
Opening Up the Distinguisher: A Hardness to Randomness
Approach for BPL = L that Uses Properties of BPL

Dean Doron*

Ben Gurion University
deand@bgu.ac.il

Edward Pyne†

MIT
epyne@mit.edu

Roei Tell
University of Toronto
roei@cs.toronto.edu

Abstract

We provide compelling evidence for the potential of hardness-vs.-randomness ap-
proaches to make progress on the long-standing problem of derandomizing space-
bounded computation.

Our first contribution is a derandomization of bounded-space machines from hard-
ness assumptions for classes of uniform deterministic algorithms, for which strong (but
non-matching) lower bounds can be unconditionally proved. We prove one such re-
sult for showing that BPL = L “on average”, and another similar result for showing
that BPSPACE[O(n)] = DSPACE[O(n)].

Next, we significantly improve the main results of prior works on hardness-vs.-
randomness for logspace. As one of our results, we relax the assumptions needed
for derandomization with minimal memory footprint (i.e., showing BPSPACE[S] ⊆
DSPACE[c · S] for a small constant c), by completely eliminating a cryptographic as-
sumption that was needed in prior work.

A key contribution underlying all of our results is non-black-box use of the descrip-
tions of space-bounded Turing machines, when proving hardness-to-randomness results.
That is, the crucial point allowing us to prove our results is that we use properties that
are specific to space-bounded machines.

*Supported in part by NSF-BSF grant #2022644.
†Supported by a Jane Street Graduate Research Fellowship.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 208 (2023)

Contents

1 Introduction 1
1.1 Derandomization from Hardness for Deterministic Uniform Algorithms . . 2
1.2 Minimal-Memory Derandomization From Weaker Assumptions 4
1.3 A New Proof of BPL ⊆ CL . 6

2 Technical Overview 7
2.1 Derandomization from Hardness for Deterministic Uniform Algorithms . . 8
2.2 Minimal-Memory Derandomization From Weaker Assumptions 15
2.3 A New Proof of BPL ⊆ CL . 17

3 Preliminaries 18

4 An Improved Local Consistency Test 25

5 Local List Decoding in Deterministic Logspace TC0 26
5.1 The Locally Uniquely Decodable Code . 29
5.2 The IW and Had Codes . 39
5.3 Putting Everything Together . 46

6 Deducing BPL = L from Uniform Hardness Assumptions 48
6.1 A Reconstructive Targeted Somewhere-PRG 51
6.2 Proof of the Main Result . 69
6.3 Unconditional Lower Bounds for Logspace-Uniform TC0 74
6.4 Scaled-Up Version: Worst-Case Derandomization 76
6.5 More on BPL = L “On Average” . 78

7 Derandomization with Minimal Memory Overhead 80
7.1 Technical Tool I: A Space-Efficient PRG for Adaptive ROBPs 80
7.2 Technical Tool II: NW With Deterministic Reconstruction 81
7.3 Derandomization From Nonuniform Assumptions 85
7.4 Derandomization From Hardness of Compression 88

8 BPL in CL From Certified Derandomization 90

i

1 Introduction

Determining the power of randomness in space-bounded computation has been a long-
standing challenge in complexity theory, and indeed, over the past several decades, there
has been a substantial amount of work attempting to prove RL = L and BPL = L.
This work has resulted in a wide range of unconditional partial results, via pseudo-
random generators [Nis92; INW94; NZ96; FK18; CHH+19; CLT+23], other pseudoran-
dom objects [BCG20; HZ20; CHL+23; CL23], non-black-box derandomizations [Nis94;
SZ99; Hoz21; CDS+23; PP23], and derandomization of specific problems in BPL [Rei08;
AKM+20].

However, in sharp contrast to the time-bounded case, there has been relatively lit-
tle work so far exploring the “hardness to randomness” paradigm in the context of space
bounded derandomization. Two decades ago, Klivans and van Melkebeek [KM02] showed
that BPL = L follows from exponential circuit lower bounds for linear space, but until
recently, there have been few other works exploring this path.

This is, perhaps, understandable. In light of the unconditional progress on BPL vs. L,
it was unclear if the hardness to randomness paradigm is necessary (in particular, since
the hardness assumptions seemed out of reach). Another reason is that the PRG con-
structions (and non-black-box derandomizations) for BPL exploited the fact that BPL
algorithms use their randomness in a read-once fashion, but it was previously unknown
how to exploit this for hardness to randomness results (see, e.g., [HH23, Section 4.3]).

Two recent works revisited the study of hardness to randomness for space-bounded
computation, driven by new motivations. Doron and Tell [DT23] did so for the purpose
of obtaining stronger derandomization, namely one with minimal memory footprint (fol-
lowing analogous work in the time-bounded setting [DMO+22; CT21b; CT21a]). Pyne,
Raz, and Zhan [PRZ23] did so in order to construct algorithms that certify the correct-
ness of derandomization: Their algorithm either derandomizes successfully, or explicitly
refutes a hardness assumption. Indeed, joining these new motivations, the obvious and
long-standing motivation for studying such approaches is the following question: Can
we find new ways for making progress on BPL = L?

Our contributions: A bird’s eye view. In this work we provide compelling evidence
that the hardness-to-randomness paradigm can drive progress on unconditional deran-
domization of space-bounded computation. In particular:

1. We prove that derandomization of BPL follows from remarkably weak lower bounds:
In particular, from lower bounds for deterministic uniform models, for which strong
(but non-matching) lower bounds can already be unconditionally proved.

2. We significantly improve the main results of prior works on hardness-vs.-randomness
for logspace [DT23; PRZ23], deriving minimal-memory derandomization, and cer-
tified derandomization, from fewer and weaker assumptions.

1

To obtain these results, our proofs indeed exploit perhaps the most important weakness
of the BPL model – the read-once nature of the distinguisher.

1.1 Derandomization from Hardness for Deterministic Uniform Algo-
rithms

Our first main result deduces derandomization of BPL from lower bounds for a class of
deterministic and nearly-uniform constant-depth circuits that are aided by a bounded-space
oracle. To define this model, let us first define a class of logspace uniform TC0 circuits,
where we permit a logarithmic amount of nonuniform advice.

Definition 1.1 (logspace-uniform bounded-space machines). We say that {Cn}n∈N is a fam-
ily of log-spaceadvice-uniform TC0 circuits of size T = T (n) and depth d = O(1) if there is
some constant C > 1 and a Turing machine M such that the following holds. On input 1n, M
gets C · log T bits of non-uniform advice, runs in space C · log T , and prints the TC0 circuit Cn.

The required lower bounds will be for log-spaceadvice-uniform TC0 circuits of fixed
polynomial size (say, nc) that can make oracle queries to a function computable in fixed
logspace (say, c · log n).1 This model is quite weak, and in particular, we can uncondition-
ally prove strong lower bounds for it. In fact, following the approach of Santhanam and
Williams [SW13], we show lower bounds for this model in a class as weak as L:

Proposition 1.2 (see Section 6.3). For every c, c′, d ∈ N, there is a language in L that cannot be
solved by log-spaceadvice-uniform (TC0)DSPACE[c′·logn] circuits of size nc and depth d.

Our main result is that improving the uniformity condition from L to logspace-uniform
TC0, and strengthening the bound from worst-case hardness to mild average-case, suffices
to derandomize BPL on average, with success probability arbitrarily close to 1:

Theorem 1. Assume that for every constant c ∈ N there exist constants k, d ∈ N and δ > 0, and
a function f : {0, 1}n → {0, 1} that satisfies the following.

1. Upper bound. f is computable in logspace-uniform TC0 of depth d and size O(nk).

2. Lower bound. For every log-spaceadvice-uniform (TC0)DSPACE[c·log(n)] circuit family {Cn}
of size nc and depth c · d · k2, and every sufficiently large n ∈ N, we have

Pr
x←Un

[Cn(x) ̸= f(x)] ≥ δ.

Then, BPL ⊆
⋂

ε>0 avgεL.

1A circuit family in this model is defined by a Turing machine (and a sequence of short advice strings)
that prints the circuit, and another Turing machine that answers the oracle queries. Alternatively, we can
assume that the first machine prints a description of the second machine along with the circuit.

2

The class avgεL consists of all languages that can be decided by a deterministic logspace
algorithm correctly on at least 1− ε of the inputs, and with zero error (i.e., on every input
the algorithm either decides the language correctly or outputs ⊥; see Definition 3.8).

The assumption in Theorem 1 deviates sharply from previous hardness vs. random-
ness results, because it only requires lower bounds for deterministic algorithms with a
logarithmic amount of advice. Known results, both in the time-bounded setting and in
the space-bounded setting, require lower bounds either for fully non-uniform models
(e.g., hardness in E for exponential-sized circuits, as in [NW94; IW97; SU05; Uma03], and
in [KM02; DT23]) or for probabilistic models (e.g., hardness in high deterministic time
for lower probabilistic time, as in [IW98; TV07; CRT+20], and in [CT21a; LP22a; LP22b;
CRT22]). We are able to rely on this inherently weaker assumption by exploiting the fact
that we are derandomizing a BPL algorithm; in fact, we do so in a non-black-box way
with respect to the BPL-machine (see Section 2.1 for details).

As far as we are aware, our work is the first to study average-case derandomization of
BPL. We view this as an advantage, as it offers a potentially tractable avenue for progress.
Also, as mentioned above, Theorem 1 obtains derandomization with zero error. It turns
out that this feature does not indicate an excessively strong assumption: We show a tight
connection between average-case derandomization and average-case derandomization
with zero-error when derandomizing BPL (for details, see Section 6.5).

Theorem 1 answers an open problem posed Chen and Tell [CT21a], who asked whether
a uniform hardness-vs.-randomness approach could be applied to the BPL = L question.
(In fact, they asked whether it could be applied with lower bounds for uniform probabilis-
tic algorithms, whereas we prove that lower bounds for deterministic algorithm suffice.)

The scaled-up setting: Derandomizing linear space. Our second main theorem de-
duces worst-case derandomization of linear space (rather than logspace) from a hardness
assumption that, yet again, seems remarkably close to what can be actually proved.

The assumption refers to worst-case hardness for deterministic and fully uniform al-
gorithms. To state the result, let us say that a (TC0)ROBP circuit family {Cn} is logspace-
uniform and of size S = S(n) if there is a machine that gets input 1n, runs in space
O(log S), and prints both the TC0 circuit and the ROBP, and its total output length, i.e.,
the description lengths of the circuit and the ROBP, is S. Then:

Theorem 2. Assume that there are ε > 0 and L ∈ DSPACE[O(n)] such that L is hard for
logspace-uniform (TC0)ROBP circuits of size 2ε·n and depth d (for some universal constant d ∈ N),
on all but finitely many input lengths. Then, BPSPACE[O(n)] = DSPACE[O(n)].

We find Theorem 2 striking: It means that the only thing standing between a trivial
diagonalization argument and proving BPSPACE[O(n)] = DSPACE[O(n)] is the fact that
the circuit in the lower bound is printed by an algorithm using space C · n, whereas the
upper bound uses space c · n, where c < C.2 Proving lower bounds when this is the only

2Recall that (TC0)ROBP circuits of size 2ε·n and depth d can be simulated in space O(ε · d · n), using

3

gap is not difficult in the setting of polynomial time (rather than exponential time), as has
been shown by Santhanam and Williams [SW13] (see, e.g., Section 6.3).

Another reason for hope is that, similarly to average-case derandomization of BPL,
derandomization of linear space is a relaxed goal that, as far as we are aware, has not been
extensively studied. (Recall that BPL = L implies BPSPACE[O(n)] = DSPACE[O(n)].)

Certified derandomization with stronger guarantees. As an immediate application of
some of the new technical components in the proofs of Theorems 1 and 2, we improve
the main result of [PRZ23]. They showed that for every language L in BPL, there is a
deterministic logspace algorithm D that, on input x of length n, either decides L on x, or
prints a circuit of size 2ε·ℓ, where ε > 0 may be an arbitrarily small constant, for a linear-
space-complete language Lhard on inputs of size ℓ = Θ(log n). We directly improve this
tradeoff, so that D either decides L on x or prints a (TC0)ROBP circuit of size 2ε·ℓ (rather
than a general circuit; see Section 2.1.2 and Theorem 5.1 for details).

1.2 Minimal-Memory Derandomization From Weaker Assumptions

Our second set of results focuses on derandomization with minimal memory-overhead,
as introduced by Doron and Tell [DT23] (following a line of work studying “superfast”
derandomization in the time-bounded setting [DMO+22; CT21b; CT21a; CT23b]). Our
main contribution is in showing that derandomization with minimal memory overhead
can be obtained from considerably weaker assumptions.

Recall that minimal memory-overhead derandomization (or, “derandomization with
minimal memory footprint”) has the goal of showing BPSPACE[S] ⊆ DSPACE[c · S]
for a small constant c. Doron and Tell [DT23] showed that c ≈ 2 is possible, given two
assumptions. The first is high-end nonuniform hardness of a language in linear space:

Assumption 1. For a sufficiently large constant C there exists a language L computable in de-
terministic space (C + 1) · n that is hard for algorithms that run in deterministic space C · n with
O(2n/2) bits of advice.

Their second assumption asserts that there exists a strongly explicit cryptographic PRG,
with arbitrary polynomial stretch {0, 1}nη → {0, 1}n; specifically, the PRG that they need
has to be computable in space O(η · log(n)) + O(loglog n). (One candidate that they sug-
gested is Goldreich’s expander-based PRG [Gol11b].)

From the combination of both hypotheses, they deduce derandomization with a mul-
tiplicative overhead in space of (2+ c/C), for a universal constant c. Moreover, if the hard
function was computable in catalytic space in a particular setting of parameters, they ob-
tained an overhead of (1 + c/C) (for more on the catalytic model, see Section 1.3).

the standard DFS-style bounded-space simulation of low-depth circuits. Thus, the only obstruction for
diagonalization is the complexity of the logspace machine printing the circuit.

4

Removing the cryptographic assumption: Derandomization from non-uniform hard-
ness alone. Our first main result in this context completely eliminates the cryptographic
assumption, and deduces high-end derandomization solely from Assumption 1:

Theorem 3. Suppose that Assumption 1 is true with some constant C > 1. Then, for S(n) =
Ω(log n) and for a universal constant c > 1, we have that

BPSPACE[S] ⊆ DSPACE
[(

2 +
c

C

)
· S
]
.

Moreover, if the language L is computable in CSPACE[δn, (C + δ + 1)n],3 then

BPSPACE[S] ⊆ DSPACE
[(

1 +
c

C

)
· S
]
.

As in Section 1.1, the assumption in Theorem 3 deviates sharply from analogous
known results. Similarly to [DT23], other prior works concerning derandomization with
little computational overhead relied either on a combination of cryptographic assump-
tions and of worst-case hardness for non-uniform procedures [CT21b; CT21a] or on hard-
ness for non-deterministic non-uniform procedures [DMO+22]. This is not a coincidence:
For the time-bounded setting of [DMO+22; CT21b; CT21a], Shaltiel and Viola [SV22]
proved a barrier, asserting that the relevant conclusion (i.e., “superfast” derandomiza-
tion) cannot be deduced by an algorithm that is analyzed via the standard hardness-to-
randomness approach (i.e., an approach that includes black-box hardness amplification
and involves the hybrid argument; see [SV22] for details).

In contrast to prior works, Theorem 3, which refers to the space-bounded setting, only
relies on worst-case hardness for standard non-uniform space-bounded procedures. In-
deed, a crucial part of our derandomization algorithm is not analyzed via the standard
hardness-vs.-randomness approach (and, in particular, does not involve the standard hy-
brid argument). Our proof relies on the fact that we are derandomizing a space-bounded
algorithm, and we rely on recent works studying pseudorandomness for generalizations
of the read-once branching program model [FK18; CLT+23].

Alternative assumptions: Minimal-memory derandomization from hardness of com-
pression. In addition to the result mentioned above, [DT23] also derive minimal mem-
ory derandomization from the combination of a cryptographic PRG, and a uniform as-
sumption regarding the hardness of compression of a multi-output function by random-
ized algorithms. We obtain the same result from hardness of compression by deterministic
algorithms, plus a hitting-set generator (HSG) that suffices to prove the “standard” ver-
sion of BPL = L:

Assumption 2. There is a (1/n)-HSG H : {0, 1}O(logn) → {0, 1}n for NC2 circuits of size n.
Moreover, H can be computed in space O(log n).

3The notation CSPACE refers to catalytic space; see Section 1.3, and Section 3.5 for the definition.

5

An HSG as the one in Assumption 2 is implied, for example, by the assumptions
originally used in [KM02] to deduce that BPL = L. However, while this HSG suffices to
prove that RL = L (and BPL = L, by [CH22]), it is entirely unclear how to use it to prove
derandomization of BPL with minimal memory footprint.

The assumption that will allow us to deduce derandomization with minimal memory
footprint, rather than just BPL = L, refers to hardness of deterministic compression:

Assumption 3. For all constants c > 0, ε ∈ (0, 1), and C ∈ N, the following holds. There exists
a function f : {0, 1}⋆ → {0, 1}⋆, such that f maps n bits to n2 bits, and is computable in

DSPACE

[
C + 1 + ε+ δ

2
· log n

]
for some constant δ > 0. Moreover, for every deterministic algorithm that runs in space c ·
C log n, there are at most finitely many x ∈ {0, 1}⋆ for which R(x) prints a Turing machine M of
description size O(|x|) that runs in space C+1+ε

2
· log |x|, such that M prints f(x).

Compared to Assumption 3 of [DT23], we require the compression algorithm to be
deterministic, rather than randomized. However, note that we allow the compression al-
gorithm to use an arbitrary constant factor more space.4 Then, our result is:

Theorem 4. Suppose that Assumption 2 and Assumption 3 are true. Then, for S(n) = Ω(log n)
we have that

BPSPACE[S] ⊆ DSPACE
[(

2 +
c

C

)
S
]

where c > 1 is a universal constant. Moreover, if f is computable in CSPACE[δn, (C + δ + 1)n],
then BPSPACE[S] ⊆ DSPACE

[(
1 + c

C

)
· S
]
.

1.3 A New Proof of BPL ⊆ CL

Finally, we explore what other consequences we can obtain from our derandomization
primitives. In the catalytic computing model of Buhrman et al. [BCK+14], we are given
O(log n) bits of standard workspace, and a catalytic tape w of length nc, which functions
as follows. The tape w is initialized to an arbitrary value, and we may edit it during the
computation, but must exactly reset the tape to the original configuration at the end.

The work of [BCK+14] proved that logspace-uniform TC1 ⊆ CL (and thus BPL ⊆
CL5). Another known proof of BPL ⊆ CL relies on treating the catalytic tape as a collec-
tion of random walks (see the survey by Mertz [Mer23] for a sketch). We give a new proof,
which uses only two features of the BPL model: For a randomized logspace machine M ,
we can evaluate M(x, r) in L given x and r; and we have a deterministic distinguish-to-
predict transformation for read-once branching programs computable in L.

4The additional space of the compression algorithm, captured by the constant c, is proportional to the
constant hidden in the O() notation of Assumption 2. Thus, the quality of the HSG from Assumption 2
determines the space overhead of the compression algorithm from Assumption 3.

5As approximate iterated matrix squaring can be performed in TC1.

6

Definition 1.3 (informal; see Definition 8.2). A (black-box) distinguish-to-predict trans-
formation for C circuits is a deterministic algorithm that, given C ∈ C of size n, outputs a
collection P1, . . . , Ppoly(n) of C circuits of size poly(n) such that for any distribution D, if D does
not fool C, there is some i such that Pi is a previous-bit-predictor for D.

One of our main technical tools can be stated simply in this language:

Theorem 1.4 (informal, see Theorem 4.2). There is a logspace-computable distinguish-to-predict
transformation for read-once branching programs.

We then show that the existence of such a transformation suffices for derandomiza-
tion:

Theorem 1.5 (see Section 8). Suppose a class of circuits C satisfies the following.

1. There is a CL algorithm that, given C ∈ C and r ∈ {0, 1}n, outputs C(r).

2. There is a CL-computable distinguish-to-predict transformation for C circuits.

Then, there is a CL algorithm that, given C ∈ C, outputs Er[C(r)] up to error 1/6.

Corollary 1.6. It holds that BPL ⊆ CL.

Our proof strategy provides a possible line of attack on a natural question related to
catalytic logspace (see, e.g., [Mer23, Problem 16]). While logspace-uniform NC1 is con-
tained in L, it is not known that logspace-uniform randomized NC1 (wherein the circuits
take random bits as auxiliary input) is contained in BPL, or even in CL. This is because
RNC1 circuits can read their random bits multiple times, whereas BPL machines cannot.

If a CL-computable distinguish-to-predict transformation existed for any class of cir-
cuits for which we can evaluate C-circuits in CL (for instance, NC1), we would obtain
that the randomized analogue of that class lies in CL. Note that we can tolerate both
circuit evaluation and the distinguish-to-predict transformation being computable in CL,
whereas for ROBPs we have that both are computable in L.

2 Technical Overview

In Section 2.1 we outline the proof of Theorem 1. Throughout the description we also
introduce some of the new technical tools that will be used for the proofs of our other
results. The proof ideas of Theorem 3 and Theorem 4 are presented in Section 2.2, and the
proof outline of Corollary 1.6 is presented in Section 2.3.

7

2.1 Derandomization from Hardness for Deterministic Uniform Algo-
rithms

Our derandomization algorithm will be based on reconstructive targeted pseudorandom
generators. Targeted PRGs were introduced by Goldreich [Gol11d; Gol11c], and recent
works presented various constructions of targeted PRGs that are pseudorandom under
hardness assumptions; see, e.g., [CT21a; SM23; CT23b; CLO+23] and see [CT23a] for a
survey. A reconstructive targeted generator G is based on a hard function f . The gener-
ator gets an input x, and outputs a list of strings, hoping that the list will be pseudoran-
dom6 for every uniform algorithm that also has access to the same input x. Correctness is
established via a reduction to the hardness of f : If an efficient uniform probabilistic al-
gorithm A(x, ·) distinguishes the output-list of G(x) from uniformly random strings, then
we can compute f on x by an efficient algorithm F (x). We stress that the connection holds
instance-wise, i.e., for every fixed x. That is, if G(x) is not pseudorandom for A with in-
put x (i.e., for A(x, ·)), then F (x) computes f(x) too efficiently, contradicting the assumed
hardness of f on x.

The reduction from distinguishing G(x) to computing f(x) is called a reconstruction
procedure. Known reconstruction procedures are either non-uniform or probabilistic, ne-
cessitating hardness assumptions for non-uniform circuits or for probabilistic algorithms
(see, e.g., [CT21a; LP22a; LP22b; DT23; SM23; CLO+23; CT23a; CTW23]).7

Consistency tests and deterministic reconstruction. The starting point for our results is
a recent work of Pyne, Raz, and Zhan [PRZ23]. They showed that when A is a small-space
algorithm, the reconstruction procedure of the classical Nisan–Wigderson PRG [NW94]
can be made almost-deterministic; that is, the reconstruction procedure is a small-space
algorithm, and the number of random coins that it uses does not exceed its space com-
plexity, and thus it is possible to enumerate over all random choices.

Their result crucially relies on the fact that A is a small-space algorithm, implying that
Dx(·) = A(x, ·) is computable by a bounded-width read-once branching program (ROBP).
The crux of their proof is a simple combinatorial lemma, showing that deciding whether
a distribution w is pseudorandom for Dx(·) reduces to a small number of “consistency
tests” that can be performed using the description of Dx. Such tests have been explored
before, and have found multiple applications [Nis93; CH22; GRZ23; PRZ23].

A motivating observation for our work is that the result of [PRZ23] can be used to
deduce derandomization from lower bounds for logspace-uniform circuits. Specifically,
we can deduce the following as a corollary: If DSPACE[O(n)] is hard for logspace-uniform
circuits of size 2ε·n for some ε > 0, then BPSPACE[O(n)] = DSPACE[O(n)].8

6By “pseudorandom list” we mean that the uniform distribution over the list aims to fools the algo-
rithm. Stated differently, G gets x and a random seed s, and the pseudorandom distribution is generated
by choosing the seed s uniformly at random and outputting G(x, s).

7The situation is similar when considering reconstruction procedures for classical (i.e., non-targeted)
pseudorandom generators; see, e.g., [NW94; IW97; IW98; KM02; STV01; TV07; SU05; Uma03].

8The approach for doing so is demonstrated in the proof of Theorem 6.16 (which asserts a significantly

8

This latter statement is, of course, still far from what we want: The hardness is uniform
circuits of exponential size, and for general circuits rather than bounded space, or small-
depth, models. Fortunately, recent works in derandomization suggest a way to avoid
these shortcomings: When using targeted PRGs, it may suffice to rely on hardness assump-
tions for uniform circuits of polynomial size (see, e.g., [CT21a; LP22a; LP22b; SM23]), and
moreover, there are already known targeted PRGs whose reconstruction procedure yields
constant-depth circuits, rather than general circuits [CTW23].

The pressing question is whether we can materialize this approach in the setting of
derandomizing small space: Can we design a targeted PRG that has an almost-deterministic
reconstruction yielding constant-depth circuits? And would this be enough to derandom-
ize BPL from hardness against weak, uniform, and deterministic algorithms?

Our technical contribution. The main technical contribution underlying Theorem 1 is a
new variant of the Chen–Tell targeted hitting-set generator (HSG) [CT21a]. Our new vari-
ant has an almost-deterministic reconstruction procedure yielding a constant-depth circuit,
when the intended pseudorandomness is for bounded-space machines. We prove:

Theorem 2.1 (an almost-deterministic targeted somewhere-PRG; see Theorem 6.7). Let
f : {0, 1}n → {0, 1}r(n) be computable by logspace-uniform TC0 circuits of size T (n) = poly(n)
and depth d = O(1), and let m = T δ for a sufficiently small constant δ > 0. Then, there are
deterministic algorithms Gf , Rf , and Of such that:

1. Generator. On input x ∈ {0, 1}n, the algorithm Gf runs in space O(log T) and prints
O(d/δ2) lists of m-bit strings.

2. Reconstruction. The algorithm Rf gets a description of a space-logm machine M , and a
random seed y ∈ {0, 1}O(log T). It runs in space O(log T) and prints an oracle TC0 circuit
Cy of size poly(n ·m)≪ T such that for every fixed input x ∈ {0, 1}n the following holds.

If M(x, ·) is a 1
10

-distinguisher for each of the output lists of Gf (x)
9, then with probability

at least 0.99 over y it holds that COy (x) = f(x).

3. Oracle. The machine Of runs in space O(δ · log T).

Note that Rf is indeed almost-deterministic, since it uses O(log T) random coins and
O(log T) space. However, while it has enough space to enumerate over all choices of
random coins, it is not a-priori clear how enumeration can be helpful: Recall that Rf does
not get any particular input x; on a seed y, it prints a circuit Cy, hoping that Cy(x) = f(x)
for all inputs x (or, at least, for many inputs x). More generally, it is not immediately clear
how to deduce Theorem 1 from Theorem 2.1, and we will explain this in Section 2.1.3.

stronger result).
9For the standard definition of distinguishers, see Definition 3.1. When we say that M(x, ·) is a dis-

tinguisher for each of the lists, we mean that for each i ∈ [O(d/δ2)], M(x, ·) distinguishes the uniform
distribution on the ith output list Gf (x)i from a uniformly random string.

9

We stress that the reconstruction Rf is inherently non-black-box with respect to the dis-
tinguisher M : It crucially uses the description of M , and moreover, we do not know how
to prove a similar result when M is not a small-space machine. This is the first con-
struction of a targeted generator in which the reconstruction uses the distinguisher in a
non-black-box way, and relies on the distinguisher being in a restricted class.10

In Section 2.1.1 we give a high-level overview of the generator’s construction, and
then in Section 2.1.2 we describe the new technical contributions, and in Section 2.1.3 we
explain how to deduce Theorem 1. Jumping ahead, key technical challenges that will be
handled include:

• A required improvement to the previously known consistency tests for ROBPs. We
present an alternative test that is considerably simpler and more efficient.

• Extending the construction of the targeted HSG of [CT21a] so that it works even
when the hard function is in logspace-uniform TC0.11

• Constructing an error-correcting code that has a local list-decoding algorithm com-
putable by uniform, almost-deterministic constant depth circuits. Our code builds
on, and improves upon, the constructions of Doron and Tell [DT23] and of [CTW23].

• Showing how to use the targeted HSG for Theorem 1, and in particular how to de-
randomize BPL rather than only RL. Previous works relying on [CT21a] deduced
derandomization of algorithms with one-sided error, or used advice in the deran-
domization [CT21a; CRT22; CT23b; SM23; CLO+23].

2.1.1 A quick overview of the generator

The construction follows the general outline of [CT21a], which is inspired by the doubly
efficient proof system of Goldwasser, Kalai, and Rothblum [GKR15]. Let Cn be a circuit of
size T and depth d computing the hard function f , fix an input x ∈ {0, 1}n, and consider
the values of all gates in Cn(x) (i.e., in the computation of Cn on x).

A bootstrapping system for Cn(x) is a sequence w
(1)
x , ..., w

(d̄)
x of strings of length poly(T),

which we also think of as functions {0, 1}O(log T) → {0, 1}, satisfying the following:

1. Base case. The function w
(1)
x is easily computable, given access to x.

2. Downward self-reducibility. There is an efficient procedure that computes w
(i)
x

given oracle access to w
(i−1)
x .

10The only other work that used a reconstructive targeted generator where the reconstruction uses the
distinguisher in a non-black-box way is that of Liu and Pass [LP22a]. In their work, the distinguisher may
be an arbitrary Turing machine.

11This was not known before. The closest related variation of the [CT21a] targeted HSG was by Chen, Tell,
and Williams [CTW23]: Their construction only works with TC0 functions meeting a stricter uniformity
condition, but its (probabilistic) reconstruction procedure also meets a stricter uniformity condition.

10

3. Faithful representation. There is an efficient procedure that computes Cn(x) given
oracle access to the last string w

(d̄)
x .

4. Layer reconstruction. There is an efficient procedure that gets oracle access to a
string w̃

(i)
x that agrees with w

(i)
x on 1/2+ T−0.01 fraction of its coordinates, and oracle

access to w
(i)
x , and outputs a small circuit Ci such that Cw̃

(i)
x

i computes w
(i)
x correctly

on all coordinates.

Above, whenever we say “an efficient procedure”, one can think of a uniform TC0 circuit
of size T δ for a small δ > 0. Note that any Cn that has an efficient bootstrapping is
efficiently computable, simply by following the sequence of d̄ reductions, but such a naive
implementation is too costly for us.

Going back to Theorem 2.1, the generator Gf uses each of the d̄ = O(d) functions
as a hard function for the NW generator, and outputs the union of the d̄ output lists
generated by the NW PRG. The reconstruction procedure, reducing pseudorandomness
G(x) to hardness of Cn(x), works as follows. Assume that a distinguisher D distinguishes
all d̄ output lists from uniform, and let us compute Cn on input x. Iteratively, for i =

1, . . . , d̄, we construct a small circuit Ci such that CD
i computes the ith function w

(i)
x in the

sequence:

1. The base case follows trivially (since the first function is easily computable from x).

2. Given the pre-constructed circuit Ci−1 and a distinguisher D for NW with w
(i)
x , we

can quickly build a circuit Ci such that CD
i computes w(i)

x (this relies on the classical
reconstruction procedure of [NW94], on the layer reconstruction procedure, and on
the reduction of computing w

(i)
x to computing w

(i−1)
x).12

3. Finally, the last function allows us to compute the output of Cn(x) = f(x).

To illustrate how this contradicts the hardness of f , let us implement the procedure
above by a small uniform TC0 circuit C, under the assumption that all procedures in the
bootstrapping system are uniform TC0 circuits of size T δ. The circuit C works in d̄ steps,
where in each step i ∈ [d̄] it computes a description of Ci. Each step can be done in size
TO(δ), by implementing the procedures of the bootstrapping system, the reconstruction
of [NW94], and simulating Ci−1. Thus, the overall depth of C is O(d̄), its size is TO(δ) ≪
T , and it uses oracle access to the distinguisher D. If we assume that Cn(x) cannot be
computed by such circuits, we get a contradiction, and deduce that at least one of the
output lists, corresponding to some w

(i)
x , must be pseudorandom for D.

12Specifically, the reconstruction procedure of NW allows to obtain a small circuit CNW such that CD
NW

agrees with w
(i)
x on 1/2+T−.01 of the inputs j ∈ [poly(T)]. By combining this with the layer reconstruction,

we obtain a small circuit Ci such that CD
i agrees with w

(i)
x on all j ∈ [poly(T)]. Both procedures require

oracle access to w
(i)
x to work correctly, and we can supply it using the downward self-reducibility procedure,

the pre-computed description of Ci−1, and our oracle access to D (to compute CD
i−1(j) = w

(i−1)
x (j)).

11

2.1.2 New technical tools and implementation ideas

The original work of [CT21a] applies to general circuits, or to NC circuits, and has a prob-
abilistic reconstruction procedure. A recent work of Chen, Tell, and Williams [CTW23]
constructs a bootstrapping system for uniform TC0 circuits, but for circuits that meet a
stricter uniformity condition than ours, and such that all relevant procedures in the sys-
tem are in probabilistic uniform TC0.13 Their work serves as our technical starting point.

To prove Theorem 2.1 we construct a bootstrapping system for any logspace-uniform
TC0 circuit Cn wherein all the relevant procedures can be computed in almost-deterministic
logspace-uniform TC0 of size poly(n, T δ), with oracle access to a function O computable
in space O(δ · log T). Since our distinguisher M(x, ·) is a machine computable in space
O(δ · log T), the oracle O does not degrade our assumption.14

The construction of the bootstrapping system and of the targeted generator are pre-
sented in Section 6.1 (see, in particular, Proposition 6.5 and Theorem 6.7). We now men-
tion some key parts, while providing pointers to the relevant results in Section 6.1.

Canonical form and arithmetization of logspace-uniform TC0. Loosely speaking, the
functions w

(i)
x are based on arithmetizing the layers of Cn(x) (i.e., the sequence of gate-

values at each layer when computing Cn on x) as low-degree polynomials, and then ap-
plying a suitable error-correcting code to them. These ensure that we will have efficient
procedures for downward self-reducibility and layer reconstruction, and a major bottle-
neck in designing them is the fact that the relevant procedures need to compute a suitable
low-degree extension of the circuit-structure function of Cn (i.e., the function printing the
description of Cn).15

In our setting, the description of Cn is computable in space O(log T), but not by TC0

circuits of size T δ. To handle this, we exploit the three-components nature of our recon-
struction: It consists of an O(log T)-space algorithm Rf printing the circuit Cy, of the TC0

circuit Cy, and of an oracle O computable in space O(δ log T). We show how to trans-
form every circuit Cn into another circuit C ′n of a “canonical form” such that the circuit-
structure function of C ′n has a low-degree extension that can be computed, at any stage of
the reconstruction, by one of the three components. Loosely speaking, the description of
some gates in C ′n takes space O(log T) to compute (i.e., it is too costly for Cy and for O),
but this description will be queried by Cy in a way that does not depend on the input x,

13We note that their reconstruction procedure has to satisfy efficiency properties that ours does not.
14One may suspect that an ROBP distinguisher suffices, as in classical PRGs using nonuniform hardness

assumptions. However, the circuit that we output does not have any input x hard-wired into it (i.e., it
should work correctly for all x, or at least for most x), and neither does the oracle. Thus, we will need an
oracle that gets input (x, r) and outputs M(x, r). This issue did not arise in previous works concerning non-
black-box derandomization of weak classes (e.g., in [CT21a; CTW23]) since in previous works, the classes
did not access their input in a read-once fashion.

15This challenge dates back to the original work of [GKR15], who handled it by constructing an additional
auxiliary protocol. An alternative solution was suggested by Goldreich [Gol18] (which adds a log T factor
to the depth, and is thus unsuitable for our setting). Alternatively, assuming a sufficiently strict uniformity
conditions (as in [CTW23] and in some results of [GKR15]) avoids this problem.

12

and can thus be computed in advance by Rf ; and the description of all other gates in C ′n
can be efficiently computed by Cy and O, when they are given a short advice string that
can be computed by Rf in advance and hard-wired into Cy. Details appear in Lemma 6.2
and Propositions 6.4 and 6.5.

Consistency tests: Simple and efficient. Recall that each step in the reconstruction pro-
cedure will construct a circuit Ci for w

(i)
x , using Ci−1 and the distinguisher M(x, ·). Each

such step relies on the classical reconstruction procedure of [NW94], and thus we need to
make the latter procedure almost-deterministic.

The bottleneck in doing so is deterministically transforming any distinguisher for the
PRG into a next-bit-predictor. A similar bottleneck was handled in [PRZ23], but their
setting was different: In their setting, the reconstruction could evaluate the distinguisher
on the output-set of the PRG. In contrast, in our reconstruction:

• Rf does not get any input x, and therefore cannot evaluate a distinguisher M(x, ·).

• The small circuit Cy (that does get input x), cannot evaluate the PRG.

To resolve this, we present a new distinguisher-to-predictor transformation, which is
simpler and more efficient than previously known ones. Our transformation: (1) Does not
need to evaluate the distinguisher on the PRG; (2) Yields a predictor that can be described
concisely using only logarithmically many bits; and (3) Better preserves the distinguish-
ing advantage. For now, we rely on Property (1), but we will crucially use Property (2) in
Section 2.3. In a gist, our idea is to construct a previous-bit-predictor instead of a next-bit-
predictor. This turns out to be surprisingly helpful when working with ROBPs. Since the
proof is short and self-contained, we refer the reader to Section 4 for further details.

Error-correcting code with derandomized constant-depth decoding. After arithmeti-
zation, the second action that will be performed by Cy at each step will be local list-
decoding of the error-correcting code. (Recall that each w

(i)
x is obtained by applying a code

to an arithmetization of a layer of Cn(x).) The code of Chen, Tell, and Williams [CTW23],
following Doron and Tell [DT23] and Goldwasser et al. [GGH+07], has probabilistic logspace
uniform TC0 decoder, however, we need the decoder to be almost-deterministic.

The key observation is that the code of [CTW23], while complicated, is a combina-
tion of many classical codes that are well-understood. Specifically, it uses various com-
binations of the Reed-Muller code, distance amplification based on expander random
walks [ABN+92], the derandomized direct product code of Impagliazzo and Wigder-
son [IW97], and the Hadamard code. Crucially, inspired by [PRZ23], we use pseudo-
randomness primitives such as randomness-efficient samplers, and small-biased sets, in
order to reduce the number of coins used by the decoder, and manage to construct an
almost-deterministic one. We refer the reader to Section 5 for details about the codes
constructions, and those will also be used later in Sections 7 and 8.

13

Separating away the low-success components. The ideas above suffice to obtain an
almost-deterministic logspace-uniform TC0 reconstruction. However, there is a remain-
ing challenge: The reconstruction procedure succeeds only with low probability. This is
inherent in the uniform reconstruction variant for [NW94], in the local list-decoding of
the code, and even the distinguisher-to-predictor transformation yields many candidates
(so choosing one at random would yield a low success probability).

The key observation in this context is that we can separate the seed y ∈ {0, 1}O(log T)

given to Rf into a long part y1 of length O(log T) and a short part y2 of length O(δ · log T)
such that the following holds: For every x, with high probability over y1 there exists
y2 such that COy1,y2(x) = f(x). Moreover, as has been observed in previous works (e.g.,
in [CRT22]), roughly speaking, at each step i, the reconstruction procedure in Cy is able to
“weed out” a list of candidate circuits for Ci and find a successful one. Since the number of
candidate circuits is only 2|y2| ≤ TO(δ), we can delegate to Cy the task of enumerating over
y2-s (in parallel) and weeding out the candidate circuits to find a suitable one. Various
implementations of this idea appear in Proposition 6.5, Theorem 6.6, and Theorem 6.7.

Where did we use the description of M? The distinguisher-to-predictor transformation
from Section 4, which we apply in each step of the reconstruction, crucially depends on
having a description of M . Specifically, given input x, the transformation constructs the
ROBP defined by Dx(r) = M(x, r), and uses simple manipulations on the nodes of Dx to
create a previous-bit-predictor. Our reconstruction Rf thus gets a description of M and
hard-wires it into Cy. Whenever Cy needs to compute a previous-bit-predictor on input
r, it calls its small-space oracle with a description of M , with the input x, with r, and
with the description of the needed manipulations on the nodes of Dx. See the proof of
Theorem 6.7 for details.

2.1.3 From targeted generator to derandomization

How do we use Theorem 2.1 to prove Theorem 1? As a first step, consider the derandom-
ization of RL: We simulate an RL machine M on input x by outputting ORs∈Gf (x)M(x, s).

Assume towards a contradiction that with high probability over choice of the choice
of input x ∈ {0, 1}n we have Prr[M(x, r) = 1] ≥ 1/2, but M(x, s) = 0 for all s ∈ Gf (x).
By an averaging argument, there exists a fixed y ∈ {0, 1}O(log T) such that Cy = Rf (⟨M⟩, y)
correctly computes f on most inputs x. By giving this fixed y as advice to Rf , we obtain a
log-spaceadvice-uniform circuit family that computes f correctly on most inputs.

This would have been a contradiction, had we assumed that f is hard to compute on
most inputs. However, we only assume that f is hard to compute on a small fraction δ > 0
of the inputs. We bridge this gap using the uniform direct-product-based hardness ampli-
fication of Impagliazzo et al. [IJK+10]. Instead of instantiating the targeted generator with
f , we instantiate the generator with the k-wise direct product f×k of f for an appropriate
k = k(δ), relying on f×k also being computable in logspace-uniform TC0. In [IJK+10]
they show that if f×k can be computed on even a small fraction of the inputs, then f can

14

be computed on 1 − δ of the inputs with a small number of advice bits. Since our recon-
struction uses O(log T) advice bits anyway, this does not degrade our assumption. See
Theorem 6.10 for details.

Derandomizing BPL. The last step is showing how to derandomize BPL, rather than
only RL. Derandomizing algorithms with two-sided error has been a consistent challenge
so far in works that used the targeted generator of [CT21a] (see [CRT22; CT23b]).

We are able to overcome this challenge because our reconstruction is almost deter-
ministic. Specifically, instead of outputting ORs∈Gf (x)M(x, s), the derandomization on
input x can iterate over all choices for a seed y, run Rf (⟨M⟩, y), and check whether or not
Cy(x) = f(x). (Indeed, in contrast to Rf , the derandomization algorithm gets an input x,
and can thus check if the reconstruction worked on x. This crucially relies on the fact that
Rf is almost-deterministic, allowing the derandomization to enumerate over y-s.)

It is still not clear why that would be helpful. The last observation (already mentioned
above, following [CRT22]) is that the reconstruction can “self-check”: Loosely speaking,
given input x and seed y, for each of the O(d/δ2) lists that Gf (x) outputs, we can check in
space O(log T) whether or not a corresponding part of Cy(x) is “correct” with respect to
computing f(x). The derandomization thus finds a list such that the corresponding part
of Cy(x) is incorrect, and this list will be pseudorandom for M(x, ·).

Indeed, the above description is informal, and hides some details. The full details
appear in the “furthermore” part of Theorem 6.7 and in the proof of Theorem 6.8.

The scaled-up version. The proof of Theorem 2 is different, and significantly simpler.
First, it uses a PRG, rather than a targeted PRG (specifically the NW PRG with the new
almost-deterministic code mentioned above). And secondly, in the setting of derandom-
izing linear space (rather than logarithmic space), the reconstruction procedure can afford
to enumerate over all inputs (and can thus test each reconstructed circuit Cy to see how
many inputs, if at all, Cy succeeds with). The proof appears in Section 6.4.

2.2 Minimal-Memory Derandomization From Weaker Assumptions

2.2.1 Minimal memory overhead from nonuniform assumptions

Our starting point is the (black-box) PRG construction of [DT23], constructed by compos-
ing two “low-cost” PRGs in order to get derandomization with minimal memory over-
head (the composition idea, in the context of minimal time overhead derandomization,
was already given in [CT21b]). In [DT23], the construction relied on two assumptions:
High-end nonuniform hardness of a language in linear space, and (highly) space-efficient
cryptographic PRGs with arbitrary polynomial stretch.

Specifically, given a probabilistic space-bounded machine M(·, ·), a cryptographic PRG
Gcry, and the NW PRG NWf based on the hard function f , the deterministic simulation of

15

M goes by enumerating over all seeds s to NWf , and evaluating

M̄(x,Gcry(NWf)(s)),

where M̄ is a variant of M that reads its random bits according to the current configu-
ration, rather than in the standard order (see Lemma 7.1). The use of M̄ instead of M is
crucial: It allows saving an additional factor of S in the deterministic simulation space,
where S is the overall space used by M (see Section 7.3).

Denoting by T the number of random bits read by M , the generator Gcry is used to
decrease the number of random bits read by M to Sη for some small enough constant
η ∈ (0, 1). Notice that fixing an input x, Gcry needs to fool the function D(r) = M̄(x, r).
In [DT23], they were not able to utilize the fact that M(x, ·) can be modeled as a read-
once branching program, and so they resorted to using a cryptographic PRG that fools
arbitrary circuits (in a sufficiently space-efficient manner). Indeed, the location of the next
random bit read by M̄ depends on the machine’s own configuration, or in other words,
depends on the state of the ROBP M(x, ·). Moreover, no location is ever repeated twice.

We observe that this model precisely captures the notion of adaptive order branching
program, so one can hope to use explicit tools from the space-bounded literature. Very
recently, Chen, Lyu, Tal, and Wu [CLT+23] gave the first nontrivial PRG for that model.
In fact, they show that the Forbes–Kelley PRG [FK18] is secure against this model and
stretches polylog(T) bits into T bits, which comfortably works in our setting.

We prove that the Forbes–Kelley generator is also sufficiently efficient to take the place
of the cryptographic PRG (Claim 7.3). Hence, combining with the result of [CLT+23], we
are able to completely dispense with cryptographic assumptions (and replace Gcry with
the [FK18] generator). We remark that the required explicitness property is stronger than
that commonly used in the space-bounded derandomization literature, and several well-
studied PRGs for ROBPs [Nis92; INW94] do not appear to obtain it. We also remark that
this is the first use of PRGs for generalizations of ROBPs now studied in the literature, for
the benefit of the original space-bounded derandomization question.

2.2.2 Minimal memory overhead from uniform assumptions

Next, similar to [DT23], we wish to establish the same minimal memory footprint deran-
domization result based on hardness of compression of multi-output functions. Given a
multi-output function f , the deterministic simulation itself is similar to the one in Sec-
tion 2.2.1, namely enumerating over

M̄(x,Gadp(NWf(x)(s))),

but now the NW generator uses the string g = f(x) as the truth table of a hard function.
The generator Gadp is the Forbes–Kelley generator, whereas in [DT23] it was a crypto-
graphic one. Indeed, notice that our PRG is a targeted one, and thus the pseudorandom
strings are chosen in a non-black-box (i.e., they depend on the input x). Also, as in previ-
ous works that employed targeted PRGs, and similar to the targeted somewhere-PRG of

16

Section 2.1, the analysis goes via an instance-wise hardness vs. randomness tradeoff: We
show that if the derandomization fails on an input x, then a small-space machine succeeds
in mapping the same x into a compressed version of f(x).

The [DT23] reconstruction argument goes, very roughly, as follows. Given a distin-
guisher D for the composed PRG Gadp ◦ NWg, there is a randomized logspace algorithm
that outputs, with high probability, a small circuit for g. This used a new reconstruc-
tion of the NW generator – a logspace-uniform TC0 one. Thus, under the assumption
that there exists a function f : {0, 1}n → {0, 1}n2 that is hard to compress by randomized
small-space algorithms for all but a finite number of inputs, [DT23] concludes that the
composed PRG must be secure.

Here, we would like to weaken the hardness assumption and eliminate the random-
ness from the reconstruction procedure, which arises in two places. The first place is in the
error correcting code, which could not be deterministically decoded in a space-efficient
manner since it required polynomially-many random bits. Here, we can apply our new
codes with deterministic decoding, described above in Section 2.1.2.

The second place that uses randomness relates to converting a distinguisher to a next-
bit predictor. Indeed, we show that there exists a deterministic logspace reconstruction
(for the NW generator that uses our new code), that given a next-bit predictor P , prints
a small oracle TC0 circuit C such that CP computes the hard function g. Typically in
reconstruction arguments, one can simply argue that given a distinguisher that breaks
the PRG, a suitable next-bit predictor exists, as long as we don’t care about uniformity.
Also, if the distinguisher is itself an ROBP, we can (unconditionally) transform it into a
next-bit predictor in logspace, deterministically. In our case, however, the distinguisher
for the NW PRG is D ◦ Gadp, where D(r) = M̄(x, r) as above. This distinguisher is not
computable by an ROBP, an so we cannot perform the reconstruction as-is. This is where
Assumption 2 enters the picture. We show that if we have an HSG that hits (TC0)D◦G

adp ,
we can use it to find a string that “completes the hybrid argument”, and use this string to
obtain a next-bit predictor in a space-efficient manner (see Lemma 7.6). We leave the rest
of the details to Section 7.3.

2.3 A New Proof of BPL ⊆ CL

Finally, we use our techniques to study the relationship between randomized and catalytic
computation. Recall that in the catalytic logspace model we have c log n bits of working
memory, and a catalytic tape w of length nc that has an arbitrary initial configuration. We
can modify this tape arbitrarily, but we must reset it to its original configuration at the
end of the computation.

There are two known proofs establishing that BPL ⊆ CL. The first, which follows
from [BCK+14], uses algebraic techniques involving reversible computation over a ring
(and ultimately proves the stronger result that logspace uniform TC1 ⊆ CL). The second
(see [Mer23]) follows a compress-or-random approach. In particular, it treats the catalytic
tape as a sequence of random walks. For an ROBP B that we wish to derandomize, either

17

this set of walks fools B (in which case we can use them to derandomize), or there is
some state in the ROBP at which the distribution of outgoing walks is skewed (in which
case one can use an in-place compression algorithm to free up many bits on the catalytic
tape, which can then be used as the workspace for a space-inefficient derandomization
algorithm).

We give a new approach, that is likewise based on the compress-or-random dichotomy,
but is more modular. We treat the catalytic tape w as a candidate hard truth table, and in-
stantiate (a version of) the NW generator NW with the table w̄, where w̄ is the encoding
of w using the code of Section 2.1.2. We use a version of the NW generator that has deter-
ministic reconstruction, where given a previous-bit-predictor for NWw̄ we can reconstruct
in deterministic logspace a noisy version of w̄. Furthermore, as our code has deterministic
decoding, we use this noisy version of w̄ to approximately decode w in logspace.

Then, given a branching program B, we apply the distinguish-to-predict transforma-
tion for ROBPs (Theorem 4.2) to B, obtaining a family of candidate predictors P1, . . . , Ppoly(n).
Next, we test if NWw̄ is predicted with non-negligible advantage by any such Pi. We then
break into cases:

1. If no such Pi predicts NWw̄ with non-negligible advantage, we have that NWw̄ fools
B, and so we can derandomize without writing to the catalytic tape.

2. If there is P = Pi that predicts NWw̄ with non-negligible advantage, we use the
deterministic reconstruction and decoding algorithms applied with P to obtain a
small circuit C such that C(j) = wj on the vast majority of indices j. We then
identify a large interval I of w such that C(j) = wj for every j ∈ I . Thus, as long
as we can retain the ability to evaluate C, we can erase wI and thus use wI as the
workspace for a space-inefficient derandomization algorithm (e.g. Nisan’s [Nis94]).
However, we must we careful that even after erasing we maintain the ability to
evaluate the circuit C on j ∈ I , and hence reset the tape to its original configuration.

To evaluate C, it suffices to have access to P (which we can retain by remembering
the short description of the predictor)16 and sub-linearly many bits of w̄ (i.e., the
encoded version of w). Naively, of course, each bit of w̄ could depend on all bits of
w, making erasing impossible. To avoid this, we use the locally encodable version of
our code (Theorem 5.2).17 The full details are given in Section 8.

3 Preliminaries

Strings and distributions. Given x ∈ {0, 1}n, let x<i = x1...i−1, x≤i = x1...i, x>i = xi+1...n,
x≥i = xi...n and let x<1 and x>n be the empty string. For an integer n, we denote [n] =
{1, . . . , n}. Given a set S, let US be the uniform distribution over the set S, and for n ∈

16Here, we crucially use the fact that our new distinguisher-to-predictor transformation from Theorem 4.2
outputs a description of only logarithmic size.

17This is why we only approximately decode, but this suffices for our application.

18

N let Un = U{0,1}n . We say that a distribution D ε-fools a function f : {0, 1}n → {0, 1}
if |E[f(D)] − E[f(Un)]| ≤ ε. In addition to distinguishers, we will also need next-bit
predictors.

Definition 3.1 (distinguisher). We say that T : {0, 1}n → {0, 1} is an ε-distinguisher for a
distribution D over {0, 1}n if∣∣∣ Pr

r←Un

[T (r) = 1]− Pr
x←D

[T (x) = 1]
∣∣∣ > ε .

Definition 3.2. We say that P : {0, 1}i → {0, 1} is an ε-next-bit predictor (resp. ε-previous-
bit predictor) for a distribution D over {0, 1}n if Prx←D[P (x≤i) = xi+1] ≥ 1/2 + ε (resp.
Prx←D[P (x>n−i) = xn−i] ≥ 1/2 + ε).

Definition 3.3 (PRGs and HSGs). We say that G : {0, 1}s → {0, 1}n is an ε-pseudorandom
generator (PRG) for a class of functions F : {0, 1}n → {0, 1} if for every f ∈ F , G(Us) fools f ,
i.e.

|E[f(Un)]− E[f(G(Us))]| ≤ ε.

We say that G is an ε-hitting set generator (HSG) if for every f ∈ F such that E[f(Un)] ≥ ε,
there exists z ∈ {0, 1}s such that f(G(z)) = 1.

3.1 Space Bounded Computation, and Branching Programs

We use the standard model of space-bounded computation (see also [Gol08, Section 5] or
[AB09, Section 4]). A deterministic space-bounded Turing machine has three semi infi-
nite tapes: an input tape (that is read-only); a work tape (that is read/write) and an output
tape (that is write-only and uni-directional). The machine’s alphabet is {0, 1}. The space
complexity of the machine is the number of used cells on the work tape. We say that a
language is in DSPACE[s(n)] if it is accepted by a space bounded TM with space com-
plexity s(n) on inputs of length n. Naturally, space-bounded machines can also compute
functions on the output tape.

A probabilistic space-bounded Turing machine is similar to the deterministic machine
except that it can also toss random coins. We also require a space-s(n) probabilistic ma-
chine to always halts within 2s

′(n) steps, where s′(n) = s(n) + O(log s(n)) + log n is the
number of possible configurations.18 Note that this bound on the runtime always holds
for (halting) space-s(n) deterministic machines.

One convenient way to formulate this is by adding a fourth semi-infinite tape, the
random-coins tape, that is read-only, uni-directional and is initialized with perfectly uni-
form bits. We are concerned with bounded-error computation: We say a language is
accepted by a probabilistic Turing machine if for every input in the language the accep-
tance probability is at least 2/3, and for every input not in the language it is at most 1/3.

18The machine’s configuration includes the content of its work tapes, its current state, and the location
of its heads, including the head on the input tape. For convenience, we can assume that the heads location
and current state are written on dedicated worktapes.

19

Similarly, we denote by BPSPACE[s(n)] the set of languages accepted by a probabilistic
space-bounded TM with space complexity s(n).

On multi-tape machines. While we defined the space bounded complexity class with
respect to a single work tape, throughout the paper we often describe computations done
on multiple work tapes. As long as the number of work tapes is some universal constant,
which will indeed be the case, the simulation loss is negligible and we will ignore it.
Formally, it follows from the following simple observation.

Claim 3.4. Let M be a (deterministic or probabilistic) space-bounded TM with C > 1 work tapes,
such that on input of length n uses space s = s(n) ≥ log n (in total over all its work tapes). Then,
M can be simulated by a TM with a single work tape that uses s+O(C · log s) space.

Composition of space-bounded algorithms. We will heavily use space-efficient com-
position of functions computable by space-bounded TMs.

Proposition 3.5 ([Gol08], Lemma 5.2). Let f1, f2 : {0, 1}⋆ → {0, 1}⋆ be functions that are
computable in space s1, s2 : N→ N. Then, f2 ◦ f1 : {0, 1}⋆ → {0, 1}⋆ can be computed in space

s(n) = s2(ℓ1(n)) + s1(n) + log(ℓ1(n)) + O(1)

where ℓ1(n) is a bound on the output length of f1 (i.e., the cells used on the work tape) on inputs
of length n.

We note that the bound in Proposition 3.5 assumes two work tapes, and as we stated
above, simulating f2 ◦ f1 on a single work tape incurs an additional O(log s(n)) additive
factor in space.

When we say that a function f : {0, 1}n → {0, 1}m, which can be viewed as f : {0, 1}n×
[m]→ {0, 1}, is logspace computable if it is computable in space O(log n+ log logm). When
we compute a function using an oracle machine, we account for the space needed to pre-
pare the input to the oracle (unless stated otherwise, we write the entire input to the tape).

Branching programs. We recall two models of read-once branching program: read-once
branching programs (also known as standard-order branching programs), and (read-
once) adaptive order branching programs.

Definition 3.6 (ROBP). A read-once branching program (ROBP) B of width w and length n
is specified by an initial state vst ∈ [w], an accepting state vac ∈ [w] and a sequence of transition
functions Bi : [w]×{0, 1} → [w] for i ∈ [n]. The ROBP naturally defines a function B : {0, 1}n →
{0, 1}n: Start at vst, and then for i = 1, . . . , n, read the input symbol xi and transition to the state
vi = Bi(vi−1, xi). The ROBP accepts x, i.e., B(x) = 1, if and only if vn = vac.

In the adaptive read-once model, each computation path of the branching program can
read the bits of input r ∈ {0, 1}n in a different order, as long as each bit is read exactly
once.

20

Definition 3.7 (AOBP). A (read-once) adaptive order branching program (AOBP) B of
width w and length n, is a layered 2-out-regular directed graph with n + 1 layers, each layer
having w vertices, which is also equipped with a labeling function l : V → [n] where V denotes
the set of vertices of B, and includes a start and accept vertices vst, vac.

The AOBP defines a function B : {0, 1}n → {0, 1} as follows. Start at vst, and then for
i = 1, . . . , n, transition to the state vi = B(vi−1, xl(vi−1)), where B(u, b) denotes the σth neighbor
of u in B. The AOBP accepts x, i.e., B(x) = 1, if and only if vn = vac. Moreover, we require that
for every possible input x ∈ {0, 1}n, every bit of x is read at most once over the computation.

When we refer to the size of a branching program, we mean the number of vertices of
the underlying layered directed graph, namely (n+ 1) · w.

3.2 Circuits and Hardness Notions

We will use the standard definitions of circuit classes. In particular, an ACi circuit is a
Boolean circuit with depth O(logi n) over the De Morgan basis with unbounded fan-in
gates. In TCi, we allow Majority gates in addition to NOT, OR, and AND, but we will
sometimes allow threshold gates as an intermediate model. We define the size of the
circuit to be its number of wires. We say that an oracle circuit is non-adaptive if each com-
putation path contains at most one oracle call. Throughout the paper, we fix the following
standard way of describing circuits as strings. Specifically, the description consists of a
list of gates, where the description of each gate consists of its type (i.e., the function that it
computes) and of the indices of gates that feed into it. Observe that the description length
of a circuit with s gates and w ≥ s wires is O(w log s).19

We say that a family of circuits {Cn}, each Cn is of size s(n), is logspace uniform if there
exists a deterministic algorithm that runs in space O(log(s(n)) and outputs the description
of Cn. We will sometimes use stronger notions of uniformity which we will define along
the way.

We say that a function f (more accurately, a family of functions) is hard for a class C if
no function from C correctly computes f , up to perhaps a finite number of inputs lengths.

We will use the following standard notion of average-case hardness, which asserts
that L ∈ avgεF if there is an algorithm f ∈ F deciding L on 1 − ε of the inputs and with
zero-error (cf., [IW98; BT06]).

Definition 3.8. For a class F of functions {0, 1}⋆ → {0, 1} ∪ {⊥}, and ε > 0, we say that a
language L ∈ avgεF if there exists f ∈ F such that for every sufficiently large n ∈ N:

1. Prx←Un [f(x) = L(x)] ≥ 1− ε, and,

2. For every x ∈ {0, 1}n we have f(x) ∈ {L(x),⊥}.
19In Section 6, where we consider weighted threshold gates, the description size will be O(w(t + log s)),

for t being the number bits required to write each weight or threshold, but this will essentially be the same
bound.

21

Next, we make the notion of circuits with oracle to complexity classes precise. For a
circuit class C (say, TC0) and a class of languages L, we let CL be the following class of
languages. We say that L ∈ CL if there exists A ∈ L and a family of C-circuits that decides
L, say {Cn}n∈N, such that each Cn can have oracle queries to A. When we parameterize
L by input lengths, say DSPACE[n], we treat n as the queries length rather than the length
of the input to the circuit. Finally, for a circuit C mapping n bits to one bit, we denote by
tt(C) the truth-table of the corresponding function, namely the length-2n string for which
tt(C)x = C(x).

3.3 Error Correcting Codes

We say that an error correcting code C : Σk → Σn has relative distance δ if for any distinct
codewords x, y ∈ C, it holds that δ(x, y) = Pri∈[n][xi ̸= yi] ≤ δ. As customary, we often use
C to simply denote Im(C) ⊆ Σn. If one corrupts a codeword in less than δ/2 fraction of its
coordinates, unique decoding is possible. Otherwise, one can resort to list decoding. We say
that C is (ρ, L) list decodable if for any w ∈ Σn there are at most L codewords c ∈ C that
satisfy δ(w, c) ≤ 1− ρ. We refer to ρ as the agreement parameter.

We will be interested in the local variants of unique and list decoding, wherein the
algorithmic task of decoding a single coordinate can be done very efficiently. Moreover,
we will sometimes need the approximate variant, in which we allow the returned words to
only agree with some corresponding codewords in a large fraction of the coordinates.

Definition 3.9 (locally approximately list-decodable code). We say that a code C : Σk → Σn

is locally approximately list decodable from agreement ρ to agreement 1 − δ, with Q queries,
by circuits of size s and list size L, if there exist randomized circuits Dec1, . . . ,DecL, each of size
s, that satisfy the following.

• Each Deci has oracle access to a received word r ∈ Σn, and makes at most Q queries to the
coordinates of r.

• For every r ∈ Σn, and c = C(x) that agrees with r in at least ρ-fraction of its coordinates,
there exists j ∈ [L] such that

Pr
i∈[n]

[
Pr
Decj

[
Decrj(i) = xi

]
≥ ξ

]
≥ 1− δ,

for some error parameter ξ > 0.

When δ = 0, we say that C is locally list decodable. When L = 1, we say that C is locally
(approximately) uniquely decodable.

When we do not pose any uniformity constraints, the output list size parameter L may
only implicit, in the sense that each Deci is of size at least logL and we will sometimes omit
it from the above notation. Similarly, when we do not insist on a uniform generation of
the Deci-s, by standard error reduction, we can take ξ = 1 and incur only a minor loss in
parameters. Often, we will require additional properties from our list-decodable codes,
and we will define those properties explicitly when needed.

22

3.4 Pseudorandomness Primitives

Samplers. We recall the definition of a (strong) sampler:

Definition 3.10 (strong sampler). A function Samp : {0, 1}m × [t]→ {0, 1}n is a strong (ε, δ)
(oblivious) sampler if for any H1, . . . , Ht ⊆ {0, 1}n it holds that

Pr
x←{0,1}m

[∣∣∣∣ Pri←[t]
[Samp(x, i) ∈ Hi]− E

i←[t]
[ρ(Hi)]

∣∣∣∣ ≤ ε

]
≥ 1− δ,

where we denote by ρ(Hi) =
|Hi|
2n

the density of a set.

The parameter ε is the accuracy parameter of the sampler, and δ is its confidence param-
eter. We recall the sampler of [Hea08], as it gives a sampler with parameters matching
that of the expander walk sampler, combined with good explicitness properties.

Theorem 3.11 ([Hea08, Theorem 1.3]). For every n ∈ N and any ε, δ > 0 there exists a strong
(ε, δ) sampler Samp : {0, 1}m × [t] → {0, 1}n where t = O(log(1/δ)/ε2) and m = n + O(t).
Moreover, there is a space O(logm) algorithm that outputs an AC0[⊕] circuit of size poly(m) that
computes Samp. In particular, given x ∈ {0, 1}m and i ∈ [t], Samp(x, i) is computable in space
O(logm).

We also recall the following strong sampler, that has better randomness complexity at
the expense of worse sampling complexity.20

Theorem 3.12 ([Gol11a; CL20]). For every n ∈ N and ε, δ > 0, there exists an explicit strong
(ε, δ) sampler Samp : {0, 1}m × [t] → {0, 1}n where t = poly(log(1/δ)/ε) and m = n +
O(log(1/εδ)). Moreover, given x ∈ {0, 1}m and y ∈ [t], Samp(x, y) is computable in space
O(m).

Small-bias sets. We likewise recall the definition of small-bias spaces.

Definition 3.13. A function G : {0, 1}t → {0, 1}k is an ε-biased generator if G(Ut) is a ε-biased
probability space over {0, 1}k, which formally means that for every T ∈ {0, 1}k,

Pr
y←Ut

[⟨T,G(y)⟩ = 1] ∈ [1/2− ε, 1/2 + ε].

We recall that strongly explicit small-bias spaces exist with asymptotically optimal
seed length. Moreover, by [HV06], these spaces can be computed in space logarithmic in
the seed.

Proposition 3.14 ([NN93; HV06]). Given k ∈ N and ε > 0, there is an ε-biased generator
Bias : {0, 1}t → {0, 1}k with seed length t = O(log(k/ε)). Moreover, the transformation that
maps (x, j) ∈ {0, 1}t × [k] to Bias(x)j can be computed in space O(log t).

20We note that the “strongness” property does not appear in [RVW02; Gol11a; CL20] (the standard, non-
strong, definition assumes H1 = . . . = Ht). However, the seeded extractor that is used to construct the
sampler can be made strong with essentially no loss in parameters, and strong extractors yield strong sam-
plers (see [Zuc97]).

23

Designs.

Definition 3.15 (combinatorial design). A family of sets S1, . . . , Sk ⊂ [d] is called an (n, a)
combinatorial design if each of the sets is of size |Si| = n, and any distinct sets Si, Sj satisfy
|Si∩Sj| ≤ a. The corresponding function Des : {0, 1}d× [d]→ {0, 1}n takes as input z ∈ {0, 1}d
and i ∈ [k] and outputs the restriction of z to the coordinates in Si.

We recall that logspace-uniform designs exist with good parameters:

Theorem 3.16 ([KM02], Lemma 5.19). There is a universal constant c ≥ 1 such that for any
α ∈ (0, 1) the following holds for sufficiently large n. There is an algorithm that outputs an (n, αn)
design S1, . . . , Sk ⊂ [d] where k = ⌈2(α/c)n⌉ and d ≤ (c/α)n. On input i ∈ [k], this algorithm
runs in space O(n) and outputs Si. In particular, the corresponding function Des : {0, 1}d×[k]→
{0, 1}n is computable in space O(n).

k-wise independence. We say that Z ∼ {0, 1}n is k-wise independent is for any I =
{i1, . . . , ik} ⊆ [n] it holds that Z|I = U|I|. It is well-known that one can efficiently sample
from a k-wise independent distribution over {0, 1}n using O(k log n) bits. One way to do
so is by evaluations of random polynomials of degree k − 1. This gives a space-efficient
way of sampling from Z.

Claim 3.17. For any integers n and k ≤ n, there exists a k-wise independent distribution over
{0, 1}n. Denoting by S = {s1, . . . , sm} its support size, we have that m = nk, and the transfor-
mation that maps (i, j) ∈ [m]× [n] to si[j] can be computed in space O(log k + loglog n).

To see that, assume without loss of generality that n is a power of 2 and let F be a field
of size n. Then, si[j] can be computed by:

• Using i ∈ [nk] to sample coefficients (a0, . . . , ak−1) ∈ Fk,

• Compute
∑k−1

ℓ=0 aℓj
ℓ over F, where we interpret j as an element of F, and,

• Taking any field trace from F to F2.

Under the standard representation of F, and composition of space-bounded algorithms
(Proposition 3.5), the above can be done in space O(log k + log log n).21

21Iterated addition and multiplication can be done by logspace-uniform (and even logtime uniform) TC0

circuits so in particular in logspace. More concretely, adding and multiplying k F-elements can be done
by poly(k log n)-sized TC0 circuits [HAB02], so in particular in space O(log k + loglog n). One can do even
better, since computing a field element of the kth power can be done in size poly(log k, log n) for specific
representations of F [HV06] but we won’t need this fact (recall that iterating over the k log n bits of i already
takes log(k log n) space).

24

3.5 Catalytic Computation

Catalytic computation, defined by Buhrman et al. [BCK+14] (see also [BKL+16]) asks
whether an auxiliary memory, that already stores some data that should be restored for
later use, can be useful for computation. That is, can we make computations more efficient
if in addition to a standard clean worktape, we have access to additional space which is
initially in an arbitrary state and must be returned to that state when our computation is
finished?

Formally, we enrich our model of (deterministic) space-bounded Turing machines
with an auxiliary tape, which we call the catalytic tape. For every possible initial set-
ting of the catalytic tape, at the end of the computation the Turing machine must have
returned the tape to its initial contents. We denote by CSPACE[s(n), sA(n)] to be the set of
all languages that can be decided by a catalytic TM that runs in (standard) space s(n) and
uses sA(n) cells of the auxiliary tape. Clearly, a catalytic TM can compute a function (in
working space s and catalytic space sA) of the input, rather than simply outputting accept
or reject.

4 An Improved Local Consistency Test

Existing local consistency tests [Nis93; CH22; GRZ23; PRZ23] have at least one of several
undesirable properties: either they output a distinguisher, not a next-bit-predictor; or the
construction of the predictor requires a large amount of advice; or the soundness loss is
large (in particular, it depends on the width of the program, not merely the length).

These properties are prohibitive for our applications. Thus, we rectify this situation,
by giving a very simple test that simultaneously:

• Can be described very efficiently given B.

• Obtains soundness loss exactly matching the (non-explicit) hybrid argument.

• Outputs a next-bit predictor.

To do so, instead of outputting a next-bit-predictor, we output a previous-bit predictor
instead; that is, we obtain a program that reads the last k bits of the output of a generator
and predicts the preceding (n − k − 1)st bit. Interestingly, only know how to obtain a test
that does not suffer from the undesirable properties above by outputting such a previous-
bit-predictor. We do so by an analysis that uses a hybrid argument performed in the
backwards direction (i.e., in reverse direction compared to the standard transformation
from distinguishability to predictability).

To define the test, we first introduce notation for subprograms of an ROBP.

Definition 4.1. For an ROBP B : {0, 1}n → {0, 1} of length n and width w, let Bi,j be the
subprogram of length n− i and width w defined as follows. We let Bi,j be B with the first i layers
removed, and vertex j in layer i marked as the new start vertex. Note that Bi,j can be described
with advice log nw given B, and can be constructed in logspace given B.

25

Theorem 4.2. Given an ROBP B of length n and width w, for every i ∈ [n], j ∈ [w], b ∈ {0, 1},
let Pi,j,b : {0, 1}n−i → {0, 1} be defined as Pi,j,b(x) = Bi,j(x)⊕ b. Then for every δ > 0, for every
ROBP B, for every distribution D over {0, 1}n, at least one of two events occurs:

1. |E[B(D)]− E[B(Un)]| ≤ δ, or,

2. There is i, j, b such that Prx←D[Pi,j,b(x>i) = xi] >
1
2
+ δ

n
.

Proof. First, assume there is no such (i, j, b). We now assume that Item 1 does not occur
and derive a contradiction. For i ∈ {0, . . . , n} let Zi = (Ui ◦D>i). By assumption, we have
|E[B(Zn))]− E[B(Z0)]| > δ.

By the standard transformation from distinguishability to predictability, there is z ∈
{0, 1}i and b ∈ {0, 1} such that

Pr
x←D

[B(z ◦ x>i)⊕ b = xi] >
1

2
+

δ

n
.

But observe that B(z ◦ x>i) = Bi,j(x>i) for some j ∈ [w], as fixing the first i bits to z is
equivalent to starting the computation from state j = B[vst, z], and hence

Pr
x←D

[Pi,j,b(x>i) = xi] >
1

2
+

δ

n
,

contradicting our assumption.

We note that in some cases one would like the tests that verify if a PRG is good for
B to be themselves implementable by ROBPs. This is direct in the case that the tests are
next-bit-predictors at some vertex of B. In this case, we can still achieve it at the cost of a
factor of two in the width, by creating the program that stores xi, computes t = Bi,j(x>i),
and accepts if xi = b ⊕ t. Such a program has expectation exactly 1/2 under the uniform
distribution, and will have expectation far from 1/2 for some i, j, b for any bad PRG.

5 Local List Decoding in Deterministic Logspace TC0

In this section we will construct our locally list decodable code, decodable by deterministic
uniform TC0 circuits, generated by space-efficient algorithms that take only a small seed.

The construction follows along the lines of [DT23], but here we will need to keep
track of (and save upon) the randomness we use (similar to what is done in [PRZ23]),
and the uniformity of the decoding and encoding, among other modifications that will be
explained later on.

At a high level, our main code C, given in the theorem below, is a composition of
a (variant of) the “GGHKR code” [GGH+07] with the IW derandomized direct product
code [IW97], concatenated with the Hadamard code. In Section 5.1 we will describe the
current work’s implementation of GGHKR, which is a bit more involved than the one in
[DT23]. In Section 5.2 we will establish the encoding and decoding properties we need
from IW and Had.

26

Theorem 5.1 (the code C). There exists a family of logspace-computable codes

C : {0, 1}k → {0, 1}n,

such that for any ε > 0, any confidence δ > 0 and any constant γ > 0, we have that n =
poly

(
(k/ε)1/γ

)
, and the following holds for some universal constant c > 1.

• Local List Decoding. There exists an oracle algorithm Dec that runs in space SDec =
Oγ(log(k/εδ)), takes as input a seed y of length O(1

γ
log k

εδ
), an advice j ∈ [L] for L =

Õ(log(1/δ)/ε2), and makes at most

QDec =

(
kγ log(1/δ)

ε

)c

non-adaptive queries to its oracle, such that Decx(y, j) outputs a (deterministic) oracle TC0

circuit Cy,j of size s = Õ(QDec), so that for any w ∈ {0, 1}n, if x ∈ {0, 1}k is such that
c = C(x) agrees with w in at least 1/2 + ε fraction of its coordinates, then

Pr
y

[
∃j ∈ [L], ∀i ∈ [k] Cw

y,j(i) = xi

]
≥ 1− δ.

• Non-adaptivity. Both Dec and each Cy,j are non-adaptive. In particular,

– On input (y, j), there exists a space-SDec deterministic algorithm that outputs a list
LDec(y, j) ⊆ [k] of size QDec such that Decx(y, j) only ever queries x in locations in
LDec(y, j).

– Each Cy,j makes at most Q = polylog(k/δ) · poly(1/ε) non-adaptive queries to w.
Consequently, on input (y, j), there exists a space-SDec deterministic algorithm that
outputs LC(y, j) ⊆ [n] of size k · Q such that Cw

y,j(i) only ever queries the received
word at locations in LC(y, j).

We will also need a variant of C that is also locally encodable. Naturally, this comes at
the expense of (perfect) local decodability, and so our code will be approximately locally
list decodable. Technically, this is achieved by modifying the GGHKR code, and we elab-
orate on it in Section 5.1. We also need our locally encodable code CLE to be encodable in
uniform TC0, and not only in logarithmic space.

Theorem 5.2 (the code CLE). There exists a family of logspace-computable, systematic22, codes

CLE : Fk → {0, 1}n,

parameterized by d ≤ k, such that for any ε > 0, any confidence δ > 0 and any constant γ > 0,
we have that n = poly

(
(k/ε)1/γ

)
, and the following holds for some universal constants c > 1 and

c′ ∈ (0, 1), as long as |F| is at most exponential in k.
22We use a slightly weaker notion of systematic codes than the standard definition; see Claim 5.25 for the

details.

27

• Approximate Local List Decoding. There exists an algorithm Dec that runs in space
Oγ(log(k/εδ)), takes as input a seed y of length O(1

γ
log k

εδ
) and an advice j ∈ [L] for

L = Õ(log(1/δ)/ε2)], and outputs a (deterministic) oracle TC0 circuit Cy,j of size

sDec =

(
kγd log(|F|/δ)

ε

)c

,

so that for any w ∈ {0, 1}n, if x ∈ Fk is such that C(x) agrees with w in at least 1/2 + ε
fraction of its coordinates, then

Pr
y

[
∃j ∈ [L], Pr

i←[k]

[
Cx,w

y,j (i) = xi

]
≥ 1− d−c

′
]
≥ 1− δ.

We stress that the depth of each Cy,j is a universal constant, and in particular independent
of γ.

• Non-adaptivity. Each Cy,j comprises two circuit.

– A top preprocessing circuit that makes at most Qpre = poly(kγ, 1/ε, log(1/δ)) non-
adaptive queries to the message x, independent of i, and,

– A bottom decoder, that gets i, and the queried coordinates of x, and makes at most
Q = polylog(k/δ) ·poly(1/ε) · Õ(d2 log |F|) non-adaptive queries to the corrupt word
w.

• Local Encoding in Uniform Constant-Depth. The encoding map has locality

D = d · poly(1/ε, log(1/δ)).

Moreover, there is a logspace-uniform TC0 circuit of size poly(d, log k, 1/ε, log(1/δ)), that
on input i ∈ [n], returns the D coordinates q1, . . . , qD to be queried, and another TC0 cir-
cuit of size poly(d, log k, log |F|, 1/ε, log(1/δ)), generated in space O(log(k/ε)), that given
xq1 , . . . , xqD ∈ F, outputs CLE(x)i.
Here too, the constant depth of the encoding circuits is independent of γ.

Remark 5.3. We suspect that the decoding space complexity’s dependence on δ in The-
orems 5.1 and 5.2 is not optimal. For example, if we could replace the sampler in the
proof of Lemma 5.19 by a sampler whose space complexity is O(loglog(1/δ)) (such as the
median-of-averages sampler, see [BGG93; CDS+23]), then the space complexity of the en-
tire construction might be doubly logarithmic in 1/δ (the randomness complexity in this
case would increase by an additive factor of log(1/δ)·loglog(n)). We did not try to optimize
this dependency, since in this paper we only use the codes with a constant δ.

28

5.1 The Locally Uniquely Decodable Code

Here we present our code GGHKR : {0, 1}k → {0, 1}k′ , that is locally uniquely decodable
from 1− τ fraction of agreement by TC0 circuits for τ = 1

400
.23

Lemma 5.4 (the GGHKR code). There exists a family of logspace-computable codes

GGHKR : {0, 1}k → {0, 1}k′ ,

where k′ = poly(k), that is locally uniquely decodable from 1 − τ fraction of agreement, where
τ = 1

400
, in the following manner.

For every confidence parameter δ > 0, there exists an algorithm DecGGHKR that runs in space
O(loglog k + loglog(1/δ)), takes as input a seed y of length O(log(k/δ)), and outputs a (deter-
ministic) oracle TC0 circuit Cy of size

s(k, δ) = polylog(k) · Õ(log3(1/δ)),

with the following guarantees.

• For every w ∈ {0, 1}k′ , and c = GGHKR(x) for x ∈ {0, 1}k, that agrees with w in at least
1− τ fraction of its coordinates,

Pr
y

[
∀i ∈ [k], Cw

y (i) = xi

]
≥ 1− δ.

• Cy is non-adaptive. That is, given y and i, there exists an algorithm that runs in space
O(loglog k + loglog(1/δ)) and outputs the coordinates of w to be queried by Cy(i). Conse-
quently, the algorithm DecGGHKR, on input y, can output a list L(y) ⊆ [k′] of size s(k, δ) · k
such that Cy only ever queries the received word at locations in L(y).

For our approximate uniquely decodable code, we get the following result.

Lemma 5.5 (the GGHKRLE code). There exists a family of logspace-computable codes

GGHKRLE : Fk → {0, 1}k′ ,

parameterized by d ≤ k, where k′ = poly(k), that is locally approximate list decodable, in the
following manner, as long as |F| is at most exponential in k.

For every confidence parameter δ > 0, there exists an algorithm DecGGHKRLE
that runs in space

O(log d+loglog k+loglog |F|+loglog(1/δ)), takes as input a seed y of length O(log(kd/δ)), and
outputs a (determinsitic) oracle TC0 circuit Cy of size

poly(d, log k, log |F|) + Õ(d2 log |F|) · log2(1/δ),

with the following guarantees.

23The constant 1
400 is pretty arbitrary, and any small enough constant will do.

29

• For every w ∈ {0, 1}k′ , and c = GGHKR(x) for x ∈ Fk that agrees with w in at least 1− τ
fraction of its coordinates,

Pr
y

[
Pr

i←[k]

[
Cw

y (i) = xi

]
≥ 1− d−c

]
≥ 1− δ,

for some universal constant c ∈ (0, 1).

• Cy makes Q = Õ(d2 log |F|) · log2(1/δ) non-adaptive queries. That is, given y and i, there
exists an algorithm that runs in the above space and outputs the coordinates of w to be
queried by Cy(x). Consequently, the algorithm DecGGHKRLE

, on input y, can output a list
L(y) ⊆ [k′] of size Q · k such that Cy only ever queries the received word at locations in
L(y).

• The mapping GGHKRLE can be computed by logspace-uniform TC0 circuits, and the decod-
ing map has locality d. More specifically, there exists a logspace-uniform TC0 circuit of
size poly(d, log k), that on input i ∈ [k′], returns the d coordinates q1, . . . , qd ∈ [k] of x
to be queried, and another logspace-uniform TC0 circuit of size poly(d, log |F|), that given
xq1 , . . . , xqd , outputs GGHKRLE(x)i.

We will prove both lemmas in the following subsections.

5.1.1 The Encoding of GGHKR

The encoding follows the one in [DT23], but here we apply another concatenation step to
decrease the decoder size, and establish additional stronger properties. Given x ∈ {0, 1}k,
the encoding GGHKR(x) ∈ {0, 1}k′ goes as follows.

Low-degree extension. We encode x into x(1) ∈ F|F|m via the low-degree extension view
of the Reed–Muller code. Specifically, for |F| = log2 k, a subset H ⊆ F of size log k, and
m = log k

log |H| , to encode a string x ∈ {0, 1}k (in fact, any x ∈ Fk, but the difference won’t
matter), we first set p(i) = xi for all i ∈ Hm ≡ [k] and then extend p to an m-variate
polynomial of degree at most |H| − 1 in each of the m variables. x(1) then comprises all
evaluations of p over Fm. Note that x(1) ∈ Fk1 , where k1 = k2, and denote by C1 : {0, 1}k →
Fk1 the corresponding mapping.

Distance amplification. We employ an [ABN+92]-like distance amplification step that
maps x(1) ∈ Fk1 to x(2) ∈ (Fd)k1 by aggregating symbols according to a bipartite expander
of degree d = poly(F). We use expanders with strongly explicit neighborhood functions,
computable in AC0, as in [DT23]. We let C2 : Fk1 → (Fd)k1 denote the distance amplifica-
tion mapping.

30

Self-concatenation. Now, let us denote by C ′ = C ′(k) : {0, 1}k → Σk1
k the composition

C2 ◦ C1, parameterized by k, where Σk = Fd and |Σk| = 2polylog(k). In [DT23], it is shown
that C ′ can be indeed be computed in space O(log k). We concatenate C ′ with itself twice,
instantiated with the appropriate parameters. Namely, let

• C ′(1) = C ′(k) as above.

• C ′(2) = C ′(log |Σk|), so C ′(2) has length log2 |Σk| and alphabet Γk ≜ Σlog |Σk| of size
2polylog(log |Σk|) = 2polyloglog(k).

• C ′(3) = C ′(log |Γk|), so C ′(3) has length log2 |Γk| and alphabet Λk ≜ Σlog |Γk| of size
2polylog(log |Γk|) = O(log k).

We concatenate C ′(1) with C ′(2), and concatenate the resulting code with C ′(3), denoting the
end result by C ′′, mapping x(2) to x(3). The alphabet of C ′′ is clearly Λk, and the block
length is

k2 = k2 · log2 |Σk| · log2 |Γk| = Õ(k2).

By composition of space-bounded functions, C ′′(k) : {0, 1}k → (Λk)
Õ(k2) is computable in

space O(log k).
For our locally-encodable code GGHKRLE, we skip only the first low-degree extension

encoding (which indeed cannot be computed locally). Namely, in place of C ′(1), we only

do distance amplification. This results in a code C ′′LE that maps Fk1 to (Λk)
Õ(k2). Re-

naming parameters, and treating the initial alphabet F and the expander’s degree d of
the first ABNNR step as parameters, we get that the code C ′′LE = C ′′LE(k,F, d) maps Fk to
k · Õ(d2 log2 |F|) symbols of alphabet of size 2polyloglog(d log |F|).

Concatenting with STV. Finally, we map x(3) to the binary x(4) ∈ {0, 1}k′ by another
code concatenation, the STV one [STV01]. Specifically, we encode each symbol in Λk by
a suitably instantiated Reed–Muller code, concatendated with Hadamard, denoted by
C ′(4) : Λk → {0, 1}polylog |Λk|. The length of C ′(4) is already small enough for a naive encoding
in linear space. We denote the concatenation of C ′′ with C ′4 by C ′′′, having block length
k′ = Õ(k2) · polylog |Λk| = Õ(k2). (Or k · Õ(d2 log2 |F|) in the case of C ′′′LE.)

We record the above construction in the following two claims.

Claim 5.6 (encoding of GGHKR). For any positive integer k, the code GGHKR : {0, 1}k →
{0, 1}k′=Õ(k2) above is computable in space O(log k).

Claim 5.7 (encoding of GGHKRLE). For any positive integers k and d ≤ k, and any alphabet F
of size at most exponential in k, the code

GGHKRLE : Fk → {0, 1}k′=Õ(kd2)

is computable in space O(log k). Moreover, given x ∈ Fk and i ∈ [k′], GGHKRLE(x)i can be
computed by making at most d queries to x.

31

The locality property readily follows from the fact that we only need to query the d
neighbors of i in the bipartite expander.

The circuit complexity of GGHKRLE. In Section 6, we will need a stronger guarantee
on the encoding map GGHKRLE. Not only should it be logspace computable, but in fact
encodable by TC0 circuits that can be generated in small space.

Recall that the first part of the encoding GGHKRLE(x)i is to determine the coordinates
of x to be queried.

Claim 5.8 (circuit complexity of GGHKRLE – I). There exists an algorithm that runs in space
O(loglog k+log d), and outputs a TC0 circuit of size poly(d, log k) that on input i ∈ [k′], returns
the d coordinates q1, . . . , qd ∈ [k] to be queried. (That is, for all x, GGHKRLE(x)i only depends on
xq1 , . . . , xqd .)

Proof. Let Γ: [k]× [d]→ [k] be the bipartite expander used in the first step of the encoding,
and recall that Γ is strongly explicit, and furthermore it is computable in polynomial-sized
AC0 circuits. Moreover, Γ(u, j) is computed by taking a walk of length O(log d), labeled by
j, on an undirected graph (in particular, the Margulis–Gabber–Galil expander), starting
from the vertex u. Thus, to iterate over the set Γ−1(v), one can simply iterate over Γ(v, j)
for all j-s.

Given a coordinate i ∈ [k′], determining q1, . . . , qd can be done as follows. Recall that
GGHKRLE(x)i is obtained by an alphabet enlargement step x 7→ x′ ∈ (Fd)k according to
Γ, and then encoding each element of x′ by an inner code. So first, we need to map the
input i to the unique i′ ∈ [k] so that GGHKRLE(x)i is part of the encoding of x′i′ . This
can be done by standard arithmetic of integers with O(log k) bits, and in particular using
logspace-uniform TC0 circuits of size polylog(k).

Once we computed i′, we need to output the set Γ−1(i′). This can be done by going
over all Γ(i′, j) for j ∈ [d]. Each computation can be implemented by a logspace-uniform
AC0 circuit of size polylog(k), and so the size bound follows.

Next, once we have xq1 , . . . , xqd , we want a TC0 circuit that computes GGHKR(x)i.

Claim 5.9 (circuit complexity of GGHKRLE – II). There exists an algorithm that runs in space
O(log d + loglog |F|), and outputs a TC0 circuit of size poly(d, log |F|) that given the above
xq1 , . . . , xqd ∈ F, outputs GGHKRLE(x)i.

Proof. The required complexity property is closed under (a constant number of) compo-
sitions and concatenations, so it suffices to argue for each code separately.

• The output of the ABNNR step C2 is given to us as input.

• Low degree extension and distance amplification, C ′(M), for message lengths M ≤
d log |F|. We already saw that the distance-amplification step can be done by the

32

appropriate TC0 circuits (or even in AC0), so it’s left to establish the fact that low-
degree extension can be done efficiently enough, and we will use the notation of
Section 5.1.1.

Given the subset H ⊆ F′ of size logM , where |F′| = log2 M , given a function
x : Hm → F′, where m = logM

log |H| , the unique extension to f : F′m → F′ can be com-
puted as

f(α) =
∑
h∈Hm

x(h) · Lh(α),

where Lh(z) =
∏

β∈H\{h}
z−β
h−β is the Lagrange polynomial. Using the fact that ele-

mentary operations in F can be done in logspace-uniform TC0 (see, e.g., [RT92]), we
get that each f(α) can be computed by a logspace-uniform TC0 circuit of size

poly(|H|m · log |F′|) = poly(d, log |F|),

as desired.

• The STV encoding for message length polyloglog(d log |F|). This too can be done in
constant depth (and size ≤ poly(d, log(|F|)))w3: The Reed–Muller encoding is the
same (the fact that we’re using a different regime of parameters only affects the
decoding), and the Hadamard encoding can be easily done in AC0.

5.1.2 The Uniform Decoding of GGHKR

The uniform decoding of GGHKR (and its variant GGHKRLE) is similar to the one in [DT23],
but here we make it randomness-efficient, and keep track of our use of randomness, since
eventually we aim for a deterministic reconstruction.

Decoding the RM code. Observe that the only place we use randomness for the decod-
ing is the choice of a random line in the Reed–Muller decoding C1 (the STV code will be
decoded by brute force). More formally, we choose a random point in Fm, and the other
point needed to describe a line is determined by the location we wish to decode. We aim
to (uniquely) decode from very small distance, concretely δ1 = 1

100|F| .
24 Recall that in lo-

cal decoding of such RM codes, we only need choose a random line that passes through
the desired location and query the rest of the coordinates (or some subset of them). By a
simple union-bound, a random line, determined by a random point in Fm, will be good
with probability at least 99

100
, in the sense that all queried points will be errorless. Then, a

simple Lagrange interpolation suffices to recover the desired coordinate.
Instead of choosing a point uniformly at random from Fm (followed by, perhaps, an

error-reduction procedure at the end of the decoding procedure), we use a dedicated seed

24Instead of 1
100|F| , we can replace |F| with the precise degree of the univariate restriction, namely (|H| −

1)m. However, this difference will be meaningless to us.

33

to sample a few lines, decode using each line, and take the majority vote. This is the same
approach taken in [PRZ23]. For the sampling, we use an (ε = 1

200
, δ) sampler

Γk : {0, 1}r × [t]→ Fm

given to us in Theorem 3.11. Thus, t = O(log(1/δ)) and r = m log |F| + O(log(1/δ)) =
O(log(k/δ)).

This gives us the following claim.

Claim 5.10. There exists an algorithm Dec1 = Dec1(k) that gets as input a confidence parameter
δ > 0 and a seed y ∈ {0, 1}r=O(log(k/δ)), runs in deterministic space O(loglog k + loglog(1/δ)),
and outputs a (deterministic) oracle TC0 circuit Cy of size polylog(k) · log(1/δ) with the following
guarantees.

• For every w ∈ Fk1=k2 , and c = C1(m) for m ∈ {0, 1}k that agrees with w in at least 1− δ1
fraction of its coordinates,

Pr
y

[
∀x ∈ [k], Cw

y (x) = mx

]
≥ 1− k · δ.

• Cy queries w in at most O(log2 k · log(1/δ)) locations, non-adaptively. That is, given y and
x, there exists an algorithm that runs in space O(loglog k + loglog(1/δ)) and outputs the
coordinates of w to be queried by Cy on input x.

Consequently, by taking the union over all x-s, the algorithm Dec1, on input y, can output
a list L(y) ⊆ [k2] of size Õ(k) · log(1/δ) such that Cy only ever queries the received word at
locations in L(y).

Proof. We treat the input x as a point in Hm. Given a seed y to the sampler Γk, for any
i ∈ [t], consider the decoding procedure described above of passing a line determined by
the points x and Γ(y, i) ∈ Fm, querying w along the line, and interpolating to find x.

More formally, let ℓi denote the line x + a · Γ(y, i) for a ∈ F. Let α1, . . . , α(|H|−1)m+1 be
distinct elements in F⋆, and for each j, let zi,j = (fw ◦ ℓi)(αj), for fw being the low-degree
extension given by w. The ith guess for x, call it g(x, i), is determined by interpolating to
find a degree-(|H|− 1)m univariate polynomial hi such that hi(αj) = zi,j for all j and then
outputting hi(0). This procedure, essentially Lagrange interpolation, can be done by an
oracle TC0 circuit of size poly(|F|), and we can output the circuit’s description in space
O(log |F|) (see [DT23]).

Dec1 can then run over all i ∈ [t], compute Γ(y, i), and hard-wire them to the decoding
circuit it outputs. Note that given x and Γ(y, i), the |F| oracle queries to w are fixed,
and computing g(x, i), as noted above, can be done in TC0 generated in O(log |F|) space.
All that is to output a description of a circuit that computes the majority of the g(x, i)-s.
Recalling that Γ is computable in logarithmic space, Dec1 can be implemented to run in
space O(log t+ log r + log |F|) = O(loglog k + loglog(1/δ)). The size of the circuit that Dec1
outputs is t · poly(|F|) = polylog(k) · log(1/δ). The correctness readily follows from the
properties of the sampler and a simple union-bound.

34

Decoding C2. The ABNNR step is deterministic, so we can use the uniform decoding re-
sult from [DT23]. There, it is shown that there exists an oracle TC0 circuit of size polylog(k)
generated in space O(loglog k), that on input a location i ∈ [k1], queries the received word
w ∈ (Fd)k1 in d locations, that depend only on i. The parameters are chosen so that we can
(uniquely) locally decode from some constant relative distance β1 = β1(τ).25 We record
the following claim.

Claim 5.11. There exists an algorithm Dec2 = Dec2(k, d, |F|) that runs in deterministic space
O(log d+ loglog k + loglog |F|) and outputs a (deterministic) oracle TC0 circuit C of size

poly(d, log |F|, log k)

with the following guarantees.

• For every w ∈ (Fd)k1=k2 , and c = C2(m) for m ∈ Fk1 that agrees with w in at least 1 − β1

fraction of its coordinates, Cw(i) = mi for every i ∈ [k1].

• C queries w in at most d locations, non-adaptively. That is, given i, there exists an algorithm
that runs in space O(loglog k) and outputs the coordinates of w to be queried by C on input
i.

We will be using this claim with two parameters settings. The first, with GGHKR, |F|
and d are always polylog(k), in which case the decoding circuit is of size polylog(k), and
can be generated in space O(loglog k). The second, with GGHKRLE, both F and d ≤ k
are general parameters. Note, however, that this applies to the first distance amplifica-
tion step in GGHKRLE. When we self-concatenate, the ABNNR parameters of GGHKR and
GGHKRLE are the same.

Decoding C ′. Composing C1 and C2 into C ′, we get a local (unique) decoder for C ′, from
constant error, in the standard manner: We first apply the local decoder for C1 to produce
the query locations, which are then passed to the local decoder of C2. The decoder of C2
retrieves the values in the requested locations and passes them back to the decoder of
C1, that computes the requested location. For a given seed y for the local decoder of C1,
all queries are done in parallel. We obtain the following claim, noting that outputting
the circuit that performs the decoding requires only elementary manipulations beyond
outputting the decoding circuits for each code.

Claim 5.12. There exists an algorithm Dec′ = Dec′(k) that gets as input a confidence parameter
δ > 0 and a seed y ∈ {0, 1}r=O(log(k/δ)), runs in deterministic space O(loglog k + loglog(1/δ)),
and outputs a (deterministic) oracle TC0 circuit Cy of size

s(k) = polylog(k) · log(1/δ) + d · poly(d, log k) = polylog(k) · log(1/δ)

with the following guarantees.
25The exact choice of β1 will not affect the parameters, and we will instantiate the code with different

choices of β1 when applying it over different lengths.

35

• For every w ∈ (Fd)k1 , and c = C ′(m) for m ∈ {0, 1}k that agrees with w in at least 1 − β1

fraction of its coordinates,

Pr
y

[
∀i ∈ [k], Cw

y (i) = mi

]
≥ 1− k · δ.

• Cy queries w in at most d · O(log2 k · log(1/δ)) = polylog(k) · log(1/δ) locations, non-
adaptively. That is, given y and i, there exists an algorithm that runs in space O(loglog k+
loglog(1/δ)) and outputs the coordinates of w to be queries by Cy on input i.

Consequently, the algorithm Dec′, on input y, can output a list L(y) ⊆ [k1] of size Õ(k) ·
log(1/δ) such that Cy only ever queries the received word at locations in L(y).

Decoding the self-concatenation. Recall that we concatenate C ′(k) with C ′(log |Σk|), and
then with C ′(log |Γk|). We need the end result, C ′′, to be locally decodable from constant
relative distance, say β =

√
τ . Towards that end, we set the decoding distance of those

three codes accordingly, say β1/4 < 1
2
. To get a local decoder for C ′′, we employ standard

decoding of concatenated codes, but we need to keep track of the randomness we use,
since each instantiation of C ′ requires a random seed. In more details, on an input x ∈ [k],

1. We use a seed y1 ∈ {0, 1}r(k) in order to specify q1 = polylog(k) · log(1/δ) query
locations.

2. For every such query, we use the decoder for C ′(log |Σk|) to decode the relevant Σk-
symbol by going over all log |Σk| locations. To do so, we need seeds y(1)2 , . . . , y

(log |Σk|)
2 ,

each of length r(log |Σk|).

3. Each such seed specifies q2 = polylog(log |Σk|) · log(1/δ) query locations.

4. For each such query, we use the decoder for C ′(log |Γk|) to decode the relevant Γk-
symbol by going over all log |Γk| locations. To do so, we need seeds y(1)3 , . . . , y

(log |Γk|)
3 ,

each of length r(log |Γk|).

5. Each such seed specifies q3 = polylog(log |Γk|)·log(1/δ) query locations to Λk-symbols
in our received word w.

We start with some bookkeeping. For any given i ∈ [k] and a sequence of seeds as above,
the number of queries to w ∈ (Λk)

Õ(k2) is

Q = q1 · log |Σk| · q2 · log |Γk| · q3 = polylog(k) · log3(1/δ). (1)

To save randomness, we use the same seed in each level. The total length of seed needed
is thus r(k)+ r(log |Σk|)+ r(log |Γk|), which is dominated by r(k) = O(log(k/δ)). The error
probability, by a simple union-bound, is Q · δ, and we multiply this by k if we want to
succeed for every i using the same seed.

36

As all queries are done in parallel, the resulting circuit is a TC0 one, of size

s(k) + q1 · log |Σk| · s(log |Σk|) + q1 · q2 · log |Γk| · s(log |Γk|) = polylog(k) · log3(1/δ). (2)

We record the above in the following claim.

Claim 5.13. There exists an algorithm Dec′′ = Dec′′(k) that gets as input a confidence parameter
δ > 0 and a seed y ∈ {0, 1}r=O(log(k/δ)), runs in deterministic space O(loglog k+loglog(1/δ)), and
outputs a (deterministic) oracle TC0 circuit Cy of size polylog(k) · log3(1/δ) with the following
guarantees.

• For every w ∈ (Λk)
k2=Õ(k2), and c = C ′′(m) for m ∈ {0, 1}k that agrees with w in at least

1−
√
τ fraction of its coordinates,

Pr
y

[
∀i ∈ [k], Cw

y (i) = mi

]
≥ 1− kQ · δ.

• Cy queries w in at most Q = polylog(k) · log3(1/δ) locations, non-adaptively. That is, given
y and i, there exists an algorithm that runs in space O(loglog k + loglog(1/δ)) and outputs
the coordinates of w to be queries by Cy on input i.

Consequently, the algorithm Dec′′, on input y, can output a list L(y) ⊆ [k2] of size Q · k
such that Cy only ever queries the received word at locations in L(y).

Decoding STV. In our STV encoding, we map Λk into a string of length polylog |Λk| =
polyloglog(log k). We don’t need local decoding here, since the block length is very small
and trivial decoding will suffice, namely going over all messages and checking them one
by one. Specifically, for all z ∈ Λk, let Dz be the circuit that has C ′(4)(z) hard-coded, gets or-
acle access to some w and returns the Hamming distance between w and C ′(4)(z). Each Dz

is a (multi-output bit) TC0 circuit of size polyloglog(log k) that can be generated, naively, in
this much space (or even in quadruple-log space, see [CT21b]). Now, the decoder simply
needs to choose the z for which Dz gives the minimal value. This can be implemented by
a (non-adaptive) TC0 circuit of size poly(|Λk|) = O(log k) that can be generated in space
O(log |Λk|) = O(log log k).

The final decoding. We concatenate C ′′ with C ′(4). This increaes the number of queries
Q by only a multiplicative factor of log |Λk|, which is negligible. Following the same
reasoning as above (but not caring about locality), we get the following claim.

Claim 5.14. There exists an algorithm DecGGHKR = DecGGHKR(k) that gets as input a confidence
parameter δ > 0 and a seed y ∈ {0, 1}r=O(log(k/δ)), runs in deterministic space O(loglog k +
loglog(1/δ)), and outputs a (deterministic) oracle TC0 circuit Cy of size polylog(k) · log3(1/δ)
with the following guarantees.

37

• For every w ∈ {0, 1}k′ , and c = GGHKR(m) for m ∈ {0, 1}k that agrees with w in at least
1− τ fraction of its coordinates,

Pr
y

[
∀i ∈ [k], Cw

y (i) = mi

]
≥ 1− kQ · δ.

• Cy queries w in at most Q = polylog(k) · log3(1/δ) locations, non-adaptively. That is, given
y and i, there exists an algorithm that runs in space O(loglog k + loglog(1/δ)) and outputs
the coordinates of w to be queries by Cy on input i.

Consequently, the algorithm DecGGHKR, on input y, can output a list L(y) ⊆ [k′] of size Q ·k
such that Cy only ever queries the received word at locations in L(y).

Choosing δ̄ such that kQ · δ̄ = δ, recalling that |y| = O(log(k/δ̄)), and considering the
uniform encoding of Claim 5.6, we thereby proved Lemma 5.4.

The final decoding – the local encoding variant. Here, recall that we dispense with the
first RM encoding of C ′(k), but keep it in C ′(log |Σk|) and C ′(log |Λk|). We then still concate-
nate with STV. Thus, the decoding is the same, only without the top RM decoding, so it
is left to just keep track of parameters, leaving the parameters F and d unset. However,
note that GGHKRLE is now no longer locally decodable, but only locally approximately
decodable.

Let δs be the confidence parameter of the sampler used in the distance amplification
step. We use balanced bipartite expanders, so δs = d−Ω(1) (see, e.g., [GGH+07]), and we
set the parameters so that the accuracy parameter is constant (1

2
− τ suffices).

Claim 5.15. There exists an algorithm DecGGHKRLE
= DecGGHKRLE

(k, d,F) that gets as input a
confidence parameter δ > 0 and a seed y ∈ {0, 1}r for r = O(log d log |F|

δ
), runs in deterministic

space O(log d + loglog k + loglog |F| + loglog(1/δ)), and outputs a (deterministic) oracle TC0

circuit Cy of size
poly(d, log k, log |F|) + Õ(d2 log |F|) · log2(1/δ)

with the following guarantees.

• For every w ∈ {0, 1}k′ , and c = GGHKRLE(m) for m ∈ Fk that agrees with w in at least
1− τ fraction of its coordinates,

Pr
y

[
Pr

i←[k]
[Cw

y (i) = mi] ≥ 1− δs

]
≥ 1− kQ · δ.

• Cy queries w in at most Q = Õ(d2 log |F|) · log2(1/δ) locations, non adaptively. That is,
given y and i, there exists an algorithm that runs in space O(log d + loglog k + loglog |F|)
and outputs the coordinates of w to be queried by Cy on input i.

Consequently, the algorithm DecGGHKRLE
, on input y, can output a list L(y) ⊆ [k′] of size

Q · k such that Cy only ever queries the received word at locations in L(y).

38

The bound on r, using the above notation, is obtained by r(log |Σk|) + r(log |Γk|), re-
calling that log |Σk| = d log |F| and log |Γk| = polylog(log |Σk|). To bound the number of
queries, we replace q1 by d in Equation (1). To obtain the bound on the size, we further
replace the s(k) term in Equation (2) with the ABNNR decoding size. Finally, the space
bound can be inferred by noticing that throughout, it is logarithmic in the circuit’s size.

The above lemma, together with the encoding results, imply Lemma 5.5.

5.2 The IW and Had Codes

We now recall the [IW97] and Hadamard codes. The results essentially follow from prior
work, but we call attention to two areas where our presentation is nonstandard: We ver-
ify that the encoder and decoder can be implemented by logspace uniform TC0 circuits
(following the approach of [CTW23]), and moreover that the decoder uses only logarith-
mically many random bits (following the approach of [PRZ23]).

Theorem 5.16 ([GL89]). For every k ∈ N, the Hadamard code Had : {0, 1}k → {0, 1}2k satisfies
the following.

1. Uniform Local Encoding. There is a space O(log k) algorithm that outputs a size O(k)
oracle TC0 circuit C such that Cf (i) = Had(f)i.

2. Deterministic Decoding. There is a space O(log(k/ε) + loglog(1/δ)) algorithm DecHad
that, given ε > 0 and δ > 0 and a seed y ∈ {0, 1}O(k+log(1/δ)), outputs deterministic oracle
circuits Cy,1, . . . , Cy,L with L = O(k log(1/δ)/ε2), with the following guarantees.

• Cy,i is an oracle TC0 circuit of size S = poly(k/ε) with one majority gate, that makes
non-adaptive oracle queries.

• For every w ∈ {0, 1}2k and f̄ = Had(f), with agreement at least 1/2 + ε, it holds that

Pr
y
[∃i ∈ [L], ∀x ∈ [k], Cw

y,i(x) = fx] ≥ 1− δ.

Item 1 is immediate from the definition of the Hadamard code. The proof of Item 2
closely follows that of [PRZ23], with the exception that we require the small-bias space
be strongly explicit. To prove Item 2, we first show that we can list decode with constant
advantage.

Claim 5.17. There is a space O(log(k/ε)) algorithm DecHad that, given ε > 0 and a seed y ∈
{0, 1}O(k), outputs deterministic oracle circuits Cy,1, . . . , Cy,L with L = O(k/ε2), with the fol-
lowing guarantees.

• Cy,i is an oracle TC0 circuit of size S = poly(k/ε) with one majority gate, that makes
non-adaptive oracle queries.

• For every w ∈ {0, 1}2k and f̄ = Had(f), with agreement at least 1/2 + ε, it holds that

Pr
y
[∃i ∈ [L], ∀x ∈ [k], Cw

y,i(x) = fx] ≥ 2/3.

39

Proof. Let ℓ = ⌈log(ck/ε2+1)⌉ for a sufficiently large constant c to be chosen later, and de-
fine L = 2ℓ. Let Bias : {0, 1}t=O(k) → {0, 1}k·ℓ be the small bias generator of Proposition 3.14
with output length k · ℓ and error ε = 2−4k, and note that the output can be computed in
space O(log k). Then, DecHad operates as follows. Let

(v1, . . . , vℓ) ≜ Bias(y), (b1, . . . , bℓ) ≜ ⟨i⟩,

and for J ⊆ [ℓ] let bJ = ⊕i∈Jbi and vJ = ⊕i∈Jvi, and let ei for i ∈ [k] be the ith standard
basis vector. Then, DecHad outputs the circuit

Cw
y,i(x) = MAJJ⊆[ℓ]:J ̸=∅(b

J ⊕ wvJ⊕ex).

By [PRZ23, Lemma 4.13], we have that the distribution of (vJ , vJ ′
) is 2−2k-close to U2k in

ℓ1 distance for every J ̸= J ′.
Now fix w and f̄ = Had(f) with agreement at least 1/2 + ε. For every x ∈ [k], let

Sx = {v : wv⊕ex = f̄v⊕ex ⇐⇒ wv⊕ex = ⟨f, v ⊕ ei⟩}.

Furthermore, observe that |Sx| ≥ (1 + ε)2k for every x, which follows from Uk ⊕ ex being
uniform over {0, 1}k for every k.

Lemma 5.18. We have that for every x ∈ [k],

Pr
y

[
|{J : vJ ∈ Sx}| ≥ 2ℓ−1 + 1

]
≥ 1− 1

100k
.

This follows using the exact same proof as [PRZ23, Claim 4.18] (the only difference
is that in [PRZ23] the constant c was chosen to be 128 and the error bound was 1/2k,
whereas we choose a sufficiently large c > 128 and deduce an error bound of 1/100k).
Thus by Lemma 5.18, with probability 0.99 over y, we have that for every x,

|{J : vJ ∈ Sx}| ≥ 2ℓ−1 + 1.

We claim that for every y with this property, the circuit Cy,i, where ⟨i⟩ = (b1, . . . , bℓ) is such
that bj = ⟨f, vj⟩, satisfies the decoding property. Fixing an arbitrary x, we have that for
every J where vJ ∈ Sx (which occurs for a majority of the J),

bJ ⊕ wvJ⊕ex = ⟨f, vJ⟩ ⊕ ⟨f, vJ ⊕ ex⟩ = ⟨f, ex⟩,

and hence the circuit is correct on input x for every x. Each circuit Cy,i is clearly of size
S = O(k · L) as claimed, and makes only non-adaptive oracle queries.

Proof of Item 2. Let Samp : {0, 1}s+O(log(1/δ)) × [q]→ {0, 1}s be the sampler of Theorem 3.11
set with accuracy ε = 0.1 and confidence δ (so q = O(log(1/δ))), and note that each output
bit of the sampler is computable in space O(log s+log log(1/δ)) = O(log(k)+ log log(1/δ)).
DecHad takes in y ∈ {0, 1}s+O(log(1/δ)) and lets

(y1, . . . , yq) ≜ (Samp(y, 1), . . . , Samp(y, q)).

40

Then, let C i be the list of circuits produced by Claim 5.17 with a random seed yi, and let
the final output be ∪i∈[q]C

i. Note that we can compose the output of the sampler with the
procedure from Claim 5.17 in overall space O(log(k/ε) + log log(1/δ)), by Proposition 3.5.
Finally, it is clear that we fulfill the decoding promise with probability at least 1− δ.

We now state the IW code with deterministic decoding.

Lemma 5.19 ([IW97]). There exists a constant cIW > 1 such that for any two constants τIW, γIW >
0 and any εIW > 0, the following holds. There exists a code IW : {0, 1}N → ({0, 1}t)N ′ with

t = (cIW/τIW
2) · log(1/εIW), N ′ = (N/εIW)cIW(1/γIW+1/τIW

2),

with the following properties:

• Uniform Encoding. There is a space O(logN) algorithm EncIW that outputs an oracle TC0

circuit C of size (log(N)·t)cIW , such that Cf (z, i) = IW(f)(z,i) for every z ∈ [N ′] and i ∈ [t].

• Approximate Local List Decoding. There exists a space O(log(N/δ)) algorithm DecIW
that gets as input δIW > 0, a seed z ∈ {0, 1}O(log(N/δ)) and oracle access to a word f ∈
{0, 1}N . DecIW makes at most S = polylog(1/δIW)·NγIW/εIW

cIW non-adaptive oracle queries
to f and outputs a circuit Cz satisfying the following:

– Cz is a deterministic oracle TC0 circuit of size S that has one majority gate of fan-in
at most Q = (log(N) log(1/δIW)/εIW)cIW , and makes at most Q non-adaptive oracle
queries.

– For every w ∈ (Σ)N
′ with agreement at least ε with f̄ = IW(f) (over the coordinates

i ∈ [N ′], viewing each coordinate as a symbol in Σ = {0, 1}t), with probability 1− δIW
over z,

Pr
x
[Cw

z (x) = fx] ≥ 1− τIW.

For clarity of presentation, for the remainder of the section set τ = τIW, γ = γIW,
ε = εIW, δ = δIW, and let n = logN . Moreover, as if εIW < N−1 < N1/cNW the statement is
trivial, we assume that ε > 1/N for the remainder of the proof. Set t = c(1/τ 2) log(1/ε) for
a sufficiently large constant c > 1 to be determined later.

The Construction. We initialize the code using the following two ingredients:

• The sampler Samp : {0, 1}m1 × [t] → [N] of Theorem 3.11 with accuracy τ/2 and
confidence ε/8. Note that this implies m1 = logN +O(t).

• A design Des : {0, 1}m2 × [t] → [N] with α = γ/2. With these parameters, m2 =
O(1

γ
logN) and t can be as large as Nγ/c for a universal constant c.

41

Now let N ′ = 2m1 · 2m2 so that logN ′ = m1 +m2 = O(n/γ+ log(1/ε)/τ 2). For z̄ = (z1, z2) ∈
{0, 1}m1 × {0, 1}m2 and i ∈ [t], let

Loc(z̄, i) = Samp(z1, i)⊕ Des(z2, i) ∈ [N].

Then, define f̄ = IW(f), where for every z̄,

f̄z̄ = (fLoc(z̄,1), . . . , fLoc(z̄,t)).

The Encoding. To show that the encoding satisfies the desired properties, we verify the
construction of [CTW23] is logspace-uniform (whereas their result is stated as P-uniform).
To prove this, it suffices to prove that we can output a TC0 circuit that computes Loc in
space O(logN).

Claim 5.20. There is a space O(logN) algorithm that outputs a TC0 circuit that computes Loc
of size poly(t · logN).

Proof. By Theorem 3.11, there is a space O(logm1) = O(loglog(N/ε)) algorithm that out-
puts an AC0[⊕] circuit of size poly(m1) = polylog(N) that computes Samp(·, ·). For the
design, we recall by Theorem 3.16 that there exist designs computable in space O(logN)
with the desired parameters. We compute this design and hardwire it into the circuit
(which is of size at most tn), so that given z2 and i, the circuit can compute Des(z2, i).
Then, we can easily XOR the two values together, and do this in parallel for every i ∈ [t],
resulting in a TC0 circuit of size poly(t · logN).

The Decoding. The decoding follows from the approach of [PRZ23], where we sample
many probabilistic circuits using a sampler, and have the decoding circuit take the major-
ity over their output. Note that if δ < 2−N the statement is trivial, so we assume δ ≥ 2−N .
We recall the probabilistic circuit from [DT23]:

Lemma 5.21 ([DT23], Lemma A.2). There exists a space O(logN) algorithm that, given a seed
y ∈ {0, 1}ℓ=log(N ′)−log(N)+log(t)+t+1, and oracle access to f ∈ {0, 1}N , acts as follows. The algo-
rithm makes (t− 1) ·N (γ/2) queries to f , and prints a circuit Fy such that the following holds.

• For every w ∈ ΣN ′ and f̄ = IW(f) with agreement at least ε (over the coordinates i ∈ [N ′],
viewing each coordinate as a symbol in {0, 1}t), for at least 1 − τ/2 fraction of the inputs
x ∈ {0, 1}N , we have Pry[Fw

y (x) = fx] ≥ 1/2 + ε/64.

• Fy is an oracle AC0 circuit of size O(tNγ/2) that makes a single oracle query.

It is then easy to use the approach of [PRZ23] to obtain the claim about decoding.

Proof of Lemma 5.19. Let Samp : {0, 1}m × [Q] → {0, 1}ℓ be the strong sampler of Theo-
rem 3.12 with accuracy ε/128 and confidence δτ/2 (note that this is not the same sam-
pler as in the encoding step). Note that with this choice of parameters we have Q =

42

poly(log(1/τδ)/ε) and m = ℓ + O(log(1/ετδ)) = O(log(N/δ)), and the sampler can be
computed in space O(log(N/δ)). Then, DecIW operates as follows. Letting

(y1, . . . , yQ)← Samp(z, ·),

DecIW outputs the circuit
Cw

z (x) = MAJi∈[Q](F
w
yi
(x)),

where the Fyi-s are constructed using the algorithm of Lemma 5.21. The circuit is of size

S = Q · |Fy| = poly(log(1/τδ)/ε) ·O(tN (γ/2)) = polylog(1/δ) ·Nγ/εc,

has a single majority gate of fan-in Q, and makes at most Q non-adaptive oracle queries,
as claimed. Moreover, DecIW makes at most Q · (t− 1) ·N (γ/2) ≤ S oracle queries in total.

We now argue the second property holds. Fix an arbitrary w ∈ Σn′ and f where w has
agreement at least ε with f̄ = IW(f). By Lemma 5.21, there is a set G ⊆ {0, 1}n of density
at least 1− τ/2 such that for every x ∈ G,

Pr
y
[Fw

y (x) = fx] ≥
1

2
+

ε

64
,

and thus
Pr
z
[Cw

z (x) = fx] ≥ 1− δτ

2
.

Call z good if Cw
z is incorrect on at most a τ/2 fraction of x in G. By an averaging argument,

z must be good with probability at least 1− δ. For every good z, we satisfy the decoding
property.

Lemma 5.19 for the code CLE. For the approximate locally decodable code, that does not
invoke an initial step of low-degree extension decoding, we will need of a variant of
Lemma 5.19 in which it is not DecIW that makes the queries to f , but rather Cy itself. This
is easy to achieve: DecIW will still make the sampler queries and compute the design, all
of which be hard-coded into Fyi . Looking at [DT23, Lemma A.2], we see that we need
to query f in locations specified by Loc. Following Claim 5.20, this can be done in size
poly(t · logN) by TC0 circuits generated in space O(logN). Thus, each F f,w

zi
, beyond the

queries to w, will first retrieve the required coordinate of f . This adds at most O(t·Nγ/2) <
S queries, we can still take the size bound to be S (incurring only poly(t · logN) in size),
and finally each F f,w

zi
can still be generated in the allotted space O(logN).

The Composed Code. We collect together the statement of the composed code IW◦Had.

Lemma 5.22. There exists a constant c > 1 such that for any constants τ, γ > 0, the following
holds. There exists a code

C : {0, 1}N → {0, 1}N̂ with N̂ = (N/ε)c(1/γ+1/τ2),

for any ε > 0, with the following properties.

43

• Uniform Encoding. There is a space O(log(N/ε)) algorithm EncC that outputs an oracle
TC0 circuit C of size (log(N/ε))c(1/γ+1/τ2), such that Cf (i) = C(f)(i).

• Approximate Local Decoding. There exists a space O(log(N/εδ)) algorithm DecC that
gets as input a seed y ∈ {0, 1}O(log(N)+log(1/δ)), i ∈ [L] for L = Õ(log(1/δ)/ε2), and oracle
access to a word f ∈ {0, 1}N . DecfC(y, i) makes at most S = Nγ ·(log(1/δ)/ε)c non-adaptive
oracle queries to f and outputs a circuit Cy,i satisfying the following:

– Cy,i is a deterministic TC0 oracle circuit of size S with Q = (log(N) · log(1/δ)/ε)c
majority gates of fan-in at most Q, and makes at most Q non-adaptive oracle queries.

– For every w ∈ {0, 1}N ′ and f̄ = C(f) with agreement at least 1/2+ε, with probability
1− δ over y, there exists i such that

Pr
x
[Cw

y,i(x) = fx] ≥ 1− τ.

Moreover, the algorithm DecC on input y can output a list L(y) ⊆ [N] of size S such that
DecfC(y, i) only ever queries f at locations in L(y).

Proof. Let
IW : {0, 1}N → ({0, 1}k)N ′

, Had : {0, 1}k → {0, 1}2k

be the codes of Lemma 5.19 with

τIW = τ, γIW = γ, εIW = Θ

(
1

ε4 log2(1/δ)

)
and Theorem 5.16 respectively. Note that k = (c/τ 2)·log(1/εIW) and N ′ = (N/εIW)c(1/γ+1/τ2).
Let the composed code be C = Had ◦ IW, so

N̂ = 2k ·N ′ = (N ′/εIW)2c(1/γ+1/τ2).

For j ∈ [N ′], let Ij be the bits in the final code corresponding to the Hadamard encoding
of the jth symbol of IW.

Encoding. The encoding statement is immediate given the choices of parameters.

Constructing the Decoder. We now construct the decoder. Let DecHad be the decoder
of Theorem 5.16 with

εHad = ε/2, δHad = δ/4,

and note that DecHad runs in space O(log(k/ε) + loglog(1/δ)). Let DecIW be the decoder
of Lemma 5.19 with δIW = δ/4 and note that DecIW runs in space O(log(N/δ)) and we have
list size

L = O(k log(1/δ)/ε2) = O(log(1/εδ) loglog(1/δ)/ε2) = Õ(log(1/δ)/ε2).

44

The final decoder takes in y = (y1, y2) and i, where

y1 ∈ {0, 1}O(log(N/δ)), y2 ∈ {0, 1}O(k+log(1/δ)), i ∈ [L].

The decoder DecfC(y) instantiates DecfIW(y1). Moreover, define

(H1, . . . , HL)← DecHad(y2),

where we slightly abuse notation and let Hj : ∅ → {0, 1}k be an oracle circuit that takes
no input and returns the entire k-bit decoded value. Now, whenever DecfIW(y) prints an
oracle gate for IW, instead print Hi, where if the oracle gate receives index j the circuit
gives Hi the bits corresponding to the Hadamard encoding of symbol j.

Success Probability of the Decoder. It now suffices to argue the decoder satisfies the
desired properties. Fix w ∈ {0, 1}N ′ and f̄ = C(f) with agreement at least 1/2 + ε For
every j ∈ [N ′], let Ij be the bits of f̄ corresponding to the Hadamard encoding of IW(f)j .
Let

G =
{
j : wIj and f̄Ij have agreement at least 1/2 + ε

}
.

By an averaging argument, G has density at least ε/2. Moreover, for every j ∈ G, by The-
orem 5.16,

Pr
y2

[
∃i, H

wIj

i = IW(f)j

]
≥ 1− δ

4
,

so the probability that y2 decodes at least 1/2 of j ∈ G is at least 1− δ/2.
Call such a y2 good, so for every good y2 there exists i ∈ [L] such that at least an

(ε/4L) fraction of symbols of IW are decoded correctly. Recall that εIW = Θ(ε−4/ log2(1/δ)),
so k = O(log(log(1/δ)/εIW)/τ 2) (and by choosing appropriate constants, we have that
εIW ≤ (ε/4L)). Thus, for every good y2 there is some fixed i such that H

wIj

i is correct on at
least an (ε/200L) ≥ εIW fraction of symbols. In this case, the circuit printed by DecIW(y1)
has the input promise for the decoder satisfied, so with probability at least δ/2 over y1, we
print a circuit that decodes w to agreement at least 1−τ . Thus, the total failure probability
is at most δ, as desired.

Complexity of the Circuit. Finally, the decoder makes at most

S ′ = polylog(1/δ) ·Nγ/εIW
cIW = Nγ · (log(1/δ)/ε)c

non-adaptive oracle queries by Lemma 5.19, and outputs a circuit of size S ′ · poly(k/ε) =
Nγ · (log(1/δ)/ε)c = S as claimed. Moreover, this circuit contains a top majority gate of
fan-in Q = (log(N) log(1/δ)/εIW)cIW = (log(N) log(1/δ)/ε)c, and further majority gates of
fan in at most poly(k/ε) ≤ Q.

Lemma 5.22 for the code CLE. We carry over our alternative decoding of IW, wherein
DecIW does not make oracle queries to f and they are deferred to the generated circuits.
Here too, we can make Cy,i make the (at most) S queries to f themselves.

45

5.3 Putting Everything Together

We continue using the notation introduced in this section. The code C : {0, 1}k → {0, 1}n
is the concatenation of IW ◦ GGHKR with the Hadamard code. Namely, given x ∈ {0, 1}k,
write y = IW(GGHKR(x)), and encode each symbol of y with Hadamard. That is,

C(x) = Had(y1) ◦ . . . ◦ Had(yk′′) ∈ {0, 1}n.

For the local encoding variant, CLE, we replace GGHKR with GGHKRLE.
Let Cc : {0, 1}k

′ → {0, 1}n be the concatenation of IW with the Hadmard code above.
We use δ1 and δ2 for the confidence parameters of GGHKR and Cc, respectively. Recall
that τ is the (relative) unique decoding radius of GGHKR. We also let γ > 0 be as in
Lemma 5.22. Note that the output length of C is

n = (k/ε)c·(γ
−1+τ−2)

for some universal constant c > 0, and similarly for CLE. It is left to establish the local list
decoding of the composition C = Cc ◦ GGHKR : {0, 1}k → {0, 1}n.

Local list decoding of C. Given a message length k and a confidence parameter δ > 0,
set δ1 = δ2 = δ/2. We instantiate the code Cc from Lemma 5.22 with N = k′, where
k′ = poly(k) is the block length of GGHKR from Lemma 5.4 on inputs of length k.

We apply standard local list decoding of composed codes (as also used above in Sec-
tion 5.1). Let d1 = d1(δ1) and d2 = d2(δ2) be the lengths of the randomness strings for the
decoding of GGHKR and Cc, so d1 = O(log(k/δ)) and d2 = O(log(N/δ)) = O(log(k/δ))).
Let L = Õ(log(1/δ)/ε2) be as in Lemma 5.22. Given a randomness string y = (y1, y2) ∈
{0, 1}d1+d2 , and j ∈ [L], we generate a decoding circuit Cy,j that gets input i ∈ [k] and
oracle access to w ∈ {0, 1}n, as follows.

• Use y1 to generate the local decoder C1
y1

for GGHKR, of size s1, making at most Q1

non-adaptive queries. Use y2 to generate the decoder C2
y2,j

for Cc, of size s2, making
at most Q2 queries.

• Whenever C1
y1

wishes to query some index z ∈ [k′], we run the approximate local
list decoder of Cc, namely C2

y2,j
(z), having query access to w.

The fact that each Cy,j is a TC0 circuit generated in space O(log(k/εδ)), given (y, j), is
immediate. Specifically, the size of each Cy,j is bounded by

O(s1 +Q1 · s2) = polylog(k/δ) · k
cγ

εc
.

The total number of queries made is Q1 ·Q2 = polylog(k/δ) · poly(1/ε).
For correctness, assume that x ∈ {0, 1}k is such that w agrees with C(x) in at least

1/2+ ε fraction of coordinates, and assume that y is good for both x and GGHKR(x), in the

46

sense of Lemmas 5.4 and 5.22. We are guaranteed that for some j⋆ ∈ [L], C2
y2,j⋆

decodes
correctly at least 1− τ fraction of the symbols in GGHKR(x). Thus, when the local unique
decoder is given the word (C2

y2,j⋆
(1), . . . , ..., C2

y2,j⋆
(k′)) as its noisy codeword, it essentially

queries a word with 1− τ agreement with GGHKR(x) and so C1
y1

correctly decodes every
bit in x. The error probability over the y-s, due to non-adaptivity, follows from a simple
union bound. We thereby established the desired properties of C, which are summarized
in Theorem 5.1.

For CLE, we apply the same reasoning and combine the code GGHKRLE from Lemma 5.5
with Cc from Lemma 5.22. Again, we note that this time we let the TC0 circuits make the
queries to the message, rather then let the decoding algorithm that prints them do that.
Moreover, locality is preserved.

Claim 5.23 (circuit complexity of CLE – I). There exists an algorithm that outputs a TC0 circuit
of size s = poly(d, log k, 1/ε, log(1/δ)) that runs in space O(log s), and on input i ∈ [n], returns
the d coordinates q1, . . . , qD to be queried, where D = d · poly(1/ε, log(1/δ)). (That is, for all x,
CLE(x)i only depends on xq1 , . . . , xqD .)

Proof. The index i ∈ [n] induces an index i′ such that CLE(x)i only depends on (IW ◦
GGHKRLE)(x)i′ , and the transformation i 7→ i′ can be done by standard arithmetic of in-
tegers with O(log k) bits, and in particular using logspace-uniform TC0 circuits of size
polylog(k). Now, each coordinate of IW depends on Q = poly(log(1/δ), 1/ε) locations
in the codeword GGHKRLE(x) that are specified by Loc(i′, ·). By Claim 5.20, in space
O(log(k/εδ) + loglog(1/δ)) we can output a TC0 circuit of size poly(k, 1/ε, log(1/δ)) that
computes those locations.

Now, each one of those locations gives rise to d locations to be queries from x, as
implied by Claim 5.8. Composition of space-bounded algorithms gives us the desired
algorithm that produces the TC0 circuit outputting the locations to be read, at the allotted
size.

Next, we need to establish the encoding step itself.

Claim 5.24 (circuit complexity of CLE – II). There exists a logspace-uniform TC0 circuit of size
poly(d, log k, log |F|, log(1/δ), 1/ε) that given the above xq1 , . . . , xqD ∈ {0, 1}, outputs CLE(x)i.

Proof. Note that the encoding of Cc can be done by circuits of size s2 = poly(log k, 1/ε)
generated in O(log(k/ε)) space, and recall that given the corresponding coordinates of x,
each coordinate of GGHKRLE(x) can be computed by circuits of size s1 = poly(d, log |F|)
generated in space O(log d+loglog |F|). Altogether, the size of a TC0 circuit that computes
each coordinate of CLE(x) (the d coordinates of GGHKRLE can be computed in parallel) is
thus

O(s2 +Q · s1) = poly(d, log k, log |F|, log(1/δ), 1/ε)

and can be generated in space O(log d+ loglog |F|+ log(k/ε)) = O(log(k/ε)).

47

Finally, we claim that CLE is systematic. According to the standard definition, a code
C is systematic if C(x) contains x itself as its prefix. Here, we obtain a somewhat weaker
property that we describe next.

Claim 5.25 (CLE is weakly-systematic). There exists a logspace-uniform AC0 circuit of size
poly(d, log k, log |F|) such that given i ∈ [k] and j ∈ [log |F|], it outputs i′ ∈ [n] such that for all
x ∈ Fk, CLE(x)i′ is equal to the jth bit in the encoding of xi.

Proof. First, note that the low-degree extension encoding, and the Hadamard encoding,
are systematic in the standard sense. Also,

• The IW code maps f to f̄ such that the i-coordinate of the symbol f̄z̄ is given by
Samp(z1, i) ⊕ Des(z2, i), where z̄ = (z1, z2) and suitably instantiated sampler and
design generator. We can assume, without any substantial change in parameters,
that each Samp(z1, ·) has an additional edge (say labeled by 1), mapping z1 to its
prefix of the appropriate length. Then, fi′ can be found in f̄ in the first coordinate of
the symbol indexed by (i′ ◦ 0̄, 0̄). Clearly, this trivial mapping can be done in AC0.

• The ABNNR code maps x ∈ F to x̄ ∈ (F)d by aggregating symbols according to
a balanced bipartite expander whose neighbor function, and its inverse, are com-
putable by logspace-uniform AC0 circuits. Specifically, given an index i of x (or an
index to a specific bit in the field element representation), we can compute Γ(i, 1)
and determine the location of xi in the symbol x̄Γ(i,1) by logspace-uniform AC0 cir-
cuits.

Our code CLE is constructed via (constantly many) compositions and concatenations of the
above codes, instantiated with varying code lengths. Next, we observe that the weakly-
systematic property is preserved under those operations. Indeed, if C1 and C2 are weakly
systematic, then the composition C2 ◦ C1 is also weakly systematic simply by applying the
mapping circuit for C2 and then the mapping circuit for C1. In a very similar manner, the
property is preserved under concatenating an outer code C1 with an inner code C2, and
this concludes our claim.

The properties of CLE are summarized in Theorem 5.2 above.

6 Deducing BPL = L from Uniform Hardness Assump-
tions

We begin by setting up notation. Fix a family {Cn} of threshold circuits of size T = T (n)
and depth d = d(n). Since we will be concerned with constant depth d = O(1), we assume
for simplicity that each of the d layers has exactly T threshold gates. For any n ∈ N, i ∈ [d],
and j ∈ [T]× [T], let gi,j be the jth gate in the ith layer of Cn, and denote

gi,j(x) = 1
[∑
k∈[T]

wi,j,k · gi−1,k(x) > θi,j

]
,

48

where wi,j,k ∈ {−T, ..., T} ⊆ Z and θi,j ∈ {−T 2, ..., T 2}. (The notations gi,j, wi,j,k, θi,j do
not explicitly refer to the circuit family {Cn} or to the input length n, but these will be
clear from context.) Indeed, we assume that all weights are integers with absolute value
at most T , and we bound the threshold values accordingly.

Our hardness-vs.-randomness tradeoff will use hard functions computable in uniform
TC0, where the precise uniformity condition is as follows.

Definition 6.1 (logspace-uniform threshold circuits). We say that a family of threshold cir-
cuits of size T and depth d is logspace-uniform if:

1. There is a machine Weight that gets input (1n, i, j, k) where i ∈ [d] and (j, k) ∈ [T]2, runs
in space O(log T), and prints wi,j,k.

2. There is a machine Thr that gets input (1n, i, j) where i ∈ [d] and j ∈ [T], runs in space
O(log T), and prints θi,j .

Lemma 6.2 (canonical form for logspace-uniform threshold circuits). There are two univer-
sal constants c, c′ > 1 such that the following holds for any space-computable δ = δ(n) ∈ (0, 1).
Let {Cn} be a logspace-uniform TC0 circuit family of size T = T (n) and depth d = d(n). Then,
there exists a logspace-uniform TC0 circuit family {C ′n} of size T ′ = T c and depth d′ = c · (d/δ)
that computes the same function as {Cn}, and that satisfies the following:

1. The bottom layer of C ′n has n + Bg gates, where Bg = Õ(T 2). The first n gates are input
gates x1, ..., xn, and the last Bg gates are constant gates (i.e., with fan-in zero). There is a
machine running in space O(log T) that gets as input i ∈ [Bg], and prints the type of the
(i+ n)th gate at the bottom layer (i.e., it prints either the constant zero or the constant one).

2. The d′−1 layers above the bottom layer have unweighted majority gates of fan-in T c·δ. There
is a machine that gets input 1n, runs in time polylog(T) and space O(log T), and prints a
formula that decides the following problem: Given input (i, j, k) ∈ [d′ − 1] × [T] × [T],
output one if gate k in layer i− 1 feeds into gate j in layer i, and zero otherwise.

Proof. We transform Cn into C ′n in two steps. In the first step, we consider Dn that has
n + Bg gates at the bottom layer: The first n are input gates, and the last Bg = Õ(T 2)
represent the description of Cn. Now, let Un,d be a universal TC0 circuit of depth O(d) and
size poly(T) that simulates a TC0 circuits of depth d and size T , on inputs of length n. In
the O(d) layers above the bottom layer, the circuit Dn simulates Un,d on input (Cn, x).

Note that there is a space-O(log T) machine printing the type of the non-input gates at
the bottom layer. Also, since Un,d has a very simple structure, there is a formula that can
be printed in time polylog(T) and space O(log T) (in particular, the formula is of size at
most polylog(T)) that decides the connectivity between gates in Un,d.26

26To see this, recall that Un,d(Cn, x) works in d stages, where each stage i′ computes the gate values of
Cn(x) at layer i′. Denoting the gate values of layer i′− 1 by h1, ..., hT , the functionality of Un,d is as follows:
For each j′ ∈ [T], multiply each hk′ by wi′,j′,k′ , where wi′,j′,k′ appears in the description of Cn; compute the

49

Next, we transform Dn into a circuit with unweighted majority gates of fan-in TO(δ).
To do this, we simulate each gate g (in the layers above the bottom layer) by a sub-circuit
of depth O(1/δ). Assume that g(h1, ..., hT) = 1

[∑
i∈[T] wi · hi ≥ θ

]
. The sub-circuit first

computes, for each i ∈ [T], the mapping hi 7→ wi · hi. Then it computes the summation∑
wi · hi in O(1/δ) stages, at each stage adding T δ integers. And finally, it compares the

computed sum
∑

wi · hi to the threshold θ.
Recall that multiplication, iterated addition, and comparison, can all be performed by

TC0 circuits with very simple structure. Thus, there is a uniform formula that can be
printed in time polylog(T) and space O(log T) describing the connectivity in the layers
above the bottom one.

Organization. In Section 6.1 we construct a (reconstructive) targeted somewhere-PRG,
which will be the main technical component in the proof of Theorem 1. In Section 6.2
we prove Theorem 1 using this targeted somewhere-PRG. In Section 6.3, we prove Propo-
sition 1.2, which asserts unconditional lower bounds in L for log-spaceadvice-uniform
TC0 circuits with oracle access to bounded-space machines (recall that log-spaceadvice-
uniform TC0 circuits were defined in Definition 1.1). In Section 6.4 we prove Theorem 2,
which asserts a hardness-vs.-randomness tradeoff for linear space (from worst-case and
fully uniform hardness assumptions). Lastly, in Section 6.5, we show that average-case
derandomization of BPL with zero error reduces to standard average-case derandomiza-
tion of BPL.

sum
∑

k′ wi′,j′,k′hk′ ; then compare the sum to θi′,j′ , which appears in the description of Cn.
Let us sketch the proof of how connectivity in Un,d can be decided by a formula that can be generated in

space O(log T) and time polylog(T). The formula is given (i, j, k), where j is the index of a gate g in layer i
of Un,d, and k is the index of gate h in layer i−1 of Un,d. The formula parses (i, j, k) = ((i′, j′, b, k′), (j′0, k

′
0)).

The indices (i′, j′) indicate that gate g is part of the simulation of gate j′ in layer i′ of the input circuit to
Un,d. The index b ∈ [3] indicates which of the three parts of siluating j′ g is part of; that is, whether g is in a
sub-circuit computing multiplication (i.e., wi′,j′,k′ ·hk′ for some k′ ∈ [T]), the sub-circuit computing iterated
addition, or the sub-circuit computing comparison to θi′,j′ . The index k′ is used only when b is computing
multiplication, in which case it indicates that g is part of the sub-circuit computing wi′,j′,k′ ·hk′ . The indices
(j′0, k

′
0) indicate the locations of g and of h within this sub-circuit.

The parsing above reduces the problem of deciding connectivity in Un,d to the problem of deciding con-
nectivity of (j′0, k′0) in a circuit that implements multiplication, iterated addition, or comparison to a fixed
value. The only additional cost in the reduction is computing the location of wi′,j′,k′ or of θi′,j′ on the in-
put tape to Un,d. Thus, perfoming the reduction only requires computing simple arithmetic operations on
(i, j, k), which can be done by a formula with the claimed complexity.

The claim follows by combining this reduction with the fact that connectivity in each of the sub-circuits
(i.e., for multiplication, iterated addition, or comparison) can be decided by a formula that can be printed
in space O(log T) and time polylog(T). This is because the standard constructions of TC0 circuits for all
of these operations are very simple, and the connectivity in the TC0 circuits can be decided by simple
arithmetic operations on (j′0, k

′
0).

50

6.1 A Reconstructive Targeted Somewhere-PRG

Our goal in this section is to construct a reconstructive targeted somewhere-PRG that is
based on a function in logspace-uniform TC0 and whose reconstruction is in deterministic
logspace-uniform TC0.

To do so, in Section 6.1.1 we show that any function in logspace-uniform TC0 admits
a very efficient bootstrapping system, which is a notion we will define in that section. Then,
in Section 6.1.2 we construct the targeted somewhere-PRG, which can be based on any
function with that very efficient bootstrapping system.

6.1.1 Bootstrapping systems for logspace-uniform threshold circuits

We first define a polynomial decomposition of a threshold circuit. The definition follows
ideas from [CTW23], which in turn is based on [GKR15; CT21b].

At a high level, a polynomial decomposition of a circuit Cn(x) (i.e., for a fixed input
x) is a sequence of polynomials that represent the values of the gates in Cn(x) and that
is “downward self-reducible” (i.e., computing a polynomial in the sequence at any point
reduces to computing the preceding polynomial in the sequence at “a few” points). In
more detail, for each layer i, we introduce a polynomial α̂i that is an arithmetization
of the sequence of gate-values of the ith layer of Cn(x). We then introduce 2m = O(1)
intermediary polynomials between each pair α̂i and α̂i+1 (for a carefully chosen constant
m), denoted α̂i+1,0, ..., α̂i+1,2m, such that computing α̂i+1,0 efficiently reduces to computing
α̂i, and computing α̂i+1,j+1 efficiently reduces to computing α̂i+1,j , and α̂i+1,2m = α̂i+1.

To arithmetize TC0 in this manner, we will actually define each α̂i to be not the en-
coding of the gate-values in the ith layer of Cn(x), but the encoding of the sequence
{σg(x)}g-s in the ith layer where σg(x) is the sum that underlies the threshold gate g (i.e., if
g(x) = 1[

∑
j wg,j · hj(x) > θg], then σg =

∑
j wg,j · hj(x)).

We will later on argue that every logspace-uniform family of TC0 circuits admits a
polynomial decomposition that is efficient: The polynomials have low-degree, and all re-
ductions are indeed efficiently computable.

Definition 6.3 (polynomial decomposition of a threshold circuit). Let C be a circuit that has
n input bits, size T , depth d, and unweighted majority gates of fan-in φ. For every x ∈ {0, 1}n, we
call a collection of polynomials a polynomial decomposition of C(x) if it meets the following
specifications.

1. Arithmetic setting. For some prime 5 · T 2 < p ≤ 10 · T 2, the polynomials are defined over
the prime field F = Fp. For some integer h ≤ p, let H = [h] ⊆ F, and let m be the minimal
integer such that hm ≥ T . Let ξ : [T]→ Hm be an injection and ξ−1 : Hm → [T] ∪ {⊥} be
its inverse.27

27If u⃗ is not in the range of ξ then ξ−1(u⃗) = ⊥. We always use ξ to encode an index i as an element from
Hm. We will pick a ξ such that ξ−1 is also easy to compute, and for simplicity we ignore the complexity of
computing ξ and ξ−1 since it is negligible; we only need them to be computable in TC0

51

2. Circuit-structure polynomial. For each i ∈ [d], let Φi : H
2m → {−T, ..., T} be the

following function. On input (u⃗, v⃗) ∈ Hm×Hm, we interpret the pair as (j, k) ∈ [T]× [T],
and output wi,j,k.28 The polynomial Φ̂i : F2m → F can be any extension of Φi.

3. Input polynomial. Let α0 : H
m → {0, 1} represent the bottom layer of Cn(x) (i.e., with

x placed at the values of input gates of Cn), padded with 0-s to be of length hm.29 Let
α̂0 : Fm → F be the standard Lagrange interpolation of α0, defined by

α̂0(u⃗) =
∑
z⃗∈Hm

δz⃗(u⃗) · α0(z⃗) ,

where δz⃗ is Kronecker’s delta function, δz⃗(u⃗) =
∏

j∈[m]

∏
a∈H\{zj}

uj−a
zj−a .

4. Layer polynomials. For each i ∈ [d], let αi : H
m → {0, 1} represent the values of the

gates at the ith layer of C in the computation of C(x) (with zeroes in locations that do not
index valid gates).30 We define polynomials α̂i : Fm → F as follows:

α̂1(u⃗) =
∑
v⃗∈Hm

Φ̂1(u⃗, v⃗) · α̂0(v⃗)

α̂i(u⃗) =
∑
v⃗∈Hm

Φ̂i(u⃗, v⃗) · δ>θ(α̂i−1(v⃗)) , i ∈ {2, ..., d} .

Above, θ = ⌊φ/2⌋ and δ>θ is a polynomial of degree φ − 1 that maps every a ∈ [φ] to

δ>θ(a) =

{
1 a > θ

0 o.w.
.31

5. Sumcheck polynomials. For each i ∈ [d], let α̂i,0 : F2m → F be the polynomial

α̂1,0(u⃗, σ1, ..., σm) = Φ̂1(u⃗, σ1,...,m) · α̂0(σ1,...,m)

α̂i,0(u⃗, σ1, ..., σm) = Φ̂i(u⃗, σ1,...,m) · δ>θ(α̂i−1(σ1,...,m)) , i ∈ {2, ..., d}

and for every j ∈ [m− 1], let α̂i,j : F2m−j → F be the polynomial

α̂1,j(u⃗, σ1, ..., σm−j) =
∑

σm−j+1,...,σm∈H

Φ̂1(u⃗, σ1,...,m) · α̂0(σ1,...,m)

α̂i,j(u⃗, σ1, ..., σm−j) =
∑

σm−j+1,...,σm∈H

Φ̂i(u⃗, σ1,...,m) · δ>θ(α̂i−1(σ1,...,m)) , i ∈ {2, ..., d}

where σk,...,k+r = σk, σk+1, ..., σk+r. Observe that α̂i,m ≡ α̂i.
28If u⃗ or v⃗ represents an integer larger than T , then Φi(u⃗, v⃗) = 0.
29Recall that, as in Lemma 6.2, there may be gates at the bottom layer of Cn that are not input gates, so

the padding of zeroes only appears after those bits.

30Formally, for every u⃗ ∈ Hm we have αi(u⃗) =

{
gi,ξ−1(u⃗) ξ−1(u⃗) ̸= ⊥
0 o.w.

.

31That is, δ>θ(a) =
∑

σ∈[φ]

∏
σ′∈[φ]\{σ}

a−σ′

σ−σ′ · 1[σ > θ].

52

We now argue that logspace-uniform threshold circuits (from Definition 6.1) have very
efficient polynomial decompositions. To be exact, we transform any such circuit family
into a family with unweighted majority gates of bounded fan-in (using Lemma 6.2) and
argue that the latter family has a suitable polynomial decomposition. In the result state-
ment below, we use the same notation and definition as in Definition 6.3 (in particular,
the same definitions of the α̂i-s and α̂i,j-s).

Proposition 6.4 (efficient polynomial decompositions of logspace-uniform threshold cir-
cuits). There exists a universal constant c ∈ N such that the following holds. Let {Cn} be a
logspace-uniform family of circuits of size T = T (n) and depth d = d(n), and let δ ∈ (0, 1) be
a constant. Then, there is a logspace-uniform family of circuits {C ′n} of size T ′ = T c and depth
d′ = c · (d/δ) computing the same function as {Cn}, such that for every x ∈ {0, 1}n, there exists
a polynomial decomposition of C ′n(x) satisfying:

1. Arithmetic setting. The polynomials are defined over F = Fp, where p is the smallest prime
in the interval [5 · (T ′)2 + 1, 10 · (T ′)2]. Let H = [h] ⊆ F, where h is the smallest power of
two of magnitude at least (T ′)δ/3, and let m be the minimal integer such that hm ≥ 2T ′.

2. Faithful representation. For every i ∈ [d′] and u⃗ ∈ Hm representing a gate in the ith layer
of C ′n, the value of the gate in C ′n(x) is 1 if and only if α̂i(u⃗) ≥ θi,u⃗.32

3. Low degree. All polynomials in the polynomial decomposition except for α̂0 have total
degree at most T c·δ.

4. Base case. There is a machine B that gets input 1n and i ∈ [Bg] where Bg = Õ(T 2),
runs in space O(log T), and outputs an element in F so that the following holds. There is a
logspace-uniform TC0 circuit of size (n ·h)c that get input v⃗, and non-adaptive oracle access
to the fixed input x and to B, and outputs α̂0(v⃗).

(Recall that the decomposition is defined with respect to any fixed input x. We stress that the
circuit for α̂0 has oracle access to this x, but the machine B does not. Indeed, the behavior of
B does not depend on x, but only on the family C = {Cn}.)

5. Downward self-reducibility. There is a machine S that gets as input 2m elements of F,
and an advice φ of length polylog(T), runs in space c · δ · log T , and outputs an element
of F. There are two logspace-uniform non-adaptive oracle TC0 circuits of size hc that solve
each of the following tasks, respectively:

(a) Given input i ∈ [d′] and (u⃗, σ1, ..., σm) ∈ F2m and oracle access to α̂i−1 and to S,
output α̂i,0(u⃗, σ1, ..., σm).33

(b) Given input (i, j) ∈ [d′]× [m] and (u⃗, σ1, ..., σm−j) ∈ F2m−j and oracle access to α̂i,j−1
and to S, output α̂i,j(u⃗, σ1, ..., σm−j).

32The notation θi,u⃗ refers to the threshold value of gate u⃗ in the ith layer of C ′
n. To avoid confusion, we

note in advance that C ′
n will only have unweighted majority gates of fixed fan-in φ, and thus θi,u⃗ = ⌊φ/2⌋

regardless of (i, u⃗).
33Having oracle access to a polynomial α̂i means being able to send a query v⃗ and receive answer α̂i(v⃗).

53

Moreover, the advice φ = φ(n) can computed in space O(log T).

Proof. The circuit family {C ′n} is obtained from Lemma 6.2. Denote its size by T ′ and its
depth by d′. To define the polynomial decomposition we need to specify the extensions
of the circuit-structure functions Φi. We will do so relying on the following claim.

Claim 6.4.1. For every i ∈ [d′] there exists Φ̂i : F2m → F that satisfies the following:

1. For every (u⃗, v⃗) ∈ H2m it holds that Φ̂i(u⃗, v⃗) = 1 if gate u⃗ in the ith layer is fed by gate v⃗ in
the (i− 1)th layer, and Φ̂i(u⃗, v⃗) = 0 otherwise.

2. The degree of Φ̂i is at most h · polylog(T).

3. There is a machine that gets input (i, u⃗, v⃗) and an advice φ ∈ {0, 1}polylog(T), runs in space
c1 · log(h) for a universal constant c1 > 1, and outputs Φ̂i(u⃗, v⃗). Furthermore, the advice
φ = φ(n) can be computed from input 1n in space O(log T).

Proof. Recall that (i, j, k) 7→ Φi(j, k) is computable by a formula that can be printed in time
polylog(T) and space O(log T). We let φ be the description of that formula. Consider Φi

as a function F2 log(T ′)
2 → F2, and observe that it is computable by an arithmetic formula of

degree polylog(T) whose structure mimics φ. For each i, this yields an arithmetic formula
computing a polynomial Φ′i : F2 log(T ′) → F of degree polylog(T) that agrees with Φi on
F2 log(T ′)
2 .34

Now we want to construct a polynomial that gets inputs in (u⃗, v⃗) ∈ F2m, “projects”
each element in u⃗ and in v⃗ to its binary representation (i.e., over F2), and computes Φ′i on
the resulting sequence of F2-elements. Since we only care about the behavior of this poly-
nomial on inputs (u⃗, v⃗) ∈ H2m, it suffices to consider a binary representation of length
ℓ = log(h), in which case the complexity of this operation is low enough. In more detail,
for every j ∈ [ℓ] consider πj : H → {0, 1} such that πj(a) is the jth bit in the binary repre-
sentation of a. Note that there is a polynomial π̂j : F → F of degree at most h that agrees
with πj on H . Finally, let Φ̂i : F2m → F such that

Φ̂i(z1, ..., z2m) = Φ′i(π̂1(z1), ..., π̂ℓ(z1), ..., π̂1(z2m), ..., π̂ℓ(z2m)) .

Note that Φ̂i is of degree h ·polylog(T) and that it agrees with Φi on Hm×Hm. We show
that Φ̂i is computable by a machine M that runs in space (c1 · log(h)) and gets polylog(T)
bits of advice, where the advice can be computed from input 1n in space O(log T).

The advice φ is simply the description of Φ′; as argued above, it is of length polylog(T)
and can be generated in space O(log T). The machine M gets input (u⃗, v⃗) and runs the

34Specifically, let F be the Boolean formula computing (i, j, k) 7→ Φi(j, k). We simulate F by an arithmetic
formula F ′ that replaces every Boolean gate g(h1, h2) in F by a constant-sized arithmetic gadget computing
the same function over F2 (e.g., AND is computed by a multiplication gate, and OR is computed by 1+AND).
The formula F ′ has essentially the same complexity as F , up to constant factors. Hard-wiring i, we get
a polynomial Φ′

i : F2m → F, and the total degree of this polynomial is at most the size of the formula
computing it (recall that a formula of size s computes a polynomial of total degree at most s).

54

DFS-style simulation of Φ′, computing it as an arithmetic formula over F (for a careful
implementation of the DFS-style simulation on formulas of depth that can be super-
logarithmic in their size, see e.g., [CDS+23, Lemma 6.13]). Whenever Φ′ accesses one
of its inputs π̂i(zj), the machine M computes π̂i at zj via Lagrange interpolation (i.e.,
π̂i(u) =

∑
a∈H πj(a) ·

∏
a′∈H\{a}

u−a′
a−a′). The DFS-style simulation has O(loglog T) levels (the

size of the formula for Φi is polylog(T), and thus its depth is O(loglog T)), and in each path
there one input π̂i(zj) that is read. The space complexity of M is dominated by computing
the π̂i-s, and thus M runs in overall space at most O(log h).

□

The extensions Φ̂i : F2m → F are the ones given by Claim 6.4.1, and they suffice to fully
determine the polynomial decomposition, i.e., the α̂i-s and the α̂i,j-s. We now verify that
the decomposition has the required properties.

The faithful representation property follows from the fact that Φ′i agrees with Φi on H2m,
and by the definitions of the α̂i-s. (To see this, argue by induction that for each layer
i = 1, ..., d′, the following holds: For each u⃗ ∈ Fm we have that α̂i(u⃗) is the sum underlying
gate u⃗.35 For i = 1 this holds by the definition of α̂1, and for i > 1 we use the induction
hypothesis and the definition of δ>θ. In both the base case and the inductive step, we used
the fact that Φ′i agrees with Φi on H2m.) The degree bound property follows from the degree
of the Φ̂i-s and by the fact that δ>θ is of degree TO(δ) (this is because the fan-ins in C ′n are
at most φ = TO(δ)).

For the base case property, let B0 be the machine printing the types of the last Bg =

Õ(T 2) gates at the bottom layer, given to us in Lemma 6.2. Recall that B0 runs in space
O(log T) and does not depend on the input x. Now, recall that

α̂(u⃗) =
∑
z⃗∈Hm

δz⃗(u⃗) · α0(z⃗) . (6.1)

We partition Hm into three sets: A set X representing the n input gates, a set Z repre-
senting the additional Bg nontrivial gates, and an additional set Hm \ (X ∪Z). Recall that
for every z⃗ ∈ Hm \ (X ∪ Z) we have that α0(z⃗) = 0. Thus, the sum in Equation (6.1) can
be presented as

α̂(u⃗) =
∑
z⃗∈X

δz⃗(u⃗) · xξ−1(z⃗) +
∑
z⃗∈Z

δz⃗(u⃗) · B0(1
n, ξ−1(z⃗)− n) .

Observe that the function (1n, u⃗) 7→
∑

z⃗∈Z δz⃗(u⃗) · B0(1
n, ξ−1(z⃗) − n) can be computed

in space O(log T), and does not depend on the input x. We define B to be the machine
computing this function. Hence, given u⃗, we can compute Equation (6.1) by a logspace-
uniform TC0 circuit of size poly(n, h) that makes non-adaptive oracle queries to x, and a
single non-adaptive oracle query to B.

35That is, if the gate g in layer i represented by u⃗ computes the function g(x) = 1[
∑

j wg,jhj(x) ≥ θ], then
α̂i(u⃗) =

∑
j wg,jhj(x).

55

Lastly, for the downward self-reducibility property, the machine S will be the one com-
puting Φ̂i, from Claim 6.4.1. By the definition of α̂i,0, computing it reduces to computing
δ>θ and Φ̂i; the former can be done in logspace-uniform TC0 of size hc, and the latter can
be done in space O(log h) = O(c · δ · log T) given the advice φ. Similarly, computing α̂i,j

reduces to summing h computations of a form similar to that of α̂i,0 (i.e., each of the sum-
mand reduces to computing Φ̂i and δ>θ), and thus can also be done with a complexity
overhead multiplicative in poly(h), compared to α̂i,0.

Finally, we show that any function with a very efficient polynomial decompositions also
has a very efficient bootstrapping system. Loosely speaking, a bootstrapping system for a
circuit computation Cn(x) is a sequence of functions that encode the layers of Cn(x) (or,
more accurately, the sequence contains encodings of the layers of Cn(x), among other
functions), that are “downward self-reducible” (i.e., computing a function efficiently re-
duces to computing the preceding function), and such that any function in the sequence
can be efficiently reconstructed, i.e. if we can compute it efficiently on 1/2 + o(1) of the
inputs, then we can compute it efficiently on all inputs.

The bootstrapping system will be obtained by combining the polynomial decomposi-
tions with the locally encodable codes from Theorem 5.2.

Proposition 6.5 (bootstrapping systems for logspace-uniform threshold circuits). There
exists a universal constant c > 1 such that the following holds. Let {Cn} be a logspace-uniform
family of TC0 circuits of size T = T (n) and constant depth d = d(n), and let η, δ ∈ (0, 1) be
constants. Then, there is a constant κ > 1 that only depends on δ such that for every x ∈ {0, 1}n

there exists a sequence of functions w(1)
x , ..., w

(d̄)
x : [T κ] → {0, 1}, where d̄ = c · (d/δ2), satisfying

the following:

1. Faithful representation. There is a logspace-uniform oracle TC0 circuit family {OUTn} of
size T c·δ such that, when OUTn is given j ∈ [T] and oracle access to w(d̄)

x , it outputs the value
of the jth output gate of C ′n(x) (or 0, if the output of C ′n(x) is of length less than j).

2. Base case. There is a machine B that gets input 1n and i ∈ [Bg], runs in space O(log T),
and outputs an element in F so that the following holds. There is a logspace-uniform TC0

circuit family {BASEn} of size (n · T δ)c, such that, when BASEn is given i ∈ [T κ] and non-
adaptive oracle access to x ∈ {0, 1}n and to B, outputs w(1)

x (i).

3. Downward self-reducibility. There is a machine S that gets as input O(1/δ) elements in
F and an advice φ of length polylog(T), runs in space c · (δ log T), and outputs an element
in F so that the following holds. There is a logspace-uniform oracle TC0 circuit family
{DSRn,i}n∈N,i∈{2,...,d′} of size T c·δ, such that, when DSRn,i is given j ∈ [T κ] and non-adaptive

oracle access to w
(i−1)
x and to S, outputs w(i)

x (j).

Moreover, the advice φ = φ(n) can be computed from input 1n in space O(log T).

56

4. Deterministic layer reconstruction. There is an algorithm that gets input 1n, a seed y
of length O(log T), and an index i ∈ {2, ..., d′}; the algorithm runs in space O(log T), and
prints an oracle TC0 circuit RECn,y,i of size T c·δ that satisfies the following.

(a) The circuit first makes non-adaptive queries to w
(i)
x , as a preprocessing step (that does

not depend on its input). After preprocessing, it gets input j ∈ [T κ] and oracle access
to O, and outputs a bit.

(b) Let O : [T κ]→ {0, 1} be such that

Pr
j∈[Tκ]

[O(j) = w(i)
x (j)] ≥ 1/2 + T−δ.

Then, with probability at least 1−η over y it holds that RECOn,y,i ≡ w
(i)
x (i.e., RECOn,y,i(j) =

w
(i)
x (j) for all j ∈ [T κ]).

Lastly, there exists an algorithm that gets input (x, i, j), where x ∈ {0, 1}n and i ∈ [d̄] and
j ∈ [T κ], runs in space O(log T), and outputs w(i)

x (j).

Proof. Let c′′ > 1 be the universal constant from Proposition 6.4. We apply Proposition 6.4
to {Cn}, to obtain a family {C ′n} such that for every x ∈ {0, 1}n, C ′n(x) has a polynomial
decomposition with polynomials of degree ∆ = T c′′·δ. We reindex the polynomials into a
sequence {Pi}i∈[d̄], where d̄ = d′ · (m+ 1) + 1, using the following ordering:

α̂0︸︷︷︸
P1

, α̂1,0︸︷︷︸
P2

, ..., α̂1,m, α̂2,0, ..., α̂2,m, α̂d′,1, ..., α̂d′,m︸ ︷︷ ︸
Pd̄

.

Recall that d′ = O(d/δ) and that m = O(1/δ), and thus d̄ = O(d/δ2). For convenience, we
add dummy variables to the polynomials, so that they all map F2m → F (note that this
does not affect any of the properties claimed in Proposition 6.4).

For i ∈
{
2, ..., d̄

}
, we identify Pi with the string Pi ∈ Fp2m representing its evaluations

on all inputs. We use the code Enc from Theorem 5.2 with parameters:

• k = p2m,

• d = (100 ·∆)2/c
′
= TOc′′,c′ (δ), where c′ > 1 is the universal constant from Theorem 5.2,

• δ = η/4,

• ε = T−δ, and,

• γ = δ2.

Note that with these parameters, the output length of the code is polyγ(p
2m/ε) = T κ, for

a sufficiently large constant κ > 1. (Also note that the hypothesis in Theorem 5.2 that
|F| = p is at most exponential in k = p2m is indeed satisfied.)

57

For i ≥ 2, we define w
(i)
x : [T κ]→ {0, 1} so that

w(i)
x (j) = Enc(Pi)j .

For i = 1, we define w
(1)
x : [T κ] → {0, 1} that represents α̂0 without the encoding Enc.

Specifically, any input j ∈ [T κ] is parsed as (j0, k, ℓ) where j0 ∈ [p2m] represents a vector
u⃗ ∈ F2m, and k ∈ [⌈log p⌉], and ℓ is a meaningless padding; then, w(1)

x (j) outputs the kth bit
in the binary representation of α̂0(u⃗).

Faithful representation. By the faithful representation of Proposition 6.4, the truth-table
of α̂d′ ≡ α̂d′,m is the ith layer of C ′n(x). Thus, {OUTn} can be implemented by the logspace-
uniform AC0 circuit of size poly(d, log k, log p) ≤ TO(δ) that and implements the weakly
systematic property of Enc (see Claim 5.25) for w(d̄)

x = Enc(α̂d′,m).

Base case. Note that computing i 7→ w
(1)
x (i) reduces to computing α̂0, where the compu-

tational costs of the reduction are parsing the input, computing ξ, and printing a single
index (all of which can be done in logspace-uniform TC0 of size polynomial in the input
length log(T κ) = O(log T)). Thus, the base case follows using the logspace-uniform TC0

circuit from the base case of Proposition 6.4.

Downward self-reducibility. Let us first explain how DSRn,i is computed, and then bound
its complexity. For i ∈ {2, ..., d′}, the procedure DSRn,i gets input k ∈ [T κ] and acts as fol-
lows:

1. It uses the local encoding algorithm from Theorem 5.2 to obtain

D = d · poly(1/ε, log(1/δ)) = TO(δ)

locations q1, ..., qD ∈ [p2m] such that w(i)
x (j) depends only on Pi(q1), ..., Pi(qD).

2. It uses the downward self-reducibility algorithm from Proposition 6.4 and its oracle
access to w

(i−1)
x and to S (the specific machine S will be described below) to compute

Pi(q1), ..., Pi(qD) in parallel.

3. Then, it computes the value of w
(i)
x (j) as a function of Pi(q1), ..., Pi(qD), using the

local encoding algorithm from Theorem 5.2 again.

(Note that the description above uses the fact that Enc is systematic, and in fact uses it
twice: Both for w(i)

x = Enc(Pi) and for w(i−1)
x = Enc(Pi−1).)

Recall that the encoding algorithm from Theorem 5.2 is a logspace-uniform TC0 circuit
of size TO(δ), and that the systematic property of the code uses a logspace-uniform AC0

circuit of size TO(δ) (see Claim 5.25). Thus, it is left to describe how to implement the
downward self-reducibility in Step (2) above. Recall that the algorithm in Proposition 6.4
is comprised of two parts:

58

• A machine S that gets as input 2m = O(1/δ) elements of F and advice φ of length
poly(T), and outputs an element in F (where φ can be produced from input 1n in
space O(log T)).

• A logspace-uniform circuit of size hc′′ ≤ TO(δ) that uses non-adaptive oracle queries
to S and to the preceding polynomial (recall that c′′ is the universal constant from
Proposition 6.4). Specifically, if the circuit is trying to compute α̂i′,0 then it gets oracle
access to α̂i′−1, and if it is trying to compute α̂i′,j′ then it gets oracle access to α̂i′,j′−1.

Recall that we are implementing DSRn,i that tries to compute w
(i)
x = Enc(Pi) with oracle

access to w
(i−1)
x = Enc(Pi−1) (and to S). By our mapping of polynomials α̂i and α̂i,j to the

indexed sequence P1, ..., Pd̄, it will always be the case that the preceding polynomial for
Pi (as defined above) is Pi−1.

By combining the encoding algorithm from Theorem 5.2, the downward self reducibil-
ity algorithm from Proposition 6.4 as described above, and the AC0 circuit from the sys-
tematic property of the code, we deduce that the entire procedure DSRn,i can be computed
by a logspace-uniform TC0 circuit of size TO(δ) that has oracle access to w

(i−1)
x and to S.

Deterministic layer reconstruction. At a high-level, the circuit RECn,y,i will combine the
approximate local list-decoder from Theorem 5.2 for Enc, with the the unique decoder of
the Reed-Muller code. To see why, recall that w(i)

x = Enc(Pi). The decoder for Enc will
allow to compute Pi correctly on 1 − 2d−c

′ of the inputs; and the unique decoder for the
RM code will use that to compute Pi correctly on all inputs. Details follow.

Approximate local list-decoder of Enc. Let us start by describing a logspace-uniform cir-
cuit that implements the decoder from Theorem 5.2. The decoder returns a list of poly(1/ε)
candidates, and our circuit will test each of the candidates in parallel for agreement with
Pi, choosing the best one. Crucially, the logspace algorithm that constructs the circuit
will use a sampler to choose fixed randomness (for the decoder, and for the testing of
candidates) and will hard-wire them into the circuit.

Claim 6.5.1. There exists an algorithm A1 that gets a seed (y1, y2) ∈ {0, 1}O(log T), runs in space
O(log T), and prints an oracle TC0 circuit C̃n,(y1,y2),i : F2m → F of size TO(δ) that satisfies the
following. The circuit first makes non-adaptive preprocessing queries to w(i)

x . Now, let O : [T κ]→
{0, 1} be such that Prj[O(j) = w

(i)
x (j)] ≥ 1/2 + ε. Then, with probability at least 1 − η/2 over

(y1, y2), we have that C̃n,(y1,y2),i agrees with Pi on 1− 2d−c
′ of the inputs.

Proof. Consider the approximate decoder Dec from Theorem 5.2, and let ℓ = O(m · log p+
log(d/ε)) = O(log T) be its seed length. Also consider the sampler Γ from Theorem 3.12,
instantiated with output length 2m·log p, with accuracy d−c

′ , and with confidence (η/4)·ε3;
for these parameters, the randomness complexity of Γ is O(m · log(p)+log(d)+log(1/ε)) =
O(log T) and its sample size is t = poly(log(1/ε), d) = TO(δ).

The algorithm A1 gets a seed y = (y1, y2) of length O(ℓ) representing a seed y1 for Dec
and a seed y2 for Γ. For each u ∈ [L = Õ(ε−2)], it uses Dec with seed y1 and index u to print

59

a TC0 circuit Cy1,u, which will be a sub-circuit hard-wired into C̃n,y,i (see below). Also, the
algorithm A1 computes the outputs s1, ..., st ∈ F2m of the sampler with seed y2. Finally, A1

prints C̃n,(y1,y2),i that gets input v⃗ ∈ F2m and performs the following:

1. For each u ∈ [L] in parallel, let Cy1,u issue its preprocessing queries to w
(i)
x .

2. For each u ∈ [L] in parallel, compute νu = Pra∈[t][Cy1,u(sa) = w
(i)
x (sa)], using the

hard-wired points s1, ..., st, the oracle access to w
(i)
x , and the fact that w(i)

x = Enc(Pi)
where Enc is systematic (as in Claim 5.25).

3. Find u⋆ ∈ [t] for which νu is maximal, breaking ties arbitrarily.

4. Output Cy1,u⋆(v⃗).

Let us now bound the size of C̃n,(y1,y2),i. By Theorem 5.2, each of the circuits Cy1,u that
Dec outputs is of size

sDec =

(
kγ · d · log(|F|/δ)

ε

)c

<

TOc′′ (γ/δ)︸ ︷︷ ︸
kγ=p2mγ

·TOc′,c′′ (δ)︸ ︷︷ ︸
d

· T δ︸︷︷︸
ε−1

2c

< TOc,c′,c′′ (δ) ,

where c > 1 is the universal constant from Theorem 5.2 and we relied on γ = δ2. Thus,
C̃n,(y1,y2),i is of size

L · t · poly(sDec) < TOc,c′,c′′ (δ) < TO(δ) .

Note that C̃n,(y1,y2),i makes non-adaptive preprocessing queries to w
(i)
x , both for the

preprocessing of the Cy1,u-s and to compute w
(i)
x (sa) for all a ∈ [t]. Also note that A1 uses

space O(log T), by the properties of Dec and of Γ (and since all other computations, such
as computing the νj-s and comparing them, are in logspace-uniform TC0).

Now, fix O : [T κ]→ {0, 1} such that

Pr
j
[O(j) = w(i)

x (j)] ≥ 1/2 + ε.

By the properties of Dec, with probability at least 1 − η/4 over y1, there is j ∈ [ε−3] such
that

Pr
v⃗
[Cj(v⃗) = Pi(v⃗)] ≥ 1− dc

′
.

By the properties of the sampler and using a union-bound over j ∈ [ε−3], with probability
at least 1− η/4 over y2, for every j we have that∣∣∣νj − Pr

v⃗
[Cj(v⃗) = Pi(v⃗)]

∣∣∣ ≤ d−c
′
.

Thus, with probability at least 1 − η/2 over (y1, y2) it holds that Prv⃗[Cj∗(v⃗) = Pi(v⃗)] ≥
1− 2d−c

′ , in which case C̃n,(y1,y2),i agrees with Pi on 1− 2d−c
′ of the inputs. □

60

Decoding the original message. Our algorithm will combine A1 from Claim 6.5.1 with the
unique decoder of the Reed-Muller code. For the latter, we will use the following varia-
tion on Claim 5.10.

Claim 6.5.2. There exists an algorithm DecRM that gets as input a confidence parameter δRM > 0
and a seed y ∈ {0, 1}r=O(m·log(p/δRM)), runs in deterministic space O(m · log(p/δRM)), and outputs
a (deterministic) oracle TC0 circuit Cy of size poly(∆ · log(p/δRM)) with the following guarantees.

• Let α̂ : F2m → F be a polynomial of total degree ∆, and let w : F2m → F be such that
Prv⃗∈F2m [w(v⃗) = α̂(v⃗)] ≥ 1− 1

100∆
. Then,

Pr
y

[
∀u⃗ ∈ F2m, Cw

y (u⃗) = α̂(u⃗)
]
≥ 1− δRM.

• Cy queries w in at most O(∆ · log(p/δRM)) locations, non-adaptively.

Proof sketch. The proof is identical to that of Claim 5.10, just with different parameters.
Let Γ′ be the sampler from Theorem 3.11, instantiated with accuracy 1/200 and confidence
δRM/p

2m and output in {0, 1}2m log p ≡ F2m (i.e., output length 2m·log(p)); note that the sam-
ple size is t = O(log(p2m/δRM)) = O(m · log(p/δRM), and that indeed r ≤ O(m · log(p/δRM)).
The algorithm DecRM gets a seed y and computes t vectors s⃗y,i = Γ′(y, i) ∈ F2m, for
i = 1, ..., t. It prints circuit Cy that interpolates, for each i ∈ [t], the degree-∆ univari-
ate qy,i : F → F obtained by restricting w to the line {u⃗+ a · s⃗y,i}a∈F, lets vy,i = qy,i(u⃗), and
outputs the most common element in the list Vy = {vy,i}i∈[t] (breaking ties arbitrarily). The
interpolation of qy,i is done by examining the first (∆− 1) points of {u⃗+ a · s⃗y,i}a∈F.

Recall that a random choice of s⃗ ∈ F2m yields a line through u⃗ such that the restriction
of w to the first ∆ − 1 points on the line agrees with α̂ on u⃗, with probability 0.99. By
the properties of Γ′, for every fixed u⃗, for all but δRM/p2m of the choices of y it holds that
Cy(u⃗) = α̂(u⃗). The correctness follows by a union bound over u⃗ ∈ F2m.

As for the complexity, note that the sampler is computable in space linear in r, and
thus DecRM can compute the t · ∆ locations on which Cy queries w in space O(r + log t).
Since interpolating a univariate of degree ∆ and taking the most common element in a
list of size t can be done by a logspace-uniform TC0 circuit of size poly(t,∆, log p), the
algorithm DecRM runs in space O(m · log(p/δRM)).

Now, let us describe an algorithm A2 that gets a seed of the form y⃗ = (y1, y2, y3) and
prints a circuit Cn,y⃗,i. The algorithm A2 uses the following components:

1. The algorithm A1 from Claim 6.5.1, instantiated with seed (y1, y2), which prints an
oracle TC0 circuit C̃n,(y1,y2),i.

2. The algorithm DecRM from Claim 6.5.2, instantiated with confidence parameter δRM =
η/2 and seed y3, which prints an oracle TC0 circuit Cy3 .

61

The algorithm A2 prints a circuit Cn,y⃗,i that has C̃n,(y1,y2),i and Cy3 hard-wired, and acts
as follows: For pre-processing, it runs the pre-processing of C̃n,(y1,y2),i, providing it access
to w

(i)
x ; and when given input j ∈ [T κ], it outputs

C
C̃O

n,(y1,y2),i
y3 (j) .

In words, after pre-processing and when receiving input j, the circuit simulates Cy3 on
j; whenever Cy3 makes an oracle query q, the circuit resolves it simulating C̃n,(y1,y2),i(q);
whenever the latter circuit makes an oracle query q′, it is resolved by the oracle O.

Note that the seed length for A2 is O(m·log p) = O(log T), and that its space complexity
is O(log T) (using efficient space-bounded composition with A1 and with DecRM). The
circuit Cn,y⃗,i that it prints is of size at most

|Cy3 | · poly(|C̃n,(y1,y2),i|) = poly
(
∆, log(p/δRM), T

O(δ)
)
≤ TO(δ) .

Indeed, this circuit makes queries to w
(x)
i in the preprocessing step (and these are inde-

pendent of any input), and makes queries to O in the computation step.
Finally, fix O such that Prj[O(j) = w

(i)
x (j)] ≥ 1/2 + ε. By Claim 6.5.1, with probability

at least 1− η/2 over (y1, y2) we have

Pr
v⃗∈F2m

[
COn,(y1,y2),i(v⃗) = Pi(v⃗)

]
≥ 1− 2d−c

′
> 1− 1

100∆
. (6.2)

Conditioned on the event above, by Claim 6.5.2, with probability at least 1 − η/2 over y3
it holds that CO

n,y⃗,i correctly computes Pi on all inputs.

Decoding the final codeword. Finally, we transform COn,y⃗,i, which computes Pi, into a cir-

cuit that computes w
(i)
x = Enc(Pi). Specifically, the final algorithm A gets seed y⃗ (i.e.,

exactly the same as A2), and prints a circuit RECn,y⃗,i that, on input j ∈ [T κ], uses the
logspace-uniform TC0 circuit from Theorem 5.2 to compute D ≤ TO(δ) locations in Pi

corresponding to the jth output; then uses Cn,y⃗,i to compute Pi on these locations; and
finally uses the circuit for local encoding from Theorem 5.2 to compute the jth output of
Enc(Pi). Note that the complexity of A is dominated by A2, and the complexity of RECn,y⃗,i
is dominated by Cn,y⃗,i

Computing the w
(i)
x -s in small space. The last thing to prove is that there is an O(log T)-

space algorithm mapping (x, i, j) to w
(i)
x (j). To see this, consider the naive combination of

the sequence of reductions, from computing w
(i)
x to computing w

(i−1)
x , all the way down to

computing w
(1)
x . This sequence can be modeled as a tree of depth i ≤ d̄ and fan-in TO(δ),

where the function at each node is computable in space O(log T) (see justification below).
Thus, by running the standard DFS-style bounded-space simulation on the depth-d̄ tree,
we can compute w

(i)
x (j) in space O(d̄ · log T) = O(log T).

62

The only missing piece is to see that each node is computable in space O(log T). To see
this, note that each node in layer j ∈ [i] is computable by DSRn,j with oracle access to S.
Recall that DSRn,j is a logspace-uniform TC0 circuit of size TO(δ), and that S is computable
in space O(δ · log T) when given advice φ that can be generated in space O(log T). Hence,
we can compute S by giving it virtual access to φ, and using the DFS-style simulation of
the TC0 circuit, we can compute DSRSn,j in space O(log T).

6.1.2 The reconstructive targeted somewhere-PRG

We will need a modified version of the classical Nisan-Wigderson [NW94] generator,
when its reconstruction argument is uniform as in [IW98]. In the modified version,
the uniform reconstruction argument is a space-efficient probabilistic Turing machine that
prints a circuit computing the hard function; and there are a few additional non-standard
points:

1. Recall that the NW reconstruction argument succeeds with relatively low probabil-
ity (roughly ≈ 1/m where m is the length of the pseudorandom output string), and
needs to be repeated O(m) times to achieve high success probability. In the modified
version, the task of checking which of the O(m) attempts was successful is delegated
to the printed circuit, rather than to the Turing machine that prints it.

2. The machine printing the circuit only uses O(logm) random coins, and the circuit is
deterministic. This is achieved by using the consistency test given in Theorem 4.2
(to avoid randomly choosing a Θ(m)-bit string as in the standard reconstruction of
NW), and by using randomness-efficient samplers (to execute the many attempts of
NW reconstruction, and check each of them for success, in a randomness-efficient
way).

Let us formally state this version and prove it.

Theorem 6.6 (the NW PRG). There exist a universal constant cNW such that for any two con-
stants η, δNW > 0 there are two deterministic algorithms GNW and RNW satisfying the following.

1. Generator. On input 1n and oracle access to a string f ∈ {0, 1}n, the algorithm GNW runs
in space cNW · log n and prints a list of at most ncNW strings in {0, 1}m, where m = n1/cNW .

2. Reconstruction. On input (1n, w) and a random seed yNW of length cNW · log(nw), the
algorithm RNW runs in space cNW · log(nw) and prints a non-adaptive oracle TC0 circuit
CNW

yNW
of size (m · w)cNW that satisfies the following.

For every ROBP D of length m and width w that δNW-distinguishes (GNW)f (1n) from uni-
form, with probability at least 1− η over yNW the following holds.

The circuit CNW
yNW

has a preprocessing step in which it queries f . Then, in the computation
step it satisfies

Pr
i∈[n]

[
(CNW

yNW
)D̃(i) = fi

]
≥ 1

2
+

δNW

8m
,

63

where D̃ is a function that gets as input (r, a, b) and outputs Da,b(r).36

Proof. The algorithm GNW constructs a combinatorial design S1, ..., Sm ⊆ [d] with sets of
size |Si| = log n and with pairwise intersections |Si ∩ Sj| ≤ 10 logm for distinct i, j ∈ [m]
and with d = O(log n). Recall that, by Theorem 3.16, this can be done in space O(log n).
For every s ∈ {0, 1}d, the sth output string in the list is (fz↾S1

, ..., fz↾Sm
) ∈ {0, 1}m.

Description of RNW. Let r = ⌈d− log n+ logm+ logw + 1⌉ = O(log(nw)). Consider the
sampler

Γ: {0, 1}O(r) × [t]→ {0, 1}r

from Theorem 3.12, instantiated with confidence η/2 and accuracy δNW/(8m2w), where
t = poly(m,w). Note that Γ is computable in space O(log(nw)).

For each sample ℓ ∈ {0, 1}r in the output of Γ, the algorithm RNW interprets ℓ =
(z, i, j, b) ∈ {0, 1}[d]\Si × [m] × [w] × {0, 1}. Consider a circuit Cℓ that has ℓ hard-wired,
gets input α ∈ [n], completes z to zα ∈ {0, 1}d by placing α in the locations corresponding
to Si, and outputs

Di,j

(
fzα↾Sm−i+1

, ..., fzα↾Sm

)
⊕ b.

To be able to perform this computation on input α ∈ [n], at the preprocessing step, the
circuit Cℓ queries f at locations{

zα′↾Sj

}
j∈{m−i+1,...,m},α′∈[n]

.

Note that the number of queries is at most m · 210·log(m), since the design ensures that
|Sj ∩Si| ≤ 10 · logm for every j ̸= i. Also, the queries are independent of any input α, and
can thus be made at preprocessing.

Now, RNW prints a circuit C = CNW that has each Cℓ as a sub-circuit. To do so, con-
sider another instantiation Γ′ of the sampler from Theorem 3.12, this time with accuracy
δNW/4m and confidence η/2t and parameters

Γ′ : {0, 1}O(log(n·w)) × [t′]→ {0, 1}log(n) ,

where t′ = poly(m/δNW). Then, RNW uses Γ′ to obtain samples α1, ..., αt′ ∈ {0, 1}log(n). At
the pre-processing step, the circuit C queries f at locations α1,, αt′ ; lets each Cℓ query
f ; and computes ℓ⋆ that maximizes the value νℓ = Prk∈[t′][Cℓ(αk) = fαk

]. When receiving
input α ∈ [n], the circuit C outputs Cℓ⋆(α).

36Recall, from Definition 4.1, that Da,b is the ROBP that executes the sub-procedure of D starting from
vertex b ∈ [w] at layer a ∈ [m].

64

Analysis of RNW. Note that the seed length for RNW is O(log(nw)). Also, each Cℓ is
logspace-uniform,37 and thus C is also logspace-uniform. The space complexity of RNW is
thus dominated by the space complexity of computing the samplers, which is O(log(n·w)).
The circuit C that it outputs is of size

poly(t,m, t′) = poly(m,w),

and indeed C queries f in the preprocessing step and D̃ (as we defined in the theorem
statement) in the computation step.

By Theorem 4.2 and the hypothesis that D is a δNW-distinguisher for GNW, there exist
(i, j, b) such that

Pr
y∈{0,1}d

[
Di,j

(
fy↾Sm−i+1

, ..., fy↾Sm

)
⊕ b = fy↾Si

]
≥ 1

2
+

δNW

m
,

or equivalently

E
z∈{0,1}[d]\Si

[
Pr

α∈[n]

[
Di,j

(
fzα↾Sm−i+1

, ..., fzα↾Sm

)
⊕ b = fα

]
− 1

2

]
≥ δNW

m
.

Thus, with probability at least δNW/2m over z ∈ {0, 1}[d]\Si it holds that

Pr
α∈[n]

[
Di,j

(
fzα↾Sm−i+1

, ..., fzα↾Sm

)
⊕ b = fα

]
≥ 1

2
+

δNW

2m
. (6.3)

It follows that, over uniform choices of (z, i, j, b), Equation (6.3) holds with probability
at least (δNW/2m) · (1/m) · (1/w) · (1/2) = δNW

4m2·w . By our choice of parameters for Γ, with
probability at least 1 − η/2 over the seed for RNW, there exists ℓ = (z, i, j, b) in the output
sample of Γ such that Equation (6.3) holds. For such an ℓ, we have that Prα∈[n][Cℓ(α) =
fα] ≥ 1/2 + δNW/2m.

Also note that with probability at least 1− η/2 over a choice of seed for RNW, for each
ℓ it holds that

∣∣∣νℓ − Prα[Cℓ(α) = fα]
∣∣∣ ≤ δNW/4m. Whenever this happens, we have that

Pr
α∈[n]

[C(α) = fα] = Pr
α∈[n]

[Cℓ⋆(α) = fα] ≥
1

2
+

δNW

4m
,

as we wanted.

We are now ready to present the reconstructive targeted somewhere-PRG, which will
be based on a hard function in logspace-uniform TC0. For every fixed input x, the tar-
geted somewhere-PRG outputs a sequence of lists. If an ROBP D distinguishes each of
the lists in the sequence from uniform, then we can compute the hard function on x in
(TC0)D of bounded size, where the reconstruction argument (that prints this oracle TC0

circuit) uses a random seed of only logarithmic length.
37To see this, recall that almost all of Cℓ is a static “lookup table” containing m · 210·log(m) values. The

actual functionality of Cℓ consists of placing its input α in locations of z to get zα; querying the lookup
table at inputs that are obtained by examining fixed location-sets in z, to obtain a string q; and invoking the
oracle on q.

65

Theorem 6.7 (a reconstructive targeted somewhere-PRG with log-seed logspace-uniform
TC0 reconstruction). There is a universal constant c > 1 such that for every α, β, δ ∈ (0, 1) and
d ∈ N the following holds. Let T, r : N→ N such that T (n) ≥ n is computable in space O(log T),
and let m(n) = T (n)δ/c.

Let f : {0, 1}n → {0, 1}r(n) be computable by a family of logspace-uniform TC0 circuits of
depth d and size T . Then, there exist deterministic algorithms Gf , Rf , and Of , that satisfy the
following.

1. Generator. On input x ∈ {0, 1}n, the algorithm Gf runs in space O(log T) and prints
d̄ = c · (d/δ2) lists Gf (x)1, ..., Gf (x)d̄, where each list contains poly(T) strings in {0, 1}m.

2. Reconstruction. On input 1n and a seed y ∈ {0, 1}O(log T) and a description of a machine
M that runs in space log(m),38 the algorithm Rf runs in space O(log T) and prints an
oracle TC0 circuit Cy of depth c · (d/δ2) and size (n · m)c such that for every fixed input
x ∈ {0, 1}n the following holds.

Assume that for every i ∈ [d̄] it holds that M(x, ·) β-distinguishes the uniform distribution
over Gf (x)i from Um. Then, with probability at least 1−α over y it holds that COy (x) prints
a description of an oracle TC0 circuit Fx,y such that the truth-table of FOx,y is f(x), where
queries to O are of length at most n+ 2m+ polylog(T).

3. Oracle. For any n ∈ N, the machine O gets inputs of length n + 2m + polylog(T) and
runs in space c · δ · log T .

Furthermore, for every x there is a sequence of d̄ strings w(1)
x , ..., w

(d̄)
x of length poly(T) such

that w(1)
x can be printed in space O(log T) given access to x, and for all i ∈

{
2, ..., d̄

}
, the string

w
(i)
x can be printed in space O(log T) with oracle access to w

(i−1)
x , and the following holds:

• When we give Rf an additional input i ∈ [d̄] (i.e., in addition to 1n and the seed y), it
outputs a circuit Cy,i.

• We say that Rf is successful for x with i if with probability at least 1− α · (i/d̄) over y it
outputs Cy,i such that Fx,y,i = COy,i(x) is a TC0 circuit satisfying tt

(
FOx,y,i

)
= w

(i)
x . Then,

– Rf is successful for any x with i = 1.

– Let i ∈
{
2, ..., d̄

}
, and assume that Rf is successful for x with i − 1 and that M(x, ·)

is β-distinguisher for Gf (x)i. Then, Rf is successful for x with i.

– If Pry
[
tt
(
FOx,y

)
= f(x)

]
< 1− α, then Rf is not successful for x with d̄.

Proof. We use Proposition 6.5 with the parameter δ and with a sufficiently small constant
η < α/2d̄, where d̄ = O(d/δ2) . We also use Theorem 6.6, with δNW = β, with the constant η,

38Formally, for every machine M with a fixed description size, we analyze the behavior of Rf when n is
sufficiently large.

66

with input length T κ, and with output length T κ/cNW ≥ m (using the fact that m = T δ/c for
a sufficiently large universal c > 1. Let GNW and RNW be the algorithms from Theorem 6.6.

Fix an input x ∈ {0, 1}n, and let w(1)
x , ..., w

(d̄)
x : [T κ]→ {0, 1} be the sequence of functions

from Proposition 6.5. For each i ∈ [d̄], the generator Gf (x) prints the list of strings given by
(GNW)w

(i)
x (1T), where each string is truncated to be of length m. Note that Gf runs in space

O(log d̄ + log T + logm) = O(log T), because it prints d̄ lists, and the space complexity of
Gf and of computing w

(i)
x is O(log T) (see the “Lastly” part of Proposition 6.5), and prints

d̄ lists, each with T cNW·κ = poly(T) strings.

Oracle. We define a machine O that, for any n ∈ N, gets two types of inputs:

1. The first type of input has form (⟨M⟩, x, r, a, b), where M is a description of a proba-
bilistic Turing machine (the description is of length at most log(|x|)). The machineO
runs M on input x from the initial state b, for m − a steps and using at most log(m)
space, with the (m − a)th prefix of r as random coins, and prints M ’s output. (If M
exceeds the time or space bounds, O halts and prints a default output.)

For every fixed x ∈ {0, 1}n, let Dx(r) = M(x, r), and observe that Dx is an ROBP.
Also observe that O(⟨M⟩, x, r, a, b) = (Dx)a,b(r), where the latter ROBP is obtained
from Dx by starting from vertex b at layer a (recall Definition 4.1).

2. The second type of input specifies O(1/δ) elements of F as well as a string φ ∈
{0, 1}polylog(T) additional bits. The machine O runs the machine S from the down-
ward self-reducibility of Proposition 6.5, providing it with φ as advice.

Overall, for any n ∈ N, the queries to O are of length at most

max{n+m+ 2 log(m) + log(n), polylog(T)} < n+ 2m+ polylog(T)

and O runs in space max{O(δ) · log(T), log(m)} < c · δ · log(T), where we assume again
that the universal constant c > 1 is sufficiently large.

Reconstruction. The machine Rf uses its seed y to sample 2d̄ seeds of length O(log T),
denoted y1,1, y1,2, ..., yd̄,1, yd̄,2. We will first describe the circuit Cy that Rf prints and the
oracles, and then verify that they meet the claimed specifications.

The circuit Cy works in d̄ steps. For i ∈ [d̄], the goal of the ith step is to compute a
description of a TC0 circuit Cy,i such that the truth-table of CD̃

y,i is w
(i)
x , where D̃(r, a, b)

runs M on input x from the initial state b, for m− a steps.

1. For the base case i = 1, the circuit Cy,1 is simply the circuit BASEn from Proposi-
tion 6.5.

2. For i ∈
{
2, ..., d̄

}
, the circuit Cy already computed a description of Cy,i−1 such that

tt(CD̃
y,i−1) = w

(i−1)
x . Note that any query to w

(i)
x can be answered by using the down-

ward self-reducibility algorithm DSRn,i from Proposition 6.5, as follows. The cir-
cuit answers the queries of DSRn,i to w

(i−1)
x using Cy,i−1 and the oracle access to O

67

(i.e., whenever Cy,i−1 queries D̃ at (r, a, b) we use the first type of query to O, i.e.
(⟨M⟩, x, r, a, b)); and it answers the queries to S by the oracle access toO (i.e., when-
ever Cy,i−1 queries S at σ1, ..., σO(1/δ) we use the second type of queries toO, i.e. send
the σi’s along with an advice φ for S that is hard-wired into Cy).

Now, Cy uses the circuit CNW given by RNW with seed yi,1, and runs its preprocess-
ing step, while answering its queries to w

(i)
x as explained above. It then uses layer

reconstruction RECn,yi,2,i from Proposition 6.5, and runs its preprocessing step, while
answering its queries to w

(i)
x and to S in the same way.

The circuit Cy,i : [T
κ]→ {0, 1} is defined as

COy,i(j) = REC
(CNW)O

n,yi,2,i
(j).

3. Finally, the circuit Cy simulates the preprocessing step of Cy,d̄ (answering queries as
in each step above), and prints the description of a circuit Fx,y that implements OUTn
from Proposition 6.5, while resolving oracle queries of OUTn with Cy,d̄.

Correctness. Fix a space-logm machine M , and let x be an input such that M(x, ·) β-
distinguishes Gf (x)i from uniform for all i ∈ [d̄]. Let D = Dx be the ROBPD(r) = M(x, r),
and note that D is a β-distinguisher for (GNW)w

(i)
x (1T), for every i ∈ [d̄]. Also observe that

for every i ∈ [d̄] all of the queries of the circuit CNW (given by RNW) are answered by
D̃(r, a, b) = Da,b(r), as is required for the reconstruction in Theorem 6.6.

Now, recall that the seed of Rf specifies d̄ seeds for RNW and d̄ seeds for the layer recon-
struction (from Proposition 6.5). We prove by induction on i ∈ [d̄] that, with probability
at least 1− 2i · η over choice of seed for Rf , it holds that COi ≡ w

(i)
x .

The base case follows from the base case of Proposition 6.5. For i ∈
{
2, ..., d̄

}
, the

induction hypothesis implies that the preprocessing step for CNW and for RECn,yi,2,i will be
executed correctly. Then, with probability at least 1−η over yi,1 it holds that COi = (CNW)O

computes w(i)
x correctly on 1/2 + β/8m of the inputs. In this case, with probability at least

1− η over yi,2 it holds that REC(C
NW)O

n,y2,i
computes w(i)

x correctly on all inputs, where we used
the fact that β/8m > T−δ/c1 where c1 is the universal constant from Proposition 6.5.

By our choice of η < α/2d̄, with probability at least 1− α we have that Cd̄(j) = w
(d̄)
x (j)

for all j ∈ [T κ]. In this case, by the properties of OUTn we have that Cy(x) = Cn(x).

Complexity of Rf and of Cy. Note that the depth of Cy is at most O(d̄) = O(d/δ2). To
bound its size, let c1 = cNW > 1 be the universal constant from Theorem 6.6, and let
c2 > 1 be the universal constant from Proposition 6.5. Recall that the size of the circuit
that RNW prints is at most (m · w)c1 < m2c1 , where we relied on the fact that the ROBP
Dx(r) = M(x, r) has width m. Also, the size of the circuit for downward self-reducibility
from Proposition 6.5 is at most T c2·δ, and the size of the circuit for the base case is at most
(n · T δ)c2 . Finally, at each step i the circuit Cy will simulate the circuit Cy,i−1, which is of
size at most T c2·δ. Thus, the total size of Cy is less than

d̄ ·
(
(n · T δ)c +mc

)
< (n ·m)c

2

,

68

where c = c(c1, c2) > 1 is a sufficiently large universal constant. Also, since all the sub-
circuits in Cy are logspace-uniform TC0 circuits, the space complexity of Rf is at most
O(log T).

Recall that queries toO require either a description of M (if they are of the first type) or
a string φ of size polylog(T) (if they are of the second type). The algorithm Rf hard-wires
the description of M and the string φ into the description of Cy; it can do so because ⟨M⟩
is given to Rf as input, and because φ is computable in space O(log T).

This accounts for the oracle queries that Cy makes to O, but we did not yet account
for the queries made in the base case. Specifically, recall that BASEn from Proposition 6.5
makes queries to a space-O(log T) machine B. However, since these queries are non-
adaptive and do not depend on x, the machine Rf can compute the answers of B by itself
when constructing Cy, and hard-wire them.

The “furthermore” part. The “furthermore” statement follows almost immediately from
the same proof, with the strings w

(1)
x , ..., w

(d̄)
x defined above. By the base case of Proposi-

tion 6.5, w(1)
x can be printed (given input x) in space O(log T); and by the downward

self-reducibility, w(i)
x can be printed in space O(log T) with oracle access to w

(i−1)
x .

Now, when Rf gets an additional input i ∈ [d̄], it prints a circuit C ′y,i that acts as
follows: Instead of carrying out the reconstruction for d̄ steps, the circuit carries out the
reconstruction for only i steps to obtain a description of Cy,i (as defined above), simulates
the preprocessing of Cy,i, and prints Fx,y,i that is the description of Cy,i after preprocessing.

For i = 1, this is the base case circuit, so Rf always outputs a correct circuit (i.e.,
regardless of its seed y).39 The proof above shows that for every i ∈

{
2, ..., d̄

}
, conditioned

on Rf outputting a correct circuit Cy,i−1 and on M(x, ·) being a β-distinguisher for G(x)i =

(GNW)w
(i)
x (1T), with probability at least 1− 2η > 1− α/d̄ it outputs a correct circuit Cy,i. In

particular, when M(x, ·) is a β-distinguisher for G(x)i, we have that

Pr[Rf (1
n, y, i− 1) prints the correct circuit] ≥ 1− α · ((i− 1)/d̄)

=⇒ Pr[Rf (1
n, y, i) prints the correct circuit] ≥ 1− α · (i/d̄) .

Lastly, if Rf is successful for x with d̄, then with probability at least 1− α it holds that
CO

y,d̄
(j) = FO

x,y,d̄
(j) = w

(d̄)
x (j) for all j ∈ [T κ]. But in this case Fx,y defined above (i.e., that

implements OUTn and resolves its oracle queries with Cy,d̄) computes the output of C ′n(x),
which is f(x). This contradicts the assumption that Pry[tt

(
FOx,y

)
= f(x)] < 1− α.

6.2 Proof of the Main Result

We first prove a weaker version of Theorem 1, in which we assume that every log-spaceadvice-
uniform TC0 circuit family fails to compute the hard function on 99% of its inputs (rather
than on 1%). That is:

39We say that a circuit Cy,i is correct if CO
y,i(j) = w

(i)
x (j) for all j ∈ [Tκ].

69

Theorem 6.8. Assume that for every c ∈ N there are constants k > c and d ∈ N and a function
f : {0, 1}n → {0, 1}r(n), for some r : N→ N, that satisfies the following:

1. Upper bound. f is computable in logspace-uniform TC0 of depth d and size nk.

2. Lower bound. For every log-spaceadvice-uniform (TC0)DSPACE[c·log(n)] circuit family {Cn}
of size nc and depth c · d · k2, and every sufficiently large n ∈ N, we have

Pr
x∈{0,1}n

[Cn(x) = f(x)] ≤ ε/2 .

Then, BPL ⊆ ∩ε>0avgεL.

We stress that in the hypothesized lower bound, the depth of the TC0 circuit depends
on the hard function f (i.e., on the size and depth of the circuit computing f), but its size
nc does not. Also, in the notation describing the oracle DSPACE[c · log(n)] machine, our
proof shows that the space complexity of the oracle is c · log(n) where n is the input length
to Cn (which is smaller than c · log(|q|) where q is the query to the oracle).

Proof of Theorem 6.8. Let L ∈ BPL, decided by a probabilistic machine M using space
c0 · log(n), and let ε > 0. For a large constant c = c(c0) > c0 that will be determined in a
moment, let k, d ∈ N be the corresponding constants from our hypothesis.

We instantiate Theorem 6.7 with the function f , and with the following parameters:

• T (n) = nk.

• δ = c0/k < 1. (We used the fact that k > c > c0.)

• m = nc0 = T δ.

• α = 1/3 and β = 1/10.

Recall that on input x, the output of Gf consists of d̄ lists Gf (x)1, ..., Gf (x)d̄ of m-bit
strings. Consider the reconstruction algorithm Rf , instantiated with input (1n, nc0) and a
random seed y, and the machine O. We claim the following.

Claim 6.8.1. With probability at least 1− ε over choice of x ∈ {0, 1}n,

Pr
C←Rf

[
CO(x) prints a circuit whose truth-table is f(x)

]
< 1− α . (6.4)

Proof. Assume towards a contradiction that there exists X ⊆ {0, 1}n of density |X|/2n > ε
such that for every x ∈ X , Equation (6.4) does not hold. Then for every x ∈ X we have
that

Pr
C←Rf

[
C̄O(x) = f(x)

]
≥ 1− α ,

70

where C̄ is the circuit that executes the reconstructed circuit C and then evaluates its
output (which is a TC0 circuit that requires oracle access to O) on inputs i = 1, ..., r(n). It
follows that

E
C←Rf

[
Pr
x∈X

[
C̄O(x) = f(x)

]]
≥ 1− α ,

and hence there is a fixed choice of seed yn for Rf such that the deterministic circuit
C⋆

n = Rf (1
n, yn) correctly computes f on at least 1 − α of the inputs in X . In particular,

the circuit family {C⋆
n} obtained by fixing the good seed yn as advice for Rf on each input

length n satisfies Prx∈{0,1}n
[
(C⋆

n)
O(x) = f(x)

]
≥ 2ε/3 > ε/2 for every n ∈ N.

The size of C⋆
n is at most (n ·m)c1 < n2c0·c1 and its depth is c1 · (d/δ2) = (c1/c

2
0) · d · k2,

where c1 > 1 is the universal constant from Theorem 6.7. It makes oracle queries of length
n+2m < 3nc0 to a machine running in space c1 ·δ ·log(nk) = (c0 ·c1) log n. Letting c = 2c0 ·c1
and recalling that C⋆

n can be constructed by an algorithm running in space O(log n) and
using |yn| = O(log n) bits of non-uniform advice, this contradicts our hypothesis. □

Now let us describe the deterministic algorithm that decides L. Given x ∈ {0, 1}n, the
algorithm tries to find ix ∈ [d̄] such that∣∣∣ Pr

s∈[Gf (x)i]
[M(x, s) = 1]− Pr

r
[M(x, r) = 1]

∣∣∣ < 1

10
. (6.5)

When it finds such an ix, it outputs

MAJs∈[Gf (x)ix]
{M(x, s)};

if it finds no such ix, it outputs ⊥. To finish the proof, we need the following claim:

Claim 6.8.2. There is a log(n)-space algorithm that gets input x and satisfies the following:

• For at least 1− ε of the inputs x, it prints ix satisfying Eq. (6.5).

• Whenever it does not print ix satisfying Eq. (6.5), it outputs ⊥.

Proof. We will use the “furthermore” part of Theorem 6.7. Recall that the reconstruction
Rf gets input i ∈ [d̄], and for each seed y ∈ {0, 1}O(logn) it outputs a circuit Cy,i. As defined
in the “furthermore” part, we say that Rf is successful for x with i if

Pr
y

[
the truth-table of FOx,y,i is w(i)

x

]
≥ 1− α · (i/d̄) ,

where Fx,y,i = COy,i and Cy,i is the output of Rf with input i and seed y.
We work in iterations i = 2, ..., d̄. We start iteration i with the guarantee that Rf is

successful for x with i − 1. (The assumption holds for the base case i = 2 since Rf is
always successful with i = 1.) We run Rf with input i and with all possible seeds y, to
verify that Rf is successful with i. For each fixed y, we check that tt

(
FOx,y,i

)
= w

(i)
x using

the reduction of printing w
(i)
x to querying w

(i−1)
x . Whenever the algorithm printing w

(i)
x

71

queries w
(i−1)
x at some j ∈ [poly(T)], we answer with MAJy′

{
FOi−1,y′,x(j)

}
, relying on the

hypothesis that Rf is successful for x with i − 1. Note that we can answer oracle queries
of Fi−1,y′,x to O by ourselves, since O can be computed in space O(log n).

This algorithm runs in space O(log T) = O(log n), since at each iteration it combines
constantly many algorithms that run in such space. Specifically, at each iteration i, for
each seed y, the algorithm verifies that for all j ∈ [poly(T)] we have that

FOi,y,x(j) = MAJy′
{
FOi−1,y′,x(j)

}
.

Storing the counters for i, y, j, y′ (and the number of y-s for which the verification held)
can be done in space O(log T), and the string w

(i)
x can be printed in space O(log T) while

querying w
(i−1)
x . Thus, it is only left to verify that computing FOi,y,x(j) (or FOi−1,y′,x(j)) can

be done in space O(log T). This is the case because Fi,y,x is logspace-uniform and of size
TO(δ) ≤ poly(T), so we can use the standard DFS-style emulation of circuits in bounded-
space, while answering each query of Fy,i,x to O by computing O in space O(δ log T).40

(And the same argument applies to Fx,y,i−1.)
By Claim 6.8.1 and the “furthermore” part of Theorem 6.7, with probability at least

1− ε over choice of x ∈ {0, 1}n, there exists i ∈
{
2, ..., d̄

}
such that Rf is not successful for

x with i (i.e., Rf is not successful for x with i = d̄, and perhaps also with smaller values
of i < d̄). Since our iterative process only continues while Rf is successful, for the first i it
encounters such that Rf is not successful with i, we have that M(x, ·) β-distinguishes the
uniform distribution over Gf (x)i from Um.

On the other hand, if the iterative process concludes without finding a suitable i (i.e.,
Rf is successful for all i’s), then we output ⊥. This happens with probability at most ε
over choice of input x. □

By Claim 6.8.2, with probability at least 1 − ε over x ∈ {0, 1}n the deterministic algo-
rithm outputs L(x), and whenever it does not output L(x), it outputs ⊥.

To relax the hypothesis from hardness on 99% of inputs to hardness on 1% of the
inputs, we will use the direct-product-based hardness amplification result of Impagliazzo
et al. [IJK+10]. For a function f : {0, 1}n → {0, 1}, let f×k : {0, 1}n·k → k be the k-wise
direct-product of f , i.e. f×k(x1, ..., xk) = f(x1) ◦ f(x2) ◦ ... ◦ f(xk). Then:

Theorem 6.9 (approximately list-decoding the direct product code). There is a constant
c > 1 and a probabilistic algorithm Dec with the following property. Let k ∈ N, and ε, δ ∈ (0, 1)
be such that ε > e−δk/c. Let f : {0, 1}n → {0, 1}, and let F k such that

Pr
(x1,...,xk)←U⊗k

n

[
F k(x1, ..., xk) = f×k(x1, ..., xk)

]
≥ ε.

40Recall that there are O(1) levels to this recursive procedure, and at each level the algorithm stores
O(log n) bits. Thus, using additional O(log n) bits per level to answer the queries toO does not increase the
space complexity above O(log n).

72

On input 1n and oracle access to F k, the algorithm Dec prints, with probability Ω(ε), an oracle
circuit F such that Prx[F Fk

(x) = f(x)] ≥ 1− δ.
Furthermore, the algorithm Dec is a logspace-uniform randomized oracle NC0 circuit using

O(k log n · 1
ε
log(1/δ)) coins and one oracle query. The circuit F is an oracle AC0 circuit of size

poly(n, k, log(1/δ), 1/ε) that uses O(log(1/δ)/ε) non-adaptive oracle queries.

Some of the properties stated in Theorem 6.9 (namely, the bound on the number of
coins, and the fact that queries are non-adaptive) are not explicitly stated in [IJK+10].
However, these properties are immediately evident from the description of their algo-
rithm and the resulting circuit (see [IJK+10, end of Section 1.1]). Using Theorem 6.9, we
can now prove the main result for this section.

Theorem 6.10. Assume that for every constant c ∈ N there exist constants k, d ∈ N and δ > 0
and a function f : {0, 1}n → {0, 1} that satisfies the following:

1. Upper bound. f is computable in logspace-uniform TC0 of depth d and size O(nk).

2. Lower bound. For every log-spaceadvice-uniform (TC0)DSPACE[c·log(n)] circuit family {Cn}
of size nc and depth c · d · k2, and every sufficiently large n ∈ N, we have

Pr
x∈{0,1}n

[Cn(x) ̸= f(x)] ≥ δ .

Then, BPL ⊆ ∩ε>0avgεL.

Proof. We prove that our hypothesis implies that for every ε > 0, the k-wise direct-
product of f (for an appropriate k = k(ε, δ)) satisfies the hypothesis of Theorem 6.8.

Let ε > 0 be arbitrarily small, and let c > 1 be any constant (for which we wish to
prove the hypothesis of Theorem 6.8). We instantiate our hypothesis with the constant
c′ = 5c to obtain k, d and a function f . For t = O(log(1/ε)/δ), let f×t be the t-wise direct
product of f .41 We show that the hypothesis of Theorem 6.8 is satisfied with parameters
2k and d.

For the upper bound, observe that f×k is computable in size O(t·nk) = O(nk) < n2k and
depth d. For the lower bound, assume towards a contradiction that there is a logspace-
uniform (TC0)DSPACE[c·log(n)] circuit family {Fn} of size nc and depth c · d · (2k)2 that can be
generated with O(log n) bits of advice such that

Pr
x←Un

[Fn(x) = f(x)] ≥ ε/2

for infinitely many n ∈ N. Let DecIJKW be the algorithm from Theorem 6.9. By that the-
orem, there is a fixed choice of coins for DecIJKW such that, given an answer to a single
query to Fn, the algorithm DecIJKW prints a circuit Cn0 satisfying

Pr
x←Un

[CFn
n0
(x) = f(x)] ≥ 1− δ,

41On inputs whose length n is not of the form n0 · k for integers n0, k, we define f×k as the evaluation of
f×k on the prefix of length ⌊n/k⌋ · k of the input.

73

where n0 = ⌊n/k⌋. In particular, if {Fn} succeeds on an infinite set S ⊆ N of input lengths,
then

{
CFn

n0

}
n∈N succeeds on an infinite set {⌊n/k⌋ : n ∈ S} of input lengths.

The only point to verify is the complexity of the circuit family
{
CFn

n0

}
n0∈N

. Recall that
the number of coins used by DecIJKW is O(k log n0 · 1ε log(1/δ)). Also note that for every n0

such that there is n ∈ S satisfying n0 = ⌊n/k⌋, we can indicate the “correct” input length n
with ⌈log k⌉ bits of non-uniform advice (this is since n = n0·k−i for some i ∈ {0, ..., k − 1}).
The machine that prints CFn

n0
gets as advice the fixed random coins for DecIJKW, the answer

to the single oracle query that DecIJKW makes to Fn, and the indication for the “correct”
input length n. Along with the fact that DecIJKW itself is logspace-uniform, we deduce that{
CFn

n0

}
is logspace-uniform using O(log n) bits of advice.

Finally, the size of CFn
n0

is at most nc · ncIJKW < (n0)
2c, relying on the fact that n0 = Ω(n)

and assuming without loss of generality that c is larger than the universal constant cIJKW
from Theorem 6.9. The depth of CFn

n0
is c · d · (2k)2 + cIJKW < 5c · d · k2, assuming again,

w.l.o.g., that c is sufficiently large. Recalling that c′ = 5c, this contradicts our hypothesis
about f .

Remark 6.11. In Theorem 6.10 we use the assumption (combined with hardness ampli-
fication) to obtain a function that is hard on 1 − ε of the inputs, and deduce derandom-
ization that succeeds on 1 − ε of the inputs. One may wonder if assuming a function
f : {0, 1}n → {0, 1}n that is hard on all inputs can yield derandomization that succeeds on
all inputs (i.e., whether hardness on almost all inputs, in the sense of [CT21a], implies that
BPL = L). However, such a hypothesis cannot be true in the setting of Theorem 6.10: For
every candidate hard function f computable in logspace-uniform TC0, a logspace algo-
rithm can compute f at some fixed input (say, 1n) and hard-wire this value into a circuit
that it prints.

6.3 Unconditional Lower Bounds for Logspace-Uniform TC0

In this section we prove Proposition 1.2. The proof closely follows the approach of San-
thanam and Williams [SW13, Theorem 1.2], with only minor differences (e.g., working
against uniform circuits with sub-linear advice, and some minor differences in the defini-
tion of the computational model).

We will need the following standard space-hierarchy theorem in which the machine
using less space is also allowed a sub-linear amount of advice.

Claim 6.12 (space hierarchy with advice). For every constant c ∈ N and a function a(n) =
o(n) there is a language in DSPACE[O(log n)] that is hard for DSPACE[c · log(n)]/a(n).

Proof. The machine M ′ for the hard language acts as follows. Associate each machine
Mi with an infinite sequence of input lengths Si. On input x ∈ {0, 1}n where n ∈ Si, the
machine M ′ simulates Mi(x) with advice x′, where x′ is the first a(n) bits of x. Note that
for every Mi and every advice sequence {an}n∈N there are infinitely many inputs x on
which M ′(x) ̸= Mi(x). Also, M ′ needs space c · log(n)+O(log n), with the extra overheads

74

used to deduce Mi from n, and to supply virtual access to the advice from the input (i.e.,
to store and move the heads of the machine on the input tape and the virtual advice tape).

We now present an alternative and more general version of Definition 1.1, referring
to the “circuit-structure” function of a TC0 circuit and allowing more bits of non-uniform
advice.

Definition 6.13 (circuit-structure languages). Let {Cn} be a TC0 circuit family {Cn} of size
T (n) and depth d. The weights function of {Cn} is the function fwt

{Cn} that gets input (1n, i, j, k),
where i ∈ [d] and j, k ∈ [T], and output wi,j,k. The thresholds function f thr

{Cn} gets input
(1n, i, j), where i ∈ [d] and j ∈ [T], and outputs θi,j . We define a language Lwt

{Cn} such that
L{Cn}(1

n, i, j, k, r) is 1 iff the rth bit in the output of fwt
{Cn} is 1. We define Lthr

{Cn} analogously.

Recall, by Definition 6.1, that a TC0 circuit family of size T is logspace-uniform if there
are machines that compute fwt

{Cn} and f thr
{Cn} in space O(log T). Note that this is equivalent

to deciding Lwt
{Cn} and Lthr

{Cn} in space O(log T).

Definition 6.14 (logspace-uniform circuit families with advice). We say that a circuit family
{Cn} of size T (n) is logspace-uniform with advice a(n) if there are two machines that decide
Lwt
{Cn} and Lthr

{Cn} in space O(log T (n)) with advice of length a(n).

The definition of log-spaceadvice-uniform from Definition 1.1 refers to the special case
of Definition 6.14 when a(n) is allowed to be any logarithmic function.

Note that Definition 1.1 and Definition 6.14 are not completely obvious. An alternative
definition may only allow the machine to pass on the a(n) bits of advice to Cn, without
reading the advice or using it for its own computation; in this alternative definition, the
computation that reads the advice and uses it would have only been the circuit Cn. In
our particular setting (of logspace machines describing the structure of TC0 circuits), the
class defined in Definition 6.14 is stronger than the class in the alternative definition, but
we can still prove unconditional lower bounds in L for this stronger class.

Theorem 6.15 (L is hard for logspace-uniform TC0 with a bounded-logspace oracle and
no(1) advice). For every k, k′, d ∈ N, let Ck,k′,d be the class of languages decidable by logspace-
uniform TC0 circuits, that on input length n can be generated with no(1) bits of non-uniform
advice, such that the circuits are of size nk and depth d, and make oracle queries of length n̄ = nk

to DSPACE[k′ · log n̄]. Then, L ̸⊆ Ck,k′,d.

Proof. Let L ∈ L be arbitrary. Assuming that L ⊆ Ck,k′,d, we prove that L ∈ DSPACE[c ·
log n]/no(1) for some fixed c = ck,k′,d, contradicting Claim 6.12. For simplicity of presen-
tation, let us assume that all thresholds of gates in TC0 circuits are always 0; as will be
evident below, the proof of the general case is essentially identical.

Using the hypothesis, there is a family of TC0 circuits {Cn} of size nk and depth d that
decides L with oracle queries to DSPACE[k′ · log(nk)], and a machine M running in space

75

C · log n (for some C ∈ N) and advice sequence α = {αn} of length |αn| = a(n) such that
M with advice α decides Lwt

{Cn}.
For a sufficiently small constant ε > 0, consider the language Lwt-unpad

{Cn} , the inputs to
which are of the form (1n

ε
, i, j, k, r, β), and the output is the evaluation of M on (i, j, k, r)

with advice β. Note that Lwt-unpad
{Cn} ∈ L.42 Hence, using the hypothesis again, there is a

family of TC0 circuits {C ′n} of size (nε+O(log n)+no(1))k < nδ and depth d such that {C ′n}
with oracle access to DSPACE[k′ · log(nδ·k)] decides Lwt-unpad

{Cn} , where δ may be arbitrarily
small by a suitable choice of ε; we do not care about the uniformity of {C ′n}. For conve-
nience of notation, let us reindex the family {C ′n} such that C ′n (with αn hard-wired in the
β-variables and with oracle access to DSPACE[k′ · log(nδ·k)]) decides Lwt-unpad

{Cn} on inputs of
the form (1n, i, j, k, r).

We now decide L in space c · log(n) with o(n) advice as follows. On input length n, the
advice is a description of C ′n with αn hard-wired. We rely on the following claim, which
fleshes out the standard DFS-style simulation of circuits in bounded-space.

Claim 6.15.1. We can evaluate C ′n with advice αn and oracle access to DSPACE[k′ · log(nδ·k)] at
any given point, using space c′ · (log n) where c′ > 1 is a constant that depends only on k, k′, d, δ.

Proof. We use a recursive procedure. At each node, we remember the path that led us
to the node, which is a sequence of at most d choices of an edge label in [nδ]. We run
the space-bounded algorithm for evaluating the gate type of the node, which is either a
threshold function or a DSPACE[k′ · log(nδ·k)] function, and provide it virtual access to its
input gates by recursively calling the node-evaluation procedure.

Note that the recursion depth is d, and that at each level of recursion we store at most
Ok,k′,d,δ(log n) bits (for the path and for the computation of the gate function). Thus, the
overall space complexity is Ok,k′,d,δ(log n). □

We now run the O(k ·d · log n)-space algorithm that evaluates Cn on the input x. Specif-
ically, we use a recursive procedure for evaluation (i.e., a DFS-style simulation, similarly
to the proof of Claim 6.15.1), and whenever we need to know the weights or threshold
of a gate, we call the space-bounded algorithm from Claim 6.15.1. The recursion level is
d, at each level we store Ok,k′,d,δ(log n) bits of information, and thus overall we use space
c · log n for some c that only depends on k and k′ and d but does not depend on L. Since
the advice is of length O(nδ) = o(n), this contradicts Claim 6.12.

6.4 Scaled-Up Version: Worst-Case Derandomization

We now prove Theorem 2, which is a “scaled-up” version of Theorem 6.10. Specifically,
we assume that there is a function computable in deterministic linear space that is hard for
logspace-uniform (TC0)ROBP circuits of size 2ε·n, and deduce derandomization of linear

42As usual, we can ensure that the execution stops after a logarithmic number of steps, regardless of β,
using a steps counter.

76

space. In contrast to Theorem 6.10, in this result we only need worst-case hardness (rather
than mild average-case hardness), the lower bound is against fully uniform models, and
the conclusion is a worst-case derandomization.

Theorem 6.16. There is a universal constant d > 1 such that the following holds. Assume
that there are ε > 0 and L ∈ DSPACE[O(n)] such that L is for logspace-uniform (TC0)ROBP

circuits of depth d and size 2ε·n on all but finitely many input lengths. Then, BPSPACE[O(n)] =
DSPACE[O(n)].

Proof. Let L0 ∈ BPSPACE[O(n)], decided by a probabilistic machine M using space c0 ·n.
Let ε be as in our hypothesis, and let cNW > 1 be the universal constant from Theorem 7.4.
Finally, let c = (c0 · cNW)/2ε > 1.

Derandomization algorithm. Given x ∈ {0, 1}n, let N = c · n for a sufficiently large
constant c > 1. We use the NW PRG from Theorem 7.4, instantiated with εNW = c0/c ∈
(0, 1) and with a hard truth-table f given by L on inputs of length N . The output length
of the PRG is then 2εNW·N = 2c0·n and its seed length is ℓ = O(N). On the given input
x ∈ {0, 1}n, we output

MAJs∈{0,1}ℓ
{
M(x,NWf (s))

}
,

and since NW can be computed in space O(N) and L can be computed in space O(N), this
derandomization algorithm runs in deterministic linear space O(n).

Correctness. Assume that for some x ∈ {0, 1}n it holds that∣∣∣∣ Pr
r∈{0,1}2c0·n

[M(x, r) = 1]− Pr
s∈{0,1}ℓ

[
M(x,NWf (s)) = 1

]∣∣∣∣ ≥ 1

10
. (6.6)

In this case, we show that L can be decided by logspace-uniform (TC0)ROBP circuits of
universal depth and size 2ε·n. Specifically, we will rely on the following claim:

Claim 6.16.1. There is an algorithm that gets input x ∈ {0, 1}n such that Equation (6.6) holds,
and random seed y ∈ {0, 1}O(N), runs in space O(N), and with positive probability over y it
prints a (TC0)ROBP circuit Cy of depth d (for some universal constant d ∈ N) and size 2ε·N , whose
truth-table is f .

Proof. We combine the distinguisher-to-predictor transformation from Theorem 4.2 and
the reconstruction algorithm RNW from Theorem 7.4.

Consider the ROBP defined by Dx(r) = M(x, r), which is of width and length 2c0·n. We
interpret the seed y as a triplet (i, j, b) ∈ {0, 1}c0·n × {0, 1}c0·n × {0, 1}, and let Dx,i,j,b(r) =
(Dx)i,j(r) ⊕ b (as defined in Definition 4.1). By Equation (6.6) and Theorem 4.2, for some
(i, j, b) we have that

Pr
s∈{0,1}ℓ
r=NWf (s)

[Dx,i,j,b(r>2c0·n−i) = ri] >
1

2
+

1

10
· 2−c0·n .

77

Let us assume from now on that the seed y = (i, j, b) satisfies the above. The recon-
struction RNW runs in space O(N), gets oracle access to the predictor Dx,i,j,b, and prints a
constant-depth oracle TC0 circuit CNW of size 2c0·cNW·n = 2(ε/2)·N and depth that is a uni-
versal constant d ∈ N, such that CDx,i,j,b

NW computes f . Note that we can answer the oracle
queries of RNW to Dx,i,j,b in space O(n), by simulating the machine M (from configuration
j, for 2c0·n − i steps).

Finally, recall that we want to print the (TC0)ROBP circuit Cy, where Dx,i,j,b is the ROBP.
We can do so in space O(N), since printing each of the 2c0·n−i layers of Dx,i,j,b can be done
in space O(N) (i.e., by enumerating over all possible states, and computing the transition
function of M to yield the structure of the ROBP). Since the ROBP is of width and length
2c0·n, its total size is less than 2(ε/2)·N , and hence our total output length is less than 2ε·N . □

Let us explain how to use Claim 6.16.1 to contradict the hardness of L. Assume to-
wards a contradiction that for a large enough n inN, Equation (6.6) is violated for some
x ∈ {0, 1}n, and let N = c · n. On input 1N , we construct a circuit for Ln = L ∩ {0, 1}N as
follows:

1. Enumerate over x ∈ {0, 1}n.

2. Enumerate over y = (i, j, b) ∈ {0, 1}O(N).

3. For each z ∈ {0, 1}N , test whether or not the circuit Cy that the algorithm from
Claim 6.16.1 outputs satisfies Cy(z) = L(z).

4. When finding x, y such that Cy(z) = L(z) for all z, print Cy.

By our assumption, suitable x and y exist. We thus only need to verify that the algo-
rithm above runs in space O(N). Since L is computable in such space, the only non-trivial
part is solving the following problem: Given input (x, y, z), compute Cy(z). This can be
done in space O(N), by running the DFS-style simulation of the TC0 component of Cy,
and whenever it queries the ROBP with query q, simulating M on input x, starting from
state j and for i steps, where q serves as the input to the (sub) ROBP.43 Since the circuit is
of size 2ε·N and M runs in space O(n), this procedure uses space at most O(N).

6.5 More on BPL = L “On Average”

We provide evidence that it might not be harder to achieve a zero-error average-case
derandomization than an average-case derandomization.

Specifically, we prove that for every distribution D over ROBPs there is a natural re-
lated distribution D′ over ROBPs such that average-case derandomization with respect
to D′ implies a zero-error average-case derandomization with respect to D. (Jumping

43To be more specific, some gates in the TC0 circuit are not threshold gates, but are oracle gates. We
simulate the ROBP that the gate computes precisely as we would simulate a threshold function that a gate
computes, giving it virtual access to its inputs by space-bounded composition.

78

ahead, when D is uniform over a set of ROBPs, then D′ is the uniform distribution over
these ROBPs with a random start state.) We make the parameters precise below:

Claim 6.17 (from average-case derandomization to zero-error derandomization). For ev-
ery positive integers n, any ε, δ > 0, and every distribution D over ROBPs of length n and width
n, there exists a distribution D′ over ROBPs of length n and width n such that the following holds.
If there exists a logspace algorithm A′ such that

Pr
B←D′

[A′(B) ∈ (E[B]± ε)] ≥ 1− δ,

then there is a logspace algorithm A such that for every B ∈ supp(D),

A(B) ∈ (E[B]± 6n · ε) ∪ {⊥},

and moreover, PrB←D[A(B) = ⊥] ≤ n2 · δ.

This claim is a simple consequence of “certified derandomization” for prBPL, a topic
with recent interest [CH22; GRZ23; PRZ23]. We use the test of [PRZ23], as it gives a
particularly simple characterization.

For a branching program B of length n and width n, for every state v let pv→ be the
probability over a uniform input of reaching the accept state from vertex v. Then:

Lemma 6.18 ([PRZ23]). Consider a set of estimates {p̃v→ ∈ (0, 1)}v such that:

1. For every node v in the final layer n it holds that p̃v→ = pv→ ∈ {0, 1}.

2. For every node v in any non-final layer it holds that∣∣∣∣p̃v→ − p̃v0→ + p̃v1→
2

∣∣∣∣ ≤ ε ,

where v0 = B[v, 0] and v1 = B[v, 1].

Then, it holds that |p̃vst→ − pvst→| ≤ 6nε.

From this, we can define D in terms of these tests.

Proof of Claim 6.17. We describe how D′ is sampled. Given B ← D, let {Tv} be subpro-
grams of B, where Tv has start vertex v (and is otherwise identical to B, in particular with
accept vertex vac). Then, let D′ output a random such Tv.

Given an algorithm A′ with the assumed guarantee over D′, our algorithm A(B) con-
structs {Tv} in logspace, lets p̃v→ = A′(Tv) for every v, and then verifies that these es-
timates satisfy the two conditions of Lemma 6.18. These conditions can be verified in
logspace by re-computing values p̃v→ as necessary. Finally, if all conditions are satisfied
the algorithm returns p̃vst→, and otherwise returns ⊥. The fact that any returned value
satisfies the error bound is immediate from Lemma 6.18. Moreover, with probability at
least 1− n2δ over a uniform B, A′(Tv) is within ε of E[Tv] for every v.

79

7 Derandomization with Minimal Memory Overhead

We first introduce and state our primary technical tool:

7.1 Technical Tool I: A Space-Efficient PRG for Adaptive ROBPs

Recall that in the standard ROBP model, the bits to be read are determined according
to the layer of the BP. In an adaptive read-once model, defined also in Section 3.1, each
computation path of the branching program can read the bits of input r ∈ {0, 1}n in a
different order, as long as each bit is read exactly once. That is, from each intermediate
state, the two outgoing edges are also labeled with an index from [n].

As proved in [DT23], randomized algorithms can be transformed to read the random
bit at the index corresponding to their state upon reading, and this does not change their
behavior with true randomness. Moreover, this transformed machine can be modeled as
an AOBP.

Lemma 7.1 ([DT23]). Given a randomized space-S machine M , there is a randomized oracle
machine M̄ that works as follows. M̄ runs in space S + O(log S), and whenever M̄ queries a
random bit while in configuration τ , it queries the random oracle at position τ . Moreover, for
every x ∈ {0, 1}n it holds that

Pr
r
[M(x, r) = 1] = Pr

r′
[M̄ r′(x) = 1].

Finally, M̄ on input x can be computed by an AOBP of length and width 2S .

Proof. We define M̄ that works the same as M but queries its randomness according to
the current configuration. More formally, M̄ is an oracle machine that on input x ∈ {0, 1}n
and oracle access to r′ ∈ {0, 1}S , simulates M on x, and whenever M enters a state that
flips a random coin, M̄ queries the oracle r′ in a location corresponding to the current
contents of its worktape. That is, whenever a random coin is flipped, M̄ writes its current
configuration to the oracle tape, and uses it to query a bit in r′ ∈ {0, 1}S .44 It is a standard
fact that Mx(r) can be computed by an ROBP of length and width S. In D0, the random
bits are read not in the standard order, but in an order determined by the previous steps.
As observed in [DT23], along each computation path, each bit of r will be read exactly
once.45

Very recently, Chen, Lyu, Tal, and Wu [CLT+23] gave the first nontrivial PRG for the
adaptive model, obtaining a poly-logarithmic seed length.46

44For the sake of readability, we assume that the number of configurations is exactly S, although it is
slightly larger. This can be easily addressed without changing any conclusions.

45Again, since the number of configurations is slightly larger than S, namely S · polylog(S), the input to
the adaptive BP is slightly larger than its length. However, we can easily make it the same without any
change in the theorem’s statement.

46We note that even a seed length of nη , where η is an arbitrarily small constant, would have sufficed for
us.

80

Theorem 7.2 ([CLT+23]). For any integers n,w ≥ 1, and any ε > 0, there is an explicit
PRG Gadp : {0, 1}d → {0, 1}n that ε-fools length-n, width-w, AOBPs, where d = O(log n ·
log2(nw/ε)).

The [CLT+23] construction is based on the Forbes–Kelley framework [FK18]. Next,
we show that their PRG is highly space-efficient. Since we will only care about the w = n
case, for simplicity, we will analyze the w = poly(n) regime.

Claim 7.3. When w = poly(n), the mapping of (s, i) ∈ {0, 1}d× [n] to Gadp(s)i is computable in
O(loglog(n/ε)) space.

Proof. First, we give the construction of Gadp, which is essentially the Forbes–Kelley gen-
erator given in [FK18] for fooling polynomial-width arbitrary-order ROBPs. For k, r =
O(log(n/ε)), let D0, . . . , Dr−1 denote r independent copies of a k-wise independent distri-
bution over {0, 1}n, and let T0, . . . , Tr−1 denote r independent copies of a k-wise indepen-
dent distribution over {0, 1}n (also independent of the Di-s). Let G0 be the trivial PRG
that outputs 1n, and for i > 0, let

Gi+1 = Di + Ti ∧Gi,

where ∧ denotes bitwise AND and + denotes addition over Fn
2 . We let Gadp = Gr. Thus,

a seed s comprises 2r strings, each samples from a k-wise distribution. Indeed, this takes
O(rk log n) bits.

Given s, let (d0, . . . , dr−1, t0, . . . , tr−1) be the corresponding samples from the k-wise
independent distributions. Unfolding the recursion, we have

Gr(s) = dr−1 +
r−1∑
ℓ=0

dℓ−1 ∧

(
r−1∧
z=ℓ

tz

)
,

where we denote d−1 = 1n.
By Claim 3.17, we know that given 0 ≤ j ≤ r− 1, s, and ℓ ∈ [n], each bit dj[ℓ] (and like-

wise tj[ℓ]) can be computed in O(log k + loglog n) = O(loglog(n/ε)) space. By composition
of space-bounded algorithms, Proposition 3.5, each output bit of Gr(s) can be computed
in space

O
(
log r + loglog

n

ε
+ log d

)
= O

(
loglog

n

ε

)
.

7.2 Technical Tool II: NW With Deterministic Reconstruction

For both results, we require a version of the Nisan–Wigderson reconstructive PRG. Our
presentation and proof closely follows [DT23, Theorem 5.1], except that we incorporate
the uniform deterministic reconstruction of Theorem 5.1. We assume we have access to
a bit-predictor, rather than a distinguisher, as we convert from the latter to the former in
several different ways.

81

Theorem 7.4 (NW PRG with deterministic TC0 reconstruction). There exists a universal
constant cNW > 1 such that for every sufficiently small constant εNW > 0 the following holds.
There is an algorithm NW computing

NWf : {0, 1}(cNW/εNW)·logN → {0, 1}M

such that for any f ∈ {0, 1}N and for M = N εNW , we have the following.

1. Efficiency. On input s and i ∈ [M], NWf (s)i can be computed in space (cNW/εNW) · logN .

2. Reconstruction. There is a deterministic space O(logN) algorithm R that, given oracle
access to f and oracle access to a 1

M2 previous bit predictor47 P for NWf , prints a constant-
depth oracle circuit C of size M cNW that has majority gates, makes non-adaptive queries, and
satisfies the following: CP (x) = fx.

Note that the above instantiation of the NW PRG is different than the one given in
Theorem 6.6. There, the algorithm generating the decoding circuit used a short random
string, and the circuit had query access to f and to an ROBP distinguisher rather than to a
next-bit-predictor.

Proof. The generator is identical to [DT23, Theorem 5.1], except that we use the code
of Theorem 5.1 (so that we can support deterministic reconstruction). Let ρ = 1/M2 be
the advantage of the predictor. Let f̄ be the encoding of f by the code from Theorem 5.1
with

k = N, ε = ρ, γ = εNW, δ = 0.1

and note that f̄ is of length

N̄ = poly(N/M)1/εNW = N c/εNW

for some universal c > 1. Without loss of generality, assume N̄ is a power of two. Next,
let

S1, . . . , Sk ⊆ [d]

be the logspace-computable (ℓ = log N̄ , αℓ) design of Theorem 3.16 with α = (c′/c)εNW
2,

where c′ is the universal constant in that theorem. With this choice we have

k = 2(α/c
′)ℓ = M, d = (c′/α)ℓ =

c2

εNW
3
logN.

Then we define the generator as follows. Given s ∈ {0, 1}d, for i ∈ [M] let

NWf (s)i = f̄Des(s,i).

Output Complexity. As our construction is identical to that of [DT23], the output com-
plexity follows from their analysis, and from the fact that the code in Theorem 5.1 is
encodable in space O(logN).

47The theorem also holds with identical parameters in the case that P is a next bit predictor.

82

Reconstruction. The algorithm R works as follows. Given P : {0, 1}i−1 → {0, 1} satisfy-
ing

Pr
x←Us

[
P (NWf (x)>M−i) = NWf (x)M−i

]
≥ 1

2
+ ρ

let T = SM−i and write this as

Pr
(xT ,xTc)←Us

[
P (NWf (xT ◦ xT c)>M−i) = f̄xT

]
≥ 1

2
+ ρ.

The algorithm R then enumerates over assignments to xT c and finds a fixed z ∈ {0, 1}|T c|

such that
Pr

x←Uℓ

[
P (NWf (x ◦ z)>M−i) = f̄x

]
≥ 1

2
+ ρ,

which it can do in deterministic space O(d+ logN) = O(logN) by the explicitness of The-
orem 5.1 and Theorem 3.16. Finally, given z we can construct in logspace a circuit for
NWf (y ◦ z)j for every j > M − i using oracle queries to f , and moreover this circuit is an
oracle AC0 circuit of size 2αℓ. Thus, we can construct an oracle AC0 circuit C of size M ·2αℓ
such that

Pr
x←Uℓ

[
CP (x) = f̄x

]
≥ 1

2
+ ρ.

Finally, we apply the algorithm Dec of Theorem 5.1 with x = f . We enumerate over ran-
dom strings y ∈ {0, 1}O(logN) and indices i ∈ {0, 1}O(logN), and find the lexicographically
first Cy,i such that, letting w = tt(CP), we have

tt(Cw
y,i) = f.

Such a circuit always exists by our choice of parameters. Moreover, Cy,i is a constant
depth oracle circuit with majority gates of size poly(N εNW ·M), and thus the final oracle
circuit that, on input j, computes Cw

y,i and answers oracle queries to w using the circuit
CP is of size poly(N εNW ·M · 2αℓ) = M cNW where we choose cNW to be a sufficiently large
constant.

Converting Distinguishers to Previous Bit Predictors. In all cases, our correctness proof
will need to transform a distinguisher for a PRG into a previous-bit predictor. We do this
in three ways:

• Existentially, as such a transformation is always possible.

• If we have a PRG for the that is able to “fool the hybrid argument”, as in Section 2.2.2
we can find a previous bit predictor deterministically using this PRG.

• If the distinguisher is an ROBP, we can perform this transformation in deterministic
logspace via Theorem 4.2.

83

Lemma 7.5 ([Yao86]). For an arbitrary distribution D over {0, 1}n and circuit C : {0, 1}n →
{0, 1} of size s, if |E[C(Un)] − E[C(D)]| = δ, there exists a circuit P of size s + O(1) that is a
δ/n-previous-bit-predictor of D.

In the case that we have a PRG that fools the distinguisher, we can find a previous bit
predictor in this fashion. We let M = N εNW and s = (cNW/εNW) logN be as in the statement
of Theorem 7.4.

Lemma 7.6. For every δ > 0, there is a deterministic algorithm that works as follows. The
algorithm is given oracle access to:

• f ∈ {0, 1}N .

• A δ-distinguisher D : {0, 1}M → {0, 1} for NWf : {0, 1}s → {0, 1}M , where NW is the
generator of Theorem 7.4 with some constant εNW > 0, so s = O(logN).

• A (δ/2M)-HSG H : {0, 1}t → {0, 1}M for TC0 circuits of size O(2s ·M) with oracle access
to D.

The algorithm runs in space t+O(log(Nt)) outputs z ∈ {0, 1}M−i and b ∈ {0, 1} such that

Pr
x←NWf

[D(z ◦ x>i)⊕ b = xi] ≥ 1/2 + δ/2M.

Proof. For i ∈ [M] and b ∈ {0, 1}, let Pi,b : {0, 1}i → {0, 1} be the circuit defined as follows

Pi,b(z) =

{
1 Prx←Us

[
D
(
z ◦ NWf (x)>i

)
⊕ b = NWf (x)i

]
> 1

2
+ δ

2M

0 o.w.

i.e., Pi,b accepts strings z such that fixing the first i bits of D to z causes the circuit to predict
NWf with non-negligible advantage. By Yao’s unpredictability lemma and an averaging
argument, there is some i, b for which E[Pi,b] ≥ δ/2M . Next, we claim that P is efficient:

Claim 7.7. For every i, b, Pi,b can be computed by TC0 circuits of size O(2s ·M) with oracle access
to D.

Proof. We construct the circuit as follows. For every x ∈ {0, 1}s, the circuit hardcodes
yx = NWf (x), and computes ∑

x∈{0,1}s
I[D(z ◦ yx>i)⊕ b = yxi]

and accepts if this sum is greater than 2s · (1/2+ δ/2M). Then it is easy to see that Pi,b can
be implemented by TC0 circuits of size at most O(2s ·M), with oracle access to D.

In addition, we can evaluate Pi,b in small space:

84

Claim 7.8. For every i, b, the mapping z → Pi,b(z) can be computed in space O(logN) with
oracle access to D.

Proof. This follows as we can compute NWf in space O(logN) by Theorem 7.4, and we
can compute the sum in space O(s) = O(logN).

By assumption, we have oracle access to H : {0, 1}t → {0, 1}M , which must fool Pi,b

up to error δ/2M for every i, b. By enumerating over i, b and seeds x ∈ {0, 1}t, we can
evaluate Pi,b(H(x)) in space O(logN). Thus, we can find i, b and z = H(x) where Pi,b(z) =
1, and hence P : {0, 1}M−i → {0, 1} where

P (x) = D(z ◦ x)⊕ b

is a δ/2M -previous-bit-predictor for NWf , and hence output (z, b) as required.

7.3 Derandomization From Nonuniform Assumptions

We are now ready to prove our derandomization result that doubles the memory foot-
print from (standard) non-uniform hardness assumptions, as stated in Theorem 3. The
construction essentially follows [DT23], wherein they constructed a suitable PRG by a
composition of two “low-cost” PRGs G1, the NW PRG, and G2. In [DT23], G2 was a cryp-
tographic PRG. Here, we replace the (candidate) cryptographic PRG with the (explicit)
PRG of Section 7.1.

Theorem 7.9 (derandomization that doubles the memory footprint). There exists a univer-
sal constant c > 1 such that for any two constants ε ∈ (0, 1) and C ∈ N the following holds.
Assume that there exists

Lhard ∈ DSPACE

[
C + 1 + ε+ δ

2
· n
]

for some constant δ > 0 that is hard for TC0 circuits of size 2ε·n with non-adaptive oracle access
to algorithms that get 2n/2 bits of non-uniformity and run in space C+1+ε

2
· n.

Then, for S(n) = C · log n, we have that

BPSPACE[S] ⊆ DSPACE
[
2S +

(c
ε
+ δ
)
log n

]
.

Proof. Let L ∈ BPSPACE[S(n)], and let M be a randomized space-S machine that decides
L. Let M̄ be defined as in Lemma 7.1. Set N = n2 and εNW = ε

2cNW
, and let f ∈ {0, 1}N be

the truth table of Lhard on inputs of size ℓ = logN . Let

NWf : {0, 1}(cNW/εNW)ℓ → {0, 1}d

be the NW PRG with TC0 reconstruction, given in Theorem 7.4, for d to be determined
soon. Set N̄ to be the number of seeds of NWf , namely N̄ = N cNW/εNW . Let

Gadp : {0, 1}d → {0, 1}nC

85

be the generator from Theorem 7.2, instantiated with error ε = 1/10 and w = nC , so
d = O(log3(nC)). Note that for a large enough n, the output of NWf in Theorem 7.4 is
much larger than d, but we can truncate accordingly.48

Our PRG Gf is the concatenation of the two PRGs above. That is, given s ∈ [N̄], we
output

Gf (s) = Gadp
(
NWf (s)

)
.

Our final algorithm A on input x enumerates over s ∈ [N̄] and outputs

MAJs∈[N̄]

{
M̄Gf (s)(x)

}
.

Space complexity of A. The algorithm enumerates over seeds s ∈ [N̄], while also main-
taining an integer counter in [N̄] for the majority outcome. For every fixed seed s it
simulates M̄ on the input x with oracle access to Gf (s). The oracle is implemented by
space-bounded composition of Gf , and of the machine for Lhard. The exact computation
is done in [DT23, Theorem 5.5]. Denoting by S ′ the space complexity of computing f , the
computation in [DT23] amounts to

log N̄︸ ︷︷ ︸
enumerating s

+S +O(log S)︸ ︷︷ ︸
M̄

+
c0
εNW

· logN︸ ︷︷ ︸
computing NW

+ S ′︸︷︷︸
computing f

+

log N̄︸ ︷︷ ︸
counting the outcomes of M

+ c0 · (logN + log(N εNW))︸ ︷︷ ︸
composition overhead

≤
(
2C +

c

ε
+ δ
)
· log n

space, for some universal constants c0, c > 1.

Correctness of A. Fix any x ∈ {0, 1}n, and let B be the AOBP of length and width
nC such that B(r) = M̄ r(x), as in Lemma 7.1. Recall that Er[B(r)] = E[M(x, r)], and
moreover |Er[B(r)]− Er[B ◦Gadp(r)]| ≤ 1/10. Let D = B ◦Gadp. Finally, assume towards
a contradiction that ∣∣E[D]− E

[
D ◦ NWf

]∣∣ > 1

10
.

By Lemma 7.5 and Theorem 7.4, there exists a TC0 circuit C of size N cNW·εNW < N ε such that
CD(x) = fx. To get a contradiction and conclude that A decides L, it is left to determine
the complexity of D.

Claim 7.9.1. D can be computed by a machine running in space C+1+ε
2

logN with n bits of advice.

Proof. The claim readily follows from the efficient evaluation method described in [DT23,
Claim 5.6], using that Gadp is highly space-efficient (Claim 7.3). □

48Moreover, we can work with milder parameters since we only need a polynomial stretch, however this
would not change the final derandomization result.

86

By a standard padding argument, we can conclude:

Corollary 7.10. Under the assumption and notation of Theorem 7.9, for any S = Ω(log n), we
have that

BPSPACE[S] ⊆ DSPACE

[(
2 +

c/ε+ δ

C

)
· S
]
.

In particular, for every τ > 0, and ε, δ > 0, there is a sufficiently large C = C(ε, δ, τ) such that if
the assumption of Theorem 7.9 holds w.r.t. C, ε, δ, then then for every S = Ω(log n), we have that

BPSPACE[S] ⊆ DSPACE[(2 + τ)S].

The work of [DT23] showed that space-bounded algorithms with advice can simulate
TC0 computations as long as the circuit’s size is not too large, so hardness against small
TC0 with non-adaptive oracle access to space-bounded algorithms with advice is implied
by hardness against space-bounded algorithm with (a slightly longer) advice. Formally:

Claim 7.11 (Claim 5.8 of [DT23]). Let L be a language that on inputs of length n can be com-
puted by a constant-depth threshold circuit of size 2εn with non-adaptive oracle access to an algo-
rithm that gets 2n/2 bits of non-uniformity and runs in deterministic space C+1+ε

2
· n. Then, L is

also computable in deterministic space C+1+O(ε)
2

· n with 2n/2 + 2εn bits of advice.

Combining the above claim with Corollary 7.10, we obtain our first derandomization
result of Theorem 3.49 The 2 · S term comes from simulating M̄ (which in turn simulates
M) and computing the hard function f . In [DT23], we observed that if those two compu-
tations could “share” computation space, then we can get derandomization with nearly
no space overhead. One way for both computations to share space is by assuming Lhard

is computable in mostly catalytic space. We can then readily get the following result, that
establishes the second derandomization result of Theorem 3.

Theorem 7.12. Assume that for a sufficiently large constant C, and some constant δ > 0, there
exists a language L computable in CSPACE[δn, (C + δ + 1)n], that is hard for algorithms that
run in deterministic space C · n with O(2n/2) bits of advice. Then, for S(n) = Ω(log n), we have
that

BPSPACE[S] ⊆ DSPACE

[(
1 +

(1 + δ)c

C

)
· S
]
,

where c > 1 is some fixed universal constant.
49To see this, suppose that Assumption 1 holds for some C, and let us show that the assumption of

Theorem 7.9 holds for some C ′, ε, δ, and that the conclusions match. We want C ′, ε, δ such that the upper
bound of (C+1) ·n is smaller than the required upper bound C′+1+ε+δ

2 ·n and the lower bound C ·n is larger
than the lower bound C′+1+O(ε)

2 ; taking ε > 0 to be a sufficiently small constant, and taking δ = 3 + O(ε)
and C ′ = 2C − O(ε) − 1 satisfies these constraints. By Claim 7.11, the lower bound holds for constant-
depth threshold circuits of size 2ε·n with non-adaptive oracle access to an algorithm that gets 2n/2 bits of
non-uniformity and runs in deterministic space C′+1+ε

2 · n. The conclusion of Corollary 7.10 is that for
S = Ω(log n) we have BPSPACE[S] ⊆ DSPACE[(2 + c/ε+δ

C′) · S], and the conclusion of Theorem 3 follows
since c/ε+δ

C′ = c/ε+δ
2C−O(ε)−1 < c′/C for a universal constant c′ > 1.

87

7.4 Derandomization From Hardness of Compression

We now show that our uniform assumption, combined with an exponential stretch PRG
against circuits, can be used to derive minimal-memory derandomization.

Theorem 7.13. Suppose that Assumption 3 and Assumption 2 hold. Then, for S(n) = C · log n,
we have that

BPSPACE[S] ⊆ DSPACE
[
2S +

(c
ε
+ δ
)
log n

]
.

Proof. Let L ∈ BPSPACE[S(n)], and let M be a randomized space-S machine that decides
L. Let M̄ be defined as in Lemma 7.1. Set N = n2, ℓ = logN , and εNW = ε

2cNW
. Finally,

define the deterministic machine A deciding L as follows. On input x, let f = f(x) ∈
{0, 1}N be the hard function on the input. Let

NWf : {0, 1}(cNW/εNW)ℓ → {0, 1}d

be the NW PRG with TC0 reconstruction, given in Theorem 7.4, for d to be determined
soon. Set N̄ to be the number of seeds of NWf , namely N̄ = N cNW/εNW . Let

Gadp : {0, 1}d → {0, 1}nC

be the generator from Theorem 7.2, instantiated with error ε = 1/10, so d = O(log3(nC)).
Note that for a large enough n, the output of NWf in Theorem 7.4 is much larger than d,
but we can truncate accordingly.

Our PRG Gf is the concatenation of the two PRGs above. That is, given s ∈ [N̄], we
output

Gf (s) = Gadp
(
NWf (s)

)
,

and recall that it is also a function of x, unlike the generator of Section 7.3. Finally, A
enumerates over s ∈ [N̄] and outputs

MAJs∈[N̄]

{
M̄Gf (s)(x)

}
.

Space complexity of A. As the PRG is identical to that of Theorem 3, the space complex-
ity follows directly from that analysis.

Correctness of A. We claim that there is a space O(C log n) algorithm R such that, on
every x where A(x) ̸= Lx, outputs a compressed representation of f(x) (and hence if there
are infinitely many such x, we obtain a contradiction to Assumption 3). The algorithm
works as follows.

Given an input x ∈ {0, 1}n (where we assume that A(x) ̸= Lx), let B = Bx be the
AOBP of width and length nC such that B(r) = M̄ r(x), as in Lemma 7.1. Recall that

88

Er[B(r)] = E[M(x, r)], and moreover |Er[B(r)] − Er[B ◦ Gadp(r)]| ≤ 1/10. Let D = B ◦
Gadp : {0, 1}d → {0, 1}, so we obtain by assumption that∣∣E[D]− E

[
D ◦ NWf

]∣∣ > 1

10
.

Note that D can be evaluated in space O(C log n) by composition of space-bounded algo-
rithms. We next establish a bound on its circuit complexity.

Claim 7.14. D can be computed by an (NC1)AOBP circuit of size Õ(nC), and moreover the circuit
makes a single AOBP query on every input. Consequently, D can be computed by an NC2 circuit
of size n′ = poly(nC).

Proof. Recall that the AOBP B is of size nC . Next, we have that the mapping (s, i) to
Gadp(s)i is computable in space O(log log n) by Claim 7.3, and thus by circuits of size
polylog(n) and depth O((loglog n)2). Thus, the function mapping s to Gadp(s) can be com-
puted by an NC1 circuit of size Õ(nC), and then the final top gate queries the oracle on
Gadp(s). Then the final claim follows from the standard simulation of polynomial size
branching program evaluation in NC2.

Finally, let Hn : {0, 1}t → {0, 1}m be the family of Assumption 2, where we take m =
poly(nC) for a sufficiently large fixed polynomial, and observe that t = O(C log n). We
then apply Lemma 7.6 applied with

δ = 1/10, D = D, f = f(x), H = Hn.

Observe that TC0 circuits of size poly(nC) with oracle access to D can themselves by rep-
resented as NC2 circuits of size poly(nC), and hence H satisfies the required property.

With these parameters, the algorithm runs in space O(C log n) and outputs z ∈ {0, 1}d−i
and b ∈ {0, 1} such that

Pr
x←Us

[D(x<i ◦ z)⊕ b = xi] ≥
1

2
+

1

20d
.

Finally, we apply the reconstruction result of Theorem 7.4. We give the algorithm R oracle
access to f (which we can provide by computing f(x) as needed), and next bit predictor
P (x<i) = D(x<i ◦ z)⊕ b. Then R runs in space O(logN) and outputs an oracle AC0 circuit
C of size N εNW/2 such that

CP (j) = fj.

Our final algorithm prints the machine which, on input j, outputs CP (j). We first note
that this algorithm runs in space O(t+ logN) = O(C log n) for a constant that depends on
the parameters of Assumption 2.

Finally, we claim the machine printed by this algorithm has description size O(|n|)
and runs in space C+1+ε

2
log n. We can describe P with O(1) bits for the machine M , x, and

(z, d), so n + O(1) + d = O(n) bits in total, and C has size N εNW/2 ≤ n. Finally, we claim
that the machine can evaluate this circuit in the desired space bound. As in Theorem 7.9,
this follows from the efficient evaluation method described in [DT23, Claim 5.6].

89

The padding argument and the simulation argument are exactly the same as in Sec-
tion 7.3, so the first result of Theorem 4 readily follows. Moreover, the same holds for
improving the 2 · S factor using catalytic assumptions, so the second derandomization
result of Theorem 4 follows as well.

8 BPL in CL From Certified Derandomization

Our next result is a new proof of BPL ⊆ CL via certified derandomization.
In addition to Theorems 6.6 and 7.4, we require yet another version of the NW PRG,

with the following features. First, we must be able to deterministically reconstruct a small
circuit, given a previous bit predictor. Second, we must maintain the ability to evaluate the
small circuit after erasing some bits of the original truth table. To do so, we must use the
locally encodable code of Theorem 5.2. As such, our assumption is (implicitly) that our
truth table is average-case, rather than worst-case hard, but this is perfectly acceptable as
we will initialize our code with a catalytic tape, and in either case (our PRG is good for B
or we nontrivially compress the tape) we successfully derandomize.

Theorem 8.1 (NW PRG with deterministic approximate reconstruction). There is a universal
constant cNW > 1 such that the following holds. There is an algorithm NW computing

NWf : {0, 1}O(logN) → {0, 1}N

such that for any f ∈ {0, 1}NcNW , we have the following:

1. Efficiency. When given s ∈ {0, 1}O(logN) and oracle access to f , the generator runs in space
O(logN) and outputs an N -bit string NWf (s).

2. Deterministic Reconstruction. There are deterministic space O(logN) algorithms R, T, F
that act as follows.

• R, given oracle access to f and oracle access to a (1/N2) previous bit predictor P for
NWf , outputs a ∈ {0, 1}O(logn). Moreover, there is a subset K ⊆ {0, 1}NcNW of size
N cNW/100 that satisfies the following.

• T , given a and i ∈ [N cNW], determines if i ∈ K.

• F , given a and oracle access to f̃ such that f̃K = fK and oracle access to P , satisfies

Pr
j∈[NcNW]

[F a,f̃ ,P (j) = fj] ≥ 1−N−c
′

for a constant c′ > 0. Moreover, F only queries f̃ at locations in K.

Proof. Let cNW be a sufficiently large constant to be chosen later. We use the code

CLE : {0, 1}N
cNW → {0, 1}N̄

90

of Theorem 5.2 with k = N cNW , and

ε = N−2, d = N, γ = 1/cNW, δ = 0.1.

Let f̄ = CLE(f). By our choice of parameters, we have for some global constant c > 0 that
the following hold.

• We have N̄ = poly(N cNW/γ, N) = N c·cNW2 (and w.l.o.g. assume that N̄ is a power of
two).

• The encoding map has locality L = poly(N cNWγ) = N c.

Moreover, the decoding circuits Cy,i satisfy the following:

• Each circuit Cy,i is specified by |y|+ |i| = O(logN) bits of information.

• Each circuit Cy,i makes Qpre = poly(N,N cNWγ) = N c non-adaptive queries to f ,
independent of its input, and then on input j ∈ [N cNW] it makes at most Q =
poly(N cNWγ) = N c queries to the corrupted word in order to output a single bit.

• For every corrupted codeword w ∈ {0, 1}N̄ with agreement at least 1/2 + N−2 with
with f̄ , there exist y, i where

Pr
j

[
Cf,w

y,i (j) = fj

]
≥ 1−N−c

′

for some global constant c′ > 0.

Next, let
S1, . . . , Sk ⊆ [d]

be the logspace-computable (ℓ = log N̄ , αℓ) design of Theorem 3.16 with α = c′′/cNW
2,

where c′′ is the global constant in that theorem. With this choice we have

k = 2(α/c
′′)ℓ ≥ N, d = (c′′/α)ℓ = O(logN), 2αℓ = (N c·cNW2

)α = N c·c′′ .

Then we define the generator as follows. Given s ∈ {0, 1}d, for i ∈ [N] let

NWf (s)i = f̄Des(s,i).

Complexity of NWf . The fact that NWf can be evaluated in the claimed space follows
directly from the explicitness of Theorem 5.2 and Theorem 3.16.

91

The Algorithm R. The algorithm R works as follows. Given P : {0, 1}i−1 → {0, 1}, note
that we have

Pr
x←Us

[
P (NWf (x)>N−i) = NWf (x)N−i

]
≥ 1

2
+

1

N2
.

Let T = SN−i and write this as

Pr
(xT ,xTc)←Us

[
P (NWf (xT ◦ xT c)>N−i) = f̄xT

]
≥ 1

2
+

1

N2
.

The algorithm then enumerates over assignments to xT c and finds a fixed z ∈ {0, 1}|T c|

such that
Pr

xT←Us

[
P (NWf (xT ◦ z)>N−i) = f̄xT

]
≥ 1

2
+

1

N2
.

Now fixing z, note that to evaluate P (NWf (xT ◦ z)>N−i) we must evaluate

hj,z(x) = NWf (xT ◦ z)j = f̄Des(xT ◦z,j)

for every j. Then let
Ej = {l ∈ [N̄] : ∃x, l = Des(xT ◦ z, j)}

be the coordinates of f̄ that we require to evaluate hj , and let Kj be the bits of f that are
queried by the code when outputting f̄l for l ∈ Ej . By the locality constraint, we have

|Kj| ≤ L · 2αℓ = N c+c·c′′ .

Thus, the total number of bits of f required to evaluate the oracle circuit C1 such that

CP
1 (x) = P

(
NWf (x ◦ z)>N−i

)
= P (hN−i−1,z(x) ◦ · · · ◦ hN,z(x))

is at most
N ·max

j
|Kj| = N1+c+c·c′′

so by taking cNW sufficiently large we have N1+c+c·c′′ ≤ N cNW/100/2. Let w ∈ {0, 1}N̄ be the
string where wx = CP

1 (x). Finally, we apply the decoding algorithm Dec of the code with
f = f and w = w. We enumerate over random strings y ∈ {0, 1}O(logn) and advice strings
i ∈ {0, 1}O(logn) until we find Cy,i (which always exists per the coding statement) such that

Pr
j

[
Cf,w

y,i (j) = xj

]
≥ 1−N−c

′
.

Moreover, Cy,i makes Q ≤ N c ≤ N cNW/100/2 non-adaptive queries to x (that do not depend
on its input j). Let these queries be Kpre, and let

K = Kpre ∪

(⋃
j

Kj

)
.

Observe that |K| ≤ N cNW/100. Then R outputs

a = (z, y, i).

92

The Algorithm T . The algorithm T is given a = (z, y, i). Observe that we can enumerate
the set Ej in space O(logN) given z and j by the explicitness of Theorem 3.16, and for
each l ∈ Ej , we can enumerate in space O(logN) the bits of the code used to encode
the lth bit of output using the explicitness of Theorem 5.2, and hence determine Kj for
every j. Finally, for Kpre, we can determine the queries Cy,i makes to f by running the
preprocessing circuit, which does not query the corrupted codeword.

The Algorithm F . The algorithm F is given a = (z, y, i) and oracle access to P and f̃

such that f̃K = fK . Then on input j, the algorithm outputs C f̃ ,w
y,i (j), where wx = CP

1 (x),
and we construct CP

1 using z and P , and whenever we require f̄l to evaluate hj,z(x), we
compute the relevant bit of the code in space O(log n) using oracle queries to f̃ and Theo-
rem 3.16, and note that all query locations q lie in K by construction (and hence f̃q = fq). It
is clear that F only queries on locations in K, and the explicitness and space consumption
follows from the explicitness of Theorem 5.2 and Theorem 3.16.

We next formally define a distinguish-to-predict transformation. Note that we require
the transformation to be computable without access to the distinguisher, which most (but
not all, e.g. [PRZ23]) local consistency tests for ROBPs obtain.

Definition 8.2. We say a class of circuits C has a (black-box) distinguish to predict transfor-
mation if there is a deterministic algorithm that, given C ∈ C of size N , outputs a collection of C
circuits P1, . . . , Ppoly(n) of size poly(N) such that for every distribution D over {0, 1}n, one of the
following occurs:

1. D (1/6)-fools C.

2. There is i such that Pi is a (1/6N)-previous-bit-predictor for D.

Observe that Theorem 4.2 is precisely the statement that there is a logspace-computable
distinguish to predict transformation for ROBPs. We can then formally state the result.

Theorem 1.5 (see Section 8). Suppose a class of circuits C satisfies the following.

1. There is a CL algorithm that, given C ∈ C and r ∈ {0, 1}n, outputs C(r).

2. There is a CL-computable distinguish-to-predict transformation for C circuits.

Then, there is a CL algorithm that, given C ∈ C, outputs Er[C(r)] up to error 1/6.

Proof. Let W = N cNW . We define a catalytic machine Sw that workspace O(logN) and
catalytic space W · N (and we can see that this satisfies the requirements of the model).
We divide the catalytic tape into blocks

w =
(
w1 ◦ · · · ◦wN

)
93

The machine iterates over b ∈ [N] as follows. First, initialize Theorem 8.1 with f = wb.
Next, we apply the distinguish-to-predict transformation to C and determine if for every
candidate predictor Pp we have

Pr
x←NWwb

[Pp(x>N−i) = xN−i] ≤ 1/2 + 1/6N.

If this holds for every p, the algorithm outputs

MAJs
{
C(NWwb

(s))
}
.

In this case, we do not edit w at any point, so we clearly satisfy the requirement of catalytic
computation, and by Definition 8.2, our estimate is accurate up to error 1/6.

If for every b this does not occur, we iterate over b in increasing order and compress
wb as follows. For b ∈ [N], let p be the least p such that Pp is a (1/6N) ≥ 1/N2 previous bit
predictor for NWwb

. We then call the algorithm R of Theorem 8.1 with P = Cp and f = wb,
which returns a ∈ {0, 1}O(logN). Let K ⊆ [W] (where we implicitly consider sub-indices of
wb) be the set determined by a, and recall that K is of density at most W−.99 such that, for
every w̃b where w̃b

K = wb
K , we have that there exists G ⊆ [W] of density at least 1 − N−c

′

for some constant c′ > 0, such that for every j ∈ G,

F h,w̃b,P (j) = wb
j.

Note that G∪ ([W]\K) has density at least 1−N−c
′−W−.99 ≥ 1−N−c

′/2, and hence there
is a subinterval

Ib ⊆ G ∪ ([W] \K)

of length N c′/2. Note that:

• Editing wb on the indices in Ib will not affect the behavior of F (as Ib ⊆ [W] \K).

• F will always decode wb correctly on Ib (as Ib ⊆ G).

• Ib can be specified by its endpoints in space O(logN).

Next, we claim that we can find such an interval.

Claim 8.2.1. We can find such an interval in space O(logN).

Proof. This follows from the fact that given j ∈ [W], we can test if j ∈ K by the algorithm
T of Theorem 8.1, and can test if j ∈ G by computing F a,wb,Pp(j) and comparing to wb

j . □

Once we have found such an interval, set

(wb)Ib = (p ◦ a ◦ Ib−1 ◦ 0∗)

where

94

1. p is the index of the previous-bit-predictor Pp,

2. a is the string produced by R,

3. Ib−1 is a pointer to the compressed interval in wb−1.

Once we have performed this operation for every b ∈ [N], we can use the N · (N c′′ −
O(logN)) ≥ 2N total free bits specified by the union of the free space on each interval to
compute the exact expectation of C. After we have done this, we can iterate backwards
over b ∈ [N]. We load p and a and a pointer to Ib−1 into workspace, and then for every
j ∈ Ib, we let

w̃b
j ← F a,w̃b,Pp(j)

and after this we have that w̃b = wb, and hence after finishing this loop we correctly reset
the tape. The correctness and space-efficiency follow from the performance of F .

Corollary 8.3. BPSPACE[S(n)] ⊆ CSPACE[O(S(n)), 2O(S(n))].

Proof. Let L ∈ BPSPACE[S(n)], and let M be a randomized space-S machine that decides
L, and let N = 2S . The catalytic machine, on input x, construct the branching program
B(r) = M(x, r). We then apply Theorem 1.5 and return the corresponding answer. We can
apply this theorem as ROBPs are logspace-evaluable, and we have a logspace-computable
distinguish to predict transformation for ROBPs by Theorem 4.2. Correctness follows
from the correctness of the randomized algorithm and Theorem 1.5.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: A modern approach.
Cambridge University Press, Cambridge, 2009.

[ABN+92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth.
“Construction of asymptotically good low-rate error-correcting codes through
pseudo-random graphs”. In: IEEE Transactions on Information Theory 38.2 (1992),
pp. 509–516.

[AKM+20] AmirMahdi Ahmadinejad, Jonathan A. Kelner, Jack Murtagh, John Peebles,
Aaron Sidford, and Salil Vadhan. “High-precision Estimation of Random
Walks in Small Space”. In: Proc. 61 Annual IEEE Symposium on Foundations
of Computer Science (FOCS). 2020, pp. 1295–1306.

[BCG20] Mark Braverman, Gil Cohen, and Sumegha Garg. “Pseudorandom Pseudo-
distributions with Near-Optimal Error for Read-Once Branching Programs”.
In: SIAM Journal on Computing 49.5 (2020).

[BCK+14] Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian
Speelman. “Computing with a full memory: catalytic space”. In: Proc. 46 An-
nual ACM Symposium on Theory of Computing (STOC). 2014, pp. 857–866.

95

[BGG93] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. “Randomness in In-
teractive Proofs”. In: Computational Complexity 3 (1993), pp. 319–354.

[BKL+16] Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman. “Cat-
alytic Space: Non-determinism and Hierarchy”. In: Proc. 33 Symposium on
Theoretical Aspects of Computer Science (STACS). Vol. 47. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2016, 24:1–24:13.

[BT06] Andrej Bogdanov and Luca Trevisan. “Average-case complexity”. In: Foun-
dations and Trends® in Theoretical Computer Science 2.1 (2006), pp. 1–106.

[CDS+23] Gil Cohen, Dean Doron, Ori Sberlo, and Amnon Ta-Shma. “Approximating
Iterated Multiplication of Stochastic Matrices in Small Space”. In: Proc. 55
Annual ACM Symposium on Theory of Computing (STOC). 2023, pp. 35–45.

[CH22] Kuan Cheng and William M. Hoza. “Hitting Sets Give Two-Sided Deran-
domization of Small Space”. In: Theory Comput. 18 (2022), pp. 1–32.

[CHH+19] Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett.
“Pseudorandom generators from polarizing random walks”. In: Theory of
Computing 15 (2019), Paper No. 10, 26.

[CHL+23] Lijie Chen, William M. Hoza, Xin Lyu, Avishay Tal, and Hongxun Wu. “Weighted
Pseudorandom Generators via Inverse Analysis of Random Walks and Short-
cutting”. In: Proc. 64 Annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS). To appear. 2023.

[CL20] Eshan Chattopadhyay and Jyun-Jie Liao. “Optimal Error Pseudodistribu-
tions for Read-Once Branching Programs”. In: Proc. 35th Annual IEEE Con-
ference on Computational Complexity (CCC). 2020, 25:1–25:27.

[CL23] Eshan Chattopadhyay and Jyun-Jie Liao. “Recursive Error Reduction for
Regular Branching Programs”. In: Electronic Colloquium on Computational Com-
plexity: ECCC (2023).

[CLO+23] Lijie Chen, Zhenjian Lu, Igor Carboni Oliveira, Hanlin Ren, and Rahul San-
thanam. “Polynomial-Time Pseudodeterministic Construction of Primes”.
In: arXiv preprint arXiv:2305.15140 (2023).

[CLT+23] Lijie Chen, Xin Lyu, Avishay Tal, and Hongxun Wu. “New PRGs for Unbounded-
Width/Adaptive-Order Read-Once Branching Programs”. In: Proc. 50 Inter-
national Colloquium on Automata, Languages and Programming (ICALP). Vol. 261.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 39:1–39:20.

[CRT+20] Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev. “On Exponential-
Time Hypotheses, Derandomization, and Circuit Lower Bounds”. In: Proc.
61st Annual IEEE Symposium on Foundations of Computer Science (FOCS). 2020,
pp. 13–23.

96

[CRT22] Lijie Chen, Ron D. Rothblum, and Roei Tell. “Unstructured Hardness to
Average-Case Randomness”. In: Proc. 63rd Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS). 2022, pp. 429–437.

[CT21a] Lijie Chen and Roei Tell. “Hardness vs Randomness, Revised: Uniform, Non-
Black-Box, and Instance-Wise”. In: Proc. 62nd Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 2021, pp. 125–136.

[CT21b] Lijie Chen and Roei Tell. “Simple and fast derandomization from very hard
functions: Eliminating randomness at almost no cost”. In: Proc. 53st Annual
ACM Symposium on Theory of Computing (STOC). 2021, pp. 283–291.

[CT23a] Lijie Chen and Roei Tell. “Guest column: New ways of studying the BPL =
P conjecture”. In: ACM SIGACT News 54.2 (2023), pp. 44–69.

[CT23b] Lijie Chen and Roei Tell. “When Arthur has Neither Random Coins nor Time
to Spare: Superfast Derandomization of Proof Systems”. In: Proc. 55th Annual
ACM Symposium on Theory of Computing (STOC). 2023, pp. 60–69.

[CTW23] Lijie Chen, Roei Tell, and Ryan Williams. “Derandomization vs Refutation:
A Unified Framework for Characterizing Derandomization”. In: Proc. 64 An-
nual IEEE Symposium on Foundations of Computer Science (FOCS). To appear.
2023.

[DMO+22] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. “Nearly
Optimal Pseudorandomness From Hardness”. In: Journal of the ACM 69.6
(2022), pp. 1–55.

[DT23] Dean Doron and Roei Tell. “Derandomization with Minimal Memory Foot-
print”. In: Proc. 38 Annual IEEE Conference on Computational Complexity (CCC).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[FK18] Michael A. Forbes and Zander Kelley. “Pseudorandom generators for read-
once branching programs, in any order”. In: Proc. 59th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS). 2018, pp. 946–955.

[GGH+07] Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy
N. Rothblum. “Verifying and decoding in constant depth”. In: Proc. 39th An-
nual ACM Symposium on Theory of Computing (STOC). 2007, pp. 440–449.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. “Delegating
computation: interactive proofs for muggles”. In: Journal of the ACM 62.4
(2015), 27:1–27:64.

[GL89] Oded Goldreich and Leonid A. Levin. “A Hard-core Predicate for All One-
way Functions”. In: Proc. 21st Annual ACM Symposium on Theory of Comput-
ing (STOC). 1989, pp. 25–32.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. New
York, NY, USA: Cambridge University Press, 2008.

97

[Gol11a] Oded Goldreich. “A Brief Introduction to Property Testing”. In: Studies in
Complexity and Cryptography. Miscellanea on the Interplay between Randomness
and Computation. 2011, pp. 465–469.

[Gol11b] Oded Goldreich. “Candidate one-way functions based on expander graphs”.
In: Studies in complexity and cryptography. Vol. 6650. Lecture Notes in Com-
puter Science. Springer, Heidelberg, 2011, pp. 76–87.

[Gol11c] Oded Goldreich. “In a World of P = BPP”. In: Studies in Complexity and
Cryptography. Miscellanea on the Interplay Randomness and Computation. 2011,
pp. 191–232.

[Gol11d] Oded Goldreich. “Two Comments on Targeted Canonical Derandomizers”.
In: Electronic Colloquium on Computational Complexity: ECCC (2011).

[Gol18] Oded Goldreich. “On doubly-efficient interactive proof systems”. In: Foun-
dations and Trends® in Theoretical Computer Science 13.3 (2018).

[GRZ23] Uma Girish, Ran Raz, and Wei Zhan. “Is Untrusted Randomness Helpful?”
In: Proc. 14 Conference on Innovations in Theoretical Computer Science (ITCS).
Ed. by Yael Tauman Kalai. Vol. 251. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2023, 56:1–56:18.

[HAB02] William Hesse, Eric Allender, and David A. Mix Barrington. “Uniform constant-
depth threshold circuits for division and iterated multiplication”. In: Journal
of Computer and System Sciences 65.4 (2002), pp. 695–716.

[Hea08] Alexander D. Healy. “Randomness-efficient sampling within NC1”. In: Com-
putational Complexity 17.1 (2008), pp. 3–37.

[HH23] Pooya Hatami and William M. Hoza. “Theory of Unconditional Pseudo-
random Generators”. In: Electronic Colloquium on Computational Complexity:
ECCC (2023).

[Hoz21] William M. Hoza. “Better Pseudodistributions and Derandomization for Space-
Bounded Computation”. In: Proceedings of the 25th International Conference on
Randomization and Computation (RANDOM). 2021, 28:1–28:23.

[HV06] Alexander Healy and Emanuele Viola. “Constant-Depth Circuits for Arith-
metic in Finite Fields of Characteristic Two”. In: Proc. 23 Symposium on Theo-
retical Aspects of Computer Science (STACS). Vol. 3884. Lecture Notes in Com-
puter Science. Springer, 2006, pp. 672–683.

[HZ20] William M. Hoza and David Zuckerman. “Simple Optimal Hitting Sets for
Small-Success RL”. In: SIAM Journal on Computing 49.4 (2020), pp. 811–820.

[IJK+10] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigder-
son. “Uniform direct product theorems: simplified, optimized, and deran-
domized”. In: SIAM Journal on Computing 39.4 (2010), pp. 1637–1665.

98

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. “Pseudorandom-
ness for network algorithms”. In: Proc. 26th Annual ACM Symposium on The-
ory of Computing (STOC). 1994, pp. 356–364.

[IW97] Russell Impagliazzo and Avi Wigderson. “P = BPP if E requires exponen-
tial circuits: derandomizing the XOR lemma”. In: Proc. 29th Annual ACM
Symposium on Theory of Computing (STOC). 1997, pp. 220–229.

[IW98] Russell Impagliazzo and Avi Wigderson. “Randomness vs. Time: De-Randomization
under a Uniform Assumption”. In: Proc. 39th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 1998, pp. 734–743.

[KM02] Adam R. Klivans and Dieter van Melkebeek. “Graph Nonisomorphism Has
Subexponential Size Proofs Unless the Polynomial-Time Hierarchy Collapses”.
In: SIAM Journal on Computing 31.5 (2002), pp. 1501–1526.

[LP22a] Yanyi Liu and Rafael Pass. “Characterizing derandomization through hard-
ness of Levin-Kolmogorov complexity”. In: Proc. 37th Annual IEEE Confer-
ence on Computational Complexity (CCC). Vol. 234. LIPIcs. Leibniz Int. Proc.
Inform. 2022, Art. No. 35, 17.

[LP22b] Yanyi Liu and Rafael Pass. “Leakage-Resilient Hardness v.s. Randomness”.
In: Electronic Colloquium on Computational Complexity: ECCC TR22-113 (2022).

[Mer23] Ian Mertz. “Reusing Space: Techniques and Open Problems”. In: Bulletin of
EATCS 141.3 (2023).

[Nis92] Noam Nisan. “Pseudorandom generators for space-bounded computation”.
In: Combinatorica 12.4 (1992), pp. 449–461.

[Nis93] Noam Nisan. “On Read-Once vs. Multiple Access to Randomness in Logspace”.
In: Theoretical Computer Science 107.1 (1993), pp. 135–144.

[Nis94] Noam Nisan. “RL ⊆ SC”. In: Computational Complexity 4 (1994), pp. 1–11.

[NN93] Joseph Naor and Moni Naor. “Small-bias probability spaces: efficient con-
structions and applications”. In: SIAM Journal on Computing 22.4 (1993), pp. 838–
856.

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs. randomness”. In: Journal of
Computer and System Sciences 49.2 (1994), pp. 149–167.

[NZ96] Noam Nisan and David Zuckerman. “Randomness is Linear in Space”. In:
Journal of Computer and System Sciences 52.1 (1996), pp. 43–52.

[PP23] Aaron (Louie) Putterman and Edward Pyne. “Near-Optimal Derandomiza-
tion of Medium-Width Branching Programs”. In: Proc. 55 Annual ACM Sym-
posium on Theory of Computing (STOC). 2023, pp. 23–34.

[PRZ23] Edward Pyne, Ran Raz, and Wei Zhan. “Certified Hardness vs. Randomness
for Log-Space”. In: Proc. 64 Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS). To appear. 2023.

99

[Rei08] Omer Reingold. “Undirected connectivity in log-space”. In: Journal of the
ACM 55.4 (2008), 17:1–17:24.

[RT92] John H. Reif and Stephen R. Tate. “On threshold circuits and polynomial
computation”. In: SIAM Journal on Computing 21.5 (1992), pp. 896–908.

[RVW02] Omer Reingold, Salil Vadhan, and Avi Wigderson. “Entropy waves, the zig-
zag graph product, and new constant-degree expanders”. In: Annals of Math-
ematics 155 (2002), pp. 157–187.

[SM23] Nicollas Sdroievski and Dieter van Melkebeek. “Instance-Wise Hardness ver-
sus Randomness Tradeoffs for Arthur-Merlin Protocols”. In: Proc. 38 An-
nual IEEE Conference on Computational Complexity (CCC). Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2023.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. “Pseudorandom generators
without the XOR lemma”. In: Journal of Computer and System Sciences 62.2
(2001), pp. 236–266.

[SU05] Ronen Shaltiel and Christopher Umans. “Simple extractors for all min-entropies
and a new pseudorandom generator”. In: Journal of the ACM 52.2 (2005),
pp. 172–216.

[SV22] Ronen Shaltiel and Emanuele Viola. “On Hardness Assumptions Needed
for “Extreme High-End” PRGs and Fast Derandomization”. In: Proc. 13 Con-
ference on Innovations in Theoretical Computer Science (ITCS). Vol. 215. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 116:1–116:17.

[SW13] Rahul Santhanam and R. Ryan Williams. “On medium-uniformity and cir-
cuit lower bounds”. In: Proc. 28th Annual IEEE Conference on Computational
Complexity (CCC). IEEE, 2013, pp. 15–23.

[SZ99] Michael E. Saks and Shiyu Zhou. “BPHSPACE[S] ⊆ DSPACE[S3/2]”. In:
Journal of Computer and System Sciences 58.2 (1999), pp. 376–403.

[TV07] Luca Trevisan and Salil Vadhan. “Pseudorandomness and Average-Case Com-
plexity Via Uniform Reductions”. In: Computational Complexity 16.4 (2007),
pp. 331–364.

[Uma03] Christopher Umans. “Pseudo-random generators for all hardnesses”. In: Jour-
nal of Computer and System Sciences 67.2 (2003), pp. 419–440.

[Yao86] Andrew Chi-Chih Yao. “How to Generate and Exchange Secrets (Extended
Abstract)”. In: Proc. 27th Annual IEEE Symposium on Foundations of Computer
Science (FOCS). 1986, pp. 162–167.

[Zuc97] David Zuckerman. “Randomness-optimal oblivious sampling”. In: Random
Structures & Algorithms 11.4 (1997), pp. 345–367.

100

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

