Anonymous Complaint Aggregation
for Secure Messaging

Connor Bell
University of North Carolina at Chapel Hill
connorbe@cs.unc.edu

ABSTRACT

Private messaging platforms provide strong protection against plat-
form eavesdropping, but malicious users can use privacy as cover for
spreading abuse and misinformation. In an attempt to identify the
sources of misinformation on private platforms, researchers have
proposed mechanisms to trace back the source of a user-reported
message (CCS ’19,21). Unfortunately, the threat model considered
by initial proposals allowed a single user to compromise the pri-
vacy of another user whose legitimate content the reporting user
did not like. More recent work has attempted to mitigate this side
effect by requiring a threshold number of users to report a message
before its origins can be identified (NDSS ’22). However, the state of
the art scheme requires the introduction of new probabilistic data
structures and only achieves a “fuzzy” threshold guarantee. More-
over, false positives, where the source of an unreported message is
identified, are possible.

This paper introduces a new threshold source tracking technique
that allows a private messaging platform, with the cooperation of
a third-party moderator, to operate a threshold reporting scheme
with exact thresholds and no false positives. Unlike prior work, our
techniques require no modification of the message delivery process
for a standard source tracking scheme, affecting only the abuse
reporting procedure, and do not require tuning of probabilistic data
structures.

1 INTRODUCTION

End-to-end encrypted (E2EE) messaging platforms allow users the
opportunity to communicate without possible eavesdropping by the
messaging platform itself. Widely deployed in Signal, WhatsApp,
iMessage, Android Messages, and Messenger Secret Conversations,
E2EE messaging has rapidly become the standard for privacy in
mobile communication.

Unfortunately, the strong privacy protections of end-to-end en-
cryption can also provide cover for malicious users who wish to
propagate hate speech or disinformation without repercussions
from platform moderators. In response to the pressing nature of
this problem, various countries, including India and Brazil, have
sought to introduce policies that compel messaging platforms to
reveal the sources of misinformation messages [5, 37, 43, 44, 46, 47].
The policies proposed by these governments have received condem-
nation from platforms, policymakers, and technologists because
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a BY

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(3), 276-296

© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0078

This work is licensed under the Creative Commons Attribu-

276

Saba Eskandarian
University of North Carolina at Chapel Hill
saba@cs.unc.edu

they amount to roundabout ways of circumventing end-to-end
encryption [3, 31].

While a number of works have studied handling abuse reports
in E2EE messaging [8, 16, 20, 22, 28-30, 34, 48] or proactively
scanning encrypted messages for inappropriate content [6, 11, 33],
few works consider the problem of identifying the originators of
user-reported misinformation without violating E2EE guarantees
for non-reported messages. This problem has been studied un-
der the name traceback by Tyagi et al. [49] and source tracking by
Peale et al. [42] (we will refer to this functionality as source tracking
in this paper). In source tracking, clients can verify that a received
message, along with related metadata (e.g. the author), is traceable
back to the original sender, or the direct sender if the message was
not a forwarded message.

Unfortunately, allowing a single user report to reveal the source
of a message can be problematic, as any user who dislikes the
contents of a given forwarded message can reduce the privacy that
the platform provides to the author of that message. For example,
a user who receives widely-forwarded details about the time and
place of a planned protest can cause the platform to learn who sent
the messages planning the protest. This means that source tracking
allows users of a messaging platform to de-anonymize other users
to the platform, even if they have never communicated with each
other directly.

Recently, Liu et al. [35] have introduced FACTS, a scheme for
anonymous tallying of misinformation messages. FACTS allows for
a message to be reported to a platform for source tracking after
it is reported a certain number of times, in hopes of reducing the
risk posed by allowing a single user to deanonymize another. This
does not prevent a malicious user who receives a message from
directly revealing the necessary reporting data to the platform
operator out-of-band, but it provides a way for honest users to
prevent reporting of content whose objectionable status has not
yet been widely confirmed. In the FACTS system, clients update a
probabilistic data structure each time they report a message, and
messages that have received roughly the correct number of reports
are revealed to the platform for source tracking. FACTS is the first
system to support this kind of threshold source tracking.

This paper introduces a new system for threshold source tracking.
Unlike FACTS, our system allows for exact thresholds for reporting
messages, never has false positives, and does not require locking
a global data structure for each report. Moreover, we make no
changes to how message processing or delivery is handled beyond
standard source tracking. The modest overhead introduced by our
scheme occurs only during the reporting process.

Our key technical contribution is a new two server anonymous
tally scheme, a primitive of independent interest. In the context of
source tracking, we split the work of handling anonymous report

Anonymous Complaint Aggregation for Secure Messaging

Messages Sent

—> Bob Alice

Mal
) Alice
Reporter Report Receipt
== = [
el = = >
Alice :> = M
—> —
Batched Receip (mr id, duplication tag)

[1]@x +
(a,x) -—
[3]@y +

(b,2) +

Figure 1: The expected outcomes for sample message reporting be-
havior. - Bob receives a from Mal and forwards to Alice. Alice receives
b from Mal. Bob attempts to report a twice, and Alice honestly re-
ports a and b. S; returns an anonymous receipt of the interactions
back to Alice and Bob. These receipts are encrypted by Bob and Alice
before being batched and shuffled for delivery to S; for validation;
Bob’s second report of a produces an identical duplication tag to
the first report, so only one report will count, while both of Alice’s
honest reports are accepted for counting,.

tallying between the platform itself and a third-party moderator.
Security critically relies on the non-collusion of these two parties.
Users only interact with the platform during the reporting process,
meaning that the platform necessarily learns which users make
reports, but does not learn anything about the messages being
reported. The platform occasionally passes on report data to the
moderator, allowing the moderator to tally reports for a message.
Only after a message receives sufficient reports is it revealed to the
platform/moderator. Fig. 1 shows how the expected behavior when
the system identifies duplicate reports from the same user while
allowing multiple users to report the same message.

To analyze our proposed scheme, we formalize and prove security
with respect to security definitions that ensure a given user cannot
contribute more than one tally toward revealing a message, that
report contents remain hidden from the platform before a message
is reported a threshold number of times, and that the moderator
learns nothing about who makes each report.

We implement our proposed scheme and find that the additional
overhead of our reporting protocol and report verification algorithm
each take well under 1ms of client or server computation time
to complete. The computational cost of our scheme ranges from
comparable to orders of magnitude lower than the FACTS system,
depending on the choice of threshold and parameter settings used
for FACTS. Our code is open source and publicly available at
https://github.com/connorbelll/anonymous-tally.

Threat Model Limitations. We wish to point out three important
limitations of our work on threshold source tracking, both to clarify
our contributions and to point out promising avenues for future
work.

277

Proceedings on Privacy Enhancing Technologies 2024(3)

First and foremost, as mentioned above, threshold source track-
ing (both in this and prior work) does not prevent a malicious user
from colluding with a malicious server and immediately reveal-
ing the source of a message, thereby circumventing any threshold
mechanism. Concretely, this means that if a user produces a piece
of widely forwarded content to which a government or other pow-
erful entity objects, the messaging system can be compelled to
strip that user’s anonymity after seeing only a single report from a
government-controlled device that has received the message.

Second, we note that our scheme introduces the need to split
trust between multiple servers to achieve security. While this is a
widely-used assumption in the anonymous messaging literature, the
performance, functionality, and security benefits of our approach
need to be weighed against this additional requirement in making
deployment decisions for threshold source tracking. We discuss
this assumption in more detail in Section 3.

Finally, in order for threshold source tracking to be effective, it
must be paired with an effective mechanism for preventing the cre-
ation of fraudulent accounts. While the techniques for preventing
fake accounts are orthogonal to the mechanisms used for source
tracking, we observe that using these two security features together
places additional importance on preventing fake accounts. Whereas
these mechanisms usually function to prevent malicious users from
misbehavior caused by generating harmful content, e.g., bullying or
producing misinformation, our scheme also relies on them to pro-
tect the anonymity of users whose messages are reported. Such a
shift in security properties relying on duplicate account prevention
may also raise the motivation of attackers to circumvent measures
already in place.

In summary, this paper makes the following contributions:

o Introduces the notion of a two-server anonymous tally scheme
and presents the appropriate security definitions.

e Shows how to use anonymous tally schemes to build thresh-
old source tracking.

o Designs an anonymous tally scheme that enables threshold
source tracking with exact thresholds.

e Implements and evaluates our anonymous tally scheme, in-
cluding a comparison to prior work, demonstrating that our
scheme achieves low overheads and is suitable for practical
applications.

2 BACKGROUND: SOURCE TRACKING AND
THRESHOLD SOURCE TRACKING

In a source tracking scheme, the platform augments the message
delivery process with additional information that can be used to
identify the originator of a reported message. When a user wishes to
report a message, it produces a report that consists of the message
and additional cryptographic material that aids the moderator in
verifying that the report was indeed sent through the platform by
the claimed sender. The only property we require of the underlying
source tracking scheme in this work is that the process of reporting
a message to the moderator does not require multiple rounds of
interaction and that the actual data sent to report a message does
not depend on the user sending the report. This property holds
in the “tree-linkable” variant of the Peale et al. source tracking
scheme [42], their more efficient construction, as well as Hecate [30].

Proceedings on Privacy Enhancing Technologies 2024(3)

Schemes that trace back a message to its source hop by hop [32, 49]
do not satisfy this requirement because the lack of a consistent
cryptographic identifier for the forwarded message works against
the platform’s ability to aggregate reports.

A threshold source tracking scheme augments the source track-
ing process by adding a mechanism where messages are revealed
for source tracking after the servers have received a certain number
of complaints about a given message. The only known threshold
source tracking scheme is FACTS [35], where clients collaboratively
update a data structure hosted by the server to keep track of ap-
proximately how many times a message has been reported. When
clients detect that a message has been reported enough times, any
reporting client can make a final report to the moderator. The fi-
nal report reveals the information necessary for source tracking
to the moderator. FACTS does not prevent users from submitting
multiple reports for the same message and may additionally leak
honest users’ intended reports to the platform when the platform
becomes aware of the report identifier, both of which we aim to
address in this work. We also track exact, instead of approximate,
report counts. In both FACTS and our work, the focus is on allowing
a moderator to be notified when a message has received enough
reports, not to prevent malicious clients from sharing reports with
malicious moderation servers out of band, as many source track-
ing schemes provide any recipient of a forwarded message with
sufficient information to report the message alone.

Threshold source tracking shares some common goals with elec-
tronic voting; in elections, votes should remain anonymous while
preventing any single voter from voting on the same issue twice. In
this work, we present de-duplication constructions which surface
common identifying strings if a malicious user attempts to report
the same message twice. Similar definitions were established for
unique ring signatures by Franklin and Zhang [25], where malicious
duplicate signatures will result in “a large common component”
between the signatures, which can be used to link the duplicate
signatures together. We include a further discussion in Appendix B
to compare anonymous report aggregation to electronic voting
more broadly and to illustrate why our solution takes a different
approach than common electronic voting tools such as traceable
ring signatures [27].

3 ANONYMOUS TALLIES

This section introduces anonymous tallies and sketches their prop-
erties at a high level. Since anonymous tallies form the core of our
threshold source tracking scheme, we begin by introducing them
before showing how to integrate them with existing messaging
systems to support threshold source tracking.

A two-server anonymous tally scheme allows two servers to
blindly keep a count of user-reported messages. The servers can
learn the number of distinct user reports of a given message, but
they do not learn the messages themselves or the identity of the
user who filed each report.

The design of our scheme has the two servers playing distinct
roles. Users interact with the first server, Si, to send a report for
tallying. Server S; sends batches of anonymized reports to Sz, who
computes the anonymous tallies. For each report sent to the tallying
scheme, the server Sy can derive a duplication tag dupTag which

278

Connor Bell and Saba Eskandarian

will be identical if the same user reports the same message more
than once. The dupTag can be used to detect and discard duplicate
reports. Server S also derives some hidden data hd which it can
send to S; to enable recovery of report data rd sent by the client.
Server Sy can also prove to S; that the tally for a given report has
passed a given threshold. This abstraction allows us to easily inte-
grate our anonymous tally scheme syntax with different message
reporting schemes.

We require the following high-level security properties from an
anonymous tally scheme.

e Report confidentiality: a single server behaving maliciously,
potentially colluding with malicious users, cannot learn the
contents of honest users’ reports.

e Reporter anonymity: a single server behaving maliciously,
potentially colluding with malicious users, cannot learn
which honest user sent which report.

e Report uniqueness: if the servers behave honestly, no mali-
cious user should be able to contribute more than one report
to the tally for a given report.

e Threshold unforgeability: a malicious Sy cannot misrepre-
sent a given report as having more than a threshold number
of reports when it really does not.

e Deniability: even if user or server secrets are made public,
reports cannot be verifiably tied back to a given user.

Looking ahead, our scheme will (necessarily) allow server S;
to learn the identities of all the users who send reports, but hide
which messages those users report. At the same time, server Sy will
learn the values being counted in the tally, but it will not be able to
connect any given report with a particular user. To further mask the
identities of the reporters, messaging clients can occasionally send
a report with random report data as cover traffic for real reports.

In Section 5, we formalize these properties and discuss various
additional security considerations.

Security from splitting trust. Our scheme relies on splitting
trust between two non-colluding servers to achieve security. In
particular, a deployment must be able to set up two servers, e.g.,
the message platform itself and a third party moderator-run server,
who can be relied upon not to collude to violate the security of
the anonymous tally. Failure to satisfy this assumption in practice
allows the servers to deanonymize the author of any message after
a single report, reverting the scheme to a standard (non-threshold)
source tracking scheme.

While a two-server split trust setup may be difficult to achieve
in many scenarios, recent large-scale deployments of split-trust
systems for private browser telemetry in Mozilla Firefox [4, 21] and
measurement of the effectiveness of the Apple/Google Covid-19
exposure notification system [1, 2] provide reason for optimism
that this is a workable approach. The stakes in these deployments
are, however, considerably lower than those of anonymous mes-
saging, where potential privacy harms are not only the exposure
of consumers’ browsing or health data, but also persecution (and
potentially execution [7]) of dissidents.

Anonymous tally scheme syntax. More formally, a two-server
anonymous tally scheme consists of seven algorithms SKGen1,

Anonymous Complaint Aggregation for Secure Messaging

SKGen2, UKGen, Verify, Reveal, S2Prove, and S1Verify, and an in-
teractive protocol Report.

e SKGen1(1%, pp) — (pky, ski, sks): The server controlled by
the messaging platform, S1, runs this algorithm at system
initialization. It takes in a security parameter 1* and public
parameters pp, and it generates 3 keys: public and secret
keys for interactions with the reporter, as well as a shared
secret key sks.

e SKGen2(1%, pp) — (pk,, skz): The server controlled by the
3rd party, Sy runs this algorithm at system initialization.
It takes in a security parameter 1% and public parameters
pp, and it generates public and secret keys for receiving
encrypted messages.

e UKGen (1%, pp) — (pk,, sky): A user runs this algorithm to
participate in the system. It takes in a security parameter 14
and public parameters pp, and it generates a user key pair
pk, sky.

e Report:

(U(rep, rd, pk,,, sky, pky, pky), S1(pk;, sks, sk, pk,,)) —
ct/L: this is a protocol run between a user U and the first
server S1. Each party has access to relevant public and pri-
vate keys, and the user U additionally holds values rep and
rd. The value rd can be, e.g., the contents of a report in a
source tracking scheme. rep is not the contents of a report
in the underlying source tracking scheme, but rather a value
that uniquely identifies the report, e.g., its hash. To allow
for flexibility in use cases, there is no enforced relationship
between rep and rd in the anonymous tally scheme itself.

o Verify(sks, ska, ct) — (rep, dupTag, hd)/L : this algorithm
is run by server Sy to validate the contents of a report. The
algorithm takes as inputs the keys sk and sks, as well as a
ciphertext ct. If the ciphertext passes the server’s verification
process, the algorithm returns the values rep, dupTag, and
hd. dupTag is used for detecting duplicate reports. If the
same user sends the same rep twice, the second report will
result in the same dupTag as the first report.

e S2Prove(rep, pData, thresh) — 7, : this algorithm allows
S to produce a proof i, that it has a report rep which has
been reported at least thresh number of times. The pData
input includes scheme-specific data needed by Sz to produce
this proof.

o S1Verify(rep, vData, dupTags, 7,) — 0/1 : this allows S; to
verify the output of an execution of S2Prove. The vData
input includes scheme-specific data needed by S; to verify
this proof, and dupTags includes values of dupTag held by S
for the reports. This allows S; to ensure that Sy only reveals
messages that have exceeded the threshold.

e Reveal(sky, hd) — rd: this algorithm is run by S; to recover
report data rd from hidden data hd provided by Ss.

We define correctness for a two-server anonymous tally scheme
as follows.

Definition 3.1 (Correctness (informal)). A two-server anonymous
tally scheme is correct if when the servers and all users follow
the scheme honestly, all algorithms and protocols fail (output L)
with at most negligible probability, server 2 returns a duplicate
dupTag from Verify upon receiving a duplicate report for the same

279

Proceedings on Privacy Enhancing Technologies 2024(3)

message from the same honest user with probability one, and server
2 returns distinct dupTags for distinct user, message pairs with all
but negligible probability. Moreover, proofs produced by S2Prove
when run with a rep value that has thresh or more distinct reports
are accepted by S1Verify. Finally, if an hd value output by Verify
is given to Reveal(skj, -), the result will be the corresponding rd
value provided by the reporting client.

4 THRESHOLD SOURCE TRACKING VIA
ANONYMOUS TALLIES

A two-server anonymous tally scheme can be integrated into a mes-
saging system that supports source tracking to build a threshold
source tracking scheme with no changes to the underlying mes-
saging system and minimal changes to the message reporting flow.
This process is depicted in Fig. 2.

4.1 From Tallies to Threshold Source Tracking

In our scheme, the messaging platform is composed of the first
party entity running the messaging service, who runs server Sy,
and a third party entity who aids in the moderation process only,
who runs S;. Users only ever interact directly with the first party S;.
At system initialization, the servers will run SKGen1 and SKGen2
to set up their respective keys and user devices will run UKGen in
the process of registering to use the messaging platform (on top of
any other registration processes). Then users can send messages
using the underlying messaging scheme with no modifications,
until they want to report messages.

When a user wishes to report a message m, it computes the report
data rd for m via the source tracking scheme and hashes it with a
hash function H to get a hashed report rep « H(rd). Throughout
this paper, we will refer to the hashed report rep as the “report”
for the purposes of the tallying scheme. This hashed report rep, in
addition to the source tracking metadata rd itself, serves as user
U’s input rep to the anonymous tally scheme’s Report protocol.
The user U sends the resulting ciphertext ct to S; at the end of the
Report protocol.

Periodically (on a system-specified schedule), the server S; sends
a shuffled batch of ciphertexts to Sa. Server Sz runs Verify (sks, ska, ct)
to recover the report rep, a deduplication tag dupTag, and hidden
metadata hd for each ciphertext. Server Sy keeps a table of dupTags
and reports, and if a dupTag repeats, the report is dropped. Other-
wise, it increments the count for the report rep.

Once the count for a given report rep passes a system-specified
threshold thresh, Sy will send the hidden metadata hd for the re-
ports to S1. Sz also runs S2Prove to provide proof that the message
in question received sufficient reports, while maintaining the pri-
vacy of the reporters by hiding the real set of reports among a list of
masking reports; these proofs are verified by S; in S1Verify. S; will
then run Reveal and verify that a given revealed metadata entry
rd hashes to rep before proceeding further with processing the
source tracking information. Alternatively, the hidden data hd in
the anonymous tally scheme can be set to L, and the server S; can
solicit users to come forward with the corresponding rd to a given
rep once that message reaches the threshold. This latter approach
is roughly the one taken in FACTS, so our scheme strictly increases
flexibility in reporting options.

Proceedings on Privacy Enhancing Technologies 2024(3)

Connor Bell and Saba Eskandarian

1%t Party (S,) Platform 3 Party (S,)

| UKGen: (pk,, sk.) \ l

SKGen1: (pk,, sk,, sk) | |

SKGen2: (pk,, sk,) |

User

| Source Tracking | | pk,, pk,, (sk,, pk,) |

(sky, pk,), sk, pk,

(Hash, > (rep)
Report |

e

Report
Batch and Shuffle | IS

(sk,, pk,), sk,

rep, dupTag, hd

Verification after threshold reached:

S1Verify

S2Prove —z,

)]

or (0 ‘H

Revealing message after verification:

Reveal

—]))) |

Figure 2: System diagram of threshold source tracking showing the ownership of keys and the flow of data. A user begins with the source
tracking data rd and computes a report identifier rep to feed the Report and Verify algorithms, resulting in either a) S, learning rep, a duplication
tag dupTag, and hidden metadata hd or b) S rejecting the report. When a platform-specified reporting threshold is reached, S, proves to S; that
the threshold for the report was reached honestly and delivers the associated hd values for S; to Reveal the source tracking information.

4.2 Choosing a Source Tracking Scheme

An anonymous tally scheme only affects the abuse reporting process
in an E2EE messaging system, so it is compatible with any source
tracking scheme where message reports consist of a single, reporter-
independent, message sent from a user to the moderator. Thus our
scheme is compatible with source tracking schemes that report
message plaintext, message sender identity, and other platform-
specified metadata, but can also be used with schemes that only
report some subset of this data according to the platform’s desired
moderation policy.

Since we can generically add the anonymous tally step to the
reporting process, we need not concern ourselves with the security
details of the underlying source tracking scheme, which are not
affected by the introduction of an anonymous tally to reporting.
Thus, any threshold source tracking scheme built by adding an
anonymous tally to an existing source tracking scheme inherits
the security properties provided by the underlying scheme for
unreported messages.

Finally, a threshold source tracking scheme built on top of a
standard source tracking scheme inherits the limitations of the
underlying system as well. In particular, source tracking schemes
typically rely on users honestly following the protocol to ensure that
messages can be linked back to the original sender, i.e., indicating
that a message is being forwarded rather than copy/pasting the
same text to forward a message.

4.3 Security for Threshold Source Tracking

Intuitively, splitting trust between S; and Sz ensures that no mali-
cious actor with control of the platform’s (first-party) infrastructure
can learn the contents of reports before they reach the specified

280

threshold, while the deduplication tags revealed to Sz allow it to
learn nothing beyond a histogram of reported message frequen-
cies, without knowing the report contents or the identities of the
reporters. Sp is the sole holder of the Reveal key for the hidden
metadata, which is first delivered to Sy, so both parties must agree
that the threshold is met for the metadata to be revealed.

We must allow, however, for the possibility of malicious users and
servers colluding to artificially raise a message above the reporting
threshold. We now briefly consider the possible combinations of
malicious users and servers, discussing the possible consequences
for each case.

Non-security of known messages. The security of threshold
source tracking aims to keep a reported message hidden from the
platform until that message receives sufficiently many reports. How-
ever, as discussed briefly in Section 1, it is possible for a malicious
server Sj to learn a particular message and its corresponding report
data rd out-of-band and then abuse the source tracking system to
identify the author of that message. This means that a threshold
source tracking system does not strengthen the anonymity of mes-
sage senders compared to a non-threshold source tracking system.
Instead, it mitigates the risk of accidental or spurious abuse of the
source tracking mechanism by individual users.

In Appendix C, we discuss the security ramifications for both our
scheme and prior work in the situation where a malicious server S;
does know the value rd of a reported message and wants to learn
which other users are reporting the same message. While both our
scheme and FACTS lose some degree of report confidentiality in
this setting, we show that our scheme does provide a degree of
protection not present in prior work.

Anonymous Complaint Aggregation for Secure Messaging

In the remainder of this section, we consider the setting where
threshold source tracking does provide additional security over
conventional source tracking: where users are reporting messages
not yet known to the servers.

Malicious users only. The anonymous tally’s report uniqueness
property ensures that, for a threshold of ¢ reports to reveal a mes-
sage, a group of fewer than ¢ malicious users do not cause a message
to be revealed. However, if an adversary has control of ¢ or more
malicious users (or can create ¢ fake users), a message sent to this
malicious group of users can always be revealed to the platform by
having each malicious user report the message.

Our scheme does not handle issues of user authentication and
validation, e.g., protecting against sybil attacks. An adversary who
controls many users can report a message once per user it controls.
We assume an external mechanism for authenticating users and
ensure that, within the protocol, a single user cannot repeatedly
report the same message to artificially increase its tally.

Malicious S, (and malicious users). The report anonymity prop-
erty of the anonymous tally scheme, combined with the fact that
S1 shuffles and batches messages, ensures that Sy cannot learn the
identity of the sender of any given report. In a sense, S acts sim-
ilarly to a server in a mixnet [14], breaking the link between the
report sender and the next server to receive the report.

However, a malicious Sy, potentially colluding with a malicious
user who has a message it wants reported, could attempt to bypass
the threshold mechanism by simply lying to S; about when a re-
port has reached the threshold, bypassing the report uniqueness
protections of the tally scheme. This potential attack is blocked by
the verification protocol S; runs to protect against a malicious Ss.
Observe that this means that while S; can arbitrarily unmask the
identities of senders of known messages, S cannot. This is another
point where protections against fraudulent accounts are critical,
lest a malicious Sz create new fake accounts to artificially inflate
the count of reports for a given message.

Malicious S; (and malicious users). The report confidentiality
property of the anonymous tally ensures that a malicious Sj, po-
tentially colluding with some malicious users, cannot learn the
contents of the report of an honest user, so long as the server does
not already know the contents of the report. See above for the case
where the report contents are already known by the server.

Note that the confidentiality property of the underlying source
tracking scheme implies that the contents of reports have high
entropy, or else an adversary against the underlying source tracking
scheme could simply guess-and-check reports for ciphertexts it
wants to decrypt, breaking any confidentiality in the messaging
system. This means that even guessing message contents given a
ciphertext does not suffice for S; to predict the contents of rd.

5 SECURITY FOR ANONYMOUS TALLIES

We now discuss the formal security definitions for a two-server
anonymous tally scheme. This section fully describes and formally
defines our required security properties.

Recall that at a high level, our definitions will allow server S;
to learn who submits reports and server S; to learn derivatives of
the reports themselves, but neither server will learn which user

281

Proceedings on Privacy Enhancing Technologies 2024(3)

made which report. At the same time, the servers need assurance
that malicious users cannot take advantage of their strong privacy
protections to fraudulently report a single message multiple times.

5.1 Notation

Before we continue, we formalize our notation. The following no-
tation is used to describe various operations in the definitions and
schemes presented in the rest of this paper.

Let x < F(y) denote assignment of the output of F(y) to x, and

let x < S denote assignment to x of an element sampled uniformly
random from a set S. A bolded variable x denotes a vector, with
entries in the vector represented as (non-bolded) x1, ...x,. We use
AC to denote that A has oracle access to some function(s) or can
participate in a given set of interactive protocols, and the adversary
A in our security experiments is allowed to be stateful. A function
negl(x) is negligible if for all ¢ > 0, there is a xo such that for
all x > xo, negl(x) < x% We omit x if the parameter is implicit.
Finally, we use L to indicate an empty message or special character
indicating failure.

We define an interaction between two parties using the notation

(P; (params), P,(params)) — outy.

The first party in the protocol acts according to the protocol defined
by P; and the second party acts according to P2, and out; represents
the output of the protocol. Only the first party has any output from
interactive protocols in this paper.

Our security definitions use tables to keep track of important
information about adversary queries. Tables are denoted with a
capital T and a subscript name, and store key/value pairs. To add
a key/value pair to a table, we use the notation T[key] <« value.
We use standard set notation to check if a key is included in a table
(key € T). Sets use the same notation as tables, but only store a set
of values. We use set(x) to convert a vector to a set of its unique
constituent elements. Tables and sets defined in a security experi-
ment are considered globally accessible by the experiment in the
oracles and protocols allowed to the adversary in that experiment.

5.2 Report Confidentiality

Our first security property, report confidentiality requires that a
malicious server S; does not learn anything about the reports sent
through the system by honest users. This definition allows an adver-
sary to control S; and an arbitrary number of malicious users while
also being allowed to register honest users and compel them to
report messages. At the core of this game is the adversary’s power
to run the Report protocol with a provided user, identified by a user
id uid, and one of two potential messages. The experiment has an
input b that determines which report is actually sent.

At any point in the report confidentiality experiment, the adver-
sary may call a Process oracle, which plays the role of S, on a set S of
ciphertexts and a reporting threshold provided by the adversary S;.
The set S consists of a subset of the ciphertexts returned by honest
users in the Report protocol, as well as any additional ciphertexts
the adversary chooses to send. The Process oracle verifies each
ciphertext, discards duplicates, and keeps tallies for each report
rep. The oracle returns a table R of reported messages and report
frequencies, as well as the S verification proof m, if the provided

Proceedings on Privacy Enhancing Technologies 2024(3)

Connor Bell and Saba Eskandarian

(pky, ki, L) < SKGen1(1%, pp)
(pky, ska, sks) — A(14, pk,)
U« {}R < {hRi « {}

b — A° (1Y

AddHonUser (uid) :
if uid € U : output L

U [uid] < (skq, pk,,)
output pk,,

MalReport(pk,,) :

pky,, sky — UKGen(l’l, pp)

if (-, pk,) €U : output L
(A, S1(pky, sks, sk, pky,))

HonReport(uidy, uidy, rep, rd) :

if uidg ¢ U or uidy ¢ U : output L

(skus plyy) — Uuidy]

ct « (U (rep, rd, pk,,, sky, pky, pky), S1(pky, sk, skq, pk,,))
ifct=_1:

output L

if (uidg, rep) € Ry or (uidy, rep) € Ry : output L
Ry < Ro U {(uido, rep) }; Ry « Ry U {(uidy, rep) }
output ct

Figure 3: Reporter anonymity experiment RANON (Definition 5.1).

threshold is exceeded for any message. In order to prevent trivial
wins, the experiment will abort and return 0 if the adversary calls
Process while the tally is in a state where there would be different
numbers of reports from honest users if b = 0 vs b = 1 in an honest
execution of the protocol.

Note that the adversary in this game is stronger than is needed
in the threshold source tracking setting, where a malicious S (po-
tentially colluding with some users) does not know, and cannot
guess, the contents of honest users’ reports. The check that the
game makes to ensure that an honestly-generated R would have
the same state regardless of whether b = 0 or b = 1 is there to rule
out attacks that would not be possible in threshold source tracking
due to the adversary not actually knowing rd and rep.

Due to space constraints, we state the formal definition for Report
Confidentiality in Appendix A.

5.3 Reporter Anonymity

Whereas report confidentiality protects against a malicious Sy learn-
ing which messages are reported, reporter anonymity protects
against a malicious Sy learning the identities of users reporting
messages. This definition allows an adversary to control S; and
an arbitrary number of malicious users, who can interact with an
honest S1, while also being allowed to register honest users and
compel them to report messages. At the core of this game is the
adversary’s power to have one of two honest users of its choosing
interact with the honest S; to submit a report of its choosing. The
HonReport(uidy, uidy, rep, rd) oracle takes in the identifiers for two
honest users and has one of them, determined by an input bit b,
send a report rep with report data rd to S; via the Report protocol.
The resulting ciphertext ct output by the protocol is returned to
the adversary, as this is what Sy receives from Sj in our application.
After sending a number of reports of its choosing, the adversary
outputs a distinguishing bit b’.

To prevent trivial wins, the HonReport oracle outputs L if the
adversary attempts to have an honest user submit a duplicate report.
Allowing duplicate reports trivially allow an adversary to distin-
guish b = 0 from b = 1. For example, an adversary who submits
HonReport(uidg, uidy, rep, rd) and HonReport(uido, uidy, rep, rd),
will identify a duplicate report if b = 0 but not if b = 1. This
is an acceptable restriction because an honest user does not have
any reason to submit an identical report twice.

282

Definition 5.1 (Reporter Anonymity). We define the reporter

anonymity experiment RANON[A, II, A, b] with respect to a state-

ful adversary A, two-server anonymous tally scheme II, security

parameter A, and a bit b. The experiment is described in Figure 3.
We define the anonymity advantage of A as

ANONAdv(A, I, 1)
= |Pr[RANON[A,IL A, 0] = 1]
— Pr[RANON[A,IL, 4, 1] = 1]|.

We say that a scheme II satisfies reporter anonymity if for all PPT
adversaries A and security parameters A € N, it holds that

ANONAdvV(A,IL A) < negl(4).

5.4 Report Uniqueness

The report uniqueness property ensures that honest servers S;
and Sz can keep accurate tallies, even in the presence of potentially
malicious users. In this experiment the adversary controls malicious
users who can interact with S; via a MalReport oracle and compel
other honest users to make reports of its choosing via an HonReport
oracle. The adversary sees the ciphertexts that result from any of
these interactions and can choose the set S of ciphertexts that are
eventually sent to Sy. This set could include some subset of the
ciphertexts outputs by oracle queries or new ciphertexts of the
adversary’s choosing. This experiment conservatively models a
group of malicious users with strong control over the network
between S; and S,.

The adversary wins the report uniqueness experiment if, after
reports by honest users are subtracted from the total report tally,
1) there are more total tallies left than the adversary made calls to
MalReport or 2) there is any rep that has more tallies than there
are distinct malicious users, as counted by the number of distinct
public keys used with the MalReport oracle. The former situation
implies that the adversary was able to produce new report tallies
without interacting with Sy, and the latter situation implies that the
adversary was able to thwart the scheme’s duplicate tally prevention
mechanism.

Our report uniqueness definition implies stronger protection for
message senders than is available in FACTS [35]. FACTS does not
strictly prevent malicious users from submitting multiple reports for
the same message, relying instead on out-of-protocol throttling on
the number of reports a user can make to ensure that no malicious

Anonymous Complaint Aggregation for Secure Messaging

Proceedings on Privacy Enhancing Technologies 2024(3)

RUNIQ[A,ILA] :

(pky, ski, skg) < SKGen1(1%, pp)
(pky, skg) « SKGenZ(l’l, pp)

U A{hT —{hS—{sM<{}
win < 0;count « 0

AC (1Y)

output win

MalReport(pk,,) :
mutput 1

if pk, € M: M — MU {pk,}
(A, S1(pky, sks, sk, pky,))

count « count +1

Submit(ct) :
S« SU {ct}

AddHonUser (uid) :

if uid € U : output L

pky,, sky — UKGen(1%, pp)
Uluid] « (skq, pk,,)
output pk,,

HonReport(uid, rep, rd) :

if uid ¢ U : output L

(sku, pky,) < Uluid]

ct « (U (rep, rd, pky,, sky, pky, pky),
1 (phey sk, ska. ple,))

T« TU {ct}

output ct

Process() :
R {}HonR « {};D « {}
forcteS:
(rep, dupTag, hd) « Verify(sks, ska, ct)
if (rep, dupTag, hd) = L :
if (rep,dupTag) ¢ D :
D « D U {(rep, dupTag) }
R[rep] < R[rep] +1
ifcteT:
HonR[rep] <« HonR[rep] +1

continue

count’ « 0

forrep € R:
diff < R[rep] — HonR[rep]
if diff > [M|: win « 1
count” « count’ + diff

if count’ > count : win « 1

output R

Figure 4: Report uniqueness experiment RUNIQ (Definition 5.2).

THFORG[A,IL A] :
(pky,ski, L) SKGen1(1’1, pp)

(pky, ska, sks) — A(14, pk,)
Ue—{}s5R« {}

AddHonUser (uid) :

HonReport(uid, rep, rd) :

Verify (rep, dupTags,) :

if uid € U : output L
pky,, sky — UKGen(1%, pp)
Uuid] « (sky, pk,,)

if uid ¢ U : output L
(sku, pk,,) < Uluid]
ct « (U (rep, rd, pk,,, sky, pk;, pky),

//get number of clauses in proof

thresh « |m,|

ver « S1Verify(rep, vData, dupTags, i)
if thresh > R[rep] A ver=1:

win « 1

win « 0 output pk,, S1(pky, sks, sk, pky,))
A°1H R[rep] < R[rep] +1
output win output ct

Figure 5: Threshold unforgeability experiment THFORG (Definition 5.3).

users can affect a message’s tally by too much. Report uniqueness
requires that no malicious user can contribute more than one report
to the tally for a given report.

Definition 5.2 (Report Uniqueness). We define the report unique-
ness experiment RUNIQ[A,IL, A, Qp] with respect to a stateful
adversary A, a list of numbers Qo setting upper limits on the
number of queries A makes to each of its oracles, a two-server
anonymous tally scheme II, and a security parameter A. The exper-
iment is described in Figure 4.

We define the report uniqueness advantage of A as

RUNIQAdV(A,IL, 4, Qp) = Pr[RUNIQ[A,IL A, Qp] = 1]

and we say that the scheme II satisfies report uniqueness if for all
efficient adversaries A and security parameters A € N, it holds that

RUNIQAdV(A,IL A, Qp) < negl(A).

5.5 Threshold Unforgeability

Threshold unforgeability prevents a malicious Sy from fraudulently
convincing S that a threshold number of reports have been re-
ceived. The adversary in this experiment controls a malicious S,

283

who can create honest users and compel them to make reports of
messages of its choosing via an HonReport oracle. The adversary
receives all the resulting ciphertexts and can attempt to fool S;
into accepting an incorrect 7, proof via a Verify oracle. The ad-
versary wins the experiment if it can cause S; to accept a proof
7, for a report rep where the threshold thresh is larger than the
number of times rep has been reported. The experiment does not
allow the adversary to control malicious users for bookkeeping
reasons: allowing adversary-controlled users to make reports hides
the rep being sent to S; and makes it impossible to do the necessary
record keeping to determine whether the adversary has won the
experiment.

Definition 5.3 (Threshold Unforgeability). We define the threshold
unforgeability experiment THFORG[A, I, A, Q] with respect to
a stateful adversary A, a list of numbers Q¢ setting upper limits
on the number of queries A makes to each of its oracles, a two-
server anonymous tally scheme II, and a security parameter A. The
experiment is described in Figure 5. While not explicitly included in
the description, we assume that the experiment retains the relevant

Proceedings on Privacy Enhancing Technologies 2024(3)

transcript data from S; in the Report protocol in order to produce
vData for S1Verify.
We define the threshold unforgeability advantage of A as

THFORGAdV(A,TI, A, Q) = Pr[THFORG[A,TI, A, Qp] = 1],

and we say that the scheme II satisfies threshold unforgeability if
for all efficient adversaries A and security parameters A € N; it
holds that

THFORGAdV(A,IL A, Qp) < negl(A).

5.6 Deniability

The majority of the deniability needs for threshold source tracking
are handled by the deniability of the underlying source tracking
scheme. That said, deniability can be a valuable property for anony-
mous tallies as well. Deniability in an anonymous tally used for
threshold source tracking means that the individual reports made
toward reaching the source tracking threshold can be denied.

Deniability requires that even if user or server secrets are made
public, reports cannot be verifiably tied back to a given user. Specif-
ically, we will consider two kinds of deniability.

(1) Server compromise deniability: even if all the server secrets
pky, pky, ski, ska, sks are made public, there should exist a
Forgeg algorithm that, given a user uid’s public key pk,, and
the leaked secrets, generates a report that is indistinguishable
from a real report made by user uid.

(2) User compromise deniability: even if a user’s secret sk, is
made public, there should exist a Forgey;~ algorithm that,
given a user uid’s public key pk,, and leaked secret key sk,
generates a report ct and decrypted (rep, dupTag) that are
indistinguishable from a real report made by user uid.

We do not formalize these definitions, but we will require them
from our scheme and will discuss how we achieve them.

6 TWO-SERVER ANONYMOUS TALLY

This section describes our main construction of a two-server anony-
mous tally scheme.

6.1 Building Up the Construction

A simple scheme. We begin with a scheme that satisfies our cor-
rectness requirements but fails to achieve our security goals and
ignores the report data rd. As explained previously, the Report
procedure begins with rep, which can be a hash of the original
report contents from the source tracking scheme. In the anony-
mous tally scheme, the user samples randomness r ¢ Zg and
sends w «— rep +r € Zg and uid to the server S1. S; computes and
returns a MAC o < MAC.Sign(sks, (w, uid)). The user encrypts
ct « PKE.Enc(pk,, (rep, o,r, uid)) as the output of the Report pro-
tocol. In Verify, So decrypts this message, verifies the MAC tag o,
and sets dupTag « (rep, uid).

This scheme satisfies correctness because each user’s report re-
sults in a distinct dupTag. Unfortunately, while the Report protocol
does not reveal anything about rep to Sy, it fails to satisfy other
security goals. In particular,

284

Connor Bell and Saba Eskandarian

(1) A single user can lie about its value of uid, allowing it to
submit the same rep multiple times, breaking report unique-
ness.

(2) It fully reveals the identity of the user uid to Sy, failing to
achieve reporter anonymity.

The solutions to these two problems seem to pull in different
directions, forcing users to always use the same uid to protect report
uniqueness while trying to hide uid for reporter anonymity. We
show to achieve both properties together.

Adding report uniqueness. In order to add report uniqueness,
we need users to always send the same uid and make sure that no
malicious user can use another user’s uid to submit a report. We will
accomplish this by having each user select a secret key sk, < Zg
and setting pk,, « g%k, We will have pk, be tied to the user id
uid, where g is a generator of a prime order group G, |G| = q. Users
now compute w as w < H(rep)" (so r still masks H(rep)), and
instead of sending (w, uid) to Sy, they send (w,v) where v « wku,
Users also sends a proof of knowledge of sk, to demonstrate that
they know the secret key being used. Verifying this proof gives Sy
confidence that a user is not assuming another user’s identity to
submit duplicate reports.

We can build the proof system needed to prove knowledge of sk,
using a Chaum-Pedersen proof [15] made non-interactive in the ran-
dom oracle model [9, 24]. This proof allows the user to prove that it
knows the secret sky, such that w = H(rep)", pk,, = g°%, 0 = ws*«
form a DH tuple [19]. We denote proofs using the notation of Ca-
menisch and Stadler [13], where PoK{(sky), pk,, = gflk, 0 = wiku}
represents the Chaum-Pedersen proof, and require the standard
zero knowledge and knowledge extraction properties [12].

The work of Sz changes very little in this version of the protocol.
The ciphertext output by the user consists of the same plaintext con-
tents (rep, o, r, uid), and S only needs to change how it calculates
w to match the updated scheme.

The addition of a user secret and proof requirement means that a
malicious user cannot lie about its identity to S and will therefore
always have the same dupTag for the same message, ensuring report
uniqueness.

Adding reporter anonymity. Next, we add reporter anonymity.
The challenge of reporter anonymity is to replace the tag uid with
a tag t unique to each user for each message. This tag must be
user-dependent and deterministic, but must be unlinkable to uid.
To prevent S, from identifying which set of reports have come from
the same user, the tag t must depend on both the identity of the
user and the content of rep.

Our solution is to have the server compute ¢ as a PRF evaluation
of the user’s identity and the report rep. The challenge is to do this
without revealing rep to S;i. Our final scheme has S; compute t by
evaluating an oblivious PRF (OPRF) [26, 40] evaluation on v using
the secret key sky, resulting in a tag t = 0 = wskuski_ As before,
the server S learns nothing about rep because H(rep) is masked
by r. Instead of computing o <« MAC.Sign(ski, (w, uid)), Sy sets
o < MAC.Sign(sky, (w, t)). The tag t now depends on all three of
rep, sky, and skj. To ensure that the server S; does not misbehave, it
also sends a Chaum-Pedersen proof that it has honestly computed ¢.

Anonymous Complaint Aggregation for Secure Messaging

At the end of the Report protocol, the user sets its output to ct «—
PKE.Enc(pk,, (rep, t, 0, r)). When running Verify, S now computes
dupTag as dupTag « £/, resulting in ¢ being a deterministic
function of rep, sky, and skj:

Z,l/r — H(rep)rskuskl/r — H(rep)Sk“Skl.

As intended, the dupTag now depends on the user and the mes-
sage. Assuming that the DDH problem is hard in G, H(rep)*kusk:
will appear uniformly randomly distributed in G, meaning that the
dupTag reveals nothing about uid to the server Sy. Including the
server key skj in the exponent in t, while not strictly necessary
for the anonymity property, serves to ensure deniability, as we will
discuss below.

Adding verification of Sy. As specified in Section 4, the platform
itself will host Sy, allowing for internal audits and monitoring, while
Sy is hosted by a third party. We now briefly describe a protocol
that allows the platform to verify claims from Sy that a certain rep
has exceeded a given threshold thresh, without revealing which
users’ reports contributed to the threshold.

A naive and insecure way for S, to prove to S that users have
in fact sent thresh distinct instances of a particular report rep is for
Sy to reveal the (rep, r, dupTag) tuples for each report. Using this
information, S1 (who must keep the values w and ¢ that it receives
in the Report protocol) can check if it previously saw values of
w = H(rep)" and t = dupTag’. Due to the collision-resistance of
H and the hardness of discrete log in G, Sz will be unable to forge
such reports, and the distinct dupTag values mean that Sy is sending
reports from distinct users. Unfortunately, directly revealing these
values to S; allows linking which user made which report, which
would break report confidentiality.

In order to go from the naive solution to one that preserves report
confidentiality, we modify the protocol so that Sz proves to S; in
zero knowledge that it knows reports that satisfy the relationships
above, without revealing which reports they are. Instead of directly
revealing rep, r, and dupTag for each report, Sy reveals only rep
and dupTag, neither of which will have previously been seen by S;.
Then, it proves in zero knowledge that it knows the value r such
that H(rep)” = w and dupTag” = t for some (w, t) held by S. This
proof is a standard OR-composition of Chaum-Pedersen proofs.
This OR proof is repeated for each of the thresh values of dupTag.
Thus Sz can convince Sp that the reports it has sent includes thresh
distinct reports of rep without revealing which clients’ interactions
with S; produced those reports.

More precisely, for a report rep, threshold thresh and a batch
of reports of size s, S holds a vector (71, ..., F'thresh) and length-s
vectors w, t, and dupTag. We prove the statement

¢ =P1 A A Pthresh,
where ¢; is defined as
¢i = {(H(rep)" = w1 A dupTain =t)
V..
V (H(rep)"" = ws A dupTagy’ =)}
Our verification proof requires time and space O(s - thresh). This

scheme allows for a privacy/performance tradeoff where the batch
size s is reduced to only subset of reports, thereby reducing the

Proceedings on Privacy Enhancing Technologies 2024(3)

anonymity set of each user whose report is included, but speeding
up and shrinking the communication required of the verification
process.

Supporting report data. Finally, we complete the scheme by
adding support for including report data rd in a report. This is
achieved by simply having the user making a report encrypt rd
under a public key pk; 4 held by S; and include the corresponding
ciphertext hd as part of the plaintext encrypted to produce ct. Thus
Sz does not learn anything from hd when it decrypts ct, but when
S1 runs Reveal, it decrypts hd to recover rd. In our full scheme, the
keys sk; and pk; are split into two parts: skirep, pkye, Which are
used for reporting as described thus far, and skyq, pk;,q Which are
used for encrypting and decrypting report data. Since each report
comes with its own copy of hd, S; should check that any expected
relationship between the decrypted message and the report rep are
satisfied, e.g., it should check that rd = H(rep).

6.2 Full Construction

We now formalize the construction described informally above.

Construction 6.1 (Two-server anonymous tally scheme). Our two-
server anonymous tally scheme II, shown in Figure 6, is defined
with respect to a cyclic group G of prime order g with generator
g € G where DDH is hard. The scheme uses the following tools:

e A CCA-secure public key encryption scheme PKE = (KGen,
Enc, Dec)

e An existentially unforgeable MAC scheme MAC = (Sign,
Verify)

o A hash function H : R — G modeled as a random oracle

e A non-interactive zero-knowledge proof of knowledge
(NIZKPoK) scheme for Diffie-Hellman triples

6.3 Security Analysis

We now briefly discuss each security property and state the theo-
rems that we prove in Appendix D.

The correctness of the scheme follows largely from the correct-
ness of the underlying cryptographic tools. There is a possibility of
distinct honest users having duplicate dupTags if either two reps
happen to collide in H or if two users happen have the same sky,.
These events occur with negligible probability in the size of G.

Intuitively, report confidentiality follows from the fact that the
value of rep is masked by r when sent to S; and encrypted when
the adversary sees it and decides whether or not to give it to Ss.
However, we also need to make sure that S cannot use the output of
the Process oracle to distinguish which messages are being reported.
The report confidentiality experiment prevents S; from using the
output of Process to achieve trivial wins, but we also need to show
that S; cannot cleverly circumvent these measures.

The proof proceeds by a series of hybrids that first extract the
secret skqrep used by the adversary before carefully converting
everything in the experiment that depends on the choice of b into
a random value, simulated proof, or encryption of 0. A probability
argument can then show that an adversary cannot succeed in using
Process in a way that circumvents protections against trivial wins.

Theorem 6.2 (Report confidentiality). Assuming that the encryp-
tion scheme (Enc, Dec) is CCA-secure, that the proof system PoK is a

Proceedings on Privacy Enhancing Technologies 2024(3)

Connor Bell and Saba Eskandarian

SKGen1(1%, pp) :
PKirep
(skird, pkyrg) — PKE.KGen(1%)
sks < {0, 1}7L

sky < (skirep, skird)

Pk1 — (Pklrep’ pklrd)
output (pky, sky, sks)

SKGen2(1%, pp) :

(sk, pky) < PKE.KGen(1%)

— g output (pks, skz)
A .

UKGen (17, pp) :

sky & Zg

pku (_gSku

output (pk,,, sky)

Verify (sks, ska, ct) :
(rep, t, 0,1, hd) < PKE.Dec(sk, ct)
w' — H(rep)”

S2Prove(rep, pData, thresh) :

(r, dupTag, w,t) < pData

7y < PoK{(r), ¢} //¢P defined in text

if MAC.Ver(sks, (W', t),0) =0: output 7,
output L
dupTag — s S1Verify (rep, vData, dupTags,) :

output (rep, dupTag, hd) (w,t) « vData
Reveal(skj, hd) :
(Sklrep’Sklrd) - Sk1

rd « PKE.Dec(skjqg, hd)
output rd

output 0
if |[set(dupTags)| < |dupTags| :
output 0 //duplicate tags

else output 1

if PoK.Ver (s, (dupTags, w,t)) =0:

Report :
U (rep, rd, pk,,, sk, pky, pky) S1(pky, sks, ski, pk,,)
(Sklrep) skira) « sk

(pklrep’ pklrd) — pkl

(pklrep’ pklrd) - pkl
r&-Zg
w « H(rep)”

0 — Wsku

7, — PoK{(sky),

pky = g%,
0= wku }
w0,y
if PoK.Ver (7, (pky, w,0)) =0:
output L
£ prep
s < PoK{(skirep),
PKirep = 9Sk1'ep,
t= uSk”eP}
Lo o «— MAC.Sign(sks, (w, t))

if PoK.Ver (s, (pklrep, 0,1)) =0:
output L

hd « PKE.Enc(pk;,q, rd)

ct < PKE.Enc(pk,, (rep, t, 0,7, hd))

output ct

Figure 6: Our two-server anonymous tally scheme (Construction 6.1).

zero knowledge proof of knowledge, that the DDH problem is hard in
the group G, and that the hash function H is modeled as a random
oracle, then our two-server anonymous tally scheme (Construction 6.1)
satisfies report confidentiality (Definition A.1).

Specifically, for every report uniqueness adversary A that attacks
our scheme Il and list Qo specifying the number of queries A makes
to each of its oracles, there exist adversaries against the tools used to
build the scheme such that for every A (omitting adversary names
and security parameters),

RCONFAdv(A,TL 1, Q)
SZQReport(PoKAdv(PoK) + Oprocess ZKAdv(PoK))
+ 2CCAAdv(PKE) + 6DDHAdvV(G) + negl.

Reporter anonymity follows almost immediately from the hard-
ness of DDH in G. Since the reporter anonymity adversary controls
Sz, the only element of the adversary’s view that depends on a re-
porting user’s identity is the value t = H(rep)sk«Skirepfrom which
Sy derives dupTag = H (rep)SkMSk“eP. Intuitively, the adversary
should not be able to distinguish between (H(rep), pk,,, dupTag)
and (H(rep), pk,, R) for R & G. The proof formalizes this via a
reduction to DDH. Additionally, the fact that the report data rd
is encrypted under the public key of S; means that the adversary
cannot learn anything from hd.

286

Theorem 6.3 (Reporter anonymity). Assuming that PoK has per-
fect completeness, that the DDH problem is hard in the group G, that
the encryption scheme (Enc, Dec) is CPA-secure, and that the hash
function H is modeled as a random oracle, then our two-server anony-
mous tally scheme (Construction 6.1) satisfies reporter anonymity
(Definition 5.1).

Specifically, for every reporter anonymity adversary A that attacks
our scheme I1, there exist DDH and CPA adversaries 8 and C such
that for every A,

ANONAdv(A, II, 1)
< 2- DDHAdV(8, G, 1) + 2 - CPAAdV(C, PKE).

For report uniqueness, we show that an adversary who cannot
break our scheme’s underlying primitives needs to roughly “follow
the rules” in the report uniqueness game, meaning the adversary has
no opportunities to deviate from the protocol and cause incorrect
outcomes. The only degrees of freedom afforded to an adversary
are its choices of reports and randomness r for each report. We
show, via the hardness of discrete logarithm in G, that the adversary
cannot pick reports and corresponding randomnesses that lead to
colliding values of dupTag for different users.

Theorem 6.4 (Report uniqueness). Assuming that MAC is an ex-
istentially unforgeable MAC scheme, that the non-interactive proof

Anonymous Complaint Aggregation for Secure Messaging

system PoK satisfies soundness and zero knowledge, that the encryp-
tion scheme (Enc, Dec) is CCA-secure, that the discrete logarithm
problem is hard in the group G, and that the hash function H is mod-
eled as a random oracle, then our two-server anonymous tally scheme
(Construction 6.1) satisfies report uniqueness (Definition 5.2).

Specifically, for every report uniqueness adversary A that attacks
our scheme Il and list Qo specifying the number of queries A makes
to each of its oracles, there exist adversaries against the tools used to
build the scheme such that for every A (omitting adversary names
and security parameters),

RUNIQAdV(A,IL A, Qo) < OMalReport - POKAdv(PoK)
+ CCAAdv(PKE) + MACAdv(MAC)
+ Qg - DLAdV(G) + negl.

Threshold unforgeability follows directly from the extractability
of the zero knowledge proof and the hardness of discrete logarithm
in G. If Sy can produce a false proof that there are more reports of
some rep than have actually been made, it must break a discrete
logarithm to pretend some report was for a different message than
it really was.

Theorem 6.5 (Threshold unforgeability). Assuming that PoK is a
proof of knowledge, that the discrete logarithm problem is hard in
the group G, and that the hash function H is modeled as a random
oracle, then our two-server anonymous tally scheme (Construction 6.1)
satisfies threshold unforgeability (Definition 5.3).

Specifically, for every threshold unforgeability adversary A that
attacks our schemelIl and list Qp specifying the number of queries A
makes to each of its oracles, there exist adversaries against the tools
used to build the scheme such that for every A (omitting adversary
names and security parameters),

THFORGAdV(A,II, 1, Qp)
< Overify - POKAdV(PoK) + 2Qp - DLAdV(G) + negl.

Finally, we turn our attention to deniability. Recall that we want
two kinds of deniability: user compromise deniability and server
compromise deniability.

In server compromise deniability, all the server secret keys sk; =
(skirep, skird), skz, sks are made public, and we wish to ensure that
no (rep, dupTag, hd) verifiably ties a report to a particular user uid.
This is accomplished by showing that there exists an algorithm
Forges-~ whose outputs are distributed indistinguishably from a
real (rep, dupTag, hd) for a report from the user uid. Since hd is an
encryption of rd under skq,4, we need for the contents of rd to be
deniable via a forgery algorithm Forge, 4 that outputs a forged string
rd*. Such an algorithm exists for source tracking schemes discussed
in this paper, such as that of Peale et al. [42]. The Forge g algorithm
outputs (rep, R, PKE.Enc(pky,q4, rd*)) for R & G. As we did in the
proof of reporter anonymity, we can show, via a reduction to the
DDH problem in G, that the distribution of (H(rep), pk,,, dupTag)
is indistinguishable from that of (H(rep), pk,,R) as long as sky,
remains secret (which is enforced by the zero-knowledge property
of the proof).

In user compromise deniability, the keys (sky, pk,,) of a user uid
are made public, and we wish to ensure that no (rep, dupTag, hd)

287

Proceedings on Privacy Enhancing Technologies 2024(3)

verifiably ties a report to that user. This is accomplished by show-
ing that there exists an algorithm Forge;;~ whose outputs are dis-
tributed indistinguishably from a real (rep, dupTag, hd) for a re-
port from user uid. Similarly to the case of server compromise
deniability, this is easily achieved by an algorithm that outputs
(rep, R, PKE.Enc(pky,4, 0)) for R <* G. Even if a user’s sk, is made
public, dupTag = H(rep)*k«skirep appears random to S,. This is
because including skirep in the exponent means we can show
that dupTag is indistinguishable from random via DDH not only
for a secret sk, but also a secret skirep. This is proved via a re-
duction to DDH in G, where we show that the distributions of
(H(rep), pklrep, dupTag) and (H(rep), pklrep, R) are computation-
ally indistinguishable, as long as skirep remains secret (which is
enforced by the zero-knowledge property of the proof 7). Likewise,
since skq,q remains secret, the encryption of 0 is indistinguishable
from the encryption of a real rd. This means that as long as both
the user and S; are not compromised simultaneously, user reports
are deniable.

Cover traffic. To achieve larger anonymity sets, it may be desirable
to have clients periodically submit valid random reports in the
absence of a user’s request to submit a real report. With support for
alarge message hash reporting space, the reports submitted as cover
traffic will look legitimate to Sy, but will not increment the tally for
alegitimate message except with negligible probability. Client cover
traffic would ensure that S; could not guess with any confidence
which users reported which message, while also ensuring that Sy
has a sufficiently large anonymity set of messages to cover the
tracks of real reporters during the verification protocol.

7 EVALUATION

We implemented our anonymous tally scheme in Rust. Group oper-
ations are performed using curve25519 via the curve25519 — dalek
library [36]. The Chaum-Pedersen proofs in the protocol were made
non-interactive via Fiat-Shamir [24]. We instantiated our MAC
scheme with HMAC-SHA256 and our encryption scheme with 2048-
bit RSA-OAEP using the rust-openss| implementations [23, 45]. Fi-
nally, we instantiate our hash function H with SHA512. Since we
only hash fixed-length messages, SHA512 will be indifferentiable
from a random oracle in this restricted setting [17, 38].

We evaluated the performance of the implementation by run-
ning the protocols with random keys and inputs in at least 1,000
trials, with the Rust Criterion benchmarking library configured
to a 95% confidence interval, on an 11th Gen Intel(R) Core(TM)
i7-11700K @ 3.60GHz processor running Ubuntu Linux 20.04.5 LTS.
The results in Table 3 were obtained with Criterion configured to
a 90% confidence interval with at least 20 runs due to extended
runtime. Comparisons to performance of other schemes are made
by re-running their performance benchmarks, where the source is
available, or comparing to published performance data when not.

Evaluation results. Table 1 shows average runtimes for reporting
messages and verifying reports in our scheme. Reports and report
verification each take well under 1ms to complete. This remains
true even when counting the time to add our scheme on top of a con-
ventional source tracking scheme. Combining our anonymous tally
scheme with the tree-linkable source tracking of Peale et al. [41, 42],
their faster and more practical scheme, only requires an additional

Proceedings on Privacy Enhancing Technologies 2024(3)

Connor Bell and Saba Eskandarian

Computation Time Communication s S2Prove S1Verify

Report (User) 360 ps Report (User) 176B 100 14.2ms 15.7 ms
Report (Server) 327 ps Report (Server) 160B 1,000 142ms 157 ms
Verify 760 ps Encrypted Report 608B 10,000 1.42 s 1.57 s
Table 1: Time to run the Report protocol . . Report a Message 944B 100,000 14.2 s 15.7 s

and the Verify algorithm in our scheme.

Table 3: Time to run the S2Prove and

Table 2: Communication costs between

user and S; during the Report protocol.

43ps of computation to produce and hash a report for a 1KB message
to derive the rep value used as an input to our scheme.

The communication overhead to report a message, beyond the
size of the message itself, is summarized in Table 2. Reporting a
message via our Report protocol requires less than 1KB of commu-
nication overhead between the user and the servers. The persistent
storage required to hold values of dupTag, w, or t is 32 Bytes each,
and the hd scales based on the length of the original message. Users
may wish to pad the length of reported messages to some constant
size to avoid leaking length information.

To show feasibility for a range of anonymity group sizes, we
present our benchmark of the protocol to verify Sy in Table 3. Each
row represents the time to prove and verify that S, holds knowledge
of a report with a unique dupTag amongst a batch of s — 1 other
reports; repeating this process thresh times will convince S; that
the threshold has been met. Our implementation is single-threaded,
but proof and verification can be parallelized using a map-reduce
structure, yielding times much faster than our implementation.

Our results suggest that the scheme has sufficiently low over-
heads for deployment. The constant time Report and Verify algo-
rithms and constant 944B of network communication to report a
message appear reasonable, particularly when weighing increased
user privacy, server enforced report uniqueness, and the fact that
overhead for non-reported messages is unaffected in our scheme.

Comparison to FACTS [35]. We compare the performance of our
scheme to FACTS, as it is, to our knowledge, the only previously
known threshold source tracking scheme, although FACTS only
supports approximate threshold source tracking, not exact tallies.
FACTS is not an open source project, so we base our comparisons
on data available in the FACTS paper.

The runtime of FACTS for their interactive Complain algorithm,
used to report messages, is a function of the approximate threshold
when messages are to be revealed. Our anonymous tally scheme
takes constant time, regardless of the reporting threshold. FACTS
operates by having the server and users cooperate to maintain
a cooperative counting Bloom filter (CCBF), a data structure that
requires parameter tuning, predefined epoch intervals, and fixed
server storage per epoch to avoid probabilistic contention between
users trying to report the same message. None of these are nec-
essary for our scheme. As a result, storage can be dynamically
allocated based on demand and report frequency, not on security or
correctness considerations. The FACTS construction also requires
locking the global storage state while waiting for the client to de-
termine how to update the CCBF. Reports in our scheme can be

288

S1Verify algorithms. Need to run thresh
times to prove the threshold is met.

processed without any locks on global state, so it is possible to
replicate both servers in the scheme to scale to a large user base.

In the absence of source code and metrics for the runtime of
FACTS, it is difficult to make a direct performance comparison, but
the authors’ analysis shows that a complaint threshold of 1,000
reports leads to an average runtime dominated by the network
latency of the 3 messages passed between the user and server in the
Complain algorithm. Thus it is reasonable to assume that FACTS
performs with very little computational overhead on both the server
and client for large thresholds. The performance cost for lower
thresholds, however, is higher. Running FACTS with a threshold
of 200 results in an average Complain time of over 400ms — 160ms
above the expected network latency. While not quite an apples
to apples comparison due to differences in evaluation setups, the
computation time for running Complain with this threshold, not
including network latency, is over 160X higher than our scheme.
Since our anonymous tally scheme includes an additional server-
only verification protocol, messages which reach the threshold will
pay additional server computation and communication costs to
verify the counts before revealing the message, but our benchmarks
show that these costs are manageable for large anonymity set sizes,
and since the costs are deferred until message reveal time, they are
only paid by messages which reach the threshold.

8 CONCLUSION

We have presented a new two-server anonymous tally scheme that
can be used to build a threshold source tracking system. The re-
sulting system requires no changes to the message processing or
delivery, and only affects the overhead of reporting abusive mes-
sages. Compared to prior work, our scheme removes the possibility
of false positive message reports and allows for exact report thresh-
olds for revealing messages, not approximate ones.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 2234408, as well as gifts from Google
and Cisco. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

REFERENCES

[1] 2021. Analytics in Exposure Notifications Express: FAQ. https://github.com/
google/exposure-notifications-android/blob/master/doc/enexpress-analytics-
faq.md. Accessed 5/1/2023.

[2] 2021. Exposure Notification Privacy-preserving Analytics (ENPA) White Pa-
per. https://covid19-static.cdn-apple.com/applications/covid19/current/static/
contact-tracing/pdf/ENPA_White_Paper.pdf. Accessed 5/1/2023.

Anonymous Complaint Aggregation for Secure Messaging

[3] 2021. What is traceability and why does WhatsApp oppose it?

https://faq.whatsapp.com/general/security-and- privacy/what-is-traceability-
and-why-does-whatsapp-oppose-it/.

[4] Josh Aas and Time Geoghegan. 2020. Introducing ISRG Prio Services for Pri-

(5

[12

[13

[14

[15

[16

(7

[19

[20

[21

[22

[23
[24

[25

[26

[27

[28

=

1
]

]

]

]

]

]

]

]

vacy Respecting Metrics. https://www.abetterinternet.org/post/introducing-prio-
services/. https://www.abetterinternet.org/post/introducing-prio-services/
Veridiana Alimonti. 2021. Brazil’s Fake News Bill: Congress Must Stand
Firm on Repealing Dangerous and Disproportionate Surveillance Mea-
sures. https://www.eff.org/deeplinks/2021/11/brazils-fake-news-bill-congress-
must-stand-firm-repealing-dangerous-and.

Apple. 2021. CSAM Detection: Technical Summary. https://www.apple.com/child-
safety/pdf/CSAM_Detection_Technical Summary.pdf.

Aya Batrawy. 2023. Saudi man sentenced to death for tweets in harshest verdict
yet for online critics (NPR). https://www.npr.org/2023/08/31/1196776390/saudi-
arabia-man-death-sentence-tweets. Accessed 3/13/2024.

Mihir Bellare and Viet Tung Hoang. 2022. Efficient Schemes for Committing
Authenticated Encryption. IACR Cryptol. ePrint Arch. (2022).

Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A Para-
digm for Designing Efficient Protocols. In CCS.

David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and Bogdan
Warinschi. 2015. SoK: A comprehensive analysis of game-based ballot privacy
definitions. In 2015 IEEE Symposium on Security and Privacy. IEEE, 499-516.
Abhishek Bhowmick, Dan Boneh, Steve Myers, Kumal Talwar, and Karl Tarbe.
2021. The Apple PSI System. (2021).

Dan Boneh and Victor Shoup. 2020. A Graduate Course in Applied Cryptography
(version 0.5). https://cryptobook.us.

Jan Camenisch and Markus Stadler. 1997. Efficient Group Signature Schemes
for Large Groups (Extended Abstract). In Advances in Cryptology - CRYPTO *97,
17th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 1997, Proceedings. 410-424.

David Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Commun. ACM 24, 2 (1981), 84-88.

David Chaum and Torben P. Pedersen. 1992. Wallet Databases with Observers.
In Advances in Cryptology - CRYPTO °92, 12th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings. 89—
105.

Long Chen and Qiang Tang. 2018. People Who Live in Glass Houses Should
not Throw Stones: Targeted Opening Message Franking Schemes. IACR Cryptol.
ePrint Arch. 2018 (2018), 994.

Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
2005. Merkle-Damgérd Revisited: How to Construct a Hash Function. In CRYPTO.
Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo
Valsorda. 2018. Privacy Pass: Bypassing Internet Challenges Anonymously. Proc.
Priv. Enhancing Technol. 2018, 3 (2018), 164-180.

Whitfield Diffie and Martin E. Hellman. 1976. New directions in cryptography.
IEEE Trans. Information Theory 22, 6 (1976), 644-654.

Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. 2018.
Fast Message Franking: From Invisible Salamanders to Encryptment. In Advances
in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I (Lecture Notes in
Computer Science, Vol. 10991), Hovav Shacham and Alexandra Boldyreva (Eds.).
Springer, 155-186.

Steve Englehardt. 2019. Next steps in privacy-preserving Telemetry
with Prio. https://blog.mozilla.org/security/2019/06/06/next- steps-in-privacy-
preserving-telemetry-with-prio/. https://blog.mozilla.org/security/2019/06/06/
next-steps-in-privacy-preserving-telemetry-with-prio/

Inc. Facebook. 2017. Messenger Secret Conversations Technical Whitepa-
per. https://messengernews.fb.com/wp-content/uploads/2018/09/messenger-
secret-conversations- technical-whitepaper.pdf.

Steven Fackler. 2022. rust-openssl. https://github.com/sfackler/rust-openssl.
Amos Fiat and Adi Shamir. 1986. How to Prove Yourself: Practical Solutions
to Identification and Signature Problems. In Advances in Cryptology - CRYPTO
’86, Santa Barbara, California, USA, 1986, Proceedings (Lecture Notes in Computer
Science, Vol. 263), Andrew M. Odlyzko (Ed.). Springer, 186-194. https://doi.org/
10.1007/3-540-47721-7_12

Matthew Franklin and Haibin Zhang. 2013. Unique ring signatures: A practical
construction. In Financial Cryptography and Data Security: 17th International
Conference, FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Selected Papers 17.
Springer, 162-170.

Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. 2005. Key-
word Search and Oblivious Pseudorandom Functions. In Theory of Cryptography,
Second Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA, Feb-
ruary 10-12, 2005, Proceedings. 303-324.

Eiichiro Fujisaki and Koutarou Suzuki. 2007. Traceable ring signature. In Interna-
tional Workshop on Public Key Cryptography. Springer, 181-200.

Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. 2017. Message Franking via
Committing Authenticated Encryption. In Advances in Cryptology - CRYPTO 2017
- 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August

289

Proceedings on Privacy Enhancing Technologies 2024(3)

20-24, 2017, Proceedings, Part III (Lecture Notes in Computer Science, Vol. 10403),

Jonathan Katz and Hovav Shacham (Eds.). Springer, 66-97.

Lois Huguenin-Dumittan and Iraklis Leontiadis. 2018. A Message Franking

Channel. IACR Cryptol. ePrint Arch. 2018 (2018), 920.

Rawane Issa, Nicolas Alhaddad, and Mayank Varia. 2022. Hecate: Abuse Reporting

in Secure Messengers with Sealed Sender. In 31st USENIX Security Symposium,

USENIX Security 2022, Boston, MA, USA, August 10-12, 2022, Kevin R. B. Butler

and Kurt Thomas (Eds.). USENIX Association, 2335-2352.

[31] Seny Kamara, Mallory Knodel, Emma Llansd, Greg Nojeim, Lucy

Qin, Dhanaraj Thakur, and Caitlin Vogus. 2021. Outside looking

in: Approaches to content moderation in end-to-end encrypted sys-

tems. https://cdt.org/insights/outside-looking-in-approaches-to-content-
moderation-in-end-to-end-encrypted- systems/

Erin Kenney, Qiang Tang, and Chase Wu. 2022. Anonymous Traceback for End-

to-End Encryption. In European Symposium on Research in Computer Security.

Springer, 42-62.

Anunay Kulshrestha and Jonathan Mayer. 2021. Identifying Harmful Media in

End-to-End Encrypted Communication: Efficient Private Membership Computa-

tion. In USENIX Security. USENIX, Virtual Event.

Iraklis Leontiadis and Serge Vaudenay. 2018. Private Message Franking with

After Opening Privacy. IACR Cryptol. ePrint Arch. 2018 (2018), 938.

Linsheng Liu, Daniel S. Roche, Austin Theriault, and Arkady Yerukhimovich.

2021. Fighting Fake News in Encrypted Messaging with the Fuzzy Anonymous

Complaint Tally System (FACTS). IACR Cryptol. ePrint Arch. (2021).

IA Lovecruft and Henry de Valence. 2021. curve25519-dalek: A pure-rust imple-

mentation of group operations on ristretto and curve25519. https://github.com/

dalek-cryptography/curve25519-dalek.

Namrata Maheshwari. 2020. Traceability Under Brazil’s Proposed Fake

News Law Would Undermine Users’ Privacy and Freedom of Expres-

sion. https://cdt.org/insights/traceability-under-brazils- proposed-fake-news-

law-would-undermine-users-privacy-and-freedom-of-expression/

Ueli M. Maurer, Renato Renner, and Clemens Holenstein. 2004. Indifferentiability,

Impossibility Results on Reductions, and Applications to the Random Oracle

Methodology. In TCC.

Silvio Micali, Michael Rabin, and Salil Vadhan. 1999. Verifiable random functions.

In 40th annual symposium on foundations of computer science (cat. No. 99CB37039).

IEEE, 120-130.

[40] Moni Naor and Omer Reingold. 2004. Number-theoretic constructions of efficient
pseudo-random functions. J. ACM 51, 2 (2004), 231-262.

[41] Charlotte Peale. 2021. srctracking. https://github.com/cpeale/srctracking.

[42] Charlotte Peale, Saba Eskandarian, and Dan Boneh. 2021. Secure Source-Tracking
for Encrypted Messaging. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, CCS. ACM.

[43] Katitza Rodriguez. 2021. Why Indian Courts Should Reject Traceability Obliga-
tions. https://www.eff.org/deeplinks/2021/06/why-indian- courts-should-reject-
traceability-obligations.

[44] Prasanto K Roy. 2019. Why India wants to track WhatsApp messages. https:
//www.bbc.com/news/world-asia-india-50167569.

[45] RustCrypto. 2022. RustCrypto/MACs. https://github.com/RustCrypto/MACs.

[46] Manish Singh. 2020. India likely to force Facebook, WhatsApp to identify the
originator of messages. https://techcrunch.com/2020/01/21/india-likely- to-force-
facebook-whatsapp- to-identify-the-originator-of-messages/.

[47] Udbhav Tiwari and Jochai Ben-Avie. 2020. Mozilla’s analysis:

Brazil’'s fake news law harms privacy, security, and free expression.

https://blog.mozilla.org/netpolicy/2020/06/29/brazils- fake-news-law-harms-

privacy-security-and-free-expression/.

Nirvan Tyagi, Paul Grubbs, Julia Len, Ian Miers, and Thomas Ristenpart. 2019.

Asymmetric Message Franking: Content Moderation for Metadata-Private End-

to-End Encryption. In Advances in Cryptology - CRYPTO 2019 - 39th Annual

International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019,

Proceedings, Part III (Lecture Notes in Computer Science, Vol. 11694), Alexandra

Boldyreva and Daniele Micciancio (Eds.). Springer, 222-250.

Nirvan Tyagi, lan Miers, and Thomas Ristenpart. 2019. Traceback for End-to-End

Encrypted Messaging. In Proceedings of the 2019 ACM SIGSAC Conference on

Computer and Communications Security, CCS 2019, London, UK, November 11-15,

2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz

(Eds.). ACM, 413-430.

[29

[30

[32

[33

(34

[35

'S
S

[37

[38

@
20,

(48

[49

A DEFERRED DEFINITIONS

Definition A.1 (Report Confidentiality). We define the report
confidentiality experiment RCONF[A,II, A, Q, b] with respect to
a stateful adversary A, a list of numbers Q setting upper limits on
the number of queries A makes to each of its oracles, a two-server
anonymous tally scheme II, a security parameter A, and a bit b. The

Proceedings on Privacy Enhancing Technologies 2024(3)

Connor Bell and Saba Eskandarian

RCONF[A,IL A, b] :
(pky, skg) «— SKGen2(1%, pp)

(pky, sk, skg) ﬂ(l’l, pk,)
U {hT<{hS<{}

AddHonUser (uid) :
if uid € U : output L

Uluid] « (sky, pky,)

b — A% (1% output pk,,
output b’

Report(uid, rep,, rdo, repy, rds) : Submit(ct) :
if uid ¢ U : output L S SU {ct}

(sky, pk,) < Uluid]

ct « (U (repy, rdp, pky, sku, pky, pky), A)
if ct =1 : output L

T[ct] « {uid, rep,, rep; }

return ct

sky, pk,, — UKGen (1%, pp)

Process(thresh) :
R« {};Ry — {}R — {}P « {};
D~ {}Dy < {}D1 < {}
forcteS:
(rep, dupTag, hd) « Verify(sks, ska, ct)
if (rep, dupTag, hd) = L :
if (rep,dupTag) ¢ D :
D « D U (rep, dupTag)
R[rep] <« R[rep] +1
ifcteT:

continue

(uid, rep, rep;) « T|[ct]
if (uid, rep,) € Dy :
Dy « Do U {(uid, repg) }
Ro[repy] < Ro[repy] +1
if (uid, rep,) ¢ Dy :
Dy « D1 U {(uid, rep;) }
Ri[rep;] < Ry[rep;] +1
if Rp # Ry :
for rep € R where R[rep] > thresh :
P « P U S2Prove(rep, pData, thresh)
output R, P, dupTags //pData will include dupTags

Abort experiment, return 0

Figure 7: Report confidentiality experiment RCONF (Definition A.1).

experiment is described in Figure 7. While not explicitly included in
the description, we assume that the experiment retains the relevant
transcript data from S in the Report protocol in order to produce
pData for S2Prove.

We define the confidentiality advantage of A as

CONFAdv(A,TL A, Qo)
= |Pr[RCONF[A, T, 4, Qp, 0] = 1]
— Pr[RCONF[A, T, A, Qp, 1] = 1]|.

We say that IT satisfies report confidentiality if for all PPT adversaries
A and security parameters A € N, it holds that

CONFAdv(A,IL A, Qp) < negl(A).

B ADDITIONAL RELATED WORK

Electronic Voting: Electronic voting as a problem space has many
parallels to message report aggregation; a set of users wish to con-
tribute towards a common tally without revealing their identity
while preventing repeated voting or “ballot-box stuffing”. Tools
such as traceable ring signatures work well in the electronic vot-
ing setting, providing anonymity for a voter within a pool as long
as they do not attempt to vote twice for the same “issue ID” [27].
There is also significant overlap in the basic goals for the systems,
including similar notions of honest voter privacy, such that “an
attacker should not notice if the votes of two voters are swapped”,
as well as tally uniqueness, which “ensures that two different tallies
for the same [election] cannot be accepted by the verification algo-
rithm, even if all the [voters] in the system are malicious” [10]. It is

290

worth highlighting a few assumptions that can be accommodated
in electronic voting that prevent these tools from being applied to
solve anonymous report aggregation.

o Traceable ring signatures often require a consistent group
of public keys to ensure that votes were authenticated by
one of the corresponding private keys and that no signa-
ture was used to vote twice on the same issue. In elections,
voters can be registered before the election, allowing for
consistent signing groups of voters for a given election; the
votes are also submitted during a fixed period of time. In an
encrypted messaging platform, users can sign up and report
forwarded messages at any time, making it difficult to ensure
a consistent user group across the aggregated reports of a
message.

e Traceable ring signatures provide a Trace procedure that
returns whether two signatures are duplicates. To ensure
a set of n signatures contains no duplicates, this requires
O(n?) invocations of Trace. The dupTags in our scheme al-
low for O(n) de-duplication within Sz, while Sz can prove
correctness of the tally to S; in O(k * n), with an anonymity
group of size k for any given report. In practice, this gives
the system more flexibility; it does not limit the anonymity
group of users who registered at a similar time, but instead,
to any report across the lifetime of the system, while also
scaling the anonymity group independently from the report-
ing threshold.

Anonymous Complaint Aggregation for Secure Messaging

While this is by no means an exhaustive review of electronic
voting literature, we believe it illustrates some key differences in as-
sumptions that can be made when compared to designing a system
for report aggregation in encrypted messaging.

Privacy Pass: Our usage of an oblivious PRF, along with a
MAC of the output at a specific point, can be viewed as a verifiable
random function, where a single evaluation can be verified without
taking away the randomness of other evaluations [39]. These are
used in many other settings, including Privacy Pass, which uses
oblivious PRFs to batch generate anonymous tokens for honest
users to bypass CAPTCHAs when using Tor or other anonymous
traffic systems [18]. Similar to our goals of avoiding the end server
learning which user reported the message, their system serves
to prevent the end server from learning which user accessed the
resource while providing some assurance that the user is not a bot.

C REPORT CONFIDENTIALITY FOR KNOWN
REPORT DATA

This appendix considers the impact on the confidentiality of reports
in the case where a malicious server already knows an honest user’s
report data rd, a setting not fully covered by our formal security
definitions. We briefly consider the consequences of this for FACTS
and for our scheme. Note that the focus here is on the confidentiality
of the users reporting the message, not on the sender of the message.
We discuss consequences for the sender of the message in Section 1
and Section 4.3.

Consequences for FACTS. The FACTS scheme relies on a “Col-
laborative Counting Bloom Filter” data structure of multiple over-
lapping Bloom filters that clients update in the clear. Since each
client is only allowed to flip one bit at a time, several clients must
report a message before a given message is included in the filter, at
which point any client who wishes to report the message knows to
tell the server the report data rd when making its report.

A malicious server who learns rd can simply set all the bits
for that message, causing any user who wishes to report rd to
immediately reveal themself to the server. This is a full break of
confidentiality by the server.

Consequences for our scheme. A malicious server S; who knows
rd in our scheme can still attack report confidentiality, albeit less
directly. The combination of masking and zero-knowledge proofs
used in the Report protocol ensures that this protocol reveals noth-
ing to a malicious Si, regardless of whether or not S; knows rd.
However, the scheme has no check that a given value of ¢ in the
encrypted output of Report corresponds to a real user. Thus a mali-
cious server who knows rd can produce many fake reports for the
same rd without needing to control multiple malicious users. This
can be used to produce a targeted attack on report confidentiality.

Suppose a malicious server receives a report from an honest
user U and wishes to check if the report data was some particular
rd that the server knows. The server creates ¢ — 1 additional fake
reports for rd and includes all ¢ reports (the honest report from U
and t — 1 fake reports) in a batch of report ciphertexts sent to Sa. If
Sy reveals rd to S7 as having t reports, S knows that it correctly
guessed the report data for user U. Otherwise it can try again with
a different candidate report until it guesses correctly. The report

291

Proceedings on Privacy Enhancing Technologies 2024(3)

confidentiality rules out this attack by checking that the adversary
has not sent reports that cause the output of Sy to differ if b = 0 or
b = 1, as this kind of attack is only possible when the adversary
does know rd in advance.

Our scheme requires Sy to learn the report data rd for each
report, but it has no way of tying this information to a given user.
Nonetheless, it’s important for S; to provide some kind of account
verification process to prevent Sz from producing many fake users
and using them to get rd over the threshold. This is yet another
way that the security of the scheme is broken if both servers are
compromised.

Observe that there is a difference in the kind of compromise
that occurs if a server learns rd in our scheme versus in FACTS. In
FACTS, this event leads to a complete break in which the adversary
can always bypass the threshold and learn every user’s report
immediately. In our scheme, S can launch a targeted attack on a
particular user to guess and check the contents of their reports.
However, as long as Sz doesn’t allow for “re-reporting” of messages
past the threshold, this attack cannot be scaled to attack every
user at once. Thus switching to a two server model in our scheme
provides for a more gradual degradation of security properties
when the adversary knows rd in advance of receiving reports.

D DEFERRED PROOFS
Proof of Theorem 6.2 (report confidentiality).

Proor. The proof proceeds by a series of indistinguishable hy-
brids.

o Hyb,: This hybrid is the security experiment RCONF[A,IL, A, Q, 0].

e Hyb,: In this hybrid, the experiment runs the extractor guar-
anteed to exist by the proof of knowledge property of PoK to
recover the value skyrep for each proof 75 presented in Report.
The experiment outputs L should any extractor fail.

This hybrid is indistinguishable from the preceding one by the
proof of knowledge property of the proof system PoK. In par-
ticular, the experiment aborts with probability PoKAdv(PoK),
the probability of the extractor failing, for each invocation of
the Report oracle. Thus the overall additional failure probabil-
ity introduced by this change is Qreport * POKAdv(PoK), which
remains negligible so long as PoKAdv(PoK) is negligible.

Note that the extracted value skjrep will always be the same
output because there is a unique skirep satisfying the statement
being proved with respect to pklrep.

Hyb,: In this hybrid, the experiment replaces the proofs r,, gen-
erated by S2Prove and sent to the adversary during interactions
with the Process oracle, with simulated proofs.

This hybrid is indistinguishable from the preceding one by the
zero knowledge property of the proof system PoK. The hybrid
consists of at most Qprocess * OReport Subhybrids (Qreport is an
upper bound on the number of proofs produced in each call to
the Process oracle), where the ith hybrid replaces the ith proof
7 with a simulated proof. The adversary’s advantage in distin-
guishing between adjacent hybrids is at most ZKAdv(PoK), so
the adversary’s advantage in distinguishing between all real ver-
sus all simulated proofs is at most Qpyocess - OReport * ZKAdv(PoK),
which remains negligible so long as ZKAdv(PoK) is negligible.

Proceedings on Privacy Enhancing Technologies 2024(3)

We omit the standard reduction that formalizes this indistin-
guishability argument.

Hybs: In this hybrid, the experiment replaces the proofs m;, sent
to the adversary during interactions with the Report oracle with
simulated proofs.

This hybrid is indistinguishable from the preceding one by the
zero knowledge property of the proof system PoK. The hybrid
consists of Qreport subhybrids, where the ith hybrid replaces the
ith proof 7, with a simulated proof. The adversary’s advantage in
distinguishing between adjacent hybrids is at most ZKAdv(PoK),
so the adversary’s advantage in distinguishing between all real
versus all simulated proofs is at most Qgeport * ZKAdv(PoK),
which remains negligible so long as ZKAdv(PoK) is negligible.
We omit the standard reduction that formalizes this indistin-
guishability argument.

Hyb,: This hybrid is identical to the preceding one, except the
experiment keeps track of queries made to the random oracle H
and aborts if there are ever queries rep, rep’ made to the oracle
such that rep # rep’ but H(rep) = H(rep’).

This event occurs with negligible probability because the proba-
bility of two queries to the random oracle having the same output
is negligible in the length of the output.

Hybs: This hybrid is identical to the preceding one except we
replace calls to PKE.Enc(pk, -) in Report with calls to encrypt a
string of zeros of the same length. The experiment keeps a table
Tenc indexed by ciphertexts that keeps the intended plaintext
contents of those ciphertexts. This table is used to look up plain-
texts when calls are made to PKE.Dec for ciphertexts ct € Tgpc
in Verify.

In lemma D.1, we prove that this hybrid is indistinguishable from
the preceding one by the CCA security of the encryption scheme.
Hybg: This hybrid is identical to the preceding experiment, except
we add an additional abort condition. The experiment will abort
and output 0 if there are two different ct, ct’” € T where, after
looking up their user identifiers uid, uid’ in T and running Verify,
it holds that uid # uid” but dupTag = dupTag’.

This hybrid is statistically indistinguishable from the preceding
one. Observe that dupTag = H(rep)®k«sKirep_ Since the experi-
ment already aborts if there are rep, rep’ that have the same hash,
the only remaining way for dupTags to collide is if (1) sk, = sk,
for two users u,u’ € U or (2) H(rep)Sk“Sk“eP = H(rep’)SkLSk“eP
where rep # rep’. But event (1) happens with probability 1/q for
each pair of users, or QiddHonUser/q overall. Since outputs of H
and sk, sk;, are chosen uniformly at random, there is a 1/q prob-
ability that any two dupTags collide, or a QZReport /q probability

of event (2) overall. Since both these probabilities are negligible,
the hybrid is indistinguishable from the preceding one.

Hyb, : In this hybrid, instead of calculating v « wsku in the
Report protocol, the experiment samples v & G. The experiment
keeps a table T; of the ¢ values returned by (A, along with the
values of rep, r, and sk, which would have been used to calculate
v, i.e, Tt [t] « (rep,r,sky). The experiment uses these values,
along with the extracted skiyep, to calculate values of dupTag for

ct € T as if it had not changed the calculation of v. That is, it

292

Connor Bell and Saba Eskandarian

computes

(rep,r,sky) « T¢[t]

dupTag — H(rep)rSk“Sk”ep/r — Wskusknep/r.

In Lemma D.2, we prove that this hybrid is indistinguishable
from the preceding one by the hardness of DDH in G.

Hybg : In this hybrid, instead of calculating w < H(rep)” in the
Report protocol, the experiment samples w <~ G. The experi-
ment continues to use the values in the table T; to calculate values
of dupTag for ct € T as if it had not changed the calculation of w.
In Lemma D.3, we prove that this hybrid is indistinguishable
from the preceding one by the hardness of DDH in G.

Hyby : In this hybrid, the experiment samples dupTag < G
when running Verify for ct € T.

In Lemma D.4, we prove that this hybrid is indistinguishable
from the preceding one by the hardness of DDH in G.

Hyb,, : This hybrid is identical to the preceding one, except we
add an additional abort condition. The experiment will abort
and output 0 if the Verify function, when run on a ciphertext
ct ¢ T, returns a (rep, dupTag) tuple where the dupTag matches
the dupTag that would have been produced by an honest user
u € U for the same rep, but where (u, rep) does not appear in Dy
or D1 .

This hybrid is statistically indistinguishable from the preceding
one because the abort condition can only be met with negligible
probability. This is the case because the values of dupTag for ct €
T are selected uniformly at random in G, and if (u, rep) does not
appear in Dy or D1, they are never shown to the adversary. Thus
the probability that an adversary produces a matching dupTag is
the probability that one of the ct ¢ T that the adversary sends
to the Submit oracle matches with a random ct € T. Since |T| is
upper bounded by the number of calls to Report, this probability
is at most QRreport * Qsubmit/g> Which is negligible.

Hyb;;: This hybrid is identical to the preceding one, except we
switch the experiment’s input b from b =0to b = 1.

The view of the adversary in this hybrid is identical to its view
in the preceding one because nothing in the adversary’s view
depends on b. Observe that all the values sent by the experiment
to the challenger in the Report protocol are either random group
elements (w, v), simulated proofs (i), or encryptions of zeroes
(ct). Moreover, the output of Process is identical when b = 0 or
b = 1 because the experiment aborts in any situation where a
difference would arise due to the choice of b.

In particular, whenever the experiment does not abort, each
(uid, rep) pair input to Report results in a distinct dupTag for
dupTag values corresponding to honest users. This means that
no ct ¢ T will result in a dupTag that collides with one in a
ciphertext ct € T for a different user. Let Ryjo, be the value of
R restricted to its contents due to calling Verify on ciphertexts
ct € T. Then we have that Ryon = Ry when b = 0 and Ryon = R;
when b = 1 (since the abort criteria ensure that no ct ¢ T can
affect Ryjon, Ro, R1). In both cases, the experiment outputs 0 if
Ro # Ry, so the value of Ry is the same regardless of b. This
means that R is also the same regardless of b because ciphertexts
ct ¢ T do not depend on b.

Anonymous Complaint Aggregation for Secure Messaging

e Hyb,, : This hybrid is identical to the preceding one, except we
remove the abort criterion introduced in Hyb . This hybrid is in-
distinguishable from the preceding hybrid via the same statistical
argument made in Hyb,,.

Hyb,; : This hybrid is identical to the preceding one, except
we return to always calculating dupTag as specified in Hyb,.
This undoes the change made in Hyby and is indistinguishable
from the preceding hybrid via the same argument, relying on the
hardness of DDH in G.

Hyb,, : This hybrid is identical to the preceding one, except
we return to always calculating w as specified in the protocol.
This undoes the change made in Hybg and is indistinguishable
from the preceding hybrid via the same argument, relying on the
hardness of DDH in G.

Hyb,5 : This hybrid is identical to the preceding one, except we
return to always calculating v and dupTag as specified in the
protocol. This undoes the change made in Hyb, and is indis-
tinguishable from the preceding hybrid via the same argument,
relying on the hardness of DDH in G.

Hyb ¢ : This hybrid is identical to the preceding one, except we
drop the additional abort criteria specified in Hyb,. This undoes
the change made in that hybrid, and is indistinguishable from
the preceding hybrid via the same argument.

Hyb,;: This hybrid is identical to the preceding one, except en-
cryption is done as specified in the protocol, rather than always
encrypting zeros and looking up plaintexts in Ty to decrypt.
This undoes the change made in Hybs.

This hybrid is indistinguishable from the preceding one by the
CCA security of the encryption scheme PKE, by an argument
analogous to the one made there.

e Hyb,: This hybrid is identical to the preceding one, except the
experiment no longer aborts in the case of two queries rep,
rep’ made to the random oracle H such that rep # rep’ but
H(rep) = H(rep’). This undoes the change made in Hyb,, and
is indistinguishable from the preceding hybrid via the same ar-
gument.

Hyb,y : This hybrid is identical to the preceding one, except
the experiment no longer simulates the proofs 7, and uses real
proofs instead. This undoes the changes made in Hybs, and is
indistinguishable from the preceding hybrid via the same argu-
ment.

Hyb,, : This hybrid is identical to the preceding one, except
the experiment no longer simulates the proofs 7, and uses real
proofs instead. This undoes the changes made in Hyb,, and is
indistinguishable from the preceding hybrid via the same argu-
ment.

Hyb,;: This hybrid is identical to the preceding one, except the
experiment no longer runs the extractors to recover skyrep from
each proof 7 provided by the adversary in Report. This undoes
the change made in Hyb,, and is indistinguishable from the
preceding hybrid via the same argument used there.

Note that this hybrid is identical to RCONF[A,IL A, Qp, 1].

The proof of the theorem follows from the indistinguishability
of adjacent pairs of hybrids and the triangle inequality.

Lemma D.1. Suppose that for any adversary B attacking the CCA
security of PKE, the advantage of B in winning the CCA security

293

Proceedings on Privacy Enhancing Technologies 2024(3)

experiment is at most CCAAdv(8B, PKE). Then, we have that
|Pr[Hyb,() = 1] = Pr[Hybs() = 1]| < CCAAdv(8B, PKE).

Proor. We show that if there exists an adversary A who distin-
guishes between the two hybrids, then we can build an adversary
B who breaks the CPA security of PKE.Enc. 8 plays the role of the
challenger to A and the adversary in the CPA security game. It
simulates Hybs exactly, except for two changes. It sets pk, to be the
public key provided by the CPA security challenger, and whenever
Report makes a call to PKE.Enc, it submits two plaintexts to the
CPA security challenger: the plaintexts that are encrypted in Hyb,
and Hybs. Since B keeps a table Tgn. as described in Hybs, correct-
ness decryption and the outcomes of Process are identical in both
cases. Thus if the CPA challenger has input b = 0, the adversary
B perfectly simulates Hyb, to A, and if the CPA challenger has
b = 1, B perfectly simulates Hybs. Thus 8 distinguishes b = 0 vs
b = 1 in the CPA security game with the same advantage that A
distinguishes between Hyb, and Hyb,. O

Lemma D.2. Suppose that for any adversary 8 attacking DDH in
G, the advantage of B in winning the DDH experiment is at most
DDHAdvV(8B, G). Then, modeling H as a random oracle, we have that

|Pr[Hybg() = 1] = Pr[Hyb,() = 1]| < DDHAdV(8B,G).

Proor. We show how to build an adversary 8 who breaks DDH
using an adversary A who distinguishes between the two hybrids.
The adversary 8 begins by receiving the DDH challenge tuple
X,Y, Z. It responds to random oracle queries by sampling a random
a; & Zg and setting H(rep;) < g*. In the AddHonUser oracle,
it samples f, «- Z4 and sets pk,, « YPu_In the Report protocol,
it samples y; ¢~ Zq and sets w < X%Vi, where a; is chosen by
querying the random oracle at rep. Moreover, it sets v «— Z% Yifu
Instead of recording r when producing ct, the adversary 8 records
vi. Finally, when running the Verify oracle for ct € T, The adversary
B computes dupTag as Y% Puskie (straightforward bookkeeping
can allow B to recover the correct choices of @;, ;). At the end of
the experiment, B passes on A’s output as its own.

Observe that if the DDH challenger has sent 8 a real DDH triple,
ie, X = g%Y = g% Z = g*Y,x,y,z € Zg, then B is providing
A with a perfect simulation of Hyb,. This is because we have
implicitly set sk, = yf, and r = xy;, and all the group elements
that make up the adversary’s view (w, v, dupTag) are consistent
with this assignment of variables.

w — X%V = g*%Vi = H(rep;)*¥" = H(rep;)"
0 Z%YiPu — gxyaihﬁu — H(repi)xy"yﬁ“ = wku
dupTag — YaiﬁuSkhep = gyaiﬂMSkhep = H(repi)SkMSkhep = tl/r

On the other hand, if Z is a random group element, then we have
that v is a random group element as well, but the other aspects of
the adversary’s view remain the same. This is a perfect simulation
of Hyb,. Thus the adversary 8 distinguishes a DDH triple from a
random one with the same advantage that A distinguishes between
the two hybrids. O

Lemma D.3. Suppose that for any adversary 8 attacking DDH in
G, the advantage of B in winning the DDH experiment is at most

Proceedings on Privacy Enhancing Technologies 2024(3)

DDHAdv(8B, G). Then, modeling H as a random oracle, we have that
|Pr[Hyb;() = 1] = Pr[Hybg() = 1]| < DDHAdv(8,G).

ProoF. We show how to build an adversary 8 who breaks DDH
using an adversary A who distinguishes between the two hybrids.
The adversary 8 begins by receiving the DDH challenge tuple
X, Y, Z. It responds to random oracle queries by sampling a random
a; ¢ Zg and setting H(rep;) < X%. In the Report protocol,
it samples f; ¢ Zg and sets w « 7%Pi where @; is chosen
by querying the random oracle at rep. When running the Verify
oracle for ct € T, the adversary B computes dupTag as X%sKuskirep
(straightforward bookkeeping can allow 8B to recover the correct
choices of «;). At the end of the experiment, B passes on A’s output
as its own.

Observe that if the DDH challenger has sent 8 a real DDH triple,
ie, X = g5Y =4¢¥%,Z = g%V, x,y,z € Zg, then B is providing
A with a perfect simulation of Hyb,. This is because we have
implicitly set r = yf; and explicitly set H(rep) = g%, and all the
group elements that make up the adversary’s view (w, v, dupTag)
are consistent with this assignment of variables.

w 7P :gxya,»ﬁi _ H(rep)yﬁ" = H(rep)”
v &G
dupTag XU{iSkuSk1reP _ gxa,—skusk]rep — H(rep)skusknep

On the other hand, if Z is a random group element, then we have
that w is a random group element as well, but the other aspects of
the adversary’s view remain the same. This is a perfect simulation
of Hybg. Thus the adversary 8B distinguishes a DDH triple from a
random one with the same advantage that A distinguishes between
the two hybrids. O

Lemma D.4. Suppose that for any adversary B attacking DDH in
G, the advantage of B in winning the DDH experiment is at most
DDHAdvV(8B, G). Then, modeling H as a random oracle, we have that

[Pr[Hybg() = 1] = Pr[Hybo() = 1]| < DDHAdV(8,G).

ProoFr. We show how to build an adversary 8 who breaks DDH
using an adversary A who distinguishes between the two hybrids.
The adversary 8 begins by receiving the DDH challenge tuple
X,Y, Z. It responds to random oracle queries by sampling a random
@; ¢ Zg and setting H(rep;) < X“.In the AddHonUser oracle, it
samples f, < Zg and sets pk,, YPu_ When running the Verify
oracle for ct € T, the adversary 8 computes dupTag as 7% Puskirep
(straightforward bookkeeping can allow B to recover the correct
choices of a;, f;). At the end of the experiment, 8 passes on A’s
output as its own.

Observe that if the DDH challenger has sent 8 a real DDH triple,
ie,X =g%Y =gY% 7 =g"Y% x,y,z € Zg, then B is providing A
with a perfect simulation of Hybg. This is because we have implicitly
set sky, = ypy and explicitly set H(rep) = g**, and all the group
elements that make up the adversary’s view (w,v, dupTag) are
consistent with this assignment of variables.

w& G

v &G

dup'l'ag — ZaiﬁuSklrep — gxyaiﬁuSkhep — H(rep)SkMSkhep

294

Connor Bell and Saba Eskandarian

On the other hand, if Z is a random group element, then we have
that dupTag is a random group element as well, but the other aspects
of the adversary’s view remain the same. This is a perfect simulation
of Hybg. Thus the adversary 8 distinguishes a DDH triple from a
random one with the same advantage that A distinguishes between
the two hybrids. O

o
Proof of Theorem 6.3 (reporter anonymity).

Proor. The proof proceeds by a series of indistinguishable hy-
brids.

o Hyb,: This hybrid is the security experiment RANON[A, I, A, b =
0].

Hyb,: This hybrid is identical to the preceding hybrid, except in
calls to the HonReport oracle, the experiment omits producing
or verifying the proofs 7, and 7;.

This change does not affect the view of the adversary in the
experiment because the adversary never sees the transcript of
interactions in HonReport, and the proofs have perfect complete-
ness, meaning omitting them will not change the probability that
the Report protocol outputs L.

Hyb,: This hybrid is identical to the preceding one, except instead
of encrypting hd < PKE.Enc(pky,q, rd) in the HonReport oracle,
we replace rd with a string of zeros of the appopriate length.
This hybrid is indistinguishable from the preceding one by the
CPA security of the encryption scheme. This can be proven via a
standard reduction, which we omit.

Hybs: This hybrid is identical to the preceding one, except in-
sk

stead of computing v « w
pute v & G.

In Lemma D.5, we prove that this hybrid is indistinguishable
from the preceding one by the hardness of DDH in G and the
fact that H is modeled as a random oracle.

Hyb,: This hybrid is identical to the preceding one except we
switch the experiment’s input b from b =0to b = 1.

Observe that nothing in the adversary’s view in Hyb; depends
on b, so this hybrid is identical to the preceding one.

o Hybs: In this hybrid, instead of computing v & G in HonReport,

« in the HonReport oracle, we com-

we compute v «— w'«_ This undoes the change made in Hybs.
As in Hybs, this hybrid is indistinguishable from the preceding
one by the hardness of DDH in G and the fact that H is modeled
as a random oracle. The proof is analogous to that of Lemma D.5.
Hybg: In this hybrid, the experiment resumes using rd as the
plaintext that gets encrypted to produce hd. This undoes the
change made in Hyb,.

As in Hyb,, this hybrid is indistinguishable from the preceding
one by the CPA security of PKE.

Hyb,: In this hybrid, the experiment resumes computing and
verifying the proofs m;, and 7 in the HonReport oracle. This
undoes the change made in Hyb;.

As in Hyb,, this change does not affect the view of the adver-
sary in the experiment. Note that this hybrid is identical to
RANON[A,IL A, b = 1].

The proof of the theorem follows from the indistinguishability
of adjacent pairs of hybrids and the triangle inequality.

Anonymous Complaint Aggregation for Secure Messaging

Lemma D.5. Suppose that for any adversary B attacking DDH in
G, the advantage of B in winning the DDH experiment is at most
DDHAdv(8B, G). Then, modeling the hash function H as a random
oracle, we have that

|Pr[Hyb, () = 1] = Pr[Hybs() = 1]| < DDHAdV(B,G).

Proor. We show that if there exists an adversary A who dis-
tinguishes between the two hybrids, then we can build an adver-
sary B who breaks DDH in G. B plays the role of the adversary
in the DDH security game and the role of the challenger in the
reporter anonymity game with A. Given the DDH challenge tu-
ple (X = ¢g*,Y = g¥,Z = ¢g°) where z = xy or z ¢ Zg, algo-
rithm B programs the random oracle H so that for each query
rep, H(rep) < X% where o <& Z4. Moreover, it sets the pub-
lic key of each honest user to pk, « YB for p & Zg. Finally,
when computing v in the HonReport oracle, instead of computing
v — H(rep)™ku it sets v « Z"®F where a and f are selected based
on the message being hashed and the user doing the reporting. 8
passes on A’s distinguishing bit b as its own output.

Observe that if z = xy, then B has set v = g"*¥2f = (g¥)ryp =
H(rep)”k“, whereas if z is random, B has set v = g%, which is
distributed uniformly at random in G. The former is exactly the
view of the adversary in Hyb,, whereas the latter is exactly the
view of the adversary in Hyb,. Thus 8 distinguishes between the
two hybrids with the exact same advantage as A. O

m]
Proof of Theorem 6.4 (report uniqueness).

Proor. The proof proceeds through a series of hybrid experi-
ments, each of which increases the adversary’s advantage by at
most a negligible probability.

e Hyb,: This hybrid is the security experiment RUNIQ[A,IIL, 4, Q].

e Hyb,: In this hybrid, the experiment keeps a table Tiyac of mes-
sages MACed by Si, indexed by the MAC tags o, ie, T[o] =
(w, t). The experiment aborts and outputs 0 if it ever calls the
Verify function ever receives a MAC tag o ¢ Tpmac but does not
output L.
This hybrid is indistinguishable from the preceding one by the
existential unforgeability of the MAC scheme. We omit the proof
of indistinguishability for this hybrid because it is a standard
reduction to the existential unforgeability of the MAC scheme.

e Hyb,: This hybrid is identical to the preceding one, except the
experiment keeps track of queries made to the random oracle H
and aborts if there are ever queries rep, rep’ made to the oracle
such that rep # rep” but H(rep) = H(rep’).

This event occurs with negligible probability because the proba-
bility of two queries to the random oracle having the same output
is negligible in the length of the output.

e Hybs: In this hybrid, the experiment runs the extractor guaran-
teed to exist by the proof of knowledge property of PoK to recover
the value sk, for each proof m, presented in MalReport(pk,,).
The experiment outputs L should any extractor fail. The exper-
iment also modifies its bookkepping to replace each element
pk, € M with the tuple (sky, pk,,).

295

Proceedings on Privacy Enhancing Technologies 2024(3)

This hybrid is indistinguishable from the preceding one by the
proof of knowledge property of the proof system PoK. In partic-
ular, the experiment aborts with probability PoKAdv(PoK), the
probability of the extractor failing, for each invocation of the
MalReport oracle. Thus the overall additional failure probability
introduced by this change is Qmalreport - POKAdv(PoK), which
remains negligible so long as PoKAdv(PoK) is negligible.
e Hyb, : In this hybrid, the experiment keeps a table Tct and each
time the HonReport oracle computes a ciphertext, the experiment
sets Tet «— (rep, t, 0,1, hd). The experiment also replaces any
ciphertext computed in HonReport with an encryption of all
zeroes of the same length, using Tt to recover the plaintext
whenever it encounters a ciphertext ct € Tct.
In Lemma D.6, we show that the advantage of an adversary in
this hybrid is at most CCAAdv(8B, PKE.Enc) greater than in the
previous one. This quantity is negligible by the CCA-security of
PKE.
Hybs: In this hybrid, the experiment aborts and outputs 0 if,
during a call to the Process oracle, there is ever a ct ¢ Tt but for
which PKE.Dec(pk, ct) = (rep, t,-,1,-) € Tct.
This event occurs with negligible probability because the view
of the adversary is independent of values of r (and therefore ¢)
produced in the HonReport oracle. Thus the abort criterion can
only be triggered if the adversary guesses the random choice
of r used in one of the calls to HonReport and includes it in a
ciphertext ct passed to the Submit oracle.
Hybg: In this hybrid, the experiment aborts if there exists ct, ct’ €
S where, when the ciphertexts are decrypted in Verify and Verify
does not output L, they yield (rep, r), (rep’, ") such that (rep, r) #
(rep’,7’), but H(rep)" = H(rep’)r/.
In Lemma D.7, we show that the advantage of an adversary in this
hybrid is at most Qg - DLAdv(8B, G) greater than in the previous
one, where Qp denotes the number of queries the adversary
makes to the random oracle. This quantity is negligible by the
hardness of discrete log in G.

We now prove that the advantage of any adversary in Hyby is 0.

First, let Tpec be a table that maps those ciphertexts ct € S for
which Verify(sks, sk, ct) # L to their decryptions (rep, ¢, o, r, hd).
Note that for a ciphertext to be included in Tpec, its decrypted con-
tents must pass MAC verification, which means that (H(rep)”, t) €
Tmac- This means that only those (w, t) values that come from
a successful interaction with HonReport or MalReport (the only
times an experiment MACs a message) can be included in Tpec.
Note that for a ct to increase the count in R, it must at least be
included in Tpec. Moreover, for a ct to be included in the difference
between R and HonR - call the table of differences R’ - its corre-
sponding (w, t) value must have been MACed in the MalReport
oracle, or else the experiment would abort for violating the cri-
terion specified in Hybs. We will refer to the subset of Tpe. that
includes ciphertexts ct ¢ T as T . Since only ciphertexts ct € T/
can contribute to count’, this means that count’ is upper bounded
by the number of calls to MalReport. Since each successful call to
MalReport increases count by 1, this means that, count” < count’.

Next, observe that for any ct € T/ , the decrypted values of

Dec
H(rep)" = w and t must have the relationship ¢ = wSKirep'Sku by

construction, where skj; € M. But since there are no colliding

Proceedings on Privacy Enhancing Technologies 2024(3)

H(rep) values in the experiment, and no colliding w = H(rep)”
values either, this means that for each rep € T[Sec’ it must hold for
all entries (rep,t, 0,7, hd) € Téec that t1/7 = H(rep)’Sk“eP*Sk;/r =
H(rep)Sk”ePSk*u. Since there are at most |M| possible choices of skj,,
there cannot be more than |M| entries in R’ for each unique rep,
which means the adversary can never win with diff > |M|.

We have now ruled out both ways for the experiment to set
win « 1, meaning the adversary has advantage 0 in Hyb,, and
completing the proof.

Lemma D.6. Suppose that for any adversary B attacking the CCA
security of public key encryption scheme PKE, the advantage of B in
winning the CCA security experiment is at most CCAAdv (8B, PKE).
Then, we have that

Pr[Hyb;() = 1] — Pr[Hyb,() = 1]| < CCAAdv(B, PKE).

Proor. We show that for any adversary A who distinguishes
between Hyb; and Hyb,, we can build an adversary 8 who uses
A to break the CCA security of PKE.

The adversary B performs the role of the challenger in the Hyb,
experiment with a few changes. The public key pk, is set to be
the public key provided by the CCA challenger. Whenever the
HonReport oracle requires the honest user to encrypt a message,
B encrypts messages by sending the two plaintexts (rep, t, o, 7, hd)
and all zeroes to the CCA security challenger. All decryptions of ci-
phertexts returned by the CCA challenger are decrypted via lookup
table, and decryptions of other ciphertexts are handled via the CCA
decryption oracle.

Observe that if the CCA challenger has input bit b = 0, then
B provides the adversary A with a perfect simulation of Hyb,,
whereas if b = 1, then B provides a perfect simulation of Hyb,.
Thus B wins the CCA security game with the same advantage that
A distinguishes between the two hybrids. O

Lemma D.7. Suppose that for any adversary B attacking discrete
logarithm in G, the advantage of B in computing a discrete logarithm
is at most DLAdv(8B, G). Then, for an adversary who makes at most
Qg queries to the random oracle H, we have that

|Pr[Hybs() = 1] = Pr[Hybs () = 1]| < Qg - DLAdV(8B, G).

Proor. We show that for any adversary A who triggers the
abort condition introduced in Hybg, we can build an adversary
B who uses A to solve discrete logarithms in G with probability
1/Qpg. Since the abort condition is the only difference between
Hybs and Hyby, this proves that the advantage of an adversary
against Hyby is at most Qp - DLAdv(8, G) greater than that of an
adversary against Hybs. The proof proceeds by programming the
random oracle and using a guessing argument to solve discrete
logarithms.

Given a discrete log challenge (g, h), the adversary B begins by
sampling a random i* & {1, ..., Qg }. Then, during the experiment,
for the ith query rep; to H, i # i*, B responds by sampling a; <~ Zg4
and setting H(rep;) < g7. For i = i*, B sets H(rep;.) < h. The
experiment keeps a table of Ty of (rep;, @;) pairs.

We now show that whenever the abort criterion introduced
in Hybg occurs, 8 solves the discrete logarithm challenge with
probability 2/Qp. Consider the values (rep, r), (rep’, r’) such that

296

Connor Bell and Saba Eskandarian

H(rep)” = H(rep’)" ' triggers the abort condition. The adversary
B aborts if rep = rep;. and rep’ # rep;:, or vice versa. Since i* is
chosen uniformly at random, the probability that 8 does not abort
is at least 2/Qp.

Suppose without loss of generality that rep = rep;«. Then we
have that H(rep) = h and H(rep’) = g%, where a = «; for some
i # i*. Thus we have that

H(rep)” = H(rep’)”
o= (ga)r’
h zgar’/r.

_ ar
=9

Since B knows «, r’, and r, it outputs ar’/r to the discrete log
challenger, and wins the discrete log security experiment.
O

[m]

Proof of Theorem 6.5 (threshold unforgeability). We only
provide a sketch of this proof, as the arguments are very similar to
those made in the other theorems.

ProOOF (SKETCH). First, we run the extractor for each call to the
Verify oracle to recover the values (rep, r, w, duptag, t) used in each
clause of each call to Verify. These values are deduplicated and
stored in a table T of size at most QponReport < Qn (because the
Report protocol includes a call to H).

Next, we invoke the fact that the random oracle behaves as a
collision-resistant hash function to rule out the possibility of colli-
sions in H(rep), except with negligible probability. We also invoke
the hardness of discrete log in G to rule out the possibility of col-
liding (rep, r) and (rep’,r’) where H(rep)" = H(rep’)r,, similarly
to the argument made in the proof of report uniqueness.

Observe that since each (w, t) held by the verifier is associated
with a single extracted value r, that H(rep)” = w, and that there are
no colliding values of H(rep)”, we can conclude that each (r, w, t)
uniquely determines rep, which in turn uniquely determines the
dupTag such that dupTag” = ¢.

From here, the proof'is a reduction to discrete logarithm. Given a
discrete logarithm challenge h = g*, we pick a random query rep*
to the random oracle and program it to be

r* & Zg; H(rep™) « W

We call rep the special query. All other queries to the random oracle
are programmed as
Trep <= Zq; H(rep) «— g"™.

Now, whenever the adversary wins the security experiment,
there must be some (w,t) € T for which the extracted values
(rep’,r’) differ from the (rep, r) initially produced by the exper-
iment during HonReport. Since we chose rep* at random from
among queries to H, there is at least a 1/Qp probability that rep =
rep” in this case. But then, because the proof , verified, we have
that

w= H(rep')r' = grrEP'r/ =h'T = H(rep®)".

Trep! T
This implies that h = g 7r*r, so we can recover the discrete loga-
. _ r,ep/r’
rithm x = ——. O

	Abstract
	1 Introduction
	2 Background: Source Tracking and Threshold Source Tracking
	3 Anonymous Tallies
	4 Threshold Source Tracking via Anonymous Tallies
	4.1 From Tallies to Threshold Source Tracking
	4.2 Choosing a Source Tracking Scheme
	4.3 Security for Threshold Source Tracking

	5 Security for Anonymous Tallies
	5.1 Notation
	5.2 Report Confidentiality
	5.3 Reporter Anonymity
	5.4 Report Uniqueness
	5.5 Threshold Unforgeability
	5.6 Deniability

	6 Two-Server Anonymous Tally
	6.1 Building Up the Construction
	6.2 Full Construction
	6.3 Security Analysis

	7 Evaluation
	8 Conclusion
	Acknowledgments
	References
	A Deferred Definitions
	B Additional Related Work
	C Report Confidentiality for Known Report Data
	D Deferred Proofs

