wish to ensure that no (rep, dupTag, hd)

veri�ably ties a report to that user. This is accomplished by show-

ing that there exists an algorithm Forge*� whose outputs are dis-

tributed indistinguishably from a real (rep, dupTag, hd) for a re-

port from user uid. Similarly to the case of server compromise

deniability, this is easily achieved by an algorithm that outputs

(rep, ', PKE.Enc(pk1rd, 0)) for ' ←
R � . Even if a user’s skD is made

public, dupTag = � (rep)skDsk1rep appears random to (2. This is

because including sk1rep in the exponent means we can show

that dupTag is indistinguishable from random via DDH not only

for a secret skD but also a secret sk1rep. This is proved via a re-

duction to DDH in � , where we show that the distributions of

(� (rep), pk1rep, dupTag) and (� (rep), pk1rep, ') are computation-

ally indistinguishable, as long as sk1rep remains secret (which is

enforced by the zero-knowledge property of the proof cB). Likewise,

since sk1rd remains secret, the encryption of 0 is indistinguishable

from the encryption of a real rd. This means that as long as both

the user and (1 are not compromised simultaneously, user reports

are deniable.

Cover tra�c. To achieve larger anonymity sets, it may be desirable

to have clients periodically submit valid random reports in the

absence of a user’s request to submit a real report. With support for

a large message hash reporting space, the reports submitted as cover

tra�c will look legitimate to (1, but will not increment the tally for

a legitimate message except with negligible probability. Client cover

tra�c would ensure that (1 could not guess with any con�dence

which users reported which message, while also ensuring that (2
has a su�ciently large anonymity set of messages to cover the

tracks of real reporters during the veri�cation protocol.

7 EVALUATION

We implemented our anonymous tally scheme in Rust. Group oper-

ations are performed using curve25519 via the curve25519 − dalek

library [36]. The Chaum-Pedersen proofs in the protocol were made

non-interactive via Fiat-Shamir [24]. We instantiated our MAC

scheme with HMAC-SHA256 and our encryption scheme with 2048-

bit RSA-OAEP using the rust-openssl implementations [23, 45]. Fi-

nally, we instantiate our hash function � with SHA512. Since we

only hash �xed-length messages, SHA512 will be indi�erentiable

from a random oracle in this restricted setting [17, 38].

We evaluated the performance of the implementation by run-

ning the protocols with random keys and inputs in at least 1,000

trials, with the Rust Criterion benchmarking library con�gured

to a 95% con�dence interval, on an 11th Gen Intel(R) Core(TM)

i7-11700K @ 3.60GHz processor running Ubuntu Linux 20.04.5 LTS.

The results in Table 3 were obtained with Criterion con�gured to

a 90% con�dence interval with at least 20 runs due to extended

runtime. Comparisons to performance of other schemes are made

by re-running their performance benchmarks, where the source is

available, or comparing to published performance data when not.

Evaluation results. Table 1 shows average runtimes for reporting

messages and verifying reports in our scheme. Reports and report

veri�cation each take well under 1ms to complete. This remains

true even when counting the time to add our scheme on top of a con-

ventional source tracking scheme. Combining our anonymous tally

scheme with the tree-linkable source tracking of Peale et al. [41, 42],

their faster and more practical scheme, only requires an additional

287

Proceedings on Privacy Enhancing Technologies 2024(3) Connor Bell and Saba Eskandarian

Computation Time

Report (User) 360 `s

Report (Server) 327 `s

Verify 760 `s

Table 1: Time to run theReportprotocol

and theVerify algorithm in our scheme.

Communication

Report (User) 176B

Report (Server) 160B

Encrypted Report 608B

Total to Report a Message 944B

Table 2: Communication costs between

user and (1 during the Report protocol.

B S2Prove S1Verify

100 14.2 ms 15.7 ms

1,000 142 ms 157 ms

10,000 1.42 s 1.57 s

100,000 14.2 s 15.7 s

Table 3: Time to run the S2Prove and

S1Verify algorithms. Need to run thresh

times to prove the threshold is met.

43`B of computation to produce and hash a report for a 1KBmessage

to derive the rep value used as an input to our scheme.

The communication overhead to report a message, beyond the

size of the message itself, is summarized in Table 2. Reporting a

message via our Report protocol requires less than 1KB of commu-

nication overhead between the user and the servers. The persistent

storage required to hold values of dupTag,F , or C is 32 Bytes each,

and the hd scales based on the length of the original message. Users

may wish to pad the length of reported messages to some constant

size to avoid leaking length information.

To show feasibility for a range of anonymity group sizes, we

present our benchmark of the protocol to verify (2 in Table 3. Each

row represents the time to prove and verify that (2 holds knowledge

of a report with a unique dupTag amongst a batch of B − 1 other

reports; repeating this process thresh times will convince (1 that

the threshold has been met. Our implementation is single-threaded,

but proof and veri�cation can be parallelized using a map-reduce

structure, yielding times much faster than our implementation.

Our results suggest that the scheme has su�ciently low over-

heads for deployment. The constant time Report and Verify algo-

rithms and constant 944B of network communication to report a

message appear reasonable, particularly when weighing increased

user privacy, server enforced report uniqueness, and the fact that

overhead for non-reported messages is una�ected in our scheme.

Comparison to FACTS [35]. We compare the performance of our

scheme to FACTS, as it is, to our knowledge, the only previously

known threshold source tracking scheme, although FACTS only

supports approximate threshold source tracking, not exact tallies.

FACTS is not an open source project, so we base our comparisons

on data available in the FACTS paper.

The runtime of FACTS for their interactive Complain algorithm,

used to report messages, is a function of the approximate threshold

when messages are to be revealed. Our anonymous tally scheme

takes constant time, regardless of the reporting threshold. FACTS

operates by having the server and users cooperate to maintain

a cooperative counting Bloom �lter (CCBF), a data structure that

requires parameter tuning, prede�ned epoch intervals, and �xed

server storage per epoch to avoid probabilistic contention between

users trying to report the same message. None of these are nec-

essary for our scheme. As a result, storage can be dynamically

allocated based on demand and report frequency, not on security or

correctness considerations. The FACTS construction also requires

locking the global storage state while waiting for the client to de-

termine how to update the CCBF. Reports in our scheme can be

processed without any locks on global state, so it is possible to

replicate both servers in the scheme to scale to a large user base.

In the absence of source code and metrics for the runtime of

FACTS, it is di�cult to make a direct performance comparison, but

the authors’ analysis shows that a complaint threshold of 1,000

reports leads to an average runtime dominated by the network

latency of the 3 messages passed between the user and server in the

Complain algorithm. Thus it is reasonable to assume that FACTS

performswith very little computational overhead on both the server

and client for large thresholds. The performance cost for lower

thresholds, however, is higher. Running FACTS with a threshold

of 200 results in an average Complain time of over 400ms – 160ms

above the expected network latency. While not quite an apples

to apples comparison due to di�erences in evaluation setups, the

computation time for running Complain with this threshold, not

including network latency, is over 160× higher than our scheme.

Since our anonymous tally scheme includes an additional server-

only veri�cation protocol, messages which reach the threshold will

pay additional server computation and communication costs to

verify the counts before revealing the message, but our benchmarks

show that these costs are manageable for large anonymity set sizes,

and since the costs are deferred until message reveal time, they are

only paid by messages which reach the threshold.

8 CONCLUSION

We have presented a new two-server anonymous tally scheme that

can be used to build a threshold source tracking system. The re-

sulting system requires no changes to the message processing or

delivery, and only a�ects the overhead of reporting abusive mes-

sages. Compared to prior work, our scheme removes the possibility

of false positive message reports and allows for exact report thresh-

olds for revealing messages, not approximate ones.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science

Foundation under Grant No. 2234408, as well as gifts from Google

and Cisco. Any opinions, �ndings, and conclusions or recommenda-

tions expressed in this material are those of the author(s) and do not

necessarily re�ect the views of the National Science Foundation.

REFERENCES
[1] 2021. Analytics in Exposure Noti�cations Express: FAQ. https://github.com/

google/exposure-noti�cations-android/blob/master/doc/enexpress-analytics-
faq.md. Accessed 5/1/2023.

[2] 2021. Exposure Noti�cation Privacy-preserving Analytics (ENPA) White Pa-
per. https://covid19-static.cdn-apple.com/applications/covid19/current/static/
contact-tracing/pdf/ENPA_White_Paper.pdf. Accessed 5/1/2023.

288

Anonymous Complaint Aggregation for Secure Messaging Proceedings on Privacy Enhancing Technologies 2024(3)

[3] 2021. What is traceability and why does WhatsApp oppose it?
https://faq.whatsapp.com/general/security-and-privacy/what-is-traceability-
and-why-does-whatsapp-oppose-it/.

[4] Josh Aas and Time Geoghegan. 2020. Introducing ISRG Prio Services for Pri-
vacy Respecting Metrics. https://www.abetterinternet.org/post/introducing-prio-
services/. https://www.abetterinternet.org/post/introducing-prio-services/

[5] Veridiana Alimonti. 2021. Brazil’s Fake News Bill: Congress Must Stand
Firm on Repealing Dangerous and Disproportionate Surveillance Mea-
sures. https://www.e�.org/deeplinks/2021/11/brazils-fake-news-bill-congress-
must-stand-�rm-repealing-dangerous-and.

[6] Apple. 2021. CSAMDetection: Technical Summary. https://www.apple.com/child-
safety/pdf/CSAM_Detection_Technical_Summary.pdf.

[7] Aya Batrawy. 2023. Saudi man sentenced to death for tweets in harshest verdict
yet for online critics (NPR). https://www.npr.org/2023/08/31/1196776390/saudi-
arabia-man-death-sentence-tweets. Accessed 3/13/2024.

[8] Mihir Bellare and Viet Tung Hoang. 2022. E�cient Schemes for Committing
Authenticated Encryption. IACR Cryptol. ePrint Arch. (2022).

[9] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A Para-
digm for Designing E�cient Protocols. In CCS.

[10] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and Bogdan
Warinschi. 2015. SoK: A comprehensive analysis of game-based ballot privacy
de�nitions. In 2015 IEEE Symposium on Security and Privacy. IEEE, 499–516.

[11] Abhishek Bhowmick, Dan Boneh, Steve Myers, Kumal Talwar, and Karl Tarbe.
2021. The Apple PSI System. (2021).

[12] Dan Boneh and Victor Shoup. 2020. A Graduate Course in Applied Cryptography
(version 0.5). https://cryptobook.us.

[13] Jan Camenisch and Markus Stadler. 1997. E�cient Group Signature Schemes
for Large Groups (Extended Abstract). In Advances in Cryptology - CRYPTO ’97,
17th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 1997, Proceedings. 410–424.

[14] David Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Commun. ACM 24, 2 (1981), 84–88.

[15] David Chaum and Torben P. Pedersen. 1992. Wallet Databases with Observers.
In Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings. 89–
105.

[16] Long Chen and Qiang Tang. 2018. People Who Live in Glass Houses Should
not Throw Stones: Targeted Opening Message Franking Schemes. IACR Cryptol.
ePrint Arch. 2018 (2018), 994.

[17] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
2005. Merkle-Damgård Revisited: How to Construct a Hash Function. In CRYPTO.

[18] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo
Valsorda. 2018. Privacy Pass: Bypassing Internet Challenges Anonymously. Proc.
Priv. Enhancing Technol. 2018, 3 (2018), 164–180.

[19] Whit�eld Di�e and Martin E. Hellman. 1976. New directions in cryptography.
IEEE Trans. Information Theory 22, 6 (1976), 644–654.

[20] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. 2018.
Fast Message Franking: From Invisible Salamanders to Encryptment. In Advances
in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I (Lecture Notes in
Computer Science, Vol. 10991), Hovav Shacham and Alexandra Boldyreva (Eds.).
Springer, 155–186.

[21] Steve Englehardt. 2019. Next steps in privacy-preserving Telemetry
with Prio. https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-
preserving-telemetry-with-prio/. https://blog.mozilla.org/security/2019/06/06/
next-steps-in-privacy-preserving-telemetry-with-prio/

[22] Inc. Facebook. 2017. Messenger Secret Conversations Technical Whitepa-
per. https://messengernews.fb.com/wp-content/uploads/2018/09/messenger-
secret-conversations-technical-whitepaper.pdf.

[23] Steven Fackler. 2022. rust-openssl. https://github.com/sfackler/rust-openssl.
[24] Amos Fiat and Adi Shamir. 1986. How to Prove Yourself: Practical Solutions

to Identi�cation and Signature Problems. In Advances in Cryptology - CRYPTO
’86, Santa Barbara, California, USA, 1986, Proceedings (Lecture Notes in Computer
Science, Vol. 263), Andrew M. Odlyzko (Ed.). Springer, 186–194. https://doi.org/
10.1007/3-540-47721-7_12

[25] Matthew Franklin and Haibin Zhang. 2013. Unique ring signatures: A practical
construction. In Financial Cryptography and Data Security: 17th International
Conference, FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Selected Papers 17.
Springer, 162–170.

[26] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. 2005. Key-
word Search and Oblivious Pseudorandom Functions. In Theory of Cryptography,
Second Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA, Feb-
ruary 10-12, 2005, Proceedings. 303–324.

[27] Eiichiro Fujisaki and Koutarou Suzuki. 2007. Traceable ring signature. In Interna-
tional Workshop on Public Key Cryptography. Springer, 181–200.

[28] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. 2017. Message Franking via
Committing Authenticated Encryption. In Advances in Cryptology - CRYPTO 2017
- 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August

20-24, 2017, Proceedings, Part III (Lecture Notes in Computer Science, Vol. 10403),
Jonathan Katz and Hovav Shacham (Eds.). Springer, 66–97.

[29] Loïs Huguenin-Dumittan and Iraklis Leontiadis. 2018. A Message Franking
Channel. IACR Cryptol. ePrint Arch. 2018 (2018), 920.

[30] Rawane Issa, Nicolas Alhaddad, andMayankVaria. 2022. Hecate: Abuse Reporting
in Secure Messengers with Sealed Sender. In 31st USENIX Security Symposium,
USENIX Security 2022, Boston, MA, USA, August 10-12, 2022, Kevin R. B. Butler
and Kurt Thomas (Eds.). USENIX Association, 2335–2352.

[31] Seny Kamara, Mallory Knodel, Emma Llansó, Greg Nojeim, Lucy
Qin, Dhanaraj Thakur, and Caitlin Vogus. 2021. Outside looking
in: Approaches to content moderation in end-to-end encrypted sys-
tems. https://cdt.org/insights/outside-looking-in-approaches-to-content-
moderation-in-end-to-end-encrypted-systems/

[32] Erin Kenney, Qiang Tang, and Chase Wu. 2022. Anonymous Traceback for End-
to-End Encryption. In European Symposium on Research in Computer Security.
Springer, 42–62.

[33] Anunay Kulshrestha and Jonathan Mayer. 2021. Identifying Harmful Media in
End-to-End Encrypted Communication: E�cient Private Membership Computa-
tion. In USENIX Security. USENIX, Virtual Event.

[34] Iraklis Leontiadis and Serge Vaudenay. 2018. Private Message Franking with
After Opening Privacy. IACR Cryptol. ePrint Arch. 2018 (2018), 938.

[35] Linsheng Liu, Daniel S. Roche, Austin Theriault, and Arkady Yerukhimovich.
2021. Fighting Fake News in Encrypted Messaging with the Fuzzy Anonymous
Complaint Tally System (FACTS). IACR Cryptol. ePrint Arch. (2021).

[36] IA Lovecruft and Henry de Valence. 2021. curve25519-dalek: A pure-rust imple-
mentation of group operations on ristretto and curve25519. https://github.com/
dalek-cryptography/curve25519-dalek.

[37] Namrata Maheshwari. 2020. Traceability Under Brazil’s Proposed Fake
News Law Would Undermine Users’ Privacy and Freedom of Expres-
sion. https://cdt.org/insights/traceability-under-brazils-proposed-fake-news-
law-would-undermine-users-privacy-and-freedom-of-expression/

[38] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. 2004. Indi�erentiability,
Impossibility Results on Reductions, and Applications to the Random Oracle
Methodology. In TCC.

[39] Silvio Micali, Michael Rabin, and Salil Vadhan. 1999. Veri�able random functions.
In 40th annual symposium on foundations of computer science (cat. No. 99CB37039).
IEEE, 120–130.

[40] Moni Naor and Omer Reingold. 2004. Number-theoretic constructions of e�cient
pseudo-random functions. J. ACM 51, 2 (2004), 231–262.

[41] Charlotte Peale. 2021. srctracking. https://github.com/cpeale/srctracking.
[42] Charlotte Peale, Saba Eskandarian, and Dan Boneh. 2021. Secure Source-Tracking

for Encrypted Messaging. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, CCS. ACM.

[43] Katitza Rodriguez. 2021. Why Indian Courts Should Reject Traceability Obliga-
tions. https://www.e�.org/deeplinks/2021/06/why-indian-courts-should-reject-
traceability-obligations.

[44] Prasanto K Roy. 2019. Why India wants to track WhatsApp messages. https:
//www.bbc.com/news/world-asia-india-50167569.

[45] RustCrypto. 2022. RustCrypto/MACs. https://github.com/RustCrypto/MACs.
[46] Manish Singh. 2020. India likely to force Facebook, WhatsApp to identify the

originator of messages. https://techcrunch.com/2020/01/21/india-likely-to-force-
facebook-whatsapp-to-identify-the-originator-of-messages/.

[47] Udbhav Tiwari and Jochai Ben-Avie. 2020. Mozilla’s analysis:
Brazil’s fake news law harms privacy, security, and free expression.
https://blog.mozilla.org/netpolicy/2020/06/29/brazils-fake-news-law-harms-
privacy-security-and-free-expression/.

[48] Nirvan Tyagi, Paul Grubbs, Julia Len, Ian Miers, and Thomas Ristenpart. 2019.
Asymmetric Message Franking: Content Moderation for Metadata-Private End-
to-End Encryption. In Advances in Cryptology - CRYPTO 2019 - 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019,
Proceedings, Part III (Lecture Notes in Computer Science, Vol. 11694), Alexandra
Boldyreva and Daniele Micciancio (Eds.). Springer, 222–250.

[49] Nirvan Tyagi, Ian Miers, and Thomas Ristenpart. 2019. Traceback for End-to-End
Encrypted Messaging. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019, London, UK, November 11-15,
2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz
(Eds.). ACM, 413–430.

A DEFERRED DEFINITIONS

De�nition A.1 (Report Con�dentiality). We de�ne the report

con�dentiality experiment RCONF[A,Π, _,&O , 1] with respect to

a stateful adversaryA, a list of numbers&O setting upper limits on

the number of queries A makes to each of its oracles, a two-server

anonymous tally scheme Π, a security parameter _, and a bit 1. The

289

Proceedings on Privacy Enhancing Technologies 2024(3) Connor Bell and Saba Eskandarian

RCONF[A,Π, _,1] :

(pk2, sk2) ← SKGen2(1_, pp)

(pk1, sk1, skB) ← A(1
_, pk2)

* ← {};) ← {};(← {}

1′ ← A$ (1_)

output 1′

Report(uid, rep0, rd0, rep1, rd1) :

if uid ∉ * : output ⊥

(skD , pkD) ← * [uid]

ct← ⟨* (rep1 , rd1 , pkD , skD , pk1, pk2),A⟩

if ct = ⊥ : output ⊥

) [ct] ← {uid, rep0, rep1 }

return ct

AddHonUser(uid) :

if uid ∈ * : output ⊥

skD , pkD ← UKGen(1_, pp)

* [uid] ← (skD , pkD)

output pkD

Submit(ct) :

(← (∪ {ct}

Process(thresh) :

' ← {};'0 ← {};'1 ← {};% ← {};

� ← {};�0 ← {};�1 ← {};

for ct ∈ (:

(rep, dupTag, hd) ← Verify(skB , sk2, ct)

if (rep, dupTag, hd) = ⊥ : continue

if (rep, dupTag) ∉ � :

� ← � ∪ (rep, dupTag)

' [rep] ← ' [rep] + 1

if ct ∈) :

(uid, rep0, rep1) ←) [ct]

if (uid, rep0) ∉ �0 :

�0 ← �0 ∪ {(uid, rep0) }

'0 [rep0] ← '0 [rep0] + 1

if (uid, rep1) ∉ �1 :

�1 ← �1 ∪ {(uid, rep1) }

'1 [rep1] ← '1 [rep1] + 1

if '0 ≠ '1 : Abort experiment, return 0

for rep ∈ ' where ' [rep] > thresh :

% ← % ∪ S2Prove(rep, pData, thresh)

output ', %, dupTags //pData will include dupTags

Figure 7: Report con�dentiality experiment RCONF (De�nition A.1).

experiment is described in Figure 7. While not explicitly included in

the description, we assume that the experiment retains the relevant

transcript data from (2 in the Report protocol in order to produce

pData for S2Prove.

We de�ne the con�dentiality advantage of A as

CONFAdv(A,Π, _,&O)

=
�

�Pr[RCONF[A,Π, _,&O , 0] = 1]

− Pr[RCONF[A,Π, _,&O , 1] = 1]
�

�.

We say thatΠ satis�es report con�dentiality if for all PPT adversaries

A and security parameters _ ∈ N, it holds that

CONFAdv(A,Π, _,&O) ≤ negl(_).

B ADDITIONAL RELATED WORK

Electronic Voting: Electronic voting as a problem space has many

parallels to message report aggregation; a set of users wish to con-

tribute towards a common tally without revealing their identity

while preventing repeated voting or “ballot-box stu�ng". Tools

such as traceable ring signatures work well in the electronic vot-

ing setting, providing anonymity for a voter within a pool as long

as they do not attempt to vote twice for the same “issue ID” [27].

There is also signi�cant overlap in the basic goals for the systems,

including similar notions of honest voter privacy, such that “an

attacker should not notice if the votes of two voters are swapped”,

as well as tally uniqueness, which “ensures that two di�erent tallies

for the same [election] cannot be accepted by the veri�cation algo-

rithm, even if all the [voters] in the system are malicious” [10]. It is

worth highlighting a few assumptions that can be accommodated

in electronic voting that prevent these tools from being applied to

solve anonymous report aggregation.

• Traceable ring signatures often require a consistent group

of public keys to ensure that votes were authenticated by

one of the corresponding private keys and that no signa-

ture was used to vote twice on the same issue. In elections,

voters can be registered before the election, allowing for

consistent signing groups of voters for a given election; the

votes are also submitted during a �xed period of time. In an

encrypted messaging platform, users can sign up and report

forwarded messages at any time, making it di�cult to ensure

a consistent user group across the aggregated reports of a

message.

• Traceable ring signatures provide a Trace procedure that

returns whether two signatures are duplicates. To ensure

a set of = signatures contains no duplicates, this requires

O(=2) invocations of Trace. The dupTags in our scheme al-

low for O(=) de-duplication within (2, while (2 can prove

correctness of the tally to (1 in O(: ∗=), with an anonymity

group of size : for any given report. In practice, this gives

the system more �exibility; it does not limit the anonymity

group of users who registered at a similar time, but instead,

to any report across the lifetime of the system, while also

scaling the anonymity group independently from the report-

ing threshold.

290

Anonymous Complaint Aggregation for Secure Messaging Proceedings on Privacy Enhancing Technologies 2024(3)

While this is by no means an exhaustive review of electronic

voting literature, we believe it illustrates some key di�erences in as-

sumptions that can be made when compared to designing a system

for report aggregation in encrypted messaging.

Privacy Pass: Our usage of an oblivious PRF, along with a

MAC of the output at a speci�c point, can be viewed as a veri�able

random function, where a single evaluation can be veri�ed without

taking away the randomness of other evaluations [39]. These are

used in many other settings, including Privacy Pass, which uses

oblivious PRFs to batch generate anonymous tokens for honest

users to bypass CAPTCHAs when using Tor or other anonymous

tra�c systems [18]. Similar to our goals of avoiding the end server

learning which user reported the message, their system serves

to prevent the end server from learning which user accessed the

resource while providing some assurance that the user is not a bot.

C REPORT CONFIDENTIALITY FOR KNOWN
REPORT DATA

This appendix considers the impact on the con�dentiality of reports

in the case where a malicious server already knows an honest user’s

report data rd, a setting not fully covered by our formal security

de�nitions. We brie�y consider the consequences of this for FACTS

and for our scheme. Note that the focus here is on the con�dentiality

of the users reporting the message, not on the sender of the message.

We discuss consequences for the sender of the message in Section 1

and Section 4.3.

Consequences for FACTS. The FACTS scheme relies on a “Col-

laborative Counting Bloom Filter” data structure of multiple over-

lapping Bloom �lters that clients update in the clear. Since each

client is only allowed to �ip one bit at a time, several clients must

report a message before a given message is included in the �lter, at

which point any client who wishes to report the message knows to

tell the server the report data rd when making its report.

A malicious server who learns rd can simply set all the bits

for that message, causing any user who wishes to report rd to

immediately reveal themself to the server. This is a full break of

con�dentiality by the server.

Consequences for our scheme.Amalicious server (1 who knows

rd in our scheme can still attack report con�dentiality, albeit less

directly. The combination of masking and zero-knowledge proofs

used in the Report protocol ensures that this protocol reveals noth-

ing to a malicious (1, regardless of whether or not (1 knows rd.

However, the scheme has no check that a given value of C in the

encrypted output of Report corresponds to a real user. Thus a mali-

cious server who knows rd can produce many fake reports for the

same rd without needing to control multiple malicious users. This

can be used to produce a targeted attack on report con�dentiality.

Suppose a malicious server receives a report from an honest

user* and wishes to check if the report data was some particular

rd that the server knows. The server creates C − 1 additional fake

reports for rd and includes all C reports (the honest report from *

and C − 1 fake reports) in a batch of report ciphertexts sent to (2. If

(2 reveals rd to (1 as having C reports, (1 knows that it correctly

guessed the report data for user * . Otherwise it can try again with

a di�erent candidate report until it guesses correctly. The report

con�dentiality rules out this attack by checking that the adversary

has not sent reports that cause the output of (2 to di�er if 1 = 0 or

1 = 1, as this kind of attack is only possible when the adversary

does know rd in advance.

Our scheme requires (2 to learn the report data rd for each

report, but it has no way of tying this information to a given user.

Nonetheless, it’s important for (1 to provide some kind of account

veri�cation process to prevent (2 from producing many fake users

and using them to get rd over the threshold. This is yet another

way that the security of the scheme is broken if both servers are

compromised.

Observe that there is a di�erence in the kind of compromise

that occurs if a server learns rd in our scheme versus in FACTS. In

FACTS, this event leads to a complete break in which the adversary

can always bypass the threshold and learn every user’s report

immediately. In our scheme, (1 can launch a targeted attack on a

particular user to guess and check the contents of their reports.

However, as long as (2 doesn’t allow for “re-reporting” of messages

past the threshold, this attack cannot be scaled to attack every

user at once. Thus switching to a two server model in our scheme

provides for a more gradual degradation of security properties

when the adversary knows rd in advance of receiving reports.

D DEFERRED PROOFS

Proof of Theorem 6.2 (report con�dentiality).

Proof. The proof proceeds by a series of indistinguishable hy-

brids.

• Hyb0: This hybrid is the security experimentRCONF[A,Π, _,&O , 0].

• Hyb1: In this hybrid, the experiment runs the extractor guar-

anteed to exist by the proof of knowledge property of PoK to

recover the value sk1rep for each proof cB presented in Report.

The experiment outputs ⊥ should any extractor fail.

This hybrid is indistinguishable from the preceding one by the

proof of knowledge property of the proof system PoK. In par-

ticular, the experiment aborts with probability PoKAdv(PoK),

the probability of the extractor failing, for each invocation of

the Report oracle. Thus the overall additional failure probabil-

ity introduced by this change is &Report · PoKAdv(PoK), which

remains negligible so long as PoKAdv(PoK) is negligible.

Note that the extracted value sk1rep will always be the same

output because there is a unique sk1rep satisfying the statement

being proved with respect to pk1rep.

• Hyb2: In this hybrid, the experiment replaces the proofs cE , gen-

erated by S2Prove and sent to the adversary during interactions

with the Process oracle, with simulated proofs.

This hybrid is indistinguishable from the preceding one by the

zero knowledge property of the proof system PoK. The hybrid

consists of at most &Process · &Report subhybrids (&Report is an

upper bound on the number of proofs produced in each call to

the Process oracle), where the 8th hybrid replaces the 8th proof

cE with a simulated proof. The adversary’s advantage in distin-

guishing between adjacent hybrids is at most ZKAdv(PoK), so

the adversary’s advantage in distinguishing between all real ver-

sus all simulated proofs is at most&Process ·&Report ·ZKAdv(PoK),

which remains negligible so long as ZKAdv(PoK) is negligible.

291

Proceedings on Privacy Enhancing Technologies 2024(3) Connor Bell and Saba Eskandarian

We omit the standard reduction that formalizes this indistin-

guishability argument.

• Hyb3: In this hybrid, the experiment replaces the proofs cD sent

to the adversary during interactions with the Report oracle with

simulated proofs.

This hybrid is indistinguishable from the preceding one by the

zero knowledge property of the proof system PoK. The hybrid

consists of&Report subhybrids, where the 8th hybrid replaces the

8th proof cD with a simulated proof. The adversary’s advantage in

distinguishing between adjacent hybrids is at most ZKAdv(PoK),

so the adversary’s advantage in distinguishing between all real

versus all simulated proofs is at most &Report · ZKAdv(PoK),

which remains negligible so long as ZKAdv(PoK) is negligible.

We omit the standard reduction that formalizes this indistin-

guishability argument.

• Hyb4: This hybrid is identical to the preceding one, except the

experiment keeps track of queries made to the random oracle �

and aborts if there are ever queries rep, rep′ made to the oracle

such that rep ≠ rep′ but � (rep) = � (rep′).

This event occurs with negligible probability because the proba-

bility of two queries to the random oracle having the same output

is negligible in the length of the output.

• Hyb5: This hybrid is identical to the preceding one except we

replace calls to PKE.Enc(pk, ·) in Report with calls to encrypt a

string of zeros of the same length. The experiment keeps a table

)Enc indexed by ciphertexts that keeps the intended plaintext

contents of those ciphertexts. This table is used to look up plain-

texts when calls are made to PKE.Dec for ciphertexts ct ∈)Enc
in Verify.

In lemma D.1, we prove that this hybrid is indistinguishable from

the preceding one by the CCA security of the encryption scheme.

• Hyb6: This hybrid is identical to the preceding experiment, except

we add an additional abort condition. The experiment will abort

and output 0 if there are two di�erent ct, ct′ ∈) where, after

looking up their user identi�ers uid, uid′ in) and running Verify,

it holds that uid ≠ uid′ but dupTag = dupTag′.

This hybrid is statistically indistinguishable from the preceding

one. Observe that dupTag = � (rep)skDsk1rep . Since the experi-

ment already aborts if there are rep, rep′ that have the same hash,

the only remaining way for dupTags to collide is if (1) skD = sk′D
for two users D,D ′ ∈ * or (2) � (rep)skDsk1rep = � (rep′)sk

′
Dsk1rep

where rep ≠ rep′. But event (1) happens with probability 1/@ for

each pair of users, or &2
AddHonUser

/@ overall. Since outputs of �

and skD , sk
′
D are chosen uniformly at random, there is a 1/@ prob-

ability that any two dupTags collide, or a &2
Report

/@ probability

of event (2) overall. Since both these probabilities are negligible,

the hybrid is indistinguishable from the preceding one.

• Hyb7 : In this hybrid, instead of calculating E ← F skD in the

Report protocol, the experiment samples E ←R �. The experiment

keeps a table)C of the C values returned by A, along with the

values of rep, A , and skD which would have been used to calculate

E , i.e.,)C [C] ← (rep, A , skD) . The experiment uses these values,

along with the extracted sk1rep, to calculate values of dupTag for

ct ∈) as if it had not changed the calculation of E . That is, it

computes

(rep, A , skD) ←)C [C]

dupTag← � (rep)AskDsk1rep/A = F skDsk1rep/A .

In Lemma D.2, we prove that this hybrid is indistinguishable

from the preceding one by the hardness of DDH in � .

• Hyb8 : In this hybrid, instead of calculatingF ← � (rep)A in the

Report protocol, the experiment samples F ←R � . The experi-

ment continues to use the values in the table)C to calculate values

of dupTag for ct ∈) as if it had not changed the calculation ofF .

In Lemma D.3, we prove that this hybrid is indistinguishable

from the preceding one by the hardness of DDH in � .

• Hyb9 : In this hybrid, the experiment samples dupTag ←R �

when running Verify for ct ∈) .

In Lemma D.4, we prove that this hybrid is indistinguishable

from the preceding one by the hardness of DDH in � .

• Hyb10 : This hybrid is identical to the preceding one, except we

add an additional abort condition. The experiment will abort

and output 0 if the Verify function, when run on a ciphertext

ct ∉) , returns a (rep, dupTag) tuple where the dupTag matches

the dupTag that would have been produced by an honest user

D ∈ * for the same rep, but where (D, rep) does not appear in �0

or �1.

This hybrid is statistically indistinguishable from the preceding

one because the abort condition can only be met with negligible

probability. This is the case because the values of dupTag for ct ∈

) are selected uniformly at random in� , and if (D, rep) does not

appear in �0 or �1, they are never shown to the adversary. Thus

the probability that an adversary produces a matching dupTag is

the probability that one of the ct ∉) that the adversary sends

to the Submit oracle matches with a random ct ∈) . Since |) | is

upper bounded by the number of calls to Report, this probability

is at most &Report ·&Submit/@, which is negligible.

• Hyb11: This hybrid is identical to the preceding one, except we

switch the experiment’s input 1 from 1 = 0 to 1 = 1.

The view of the adversary in this hybrid is identical to its view

in the preceding one because nothing in the adversary’s view

depends on 1. Observe that all the values sent by the experiment

to the challenger in the Report protocol are either random group

elements (F, E), simulated proofs (cD), or encryptions of zeroes

(ct). Moreover, the output of Process is identical when 1 = 0 or

1 = 1 because the experiment aborts in any situation where a

di�erence would arise due to the choice of 1.

In particular, whenever the experiment does not abort, each

(uid, rep) pair input to Report results in a distinct dupTag for

dupTag values corresponding to honest users. This means that

no ct ∉) will result in a dupTag that collides with one in a

ciphertext ct ∈) for a di�erent user. Let 'Hon be the value of

' restricted to its contents due to calling Verify on ciphertexts

ct ∈) . Then we have that 'Hon = '0 when 1 = 0 and 'Hon = '1
when 1 = 1 (since the abort criteria ensure that no ct ∉) can

a�ect 'Hon, '0, '1). In both cases, the experiment outputs 0 if

'0 ≠ '1, so the value of 'Hon is the same regardless of 1. This

means that ' is also the same regardless of 1 because ciphertexts

ct ∉) do not depend on 1.

292

Anonymous Complaint Aggregation for Secure Messaging Proceedings on Privacy Enhancing Technologies 2024(3)

• Hyb12 : This hybrid is identical to the preceding one, except we

remove the abort criterion introduced inHyb10. This hybrid is in-

distinguishable from the preceding hybrid via the same statistical

argument made in Hyb10.

• Hyb13 : This hybrid is identical to the preceding one, except

we return to always calculating dupTag as speci�ed in Hyb7.

This undoes the change made in Hyb9 and is indistinguishable

from the preceding hybrid via the same argument, relying on the

hardness of DDH in � .

• Hyb14 : This hybrid is identical to the preceding one, except

we return to always calculating F as speci�ed in the protocol.

This undoes the change made in Hyb8 and is indistinguishable

from the preceding hybrid via the same argument, relying on the

hardness of DDH in � .

• Hyb15 : This hybrid is identical to the preceding one, except we

return to always calculating E and dupTag as speci�ed in the

protocol. This undoes the change made in Hyb7 and is indis-

tinguishable from the preceding hybrid via the same argument,

relying on the hardness of DDH in � .

• Hyb16 : This hybrid is identical to the preceding one, except we

drop the additional abort criteria speci�ed in Hyb6. This undoes

the change made in that hybrid, and is indistinguishable from

the preceding hybrid via the same argument.

• Hyb17: This hybrid is identical to the preceding one, except en-

cryption is done as speci�ed in the protocol, rather than always

encrypting zeros and looking up plaintexts in)Enc to decrypt.

This undoes the change made in Hyb5.

This hybrid is indistinguishable from the preceding one by the

CCA security of the encryption scheme PKE, by an argument

analogous to the one made there.

• Hyb18: This hybrid is identical to the preceding one, except the

experiment no longer aborts in the case of two queries rep,

rep′ made to the random oracle � such that rep ≠ rep′ but

� (rep) = � (rep′). This undoes the change made in Hyb4, and

is indistinguishable from the preceding hybrid via the same ar-

gument.

• Hyb19 : This hybrid is identical to the preceding one, except

the experiment no longer simulates the proofs cD and uses real

proofs instead. This undoes the changes made in Hyb3, and is

indistinguishable from the preceding hybrid via the same argu-

ment.

• Hyb20 : This hybrid is identical to the preceding one, except

the experiment no longer simulates the proofs cE and uses real

proofs instead. This undoes the changes made in Hyb2, and is

indistinguishable from the preceding hybrid via the same argu-

ment.

• Hyb21: This hybrid is identical to the preceding one, except the

experiment no longer runs the extractors to recover sk1rep from

each proof cB provided by the adversary in Report. This undoes

the change made in Hyb1, and is indistinguishable from the

preceding hybrid via the same argument used there.

Note that this hybrid is identical to RCONF[A,Π, _,&O , 1] .

The proof of the theorem follows from the indistinguishability

of adjacent pairs of hybrids and the triangle inequality.

Lemma D.1. Suppose that for any adversary B attacking the CCA

security of PKE, the advantage of B in winning the CCA security

experiment is at most CCAAdv(B, PKE). Then, we have that
�

�Pr[Hyb4 () = 1] − Pr[Hyb5 () = 1]
�

� ≤ CCAAdv(B, PKE).

Proof. We show that if there exists an adversaryA who distin-

guishes between the two hybrids, then we can build an adversary

B who breaks the CPA security of PKE.Enc. B plays the role of the

challenger to A and the adversary in the CPA security game. It

simulatesHyb5 exactly, except for two changes. It sets pk2 to be the

public key provided by the CPA security challenger, and whenever

Report makes a call to PKE.Enc, it submits two plaintexts to the

CPA security challenger: the plaintexts that are encrypted in Hyb4
and Hyb5. Since B keeps a table)Enc as described in Hyb5, correct-

ness decryption and the outcomes of Process are identical in both

cases. Thus if the CPA challenger has input 1 = 0, the adversary

B perfectly simulates Hyb4 to A, and if the CPA challenger has

1 = 1, B perfectly simulates Hyb5. Thus B distinguishes 1 = 0 vs

1 = 1 in the CPA security game with the same advantage that A

distinguishes between Hyb4 and Hyb5. □

Lemma D.2. Suppose that for any adversary B attacking DDH in

� , the advantage of B in winning the DDH experiment is at most

DDHAdv(B,�). Then, modeling � as a random oracle, we have that
�

�Pr[Hyb6 () = 1] − Pr[Hyb7 () = 1]
�

� ≤ DDHAdv(B,�) .

Proof. We show how to build an adversary B who breaks DDH

using an adversary A who distinguishes between the two hybrids.

The adversary B begins by receiving the DDH challenge tuple

-,., / . It responds to random oracle queries by sampling a random

U8 ←
R
Z@ and setting � (rep8) ← 6U8 . In the AddHonUser oracle,

it samples VD ←
R
Z@ and sets pkD ← . VD . In the Report protocol,

it samples W8 ←
R
Z@ and sets F ← -U8W8 , where U8 is chosen by

querying the random oracle at rep. Moreover, it sets E ← /U8W8VD .

Instead of recording A when producing ct, the adversary B records

W8 . Finally, when running the Verify oracle for ct ∈), The adversary

B computes dupTag as .U8VDsk1rep (straightforward bookkeeping

can allow B to recover the correct choices of U8 , VD). At the end of

the experiment, B passes on A’s output as its own.

Observe that if the DDH challenger has sent B a real DDH triple,

i.e., - = 6G , . = 6~, / = 6G~, G,~, I ∈ Z@ , then B is providing

A with a perfect simulation of Hyb6 . This is because we have

implicitly set skD = ~VD and A = GW8 , and all the group elements

that make up the adversary’s view (F, E, dupTag) are consistent

with this assignment of variables.

F ← -U8W8 = 6GU8W8 = � (rep8)
GW8 = � (rep8)

A

E ← /U8W8VD = 6G~U8W8VD = � (rep8)
GW8~VD = F skD

dupTag← .U8VDsk1rep = 6~U8VDsk1rep = � (rep8)
skDsk1rep = C1/A

On the other hand, if / is a random group element, then we have

that E is a random group element as well, but the other aspects of

the adversary’s view remain the same. This is a perfect simulation

of Hyb7 . Thus the adversary B distinguishes a DDH triple from a

random one with the same advantage thatA distinguishes between

the two hybrids. □

Lemma D.3. Suppose that for any adversary B attacking DDH in

� , the advantage of B in winning the DDH experiment is at most

293

Proceedings on Privacy Enhancing Technologies 2024(3) Connor Bell and Saba Eskandarian

DDHAdv(B,�). Then, modeling � as a random oracle, we have that
�

�Pr[Hyb7 () = 1] − Pr[Hyb8 () = 1]
�

� ≤ DDHAdv(B,�).

Proof. We show how to build an adversary B who breaks DDH

using an adversary A who distinguishes between the two hybrids.

The adversary B begins by receiving the DDH challenge tuple

-,., / . It responds to random oracle queries by sampling a random

U8 ←
R
Z@ and setting � (rep8) ← -U8 . In the Report protocol,

it samples V8 ←
R
Z@ and sets F ← /U8V8 , where U8 is chosen

by querying the random oracle at rep. When running the Verify

oracle for ct ∈), the adversary B computes dupTag as -U8 skDsk1rep

(straightforward bookkeeping can allow B to recover the correct

choices of U8). At the end of the experiment,B passes onA’s output

as its own.

Observe that if the DDH challenger has sent B a real DDH triple,

i.e., - = 6G , . = 6~, / = 6G~, G,~, I ∈ Z@ , then B is providing

A with a perfect simulation of Hyb7 . This is because we have

implicitly set A = ~V8 and explicitly set � (rep) = 6GU8 , and all the

group elements that make up the adversary’s view (F, E, dupTag)

are consistent with this assignment of variables.

F ← /U8V8 = 6G~U8V8 = � (rep)~V8 = � (rep)A

E ←R �

dupTag← -U8 skDsk1rep = 6GU8 skDsk1rep = � (rep)skDsk1rep

On the other hand, if / is a random group element, then we have

thatF is a random group element as well, but the other aspects of

the adversary’s view remain the same. This is a perfect simulation

of Hyb8 . Thus the adversary B distinguishes a DDH triple from a

random one with the same advantage thatA distinguishes between

the two hybrids. □

Lemma D.4. Suppose that for any adversary B attacking DDH in

� , the advantage of B in winning the DDH experiment is at most

DDHAdv(B,�). Then, modeling � as a random oracle, we have that
�

�Pr[Hyb8 () = 1] − Pr[Hyb9 () = 1]
�

� ≤ DDHAdv(B,�).

Proof. We show how to build an adversary B who breaks DDH

using an adversary A who distinguishes between the two hybrids.

The adversary B begins by receiving the DDH challenge tuple

-,., / . It responds to random oracle queries by sampling a random

U8 ←
R
Z@ and setting � (rep8) ← -U8 . In the AddHonUser oracle, it

samples VD ←
R
Z@ and sets pkD ← . VD . When running the Verify

oracle for ct ∈), the adversary B computes dupTag as /U8VDsk1rep

(straightforward bookkeeping can allow B to recover the correct

choices of U8 , VD). At the end of the experiment, B passes on A’s

output as its own.

Observe that if the DDH challenger has sent B a real DDH triple,

i.e., - = 6G , . = 6~, / = 6G~, G,~, I ∈ Z@ , then B is providing A

with a perfect simulation ofHyb8 . This is becausewe have implicitly

set skD = ~VD and explicitly set � (rep) = 6GU8 , and all the group

elements that make up the adversary’s view (F, E, dupTag) are

consistent with this assignment of variables.

F ←R �

E ←R �

dupTag← /U8VDsk1rep = 6G~U8VDsk1rep = � (rep)skDsk1rep

On the other hand, if / is a random group element, then we have

that dupTag is a random group element as well, but the other aspects

of the adversary’s view remain the same. This is a perfect simulation

of Hyb9 . Thus the adversary B distinguishes a DDH triple from a

random one with the same advantage thatA distinguishes between

the two hybrids. □

□

Proof of Theorem 6.3 (reporter anonymity).

Proof. The proof proceeds by a series of indistinguishable hy-

brids.

• Hyb0: This hybrid is the security experimentRANON[A,Π, _, 1 =

0] .

• Hyb1: This hybrid is identical to the preceding hybrid, except in

calls to the HonReport oracle, the experiment omits producing

or verifying the proofs cD and cB .

This change does not a�ect the view of the adversary in the

experiment because the adversary never sees the transcript of

interactions inHonReport, and the proofs have perfect complete-

ness, meaning omitting them will not change the probability that

the Report protocol outputs ⊥.

• Hyb2: This hybrid is identical to the preceding one, except instead

of encrypting hd← PKE.Enc(pk1rd, rd) in theHonReport oracle,

we replace rd with a string of zeros of the appopriate length.

This hybrid is indistinguishable from the preceding one by the

CPA security of the encryption scheme. This can be proven via a

standard reduction, which we omit.

• Hyb3: This hybrid is identical to the preceding one, except in-

stead of computing E ← F skD in the HonReport oracle, we com-

pute E ←R � .

In Lemma D.5, we prove that this hybrid is indistinguishable

from the preceding one by the hardness of DDH in � and the

fact that � is modeled as a random oracle.

• Hyb4: This hybrid is identical to the preceding one except we

switch the experiment’s input 1 from 1 = 0 to 1 = 1.

Observe that nothing in the adversary’s view in Hyb3 depends

on 1, so this hybrid is identical to the preceding one.

• Hyb5: In this hybrid, instead of computing E ←R � in HonReport,

we compute E ← F skD . This undoes the change made in Hyb3.

As in Hyb3, this hybrid is indistinguishable from the preceding

one by the hardness of DDH in� and the fact that � is modeled

as a random oracle. The proof is analogous to that of Lemma D.5.

• Hyb6: In this hybrid, the experiment resumes using rd as the

plaintext that gets encrypted to produce hd. This undoes the

change made in Hyb2.

As in Hyb2, this hybrid is indistinguishable from the preceding

one by the CPA security of PKE.

• Hyb7: In this hybrid, the experiment resumes computing and

verifying the proofs cD and cB in the HonReport oracle. This

undoes the change made in Hyb1.

As in Hyb1, this change does not a�ect the view of the adver-

sary in the experiment. Note that this hybrid is identical to

RANON[A,Π, _, 1 = 1] .

The proof of the theorem follows from the indistinguishability

of adjacent pairs of hybrids and the triangle inequality.

294

Anonymous Complaint Aggregation for Secure Messaging Proceedings on Privacy Enhancing Technologies 2024(3)

Lemma D.5. Suppose that for any adversary B attacking DDH in

� , the advantage of B in winning the DDH experiment is at most

DDHAdv(B,�). Then, modeling the hash function � as a random

oracle, we have that
�

�Pr[Hyb2 () = 1] − Pr[Hyb3 () = 1]
�

� ≤ DDHAdv(B,�).

Proof. We show that if there exists an adversary A who dis-

tinguishes between the two hybrids, then we can build an adver-

sary B who breaks DDH in � . B plays the role of the adversary

in the DDH security game and the role of the challenger in the

reporter anonymity game with A. Given the DDH challenge tu-

ple (- = 6G , . = 6~, / = 6I) where I = G~ or I ←R Z@ , algo-

rithm B programs the random oracle � so that for each query

rep, � (rep) ← -U where U ←R Z@ . Moreover, it sets the pub-

lic key of each honest user to pkD ← . V for V ←R Z@ . Finally,

when computing E in the HonReport oracle, instead of computing

E ← � (rep)AskD , it sets E ← /AUV where U and V are selected based

on the message being hashed and the user doing the reporting. B

passes on A’s distinguishing bit 1 ′ as its own output.

Observe that if I = G~, then B has set E = 6AG~UV = (6GU)A~V =

� (rep)AskD , whereas if I is random, B has set E = 6AI , which is

distributed uniformly at random in � . The former is exactly the

view of the adversary in Hyb2, whereas the latter is exactly the

view of the adversary in Hyb3. Thus B distinguishes between the

two hybrids with the exact same advantage as A. □

□

Proof of Theorem 6.4 (report uniqueness).

Proof. The proof proceeds through a series of hybrid experi-

ments, each of which increases the adversary’s advantage by at

most a negligible probability.

• Hyb0: This hybrid is the security experiment RUNIQ [A,Π, _,&].

• Hyb1: In this hybrid, the experiment keeps a table)MAC of mes-

sages MACed by (1, indexed by the MAC tags f , i.e.,) [f] =

(F, C). The experiment aborts and outputs 0 if it ever calls the

Verify function ever receives a MAC tag f ∉)MAC but does not

output ⊥.

This hybrid is indistinguishable from the preceding one by the

existential unforgeability of the MAC scheme. We omit the proof

of indistinguishability for this hybrid because it is a standard

reduction to the existential unforgeability of the MAC scheme.

• Hyb2: This hybrid is identical to the preceding one, except the

experiment keeps track of queries made to the random oracle �

and aborts if there are ever queries rep, rep′ made to the oracle

such that rep ≠ rep′ but � (rep) = � (rep′).

This event occurs with negligible probability because the proba-

bility of two queries to the random oracle having the same output

is negligible in the length of the output.

• Hyb3: In this hybrid, the experiment runs the extractor guaran-

teed to exist by the proof of knowledge property of PoK to recover

the value skD for each proof cD presented in MalReport(pkD).

The experiment outputs ⊥ should any extractor fail. The exper-

iment also modi�es its bookkepping to replace each element

pkD ∈ " with the tuple (skD , pkD) .

This hybrid is indistinguishable from the preceding one by the

proof of knowledge property of the proof system PoK. In partic-

ular, the experiment aborts with probability PoKAdv(PoK), the

probability of the extractor failing, for each invocation of the

MalReport oracle. Thus the overall additional failure probability

introduced by this change is &MalReport · PoKAdv(PoK), which

remains negligible so long as PoKAdv(PoK) is negligible.

• Hyb4 : In this hybrid, the experiment keeps a table)ct and each

time theHonReport oracle computes a ciphertext, the experiment

sets)ct ← (rep, C, f, A, hd). The experiment also replaces any

ciphertext computed in HonReport with an encryption of all

zeroes of the same length, using)ct to recover the plaintext

whenever it encounters a ciphertext ct ∈)ct.

In Lemma D.6, we show that the advantage of an adversary in

this hybrid is at most CCAAdv(B, PKE.Enc) greater than in the

previous one. This quantity is negligible by the CCA-security of

PKE.

• Hyb5: In this hybrid, the experiment aborts and outputs 0 if,

during a call to the Process oracle, there is ever a ct ∉)ct but for

which PKE.Dec(pk, ct) = (rep, C, ·, A , ·) ∈)ct .

This event occurs with negligible probability because the view

of the adversary is independent of values of A (and therefore C)

produced in the HonReport oracle. Thus the abort criterion can

only be triggered if the adversary guesses the random choice

of A used in one of the calls to HonReport and includes it in a

ciphertext ct passed to the Submit oracle.

• Hyb6: In this hybrid, the experiment aborts if there exists ct, ct′ ∈

(where, when the ciphertexts are decrypted in Verify and Verify

does not output⊥, they yield (rep, A), (rep′, A ′) such that (rep, A) ≠

(rep′, A ′), but � (rep)A = � (rep′)A
′
.

In LemmaD.7, we show that the advantage of an adversary in this

hybrid is at most&� ·DLAdv(B,�) greater than in the previous

one, where &� denotes the number of queries the adversary

makes to the random oracle. This quantity is negligible by the

hardness of discrete log in � .

We now prove that the advantage of any adversary in Hyb6 is 0.

First, let)Dec be a table that maps those ciphertexts ct ∈ (for

which Verify(skB , sk2, ct) ≠ ⊥ to their decryptions (rep, C, f, A, hd).

Note that for a ciphertext to be included in)Dec, its decrypted con-

tents must pass MAC veri�cation, which means that (� (rep)A , C) ∈

)MAC . This means that only those (F, C) values that come from

a successful interaction with HonReport or MalReport (the only

times an experiment MACs a message) can be included in)Dec.

Note that for a ct to increase the count in ', it must at least be

included in)Dec. Moreover, for a ct to be included in the di�erence

between ' and HonR – call the table of di�erences '′ – its corre-

sponding (F, C) value must have been MACed in the MalReport

oracle, or else the experiment would abort for violating the cri-

terion speci�ed in Hyb5. We will refer to the subset of)Dec that

includes ciphertexts ct ∉) as) ′
Dec

. Since only ciphertexts ct ∈) ′
Dec

can contribute to count′, this means that count′ is upper bounded

by the number of calls toMalReport. Since each successful call to

MalReport increases count by 1, this means that, count′ ≤ count′.

Next, observe that for any ct ∈) ′
Dec

, the decrypted values of

� (rep)A = F and C must have the relationship C = F sk1rep ·sk
∗
D by

construction, where sk∗D ∈ " . But since there are no colliding

295

Proceedings on Privacy Enhancing Technologies 2024(3) Connor Bell and Saba Eskandarian

� (rep) values in the experiment, and no colliding F = � (rep)A

values either, this means that for each rep ∈) ′
Dec

, it must hold for

all entries (rep, C, f, A, hd) ∈) ′
Dec

that C1/A = � (rep)Ask1rep∗sk
∗
D/A =

� (rep)sk1repsk
∗
D . Since there are at most |" | possible choices of sk∗D ,

there cannot be more than |" | entries in '′ for each unique rep,

which means the adversary can never win with di� > |" |.

We have now ruled out both ways for the experiment to set

win ← 1, meaning the adversary has advantage 0 in Hyb6, and

completing the proof.

Lemma D.6. Suppose that for any adversary B attacking the CCA

security of public key encryption scheme PKE, the advantage of B in

winning the CCA security experiment is at most CCAAdv(B, PKE).

Then, we have that
�

�Pr[Hyb3 () = 1] − Pr[Hyb4 () = 1]
�

� ≤ CCAAdv(B, PKE).

Proof. We show that for any adversary A who distinguishes

between Hyb3 and Hyb4, we can build an adversary B who uses

A to break the CCA security of PKE.

The adversary B performs the role of the challenger in the Hyb4
experiment with a few changes. The public key pk2 is set to be

the public key provided by the CCA challenger. Whenever the

HonReport oracle requires the honest user to encrypt a message,

B encrypts messages by sending the two plaintexts (rep, C, f, A, hd)

and all zeroes to the CCA security challenger. All decryptions of ci-

phertexts returned by the CCA challenger are decrypted via lookup

table, and decryptions of other ciphertexts are handled via the CCA

decryption oracle.

Observe that if the CCA challenger has input bit 1 = 0, then

B provides the adversary A with a perfect simulation of Hyb3,

whereas if 1 = 1, then B provides a perfect simulation of Hyb4.

Thus B wins the CCA security game with the same advantage that

A distinguishes between the two hybrids. □

Lemma D.7. Suppose that for any adversary B attacking discrete

logarithm in� , the advantage of B in computing a discrete logarithm

is at most DLAdv(B,�). Then, for an adversary who makes at most

&� queries to the random oracle � , we have that
�

�Pr[Hyb5 () = 1] − Pr[Hyb6 () = 1]
�

� ≤ &� · DLAdv(B,�).

Proof. We show that for any adversary A who triggers the

abort condition introduced in Hyb6, we can build an adversary

B who uses A to solve discrete logarithms in � with probability

1/&� . Since the abort condition is the only di�erence between

Hyb5 and Hyb6, this proves that the advantage of an adversary

against Hyb6 is at most &� · DLAdv(B,�) greater than that of an

adversary against Hyb5. The proof proceeds by programming the

random oracle and using a guessing argument to solve discrete

logarithms.

Given a discrete log challenge (6, ℎ), the adversary B begins by

sampling a random 8∗ ←R {1, ..., &� }. Then, during the experiment,

for the 8th query rep8 to� , 8 ≠ 8∗, B responds by sampling U8 ←
R
Z@

and setting � (rep8) ← 6U8 . For 8 = 8∗, B sets � (rep8∗) ← ℎ. The

experiment keeps a table of)� of (rep8 , U8) pairs.

We now show that whenever the abort criterion introduced

in Hyb6 occurs, B solves the discrete logarithm challenge with

probability 2/&� . Consider the values (rep, A), (rep′, A ′) such that

� (rep)A = � (rep′)A
′
triggers the abort condition. The adversary

B aborts if rep = rep8∗ and rep′ ≠ rep8∗ , or vice versa. Since 8
∗ is

chosen uniformly at random, the probability that B does not abort

is at least 2/&� .

Suppose without loss of generality that rep = rep8∗ . Then we

have that � (rep) = ℎ and � (rep′) = 6U , where U = U8 for some

8 ≠ 8∗. Thus we have that

� (rep)A = � (rep′)A
′

ℎA = (6U)A
′

= 6UA
′

ℎ = 6UA
′/A .

Since B knows U , A ′, and A , it outputs UA ′/A to the discrete log

challenger, and wins the discrete log security experiment.

□

□

Proof of Theorem 6.5 (threshold unforgeability). We only

provide a sketch of this proof, as the arguments are very similar to

those made in the other theorems.

Proof (sketch). First, we run the extractor for each call to the

Verify oracle to recover the values (rep, A ,F, duptag, C) used in each

clause of each call to Verify. These values are deduplicated and

stored in a table) of size at most &HonReport < &� (because the

Report protocol includes a call to �).

Next, we invoke the fact that the random oracle behaves as a

collision-resistant hash function to rule out the possibility of colli-

sions in � (rep), except with negligible probability. We also invoke

the hardness of discrete log in � to rule out the possibility of col-

liding (rep, A) and (rep′, A ′) where � (rep)A = � (rep′)A
′
, similarly

to the argument made in the proof of report uniqueness.

Observe that since each (F, C) held by the veri�er is associated

with a single extracted value A , that� (rep)A = F , and that there are

no colliding values of � (rep)A , we can conclude that each (A,F, C)

uniquely determines rep, which in turn uniquely determines the

dupTag such that dupTagA = C .

From here, the proof is a reduction to discrete logarithm. Given a

discrete logarithm challenge ℎ = 6G , we pick a random query rep∗

to the random oracle and program it to be

A∗ ←R Z@ ;� (rep
∗) ← ℎA

∗

.

We call rep the special query. All other queries to the random oracle

are programmed as

Arep ←
R
Z@ ;� (rep) ← 6Arep .

Now, whenever the adversary wins the security experiment,

there must be some (F, C) ∈) for which the extracted values

(rep′, A ′) di�er from the (rep, A) initially produced by the exper-

iment during HonReport. Since we chose rep∗ at random from

among queries to � , there is at least a 1/&� probability that rep =

rep∗ in this case. But then, because the proof cE veri�ed, we have

that

F = � (rep′)A
′

= 6Arep′A
′

= ℎA
∗A

= � (rep∗)A .

This implies that ℎ = 6
Arep′A

′

A∗A , so we can recover the discrete loga-

rithm G =
Arep′A

′

A ∗A . □

296

	Abstract
	1 Introduction
	2 Background: Source Tracking and Threshold Source Tracking
	3 Anonymous Tallies
	4 Threshold Source Tracking via Anonymous Tallies
	4.1 From Tallies to Threshold Source Tracking
	4.2 Choosing a Source Tracking Scheme
	4.3 Security for Threshold Source Tracking

	5 Security for Anonymous Tallies
	5.1 Notation
	5.2 Report Confidentiality
	5.3 Reporter Anonymity
	5.4 Report Uniqueness
	5.5 Threshold Unforgeability
	5.6 Deniability

	6 Two-Server Anonymous Tally
	6.1 Building Up the Construction
	6.2 Full Construction
	6.3 Security Analysis

	7 Evaluation
	8 Conclusion
	Acknowledgments
	References
	A Deferred Definitions
	B Additional Related Work
	C Report Confidentiality for Known Report Data
	D Deferred Proofs

