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Understanding the relationship between multiscale morphology and electronic structure is a grand

:00.0 . . .
DOL:00.0000A00000000¢ challenge for semiconducting soft materials.

Computational studies aimed at characterizing
these multiscale relationships require the complex integration of quantum-chemical (QC) calcula-
tions, all-atom and coarse-grained (CG) molecular dynamics simulations, and back-mapping ap-
proaches. However, the integration and scalability of these methods pose substantial computa-
tional challenges that limit their application to the requisite length scales of soft material mor-
phologies. Here, we demonstrate the bottom-up electronic coarse-graining (ECG) of morphology-
dependent electronic structure in the liquid-crystal-forming semiconductor, 2-(4-methoxyphenyl)-7-
octyl-benzothienobenzothiophene (BTBT). ECG is applied to construct density functional theory
(DFT)-accurate valence band Hamiltonians of the isotropic and smectic liquid crystal (LC) phases
using only the CG representation of BTBT. By bypassing the atomistic resolution and its prohibitive
computational costs, ECG enables the first calculations of the morphology dependence of the elec-
tronic structure of charge carriers across LC phases at the ~20 nm length scale, with robust statistical
sampling. kinetic Monte Carlo (kMC) simulations reveal a strong morphology dependence on zero-
field charge mobility among different LC phases as well as the presence of two-molecule charge
carriers that act as traps and hinder charge transport. We leverage these results to further evaluate
the feasibility of developing truly mesoscopic, field-based ECG models in future works. The fully
CG approach to electronic property predictions in LC semiconductors opens a new computational
direction for designing electronic processes in soft materials at their characteristic length scales.

1 Introduction ries of back-mapping procedures aimed at converting CG coor-

Significant strides have been made in the design of or-
ganic semiconductors (OSCs), with diverse applications such
as organic light-emitting diodes (OLEDs),? organic photo-
voltaics (OPVs), 34 organic field-effect transistors (OFETs),>’
and biomedical devices.819 The success of OSCs hinges upon
gaining deep insights into the interplay between optoelectronic
properties and multiscale structural attributes, spanning molec-
ular conformations (1 — 10 A), primary structural features (1
— 10 nm), mesoscale morphology (10 nm -10 um), and thin-
film morphology (> 10 um).!1"2! Multiscale simulations have
emerged as an essential tool, shedding light on complex structure-
function relationships in 0SCs.%222% Traditional multiscale sim-
ulations often employ a bottom-up coarse-grained (CG) proce-
dure to model the bulk morphology of OSCs, followed by a se-
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dinates to atomistic resolution.26-3* The atomistic coordinates
retrieved from the CG resolution facilitate the extraction of rep-
resentative molecular configurations that subsequently undergo
quantum chemistry (QC) calculations to characterize electronic
structure. However, the widespread utilization of multiscale sim-
ulations for OSC design has been hampered by the complex
workflow, challenges associated with the one-to-many nature of
backmapping, and the prohibitive computational cost of QC cal-
culations at the requisite morphological length scales. While re-
cent efforts have utilized machine learning (ML) approaches to
streamline a more effective backmapping process,3>~37 the com-
putation of morphology-dependent electronic properties remains
intractable due to the demanding nature of quantum chemistry
calculations.

The recent emergence of interest in liquid-crystal-forming
semiconductors highlights the computational challenges intrinsic
to OSCs. Simply put, the computational challenge of modeling
OSCs can be stated as the need to assess quantum-mechanically-
derived electronic properties at multiple thermodynamic state
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points for large (~ 10 — 100 nm), often glassy morphologies with
robust statistical sampling. 33~43 While the manipulation of liquid
crystal (LC) phases in OSCs for enhanced device performance is
a common theme throughout the community, *+4® recent work
has explored morphology-dependent conductivity in asymmetric
benzothienobenzothiophene-based compounds, a promising type
of LC-forming OSCs used in field-effect transistors.47-¢ These
compounds exhibit a remarkable combination of attributes, in-
cluding high charge mobility, superior solubility and process-
ability, robust thermal durability, and the capability to regulate
molecular orientation. While layered smectic phases with head-
to-head bilayer (lipid-like) structures have been reported in the
asymmetric benzothienobenzothiophene family, recent work by
Han et al. introduced a novel derivative, 2-(4-methoxyphenyl)-
7-octyl-benzothienobenzothiophene (BTBT),>%57 that exhibited
a rare nematic phase (long-range order without layered struc-
ture) when inserted into rubbed planar anchoring sandwich cells.
However, the mechanisms underlying phase transitions between
crystals and different smectic phases or the formation of the
nematic phase remain unclear.>®-%¢ Importantly, large changes
in the electronic conductivities were observed in transitioning
benzothienobenzothiophene-based molecules through different
LC phases. For traditional multiscale computational methods,
the analysis of such conductivity trends would represent an ef-
fort warranting state-of-the-art computing resources; slow relax-
ation times would necessitate CG modeling, which would need
to be connected with AA backmapping and molecular dynamics,
followed by ad nauseum QC characterization at the ~ 10— 100 nm
scale to compute morphology dependent electronic properties.
To circumvent the convoluted back-mapping processes and
resource-intensive QC calculations, recent efforts have explored
the evaluation of quantum mechanical (QM) properties at CG res-
olutions using a “top-down" approach.®7-71 This approach lever-
ages anisotropic CG simulations, adept at capturing phenomena
such as w — 7 stacking interactions between aromatic moieties and
the torsional conformational changes within conjugated back-
bones. These CG collective variables serve as the basis for esti-
mating structure-dependent electronic properties like electronic
coupling using physically-motivated approximations. While these
top-down CG approaches have been effective at accessing elec-
tronic properties such as charge mobility and molecular orbital
delocalization at mesoscopic simulation length scales, they are re-
stricted to extremely simple analytical forms that do not capture
the full complexity of real chemistries. Additionally, research has
highlighted that the collective structural variables based on 7 — &
stacking and backbone torsion alone may not suffice to model
structure-dependent electronic properties at the CG level.72-7>
Recently, data-driven approaches have emerged for the
“bottom-up" prediction of electronic properties of soft materials
at the CG resolution.’®82 These electronic CG (ECG) models
leverage ML to establish a mapping from all-atom (AA) electronic
structure to CG representations, eliminating the complexities and
computational costs associated with back-mapping processes and
ad naeuseam QC. A fundamental insight driving the development
of ECG models is the recognition that a single CG configuration
encompasses a range of AA configurations, resulting in a "one-to-

2| Journal Name, [year], [vol.], 1_15

many" mapping (Fig. S1). This mapping implies that any property
derived from the AA model inherently represents a probabilistic
distribution of that property at the CG resolution. The noise on
this distribution can be rigorously related to (i) the degeneracy of
the CG mapping operator (dictating how atoms are grouped into
CG beads) and (ii) the thermodynamic state of the system (re-
flecting the extent of thermal fluctuations within the AA model).
Recently, our group has extended the ECG framework through the
incorporation of deep kernel learning (DKL) with approximate
Gaussian processes81:82 to predict noisy, heteroscedastic distri-
butions as a function of CG representation, facilitating the rigor-
ous bottom-up connection of ECG predictions with an underlying,
QC-accurate AA model.

In this work, we demonstrate the first bottom-up CG study
of the bulk electronic structure of the molecular semiconductor
BTBT,>>>8 as a function of the LC morphology using ECG meth-
ods. Our comprehensive structural characterization of the simu-
lations revealed the presence of smectic A and smectic E phases,
instead of the experimentally observed nematic phase under pla-
nar anchoring conditions, which suggests a general preference for
the benzothienobenzothiophene family to exhibit smectic charac-
teristics. We further explore the dependence of charge delocal-
ization on LC morphology by explicitly constructing density func-
tional theory (DFT)-quality electronic Hamiltonians using only
the CG model resolution, from which electronic structure at the
~ 20 nm length scale is derived with statistical robustness. Anal-
yses of these Hamiltonians reveal the presence of three distinct
types of charge carriers, the distributions of which vary between
LC phases. We trace the origin of these charge carriers to multi-
molecule descriptors of local electronic and structural environ-
ments. The zero-field charge mobility across various LC phases,
as determined by rejection-free kinetic Monte Carlo (kMC) simu-
lations, not only underscores a pronounced dependence on mor-
phology but also indicates that two-molecule charge carriers serve
as traps, impeding effective charge transport pathways. As ECG
methods exhibit approximately 107 reduced cost relative to ex-
isting multiscale computational paradigms, a statistically robust
characterization of the electronic structure of LC phases as large
length scales is achieved without invoking state-of-the-art compu-
tational resources. Lastly, we examine the potential for connect-
ing bottom-up CG predictions of electronic structure with field-
based order parameters that serve as the workhorses of the soft
materials theory community. Altogether, this fully “bottom-up"
approach to morphology and electronic structure calculations fa-
cilitates the systematic design of OSCs across diverse morpholo-
gies at mesoscopic length scales with statistical robustness and
low computational cost.

2 Methods

The workflow for the fully bottom-up CG method for the LC
phases of BTBT is illustrated in Figure 1. AA molecular dy-
namics (MD) simulations are performed in the isotropic (700 K
and 1 bar), smectic A (555 K and 1 bar)*, and smectic E (515
K and 1 bar)* phases to parameterize CG models using itera-
tive Boltzmann inversion (IBI)83-84 and an electronic structure-
optimized CG mapping.8> CG structural prediction models are



coupled with bottom-up ECG models derived from AA MD trajec-
tories and wB97XD/cc-pVDZ level DFT calculations. CG represen-
tations were converted to CG distance matrices, providing trans-
lational and rotational invariance, that served as input features
for the DKL method underlying ECG. ECG models were trained
to reproduce (i) conformation-dependent, single-molecule high-
est occupied molecular orbital (HOMO) energies of BTBT as well
as (ii) HOMO-HOMO electronic couplings between BTBT dimers.
Comprehensive details regarding the parameterization and val-
idation of the AA force field and the creation of BTBT training
data sets can be found in previous work. 8

2.1 Bottom-Up CG models for Morphology Prediction

Iterative Boltzmann Inversion (IBI)8384 with pressure correc-
tion 80 is used to construct CG intermolecular potentials for BTBT
in the isotropic and smectic phases. IBI was selected due to the
importance of structural prediction accuracy in ECG predictions
that was recently reported, 80 though in principle more rigorous
bottom-up CG methods can be utilized as long as structural dis-
tribution functions are accurately reproduced.

As CG non-bonded potentials are expected to exhibit lim-
ited thermodynamic transferability between isotropic and smec-
tic phases, two CG non-bonded potentials were developed for
the isotropic (700 K and 1 bar) and smectic A phases (at 555
K and 1 bar), respectively. Achieving transferability in bottom-up
CG necessitates a similarity in the effective interaction domain,
such as isotropic to isotropic or anisotropic to anisotropic, rather
than transitioning from isotropic to anisotropic phases. This re-
quirement arises from the collective interaction of mapped atoms,
encapsulated by an effective CG potential of mean force, which
in turn represents the corresponding free energy attributes.87-90
Therefore, for the smectic E phase (at 515 K and 1 bar), the CG
non-bonded potentials were adopted from those designed for the
smectic A phase, which demonstrated excellent transferability in
reproducing both short-range and long-range structural proper-
ties, as discussed in the Electronic Supplementary Information
(ESD). A single set of CG bonded potentials of BTBT, encompass-
ing CG bond, CG angle, and CG dihedral interactions, were de-
termined through direct Boltzmann inversion using the reference
AA isotropic morphology; previous works have demonstrated the
low sensitivity of CG bonded parameters to thermodynamic state
changes. 849192 All AA and CG MD simulations were conducted
using LAMMPS 3| with a custom IBI implementation closely ad-
hering to established procedures. 496 Additional details regard-
ing the construction of CG structural prediction models and a
comprehensive evaluation including the radial distribution func-
tion (RDFs) of the center of mass, nematic order parameters,
structure factor analyses, and RDFs of the 120 distinctive CG pairs
are available in the ESI.

*Both smectic phases exhibit a layered structure, but in the smectic A phase, the pri-
mary director and layer normal are parallel, whereas in the smectic E phase, there is
a tilt angle between them, along with a unit pattern among the layer structure. A de-
tailed structural characterization of various LC phases is provided in the subsequent
section.

While the IBI methodology and its derivatives have been ex-
tensively utilized in the development of bottom-up CG models
for liquid-crystal-forming materials, %7199 we observed signifi-
cant limitations in its application to the complex intermolecular
interactions of BTBT. Specifically, the extensive fused ring mo-
tifs of BTBT, coupled with the flexible and isotropically inter-
acting alkyl side chain, induce strongly anisotropic intermolec-
ular interactions. This asymmetric molecular architecture poses
challenges for the convergence of the IBI procedure, particularly
in high-order LC phases. The presence of a rigid fused ring, a
floppy alkyl side chain, along with the highly asymmetric struc-
ture necessitates the treatment of all 15 CG particles as distinct
types. This results in the requirement for 120 CG non-bonded
potentials, further complicating the challenge of the IBI param-
eterization. We observed that IBI convergence for BTBT in the
smectic A phase was slow and extremely sensitive to initializa-
tions and damping factors compared to the isotropic phase. Al-
though the CG non-bonded potentials derived for the smectic A
phase exhibit excellent transferability to the smectic E phase, we
attempted to customize the smectic E CG non-bonded potentials.
Unfortunately, the convergence of the IBI approach proved in-
tractable in this more anisotropic system. We note that the devel-
opment of CG potentials for BTBT or similar fused-ring materi-
als110-111 in condensed phases is uncommon in the literature to-
date. Further advances in the CG parameterization of anisotropic
polycyclic aromatic hydrocarbon systems are warranted. Recent
research on anisotropic CG models 1127120 or ML-derived CG po-
tentials 121122 has explored their potential to accommodate the
strong anisotropy of the polycyclic aromatic hydrocarbon systems,
but this topic falls beyond the scope of the present work.

2.2 Development of Electronic (ECG) Models

We employ the DKL version of ECG8! to create CG electronic pre-
dictions models that capture configurational variations of BTBT’s
HOMO energy as well as the HOMO-HOMO electronic coupling
between BTBT dimers, eliminating the need for backmapping or
ad nauseam QC in this computational workflow. The DKL-ECG
model consists of a feed-forward neural network (FNN), a varia-
tional layer, and Gaussian process regression (GPR), as illustrated
in the inset of Fig. 1. The FNN transforms CG conformations (dis-
tance matrices) followed by a variational layer that maps the FNN
results to a latent space. From this latent space, approximate
GPR is used to map to the electronic prediction task. Critically,
DKL-ECG allows the noisy observables at the CG resolution to be
treated as heteroscedastic Gaussian distributions, with predicted
means and widths varying as functions of positions in CG con-
figuration space. Accurately representing these CG probability
distributions of electronic properties is essential to achieving an
accurate “bottom-up" reproduction of the electronic structure of
the system. Stochastic sampling of these Gaussian distributions
as a function of CG configuration allows the reproduction of the
correction AA ensemble of DFT-quality electronic structure with-
out the need for backmapping or ad nauseam QC, providing the
critical computational cost advantage without loss of accuracy.
For in-depth methodological details of DKL-ECG, the reader is re-
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Fig. 1 Workflow depicting the establishment of bottom-up CG models (top-left panel), ECG models (bottom-left panel), and the morphology-
dependent electronic Hamiltonian (right panel). Gray arrows illustrate the bottom-up CG model development process. Blue arrows outline the
workflow, encompassing data set creation, ML model training, and the prediction of electronic observables for a given CG configuration. The inset
illustrates the architecture of deep kernel learning (DKL), incorporating a feed-forward neural network (FNN), a variational layer, and Gaussian process
regression (GPR). The orange arrow signifies that Hamiltonians are sampled from the ECG-predicted Gaussian distribution with given CG morphologies.

ferred to Ref 81.

Training sets for DKL-ECG models are obtained from previ-
ous AA simulations of BTBT.8% These trajectories encompass
isotropic and both smectic morphologies, followed by electronic
structure calculations of single molecule and dimer pairs at the
®©B97XD/cc-pVDZ level of theory. In subsequent discussions, we
refer to the data set extracted from the isotropic morphology as
Training-Isotropic/Testing-Isotropic, and the data set originating
from the smectic A morphology as Training-smectic A/Testing-
smectic A. Comprehensive details regarding the training proce-
dure of the DKL-ECG models for HOMO energy prediction can
be found in the ESI. Training ML models for predicting elec-
tronic coupling has consistently posed a formidable challenge,
even when including full AA featurization. 123-126 This challenge
stems from the electronic coupling’s intricate dependence on both
the separation distance and mutual orientation between molecu-
lar pairs. 11:127 To address this challenge, we explored many ap-
proaches (see ESI) and settled on learning the logarithm of the
absolute value of the electronic coupling combined with a phase
classifier that predicts the sign of the HOMO-HOMO electronic
coupling for a given CG molecular pair conformation using a FNN.
Detailed information on the model parameters and the training
procedures for the DKL-ECG models and the FNN classifier can
be found in the ESIL.

2.3 Valence Hamiltonian Construction at the CG Resolution

We integrate CG structural prediction models and ECG models to
construct tight-binding Hamiltonians for the isotropic and both
smectic phases in a basis of HOMO orbitals using only the CG rep-
resentation of BTBT. 9,000 BTBT molecules are simulated at the
CG resolution in the isotropic and both smectic LC phases within
cubic boxes measuring 199 A, 190 A, and 188 A, respectively. Ten
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replicas of each CG simulation (40 ns) were performed for each
phase. 120 snapshots of the CG configuration of the system were
collected from each simulation. These snapshots served to de-

fine the morphology-dependent electronic Hamiltonian at the CG
level, 128-130

Hrp =Y HEC(Reg)cf i+ Y HECC(Reg)(¢f ej+cfe)] (D
i i#j

A tight-binding Hamiltonian in the basis of BTBT’s HOMO or-
bitals was employed to model the valence band electronic struc-
ture relevant to hole transport in BTBT morphologies (Eq. 1),
where HECY(Rcg) and HSCG(ch) represent the on-site ECG-
derived HOMO energy prediction and dimer HOMO-HOMO elec-
tronic coupling predictions, respectively. Provided the single-
molecule and dimer configurations extracted from the CG sim-
ulations, ECG models predict the Gaussian means and variances
of the HOMO energy and HOMO-HOMO electronic coupling as
illustrated in Fig, 1 resulting in population of all matrix elements
of the Hamiltonian. For each single-molecule CG configuration,
we performed Gaussian sampling using the predicted mean and
variance, generating 20 distinct samples of the HOMO energies
that served as the individual diagonal elements of 20 unique
Hamiltonians. The off-diagonal elements of these Hamiltonians
underwent the same Gaussian sampling process, with the cou-
pling value set to zero when the distance between the center of
mass (COM) of the pair molecules exceeded 7 A. This sampling
process explicitly addresses the one-to-many mapping influenced
by thermodynamic fluctuations and mapping degeneracy, repro-
ducing the correct AA-ensemble of thermodynamically averaged
electronic predictions without backmapping. Subsequently, these
ECG-determined Hamiltonians were diagonalized to compute the
delocalized electronic states in the isotropic and both smectic LC



phases, from which subsequent analysis occurred.

The ECG approach to construct electronic tight-binding Hamil-
tonians at the CG resolution exhibits dramatic computational cost
benefits relative to traditional multiscale modeling paradigms. Es-
tablishing an individual Hamiltonian using this method is con-
servatively estimated to be at least 10° times faster than equiv-
alent DFT calculations, and this estimation does not account for
the computational cost of backmapping procedures or additional
sampling with AA MD. In this study, the task of creating a sin-
gle Hamiltonian involved handling 9,000 single-molecule config-
urations and roughly 10,000 molecular pairs (within a COM dis-
tance of 7 A) for the evaluation of HOMO energy and electronic
coupling, respectively. To characterize the electronic structure
of 4,800 Hamiltonians with ad nauseam DFT calculations at the
®wB97XD/cc-pVDZ level, executed on a single CPU core, would
require approximately 55,680,000 CPU hours (~ 4.8*10 individ-
ual calculations). In contrast, the DKL-ECG method accomplishes
this computation in just 107 CPU hours. Relative to the computa-
tional cost of training set generation for all ECG models used in
this work (cumulatively ~ 5 x 10° DFT calculations), this amounts
to a two order of magnitude advantage that only improves with
additional statistical sampling and application of the trained ECG
models. This outstanding computational efficiency empowers us
to generate 2400 Hamiltonians (comprising 120 CG snapshots
multiplied by 20 rounds of Gaussian sampling) for each LC sys-
tem. This extensive characterization provides a more comprehen-
sive and statistically significant understanding of electronic struc-
ture in the LC phases, a level of detail that was previously beyond
the reach of traditional multiscale simulation methods due to in-
tractable computational costs.

3 Results and discussion

In this work, we employ bottom-up CG models to unravel the
morphological insights with a system of 9,000 BTBT molecules at
temperatures of 700 K, 555 K, and 515 K, followed by the assess-
ment of ECG models for predicting HOMO energy and HOMO-
HOMO electronic coupling. Subsequently, we systematically ex-
plore the sophisticated relationship between different LC struc-
tures and their charge transport properties by integrating the
bottom-up CG approach and ECG models.

3.1 Morphology Characterization

Based on the observation of differential scanning calorimetry with
the insertion of BTBT into rubbed planar anchoring sandwich
cells, %57 our simulation should yield distinct phases at tempera-
tures of 700 K, 555 K, and 515 K, corresponding to isotropic, ne-
matic, and smectic A phases, respectively. The structural charac-
terization of the morphology at 700 K, as depicted in Fig. 2, con-
firms the anticipated isotropic features. However, an unexpected
discovery emerged when clear layered structures were observed
in both AA and CG simulations at 555 K and 515 K, meeting the
key criteria for distinguishing smectic phases from the nematic
phase. Fig. 2 a and b reveal oscillating patterns in number density
along the y-axis direction and a distinct peak at g = 0.03 A" in the
structure factor analyses®, indicating smectic phases at 555 K and

515 K. An additional AA MD simulation was performed with the
system temperature linearly decreasing at a rate of 3.5 K/ns from
700 K to 350 K. As illustrated in Fig. S8, we observed changes in
the slope of the nematic order parameters for both the molecular
long-axis and short-axis around 640 K, and another change in the
slope of the order parameter of the molecular short-axis around
520 K. Fig. S8 also shows a clear change in the structure factor
peak at g = 0.03 Afl, corresponding to the layered structure in
the length scale around 33 A, at both phase transition tempera-
tures. The persistent presence of layered-structure signals below
640 K in the structure factor analysis suggests the absence of the
nematic phase in our simulations. Given that the major difference
between BTBT and the well-studied benzothienobenzothiophene
family is the methoxy group at the tail of the phenyl ring, we sus-
pect that the nematic phase can only be achieved under specific
boundary conditions, such as those provided by the rubbed planar
anchoring sandwich cells. >6-57

Further analyses were conducted to differentiate between the
two smectic phases at 555 K and 515 K. The nematic order param-
eter analysis revealed that the CG morphology at 555 K exhibited
an order parameter of 0.733 +0.008 along with a principal di-
rector vector (—0.093 +0.009, 0.994 +0.001, —0.048 +-0.012), and
a tilt angle between the principal director vector and layer nor-
mal of 17.1416.0 degrees. The similar mean value and standard
deviation of the tilt angle imply parallel alignment and suggest
a smectic A phase. Conversely, for the 515 K CG morphology,
a larger order parameter of 0.867 & 0.004 was observed along
with a principal director vector (—0.114 £ 0.003, 0.986 £ 0.002,
—0.1234+0.010), and a clear deviation between the principal di-
rector vector and layer normal with the tilt angle of 34.1+12.2
degrees, as shown in Fig. 2 d, indicates a smectic E phase. In
addition, snapshots extracted from AA MD simulations at 555 K
and 515 K visually illustrate the differences between smectic A
and smectic E phases. While BTBT molecules form antiparallel
cofacial # — m stacking in the smectic A phase, a herringbone-
like structure with offset = — 7 stacking is observed in the smec-
tic E phase, reminiscent of the crystal structure observed in the
benzothienobenzothiophene family. 47-55:59-66 These features are
consistent with CG structure factor analyses and the character-
ization of the nematic order parameter as a function of cutoff
radius, as depicted in Fig. 2 b and c. Specifically, the smectic E
phase exhibits a stronger peak at ¢ = 0.21 A and a larger or-
der parameter with smaller standard deviation, reflecting more
ordered & — & stacking in the herringbone-like structure. The de-
creasing peak intensity at ¢ around 0.03 A" and its shift to the
low ¢ regime indicates offset & — & stacking monolayer structure.

The observation of monolayers with a length scale around
33 A, featuring antiparallel 7 — & stacking within these layered
structures, provides insights into the phase transition mecha-

$The structure factor analysis in this study is based on the Fourier transform of par-
ticle density averaged across the three Cartesian coordinates. Due to the inherent
anisotropic nature of both smectic phases, we evaluated the structure factor sep-
arately along each Cartesian axis and then normalized the results across all three
axes.
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nisms between smectic and crystal phases. Since the initial use
of asymmetric benzothienobenzothiophene in field-effect transis-
tors, a head-to-head bilayer (lipid-like) unit structure in the crys-
tal phase has consistently been reported. It was conventionally
believed that the head-to-head bilayer should be a common fea-
ture in smectic phases as well. ¥7~>> However, recent studies have
presented more evidence of monolayer structures along with an-
tiparallel = — & stacking in smectic phases. Our simulation results
align with these recent findings.>%-%¢ Specifically, the transition
from antiparallel cofacial = — 7 stacking 3! to offset 7 — 7 stack-
ing (also known as nanosegregated stacking) 132133 within the
monolayers from smectic A to smectic E, accompanied by a con-
siderable increase in the tilt angle between the principal director
and the layer normal, may serve as a precursor to the formation of
the lipid-like bilayer structure observed in the crystal phase. 6%-60

3.2 Evaluation of ECG Models

We first scrutinize the performance of the DKL-ECG model in pre-
dicting the HOMO energy and HOMO-HOMO electronic coupling
as inputs for constructing the tight-binding Hamiltonian (Eq. 1).

3.2.1 HOMO Energy Prediction

As we are employing a CG representation optimized to the task
of HOMO-related prediction tasks,8> the ECG model for HOMO
energy prediction exhibits high accuracy in the isotropic and both
smectic LC phases of BTBT. As depicted in Fig 3, the R? values be-
tween DFT ground-truths and ECG-predicted means consistently
hovered around 0.7 with the mean absolute error (MAE) around
0.06 €V. In Fig. S3, the ensemble averages from the ECG models
consistently aligned with the distributions of both training and
testing data sets. Figure 3 further highlights the ECG model’s
transferability from the isotropic data set (Training-Isotropic) to
both smectic data sets (Testing-Smectic A and Testing-Smectic E).
It is critical to note that a R? value < 1 is not indicative of poor
performance of the ECG model; as the prediction task occurs at
the CG resolution, there is an intrinsic “noise" on the electronic
prediction task that limits the computed R? value for the mean
prediction from DKL. However, as shown in previous work, DKL
can accurately reproduce the probability distribution of predicted
values at each CG configuration, which renders the effective R2, in
the limit of stochastic Gaussian sampling, much higher. The trans-
ferability of the DKL-ECG model can be attributed to the broader
configuration space covered by the isotropic data set, as validated
by a principal component analysis (PCA) conducted on both data
sets, details of which are provided in the ESI.

3.2.2 HOMO-HOMO Electronic Coupling Prediction

As depicted in Fig 3, the combined ECG model exhibits robust pre-
dictive capabilities for HOMO-HOMO electronic coupling, yield-
ing R? and MAE values of approximately 0.89 (0.80) and 11 (13)
meV, respectively, for the smectic A (isotropic) data sets. A thor-
ough assessment of ECG models in both LC phases is discussed in
the ESI. It is noteworthy that the FNN classifier correctly predicts
the sign of large-value (>100 meV) coupling data with a small
number of misclassifications in the second and fourth quadrants
of Fig 3, suggesting potential errors in regions where couplings
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switch signs, as anticipated. Moreover, Fig 3 highlights the accu-
racy of ECG predictions for both the smectic and isotropic data
sets. When comparing the performance of DKL models between
HOMO energy and electronic coupling prediction, the models for
coupling consistently outperform those for HOMO energy. This
trend can be attributed to the distinction between intramolecular
and intermolecular properties in this ML task. HOMO energy is
an intramolecular property, and its dependence on a single molec-
ular conformation leads to a significant loss of information at the
CG level. Our results agree with previous studies highlighting the
sensitivity of single-molecule electronic properties to CG resolu-
tion. 8981 In contrast, the coupling value signifies the overlap of
molecular orbitals between two molecules, and crucial informa-
tion regarding distance and orientation, especially for the con-
jugated moiety, is well-preserved at the current CG level. This
preservation of relevant details at the intermolecular level con-
tributes to the superior performance of the coupling models.

It is crucial to underscore the significantly reduced computa-
tional cost offered by the DKL-ECG approach. The DKL-ECG pre-
dicts the HOMO-HOMO coupling of 10,000 molecular pairs in 80
CPU seconds at single-time execution, while DFT calculations de-
mand 4,200 CPU seconds for a single pair, equating to 11,600
CPU hours for 10,000 molecular pairs with repeating executions.
The exceptional computational efficiency of ECG models empow-
ers the establishment of over 4,000 morphology-dependent elec-
tronic Hamiltonians in this work, facilitating an in-depth explo-
ration of bulk electronic structure with robust statistical sampling.

3.3 Characterization of Electronic Structure in the Isotropic
and Both Smectic Phases

The combination of bottom-up CG structural prediction models
with ECG models enables the generation of electronic Hamilto-
nians at the scale of ~ 20 nm that can be used to explore the
interplay between morphology and electronic structure in the LC
phases of BTBT. We first employed bottom-up CG models to sim-
ulate 9,000 BTBT molecules in the isotropic and both smectic
phases. The resulting ensemble-averaged nematic order param-
eters are 0.018 £ 0.005, 0.733 £ 0.008, and 0.867 4-0.004 for the
isotropic, smectic A, and smectic E phases, respectively. Sub-
sequently, we sampled 2,400 electronic Hamiltonians for each
LC phase based on ECG predictions derived from the collected
snapshots of CG configurations. The diagonalization of these
Hamiltonians provided eigenstates (E;) and eigenvectors (¥; =

2000, |n)), where E; represents the energy of the jy eigen-
state, and C,; is the wave function coefficient of the ng BTBT
molecule for the jy, eigenstate. Subsequently, we computed the
inverse participation ratio (IPR) defined as IPR; = {):32010 C;tj] *1’
to quantify the delocalization of the wavefunction throughout the
LC phases.

In Fig. 4 a, the averaged histogram of the number of charge-
delocalized molecules (IPR) over the 9,000 eigenstates reveals
that charge carriers are predominantly localized on one or two
molecules in all LC phases. However, in smectic morphologies,
there is a notable increase in the presence of delocalized states,
allowing charge carriers to extend across 6 to 10 BTBT molecules
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for smectic A and 6 to 13 BTBT molecules for smectic E. This ob-
servation aligns with experimental findings indicating enhanced
mobility with increased ordering of the liquid crystal phases in
BTBT.5%-58 It is noteworthy that among the IPR analyses de-
rived from the 2,400 Hamiltonians for smectic morphologies, a
small number of Hamiltonians do not exhibit the 6 to 13-molecule
charge delocalization observed in the majority of cases. Such sta-
tistical fluctuations can be critical in soft materials theory, and
this effort provides the first such analysis of the correct ensemble
averaged electronic properties of soft materials, ensuring robust
and reliable insights.

To further understand the electronic structure of BTBT in each
LC phase, the IPR values for the 9000 charge transport (CT) states
derived from each Hamiltonian are depicted as a function of their
energies in Figs 4 b-d. Notably, a pronounced concentration of
CT states is observed in the IPR ~ 1 region, particularly promi-
nent in the isotropic and both smectic phases. Furthermore, a
consistent pattern in the IPR ~ 2 region is identified across each
LC phase, where CT energies span a broad range from -8.2 to -6.4
eV. These distinctive patterns serve as the basis for categorizing
CT states into "one-molecule charge carriers" and "two-molecule
charge carriers," while CT states that delocalize over more than
three molecules are labeled as "delocalized charge carriers." To
further dissect structural and electronic contributions to the ap-
pearance of these charge carrier motifs, we recalculated and diag-
onalized the Hamiltonians for all systems by setting all diagonal
elements to the mean value of HOMO energy across all molecules

in the training set (site-energy disorder equal to zero). As shown
in Fig. S17, elimination of site energy disorder (implying iden-
tical conformations for all BTBT molecules) facilitates dramati-
cally increased delocalization across 10 to 3000 molecules in 9%
of CT states for both isotropic and smectic A phases, and 4.3%
for the smectic phase. This result is important for the field of
LC material modeling as nearly all simulation approaches employ
anisotropic ellipsoids or field-based descriptors, for which such
molecule-specific energetic disorder is absent. Moreover, HOMO
energy disorder is observed to be smaller in the smectic E phase
followed by the smectic A and the isotropic phase, which likely
drives the increased charge delocalization. Interestingly, the pat-
tern of two-molecule charge carriers remains unchanged by the
manipulation of on-site energy disorder, implying a more detailed
interplay of structural and electronic properties in charge delocal-
ization.

To further investigate the formation of the three primary charge
carrier types, we conducted a comprehensive characterization
considering both structural features based on the local molecu-
lar environment of the charge carrier. In the subsequent analyses,
to minimize uncertainties arising from coarse-grained represen-
tation or thermal fluctuations, charge carriers were categorized
based on their IPR values: one-molecule charge carriers with IPR
values below 1.1, two-molecule charge carriers with IPR values
ranging from 1.9 to 2.2, and delocalized charge carriers with IPR
values larger than 3. For each charge carrier type, the charge cen-
ter of the ji, electronic state was determined by the center of mass
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Fig. 3 Evaluation of the DKL-ECG model for predicting HOMO En-
ergy (left panels) and HOMO-HOMO electronic coupling (right panels).
The mean values of HOMO energy predicted by the DKL-ECG model
are compared with values obtained through DFT calculations across the
(a) Testing-Isotropic, (c) Testing-smectic A, and (e) Testing-smectic E
data sets. The right panels assess HOMO-HOMO electronic coupling
predictions, utilizing DFT calculations as benchmarks, and contrasting
values derived from the DKL-predicted mean and a FNN sign classi-
fier, for the (b) Testing-Isotropic (d) Testing-smectic A, and (f) Testing-
smectic E data sets. The heatmap visually represents the density of
data points. The DKL-ECG model for HOMO energy prediction was
trained on the Training-Isotropic data set. ECG for electronic coupling
predictions are derived from the DKL regression model trained on the
Training-smectic A data set and the FNN classification model trained
on the Training-Isotropic data set. Detailed evaluations of these ECG
models are discussed in the ESI.

of the molecule possessing the largest C,; coefficient. We included
N,g; adjacent molecules within a 13 A radius, corresponding to
the second molecular shell determined by the RDFs shown in
Fig. S2b, to estimate properties related to adjacent structural and
electronic characteristics, as illustrated in Fig 5 a-c. These proper-
ties included the averaged absolute value of HOMO energy differ-
ences between the charge center and all adjacent molecules, local
order parameters derived from the nematic order tensor,38 the
local density, the averaged absolute value of the electronic cou-
pling between the charge center molecule and its nearest neigh-
bor (NN) molecules, the network coupling, representing the aver-
aged absolute value of the electronic coupling between molecules
within the cutoff radius (13 A), and the averaged adjacent m-m
stacking strength ®8 between the charge center molecules and ad-
jacent molecules defined by Eq. 2:
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where the vectors feenter and f, represent the normal vectors of the
conjugated moiety of the charge center BTBT and its ny, adjacent
BTBT, respectively. r, cenier denotes the center-of-mass vector be-
tween the BTBT pair. A value of 3.5 (A) for ry ensures the optimal
n-7 stacking strength at the most ideal -7 stacking distance in
the CG model. The average adjacent n-7 stacking strength quan-
tifies the extent of n-7 stacking between the reference molecule
and its neighboring molecules, considering both their separation
distance and mutual orientation.

In Fig 5 d and e, the radar plots depict the mean values of
all computed electronic descriptors for the three types of charge
carriers. These mean values are averaged over the results ob-
tained from 2,400 Hamiltonians for the isotropic and both smec-
tic phases, respectively. One-molecule charge carriers exhibit the
largest HOMO energy difference (141 meV isotropic, 133 meV
smectic A, 131 meV smectic E) but the lowest nearest neighbor
coupling (6 meV isotropic, 8 meV both smectic phases), as well as
the smallest network coupling (20 meV isotropic, 25 meV smec-
tic A). In contrast, delocalized charge carriers exhibit the smallest
HOMO energy difference (121 meV isotropic, 121 meV smectic A,
120 meV smectic E) but the largest network coupling (29 meV
isotropic, 29 meV smectic A, 28.5 meV smectic E). These findings
imply that an effective charge transport network, characterized
by strong network coupling, moderate nearest neighbor coupling,
and low onsite energy disorder, facilitates charge delocalization.
Two-molecule charge carriers demonstrate the strongest nearest
neighbor coupling (44 meV isotropic, 39 meV smectic A, 37 meV
smectic E) among the three classes, surpassing even their network
coupling (21 meV isotropic, 25 meV smectic A, 26 meV smec-
tic E). This result suggests that a stronger nearest neighbor cou-
pling compared to network coupling can result in the localization
of charge carriers onto two molecules, which may act as a trap
during charge transport. Notably, the prevalence of two-molecule
charge carriers aligns with the results of quantum dynamics sim-
ulations crystalline organic semiconductors 34136 and the model
framework of transient localization theory. 137-141 As LCs are in-
termediate between isotropic and crystalline systems, the pres-
ence of such electronic states is of crucial importance for under-
standing charge carrier transport in LC materials.

The three types of charge carriers directly reflect their local
structural environments. As depicted in Fig 5 d and e, delo-
calized charge carriers in the isotropic and both smectic phases
exhibit large values of the local nematic order parameter, local
density, and adjacent and network 7-7 stacking strengths. In con-
trast, one-molecule charge carriers display the lowest values for
all structural features, particularly in terms of adjacent #-7 stack-
ing strength. In both smectic phase, even though one-molecule
charge carriers demonstrate a similar level of network 7-7 stack-
ing strength, their small adjacent n-7 stacking strength indicates
a poor connection between nearest neighbors that substantially
impedes charge delocalization. Notably, the large nearest neigh-
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bor coupling observed in two-molecule charge carriers does not
necessarily correlate with adjacent n-7 stacking strength, as only
a single molecular pair has a large 7-7 stacking strength. This re-
sult suggests that many averaged structural characterizations can
wash out the the contribution of critical local molecular aggre-
gates even at the 1-10 nm length scale.

3.4 Correlation between Morphology and Charge Mobility

To explore the variation in charge mobility across different LC
morphologies and understand the impact of the three identified
charge carriers on the charge transport mechanism, we conducted
rejection-free KMC simulations to estimate the zero-field charge
mobility following the methodology outlined in Refs. 142-144
(details provided in the ESI). For each LC phase, kMC charge
hopping trajectories were run for 10° steps based on 100 CG con-
figurations/Hamiltonians, utilizing 9,000 molecules as different
initial hopping sites, resulting in 900,000 kMC trajectories per LC
phase. Analysis of the kMC trajectories with different initial hop-
ping sites revealed that in the isotropic phase, 65.0 £ 1.0% of the
initial sites exhibited zero mobility, indicating that the charge car-
riers were trapped near these initial sites within the 10° steps, at-
tributed to either one-molecule or two-molecule charge localized
carrier states. Furthermore, the partition of zero mobility due to
the localized initial charge carriers in the smectic A and smectic E
phases was 35.4+1.2% and 17.9 £ 1.2%, respectively, indicating
the inability of these carriers to establish effective charge trans-
port pathways in all phases, but with a portion that decreased as
a function of increase LC ordering.

The zero-field charge mobilities along the three Cartesian coor-
dinates (i, py, and p;) for each LC phase are illustrated in Fig.6.
In the isotropic phase, the mobilities along the three coordinates
exhibit similar values (< 107% cm?/V -s) that are systematically
smaller than both smectic phases due to strong disorder. No-
tably, the mobilities in the both smectic phases display anisotropic
characteristics, with the lowest mobility observed along the y-
direction (y, < 1079 cm?/V -s) due to disruptions in the effective
charge transport path caused by the lamellar spacing. Conversely,
the u, value, approximately 10~ cm?/V -s, can be attributed to
the alignment of z-7 stacking perpendicular to the LC director, as
depicted in Fig.2 d. Importantly, only in the smectic E phase does
u surpass 1073 cm?/V -s due to the presence of a herringbone-
like structure.

The isotropic mobilities (averaged over uy, u,, and ;) for the
isotropic, smectic A, and smectic E phases are 2 x 1077, ~ 1074,
and ~ 1073 cm?/V -, respectively. Given that zero-field charge
mobility is generally 10% to 10* times smaller than the field-effect
mobility, 1457147 the isotropic mobility obtained from our kMC
simulation aligns excellently with the mobility trend and order of
magnitudes observed for the benzothienobenzothiophene family
in distinct LC phases through experimental measurements, 4>°6
These results underscore the robustness of our ECG approach in
elucidating the relationship between morphology and electronic
properties at CG resolution in a more efficient and effective man-
ner compared to typical multiscale approaches.
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3.5 Examining the Potential for Bottom-Up Electronic

Coarse-Graining over Fields
Provided the scalable electronic structure predictions enabled by
use of a particle-based CG model for the LC material BTBT, we
assess the potential for moving into field-based CG models of
electronic structure parameterized from the “bottom-up" to fur-
ther extend accessible spatiotemporal simulation scales. Such
field-based models are the workhorses of the Chemical Engineer-
ing and Materials Science communities, with recent work being
performed to introduce systematic “bottom-up" coarse-graining
approaches for structural and thermodynamic predictions. 3* No-
tably, simulations of LC materials have historically been the do-
main of such field-based descriptions, 148:14° motivating the as-
sessment of the question within the specific context of LC materi-
als.

To assess this, we computed a broad array of local order pa-
rameters within a characteristic radius of 13 A, including nematic
tensor order parameters of BTBT’s long and n-system axes, mul-
tiple Steinhardt order parameters, 1°0-152 the local density, and
the local 7 — n-stacking strength. Fig. 7 a shows the average val-
ues of all computed field-based local order parameters for the
isotropic and both smectic phases, respectively, and the distribu-
tions of all field-based parameters as a function of IPR value are
demonstrated in Fig. S19-S21. Clearly, each phase can be dis-
tinguished by multiple different types of order parameters when
coarse-grained from the “bottom-up." To probe the feasibility of
field-based CG descriptions of electronic structure, we assembled
a data set of IPR calculated from the extracted local environments
within the CG simulations of Fig. 7. As the local density and ne-
matic order parameter are two common field-based descriptors
used in soft materials theory, we analyzed whether these descrip-
tors possessed any correlation with the resulting local electronic
structure of BTBT in either LC phase. A weak visual correlation



between the nematic order parameter of the long axis and the
IPR was observed (Fig. 7 b) but quantitative regression analysis
using LASSO regression for feature selection elicited no meaning-
ful predictive relationships. No visual correlation was observed
between the local density and the ECG-computed IPR (Fig. 7 c).
LASSO regression and visual examination of all computed struc-
tural metrics further showed little correlation with the resulting
IPR (see Figs. S19-S21 in the ESI). This result suggests that while
particle-based CG representations can be productive in the scal-
ing up of electronic predictions to the mesoscale for disordered
materials, field-based descriptors for the electronic structure of
molecular LC are untenable at present.

Such a negative result should not be taken as evidence of a
complete lack of potential correlations in the development of such
models, but is sensible provided the standard densities and weak
intermolecular couplings between LC molecules in this study. In
more strongly coupled systems (higher densities, polymer chains)
field-based descriptors of local electronic structure may be more
predictive. Notably, in the context of semi-crystalline systems in-
cluding grain boundaries and crystallites, a field-based descriptor
would likely be a fruitful characterization of the local electronic
structure. However, the potential utility of a systematic “bottom-
up" CG framework in such a context is unclear.

4 Conclusions

In this work, we have integrated bottom-up CG and ECG tech-
niques to provide the first quantitative characterization of the
morphology-dependence of electronic structure in a LC semicon-
ductor at the ~20 nm length scale. Importantly, this framework
provided such characterization with minimal computational re-
sources and without the need for ad nauseam QC or complicated
backmapping protocols, which enabled robust statistical analy-
sis averaging over the full thermodynamic ensemble. This inves-
tigation revealed increased wavefunction delocalization in both
smectic phases relative to the isotropic phase, as well as a re-
current two-site charge carrier motif common to the LC semicon-
ductor BTBT. Using the CG electronic Hamiltonian, the zero-field
mobility obtained via kMC simulations agrees semi-quantitatively
with experimental mobility trends, validating the mesoscale elec-
tronic structure predictions from ECG. Importantly, we analyzed
the potential for field-based ECG methods moving forward and
concluded that significant work still remains to be done to con-
nected bottom-up electronic structure predictions with the meso-
scopic scales that dictate soft materials function. This work marks
a significant advancement in the ability to quantitatively model
the relationships between multiscale morphology and electronic
structure in organic semiconductors.
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