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Abstract

Literature review requires researchers to syn-

thesize a large amount of information and is

increasingly challenging as the scientific liter-

ature expands. In this work, we investigate

the potential of LLMs for producing hierar-

chical organizations of scientific studies to as-

sist researchers with literature review. We de-

fine hierarchical organizations as tree struc-

tures where nodes refer to topical categories

and every node is linked to the studies as-

signed to that category. Our naive LLM-based

pipeline for hierarchy generation from a set

of studies produces promising yet imperfect

hierarchies, motivating us to collect CHIME,

an expert-curated dataset for this task focused

on biomedicine. Given the challenging and

time-consuming nature of building hierarchies

from scratch, we use a human-in-the-loop pro-

cess in which experts correct errors (both links

between categories and study assignment) in

LLM-generated hierarchies. CHIME contains

2,174 LLM-generated hierarchies covering 472

topics, and expert-corrected hierarchies for a

subset of 100 topics. Expert corrections allow

us to quantify LLM performance, and we find

that while they are quite good at generating

and organizing categories, their assignment of

studies to categories could be improved. We

attempt to train a corrector model with human

feedback which improves study assignment by

12.6 F1 points. We release our dataset and mod-

els to encourage research on developing better

assistive tools for literature review.1

1 Introduction

Literature review, the process by which researchers

synthesize many related scientific studies into a

higher-level organization, is valuable but extremely

1The CHIME dataset and models are available at https:
//github.com/allenai/chime.
† Correspondence to aakankshan@allenai.org.
♠Work done as an intern at Allen Institute for AI.
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Figure 1: Given a set of related studies on a topic, we

use LLMs to identify top-level categories focusing on

different views of the data (such as P1 and P2), gen-

erate multiple hierarchical organizations, and assign

studies to different categories. However, these cate-

gories and study assignments can contain errors. As

illustrated in the figure, the categories Walking and

Weight training are not coherent with their siblings

(S1− S3) in hierarchy 1 since they are more specific,

and the categories Metastasis and Recurrence are in-

correctly assigned to the parent category in hierarchy 2

since they are not types of cancer.

time-consuming. For instance, in medicine, com-

pleting a review from registration to publication

takes 67 weeks on average (Borah et al., 2017)

and given the rapid pace of scholarly publication,

reviews tend to go out-of-date quickly (Shojania

et al., 2007). This has prompted development of

tools for efficient literature review (Altmami and

Menai, 2022). Most tools have focused on au-
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tomating review generation, treating it as a multi-

document summarization task (Mohammad et al.,

2009; Jha et al., 2015; Wallace et al., 2020; DeY-

oung et al., 2021; Liu et al., 2022), sometimes using

intermediate structures such as hierarchies/outlines

to better scaffold generation (Zhu et al., 2023), with

limited success. However, recent work on assessing

the utility of NLP tools like LLMs for systematic

review reveals that domain experts prefer literature

review tools to be assistive instead of automatic

(Yun et al., 2023).

Motivated by this finding, we take a different

approach and focus on the task of generating hier-

archical organizations of scientific studies to assist

literature review. As shown in Figure 1, a hier-

archical organization is a tree structure in which

nodes represent topical categories and every node

is linked to a list of studies assigned to that category.

Inspired by the adoption of LLMs for information

organization uses such as clustering (Viswanathan

et al., 2023) and topic modeling (Pham et al., 2023),

we investigate the potential of generating hierar-

chies with a naive LLM-based approach, and ob-

serve that models produce promising yet imperfect

hierarchies out-of-the-box.

To further assess and improve LLM performance,

we collect CHIME (Constructing HIerarchies of

bioMedical Evidence), an expert-curated dataset

for hierarchy generation. Since building such hier-

archies from scratch is very challenging and time-

consuming, we develop a human-in-the-loop proto-

col in which experts correct errors in preliminary

LLM-generated hierarchies. During a three-step

error correction process, experts assess the correct-

ness of both links between categories as well as as-

signment of studies to categories, as demonstrated

in Figure 1. Our final dataset consists of two sub-

sets: (i) a set of 472 research topics with up to

five LLM-generated hierarchies per topic (2,174

total hierarchies), and (ii) a subset of 100 research

topics sampled from the previous set, with 320

expert-corrected hierarchies.

Expert-corrected hierarchies allow us to better

quantify LLM performance on hierarchy genera-

tion. We observe that LLMs are already quite good

at generating and organizing categories, achieving

near-perfect performance on parent-child category

linking and a precision of 77.3% on producing co-

herent groups of sibling categories. However, their

performance on assigning studies to relevant cat-

egories (61.5% F1) leaves room for improvement.

We study the potential of using CHIME to train

ªcorrectorº agents which can provide feedback to

our LLM-based pipeline to improve hierarchy qual-

ity. Our results show that finetuning a FLAN-T5-

based corrector and applying it to LLM-generated

hierarchies improves study assignment by 12.6 F1

points. We release our dataset containing both

LLM-generated and expert-corrected hierarchies,

as well as our LLM-based hierarchy generation and

correction pipelines, to encourage further research

on better assistive tools for literature review.

In summary, our key contributions include:

• We develop an LLM-based pipeline to organize

a collection of papers on a research topic into a

labeled, human-navigable concept hierarchy.

• We release CHIME, a dataset of 2174 hierarchies

constructed using our pipeline, including a ªgoldº

subset of 320 hierarchies checked and corrected

by human experts.

• We train corrector models using CHIME to au-

tomatically fix errors in LLM-generated hierar-

chies, improving accuracy of study categoriza-

tion by 12.6 F1 points.

2 Generating Preliminary Hierarchies

using LLMs

The first phase of our dataset creation process fo-

cuses on using LLMs to generate preliminary hi-

erarchies from a set of related studies, which can

then be corrected by experts. We describe our pro-

cess for collecting sets of related studies and our

LLM-based hierarchy generation pipeline.

2.1 Sourcing Related Studies

We leverage the Cochrane Database of Systematic

Reviews2 to obtain sets of related studies, since the

systematic review writing process requires experts

to extensively search for and curate studies relevant

to review topics. We obtain all systematic reviews

and the corresponding studies included in each re-

view from the Cochrane website (Wallace et al.,

2020). We then filter this set of systematic reviews

to only retain those including at least 15 and no

more than 50 corresponding studies. We discard

reviews with very few studies since a hierarchical

organization is unlikely to provide much utility,

while reviews with more than 50 studies are dis-

carded due to the inability of LLMs to effectively

handle such long inputs (Liu et al., 2023). Our fil-

tering criteria leave us with 472 systematic reviews

2
https://www.cochranelibrary.com/cdsr/reviews

119



Related Studies 
[Titles + Abstracts] Review Topic

Root Category Generation

Hierarchy Proposal Module

Hierarchy Completion
w/ Claim Assignment

Pre-Generation Module

Claim Generation Frequent Entity
Extraction

Figure 2: LLM-based pipeline for preliminary hierarchy

generation given a set of related studies on a topic.

(or sets), each including an average of 24.7 studies,

which serve as input to our hierarchy generation

pipeline.

2.2 Hierarchy Generation Pipeline

Prior work on using LLMs for complex tasks has

shown that decomposing the task into a series of

steps or sub-tasks often elicits more accurate re-

sponses (Kojima et al., 2022; Wei et al., 2022b;

D’Arcy et al., 2024). Motivated by this, we de-

compose hierarchy generation from a set of related

scientific studies into three sub-tasks: (i) compress-

ing study findings into concise claims, (ii) initiating

hierarchy generation by generating root categories,

and (iii) completing hierarchy generation by pro-

ducing remaining categories and organizing claims

under them. Our hierarchy generation pipeline con-

sists of a pre-generation module that tackles task

(i) and a hierarchy proposal module that handles

tasks (ii) and (iii) (see Figure 2)). Additionally, our

pipeline can generate multiple (up to five) poten-

tial hierarchies per topic. We describe our pipeline

module in further detail below and provide com-

plete prompt details in Appendix A.

2.2.1 Pre-Generation Module

This module extracts relevant content from a set of

studies to use as input for hierarchy proposal.

Claim generation. We generate concise claim

statements from a given scientific study to reduce

the amount of information provided as input to sub-

sequent LLM modules. Providing a study abstract

as input, we prompt a LLM to generate claims de-

scribing all findings discussed. We qualitatively

examine the claim generation capabilities of two

state-of-the-art LLMs: (i) GPT-3.5 (June 2023 ver-

sion) and (ii) CLAUDE-2. Our assessment indicates

that GPT-3.5 performs better in terms of clarity and

conciseness; therefore we extract claim statements

for all studies in our dataset using this model. Ad-

ditionally, to assess whether generated claims con-

tain hallucinated information, we run a fine-tuned

DEBERTA-V3 NLI model (Laurer et al., 2024) on

abstract-claim pairs. We observe that 98.1% of

the generated claims are entailed by their corre-

sponding study abstracts, indicating that claims are

generally faithful to source abstracts.3 These sets

of generated claims are provided as input to the

hierarchy proposal module.

Frequent entity extraction. Based on prelimi-

nary exploration, we observe that simply prompt-

ing LLMs to generate hierarchies given a set of

claims often produces hierarchy categories with

low coverage over the claim set. Therefore, we

extract frequently-occurring entities to provide as

additional cues to bias category generation. We use

SCISPACY (Neumann et al., 2019) to extract enti-

ties from all study abstracts, then aggregate and sort

them by frequency. The 20 most frequent entities

are used as additional keywords to bias generated

categories towards having high coverage.

2.2.2 Hierarchy Proposal Module

The aim of this module is to generate final hierar-

chies in two steps within a single prompt: (i) gener-

ate possible categories that can form the root node

of a hierarchy (i.e., categories that divide claims

into various clusters), and then (ii) generate the

complete hierarchy with claim organization. For in-

stance, considering the example in Figure 1, step (i)

would produce root categories ªexercise modalitiesº

and ªcancer typesº and step (ii) would produce all

sub-categories (S1− S5) and organize studies un-

der them (e.g., assigning studies 1, 3, 5 under S1).

Root category generation. With outputs from

the pre-generation module and a research topic

(systematic review title), we prompt the LLM to

generate up to five top-level aspects as possible

root categories for hierarchies.

Hierarchy completion. With generated root cate-

gories, this step aims to produce a complete hier-

archy. We prompt the LLM to produce one hier-

3We further conduct a qualitative evaluation to ensure fac-
tuality of generated claims in Appendix Section D.
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archy per root category, with every non-root cate-

gory also containing numeric references to claims

categorized under it. Note that in our setting, a

claim may be assigned to multiple categories or re-

main uncategorized. A manual comparison of GPT-

4 and CLAUDE-2 outputs shows that CLAUDE-2

generates deeper hierarchies compared to GPT-4,

which only generate shallow hierarchies , so we

use CLAUDE-2 for the hierarchy proposal module.

See more details in Appendix Section C.

Using this pipeline, we generate 2,174 prelimi-

nary hierarchies (∼4.6 hierarchies per review) for

our curated set of 472 systematic reviews (or sets

of related studies).

3 Correcting Hierarchies via Human

Feedback

The second phase of our dataset creation process

involves correction of preliminary LLM-generated

hierarchies via human feedback. Correcting these

hierarchies is challenging because of two issues.

First, the volume of information present in gener-

ated hierarchies (links between categories, claim-

category links, etc.) makes correction very time-

consuming, especially in a single pass. Second,

since categories and claims in a hierarchy are inter-

linked, corrections can have cascading effects (e.g.,

changing a category name can affect which claims

should be categorized under it). These issues mo-

tivate us to decompose hierarchy correction into

three sub-tasks, making the feedback process less

tedious and time-consuming. Furthermore, each

sub-task focuses on the correction of only one cate-

gory of links to mitigate cascading effects. These

three sub-tasks are: (i) assessing correctness of

parent-child category links, (ii) assessing coher-

ence of sibling category groups, and (iii) assessing

claim categorization.

3.1 Assessing Parent-Child Category Links

In this sub-task, given all parent-child category

links from a hierarchy (e.g., P1 → S[1 − 5] in

Figure 1), for each link, humans are prompted to

determine whether the child is a valid sub-category

of the parent. Annotators can label parent-child

category links using one of the following labels:

(i) parent and child categories have a hypernym-

hyponym relationship (e.g., exercise modalities →

aerobic exercise), (ii) parent and child categories

are not related by hypernymy but the child category

provides a useful breakdown of the parent(e.g., aer-

obic exercise → positive effects), and (iii) parent

and child categories are unrelated (e.g., aerobic ex-

ercise → anaerobic exercise). Categories (i) and

(ii) are positive labels indicating valid links, while

category (iii) is a negative label capturing incorrect

links in the existing hierarchy.

3.2 Assessing Coherence of Sibling Categories

For a hierarchical organization to be useful, in ad-

dition to validity of parent-child category links, all

sibling categories (i.e., categories under the same

parent, like S1 − S5 in Figure 1) should also be

coherent. Therefore, in our second sub-task, given

a parent and all its child categories, we ask anno-

tators to determine whether these child categories

form a coherent sibling group. Annotators can as-

sign a positive or negative coherence label to each

child category in the group. For example, given the

parent category ªtype of cancerº and the set of child

categories ªliver cancerº, ªprostate cancerº, ªlung

cancerº, and ªrecurrenceº, the first three categories

are assigned positive labels, while ªrecurrenceº is

assigned a negative label since it is not a type of

cancer. All categories assigned a negative label

capture incorrect groups in the existing hierarchy.

3.3 Assessing Claim Categorization

Unlike the previous sub-tasks which focus on as-

sessing links between categories at all levels of

the hierarchy, the final sub-task focuses on assess-

ing the assignment of claims to various categories.

Given a claim and all categories present in the hi-

erarchy, for each claim-category pair, humans are

prompted to assess whether the claim contains any

information relevant to that category. The claim-

category pair is assigned a positive label if relevant

information is present, and negative otherwise. For

every category, we include the path from the root to

provide additional context which might be needed

to interpret it accurately (e.g., ªpositive findingsº

has a broader interpretation than ªchemotherapy

→ positive findingsº). Instead of only assessing

relevance of categories under which a claim has

currently been categorized, this sub-task evaluates

all claim-category pairs in order to catch recall er-

rors, i.e., cases in which a claim could be assigned

to an category but is not categorized there currently.

3.4 Feedback Process

Data Sampling: Due to the time-intensiveness

of the correction task, we collect annotations for

100 / 472 randomly-sampled topics, and further
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Precision Recall F1

Task 1 0.999 - -

Task 2 0.773 - -

Task 3 0.716 0.539 0.615

Table 1: Performance assessment of our LLM-based

pipeline on expert-curated hierarchies for 100 topics.

Recall and F1 for tasks 1 and 2 cannot be measured

since we only get positive predictions from the pipeline.

filter out hierarchies which cover less than 30% of

the claims associated with that topic. This leaves

us with 320 hierarchies to collect corrections for.

For the parent-child link assessment sub-task, this

produces 1,635 links to be assessed. For sibling co-

herence, after removing all parent categories with

only one child, we obtain 574 sibling groups to

be assessed. Lastly, for claim categorization, the

most intensive task, we end up with 50,723 claim-

category pairs to label.

Annotator Background: We recruit a team

of five experts with backgrounds in biology or

medicine to conduct annotations. Two of these

experts are authors on this paper, and the remain-

ing three were recruited via Upwork.4 Every an-

notator is required to first complete a qualification

test, which includes sample data from all three sub-

tasks, and must achieve reasonable performance

before they are asked to annotate data.

Annotation Pilots: Given the complexity and

ambiguity of our tasks, we conduct several rounds

of pilot annotation with iterative feedback before

commencing full-scale annotation. This ensures

that all annotators develop a deep understanding

of the task and can achieve high agreement. After

each pilot, we measure inter-annotator agreement

on each sub-task. Due to the presence of unbal-

anced labels in tasks 1 and 2, we compute agree-

ment using match rate; for task 3, we report Fleiss’

kappa. At the end of all pilot rounds, we achieve

high agreement on all sub-tasks, with match rates

of 100% and 78% on tasks 1 and 2 respectively and

Fleiss’ kappa of 0.66 on task 3.

3.5 Assessment of Preliminary Hierarchies

An additional benefit of collecting corrections for

preliminary hierarchies (as described above) is that

this data allows us to quantify the quality of our

4
https://www.upwork.com/

LLM-generated hierarchies and measure the per-

formance of our hierarchy generation pipeline.

Parent-child link accuracy. Interestingly, we ob-

serve almost perfect performance on this sub-task,

with only one out of 1635 parent-child links being

labeled as incorrect where the pipeline put ªCoffee

consumptionº under ªTea consumption and can-

cer riskº. Of the remaining correct links, 75% are

labeled as hypernym-hyponym links, and 25% as

useful breakdowns of the parent category. This re-

sult demonstrates that LLMs are highly accurate

at generating good sub-categories given a parent

category, even when dealing with long inputs.

Sibling coherence performance. Next, we look

into LLM performance on sibling coherence and

observe that this is also fairly high, with 77% of

sibling groups being labeled as coherent where ªco-

herentº denotes a sibling group in which expert

labels for all sibling categories are positive; other-

wise, ªzero.º Among sibling groups labeled inco-

herent, we observe two common types of errors: (1)

categories at different levels of granularity being

grouped as siblings, and (2) one or more categories

having subtly different focuses. For example, Fig. 1

demonstrates a type 1 error, where the sub-category

ªwalkingº is more specific and should be classified

under ªaerobicº but is instead listed as a sibling.

An example of a type 2 error is the parent category

ªdietary interventionsº with child categories ªlow

calorie dietsº, ªhigh/low carbohydrate dietsº, and

ªprepared meal plansº. Here, though all child cate-

gories are dietary interventions, the first two have

an explicit additional focus on nutritional value

which ªprepared meal plansº lacks, making them

incoherent as a sibling group.

Claim categorization performance. The design

of our claim categorization sub-task prompts anno-

tators to evaluate the relationship between a given

claim and every category in the hierarchy. Hence,

when assessing whether annotators agree with the

LLM’s categorization of a claim under a category,

we need to aggregate over the labels assigned to all

claim-category pairs from the root to the target cat-

egory under consideration. Formally, for a claim-

category pair (cli, ctj), instead of only using label

lij = h((cli, ctj)) from human feedback h, we

must aggregate over labels assigned to all ancestors

of ctj , i.e., L = [h((cli, ct1)), ..., h((cli, ctj))],
where ct1 is the root category and ctj is the target

category. We do this aggregation using an AND
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operation lagg = l1 ∧ l2 ∧ ...∧ lj . After computing

these aggregate labels, we observe that our LLM-

based pipeline has reasonable precision (0.71), but

much lower recall (0.53) on claim categorization.

A low recall rate on this sub-task is problematic

because, while it is easy for human annotators to

correct precision errors (remove claims wrongly

assigned to various categories), it is much harder

to correct recall errors (identify which claims were

missed under a given category), which necessitates

a thorough examination of all studies.

4 Characterizing Hierarchy Complexity

Our dataset creation process produces 2,174 hierar-

chies on 472 research topics, with 320 hierarchies

(for 100 topics) corrected by domain experts. We

briefly characterize the complexity of all generated

hierarchies, focusing on two aspects: (i) structural

complexity, and (ii) semantic complexity.

4.1 Structural Complexity

Hierarchy depth: All generated hierarchies are

multi-level, with a mean hierarchy depth of 2.5,

and maximum depth of 5.

Node arity: On average, every parent has a node

arity of 2.4 (i.e., has 2.4 child categories). However,

node arity can grow as large as 10 for certain parent

categories.

Claim coverage: Another crucial property of gen-

erated hierarchies is their coverage of claims since

hierarchies containing fewer claims are easier to

generate but less useful. We observe that given a

set of claims, a typical hierarchy incorporates 12.3

claims on average. Additionally, very few claims

from a set remain uncategorized, i.e., not covered

by any generated hierarchy (2.6 on average).

These characteristics indicate that our LLM-

generated hierarchies have interesting structural

properties.

4.2 Semantic Complexity

Category diversity: Our dataset contains 4.6 hier-

archies per research topic. We manually inspect a

small sample of hierarchies for 10 research topics,

and find that none of the hierarchies generated for a

single topic contain any repeating categories. This

signals that the multiple hierarchies we generate

per topic represent semantically diverse ways of

grouping/slicing the same set of claims.

Adherence to PICO framework: Systematic re-

views in biomedicine typically use the PICO (pop-

Task 1 Task 2 Task 3

Train 838 298 23,692

Validation 285 99 8,241

Test ID 327 115 13,595

Test OOD 185 62 5,195

Total 1,635 574 50,723

Table 2: Dataset statistics for three correction sub-tasks:

parent-child category links (Task 1), sibling category

coherence (Task 2), and claim categorization (Task 3).

ulation, intervention, comparator, outcome) frame-

work (Richardson et al., 1995) to categorize studies.

To understand how much our generated hierarchies

adhere to this framework, we again inspect hier-

archies for 10 research topics and label whether

the root category focuses on a PICO element. We

observe that 34 out of 46 hierarchies have a PICO-

focused root category, making them directly useful

for systematic review. Interestingly, the remain-

ing hierarchies still focus on useful categories such

as continuing patient education, study limitations,

cost analyses etc. Thus, besides surfacing catego-

rizations expected by the systematic review process,

using LLMs can help discover additional interest-

ing categorizations.

5 Automating Hierarchy Correction

As mentioned in §4, we hire five domain experts to

correct hierarchies for 100 research topics. How-

ever, the correction process, despite our best ef-

forts at task simplification and decomposition, is

still time-consuming and requires domain exper-

tise. Therefore, we investigate whether we can

use our corrected hierarchy data to automate some

correction sub-tasks. In particular, we focus on

automating sibling coherence and claim categoriza-

tion correction since Table 1 indicates that LLMs

already achieve near-perfect performance on pro-

ducing relevant child categories for a parent.

5.1 Experimental Setup

We briefly discuss the experimental setup we use

to evaluate whether model performance on sibling

coherence and claim categorization correction can

be improved using our collected feedback data.

5.1.1 Dataset Split

To better assess generalizability, we carefully con-

struct two test sets, an in-domain (ID) and an out-of-

domain (OOD) subset instead of randomly splitting
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our final dataset of 100 research topics. To develop

our OOD test set, we first embed all 100 research

topics by running SPECTER2, a scientific paper em-

bedding model using citation graph (Singh et al.,

2022), on the title and abstract of the Cochrane sys-

tematic review associated with each topic. Then,

we run hierarchical clustering on the embeddings

and choose one isolated cluster (n = 12 reviews)

to be our OOD test set. Our manual inspection

reveals that all studies in this cluster are about fer-

tility and pregnancy. After creating our OOD test

set, we then randomly sub-sample our ID test set

(n = 18 reviews) from remaining research topics.

This leaves us with 70 topics, which we split into

training and validation sets. Detailed statistics for

our dataset splits, including number of instances for

each correction sub-task, are provided in Table 2.

5.1.2 Models

We evaluate two classes of methods for correction:

• Finetuned LMs: To assess whether correction

abilities of smaller LMs can be improved by fine-

tuning on our collected feedback data, we experi-

ment with Flan-T5 (Chung et al., 2022), which

has proven to be effective on many benchmarks.

• Zero-Shot CoT: To explore whether using

chain-of-thought (CoT) prompting (Wei et al.,

2022a) improves the ability of LLMs to

do correction zero-shot without using our

feedback data, we test OpenAI GPT-3.5

Turbo (gpt-3.5-turbo-0613) and GPT-4 Turbo

(gpt-4-1106-preview).

Additional modeling details including CoT

prompts are provided in Appendix B.

5.2 Correcting Sibling Coherence

Table 3 presents the performance of all models

on the task of identifying sibling groups that are

incoherent. Finetuning models on this task is chal-

lenging due to the small size of the training set

(n = 298) and imbalanced labels. Despite up-

sampling and model selection based on precision,

finetuned Flan-T5 models do not perform well on

this task (best F1-score of 33.3%). Additionally

LLMs also do not perform well despite the use

of chain-of-thought prompting to handle the com-

plex reasoning required for this task. At 51.5%
F1, LLMs outperform finetuned models; however,

their precision (46.7% for GPT-4-Turbo) is still not

good enough to detect incoherent sibling groups

confidently. These results indicate that this correc-

tion sub-task is extremely difficult to automate and

will likely continue to require expert intervention.

5.3 Correcting Claim Categorization

Table 4 shows the performance of all models on

the task of correcting assignment of claims to cate-

gories in the hierarchy. Following the strategy de-

scribed in §3.5, given a claim, we first use our mod-

els to generate predictions for every claim-category

pair (all category nodes) and then obtain the final

label for each category by applying an AND op-

eration over all predictions from the root category

to that category. Our results show that this task

is easier to automateÐfine-tuning Flan-T5 on our

collected training dataset leads to better scores on

all metrics compared to our LLM pipeline. Cru-

cially, recall which is much more time-consuming

for humans to fix, improves by 15.9 points using

Flan-T5-large indicating that automating this step

can provide additional efficiency gains during cor-

rection. LLMs perform well too, with GPT-4-Turbo

achieving the best recall rate among all models, but

its lower precision score makes the predictions less

reliable overall.

Interestingly, we notice that all models perform

better on the OOD test for both correction tasks,

indicating that the OOD test set likely contains

instances that are less challenging than the ID set.

5.4 Correcting Claim Categorization for

Remaining Hierarchies

Comparing the claim categorization predictions of

Flan-T5-large on our test set with our LLM-based

hierarchy generation pipeline reveals that it flips

labels in 24.7% cases, of which 63.5% changes

are correct. This indicates that a FLAN-T5-large

corrector can potentially improve claim categoriza-

tion of LLM-generated hierarchies. Therefore, we

apply this corrector to the remaining 372 LLM-

generated hierarchies that we do not have expert

corrections for to improve claim assignment for

those. Our final curated dataset CHIME contains

hierarchies for 472 research topics, of which hierar-

chies for 100 topics have been corrected by experts

on both category linking and claim categorization,

while hierarchies for the remaining 372 have had

claim assignments corrected automatically.

6 Related Work

6.1 Literature Review Support

Prior work on developing literature review support

tools has largely focused on using summarization
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All In-domain Out-of-domain
Precision Recall F1 Precision Recall F1 Precision Recall F1

Fine-tuned
Flan-T5 base 0.368 0.179 0.241 0.364 0.167 0.229 0.375 0.200 0.261
Flan-T5 large 0.333 0.333 0.333 0.269 0.292 0.280 0.462 0.400 0.429

Zero-shot
CoT

GPT-3.5 Turbo 0.419 0.667 0.515 0.400 0.583 0.475 0.444 0.800 0.571
GPT-4 Turbo 0.467 0.359 0.406 0.474 0.375 0.419 0.455 0.333 0.385

Table 3: Performance of all models on assessing sibling coherence.

All In-domain Out-of-domain
Precision Recall F1 Precision Recall F1 Precision Recall F1

Pipeline 0.697 0.567 0.625 0.677 0.575 0.622 0.757 0.548 0.636

Fine-tuned
Flan-T5-base 0.767 0.711 0.738 0.750 0.702 0.725 0.816 0.735 0.773
Flan-T5-large 0.779 0.726 0.751 0.769 0.726 0.747 0.807 0.725 0.764

Zero-shot
CoT

GPT-3.5 Turbo 0.585 0.861 0.697 0.570 0.871 0.689 0.631 0.835 0.719
GPT-4 Turbo 0.557 0.932 0.697 0.544 0.933 0.687 0.594 0.932 0.726

Table 4: Performance of all models on correcting claim categorization.

techniques for end-to-end review generation or to

tackle specific aspects of the problem (see Altmami

and Menai (2022) for a detailed survey). Some

studies have focused on generating ªcitation sen-

tencesº discussing relationships between related

papers, which can be included in a literature re-

view (Xing et al., 2020; Luu et al., 2021; Ge et al.,

2021; Wu et al., 2021). Other work has focused

on the task of generating related work sections for

a scientific paper (Hoang and Kan, 2010; Hu and

Wan, 2014; Li et al., 2022; Wang et al., 2022),

which while similar in nature to literature review,

has a narrower scope and expects more concise

generation outputs. Finally, motivated by the ever-

improving capabilities of generative models, some

prior work has attempted to automate end-to-end

review generation treating it as multi-document

summarization, with limited success (Mohammad

et al., 2009; Jha et al., 2015; Wallace et al., 2020;

DeYoung et al., 2021; Liu et al., 2022; Zhu et al.,

2023). Of these, Zhu et al. (2023) generates inter-

mediate hierarchical outlines to scaffold literature

review generation, but unlike our work, they do not

produce multiple organizations for the same set of

related studies. Additionally, we focus solely on

the problem of organizing related studies for litera-

ture review, leaving review generation and writing

assistance to future work.

6.2 LLMs for Organization

Organizing document collections is an extensively-

studied problem in NLP, with several classes of

approaches such as clustering and topic model-

ing (Dumais et al., 1988) addressing this goal.

Despite their utility, conventional clustering and

topic modeling approaches are not easily inter-

pretable (Chang et al., 2009), requiring manual ef-

fort which introduces subjectivity and affects their

reliability (Baden et al., 2022). Recent work has

started exploring whether using LLMs for cluster-

ing (Viswanathan et al., 2023; Zhang et al., 2023;

Wang et al., 2023) and topic modeling (Pham et al.,

2023) can alleviate some of these issues, with

promising results. This motivates us to experiment

with LLMs for generating hierarchical organiza-

tions of scientific studies. Interestingly, TopicGPT

(Pham et al., 2023) also attempts to perform hierar-

chical topic modeling, but is limited to producing

two-level hierarchies unlike our approach which

generates hierarchies of arbitrary depth.

7 Conclusion

Our work explored the utility of LLMs for produc-

ing hierarchical organizations of scientific studies,

with the goal of assisting researchers in performing

literature review. We collected CHIME, an expert-

curated dataset for hierarchy generation focused on

biomedicine, using a human-in-the-loop process in

which a naive LLM-based pipeline generates pre-

liminary hierarchies which are corrected by experts.

To make hierarchy correction less tedious and time-

consuming, we decomposed it into a three-step

process in which experts assessed the correctness

of links between categories as well as assignment

of studies to categories. CHIME contains 2,174

LLM-generated hierarchies covering 472 topics,
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and expert-corrected hierarchies for a subset of 100

topics. Quantifying LLM performance using our

collected data revealed that LLMs are quite good at

generating and linking categories, but needed fur-

ther improvement on study assignment. We trained

a corrector model with our feedback data which

improved study assignment further by 12.6% F1

points. We hope that releasing CHIME and our

hierarchy generation and correction models will

motivate further research on developing better as-

sistive tools for literature review.

Limitations

Single-domain focus. Given our primary focus

on biomedicine, it is possible that our hierarchy

generation and correction methods do not general-

ize well to other scientific domains. Further inves-

tigation of generalization is out of scope for this

work but a promising area for future research.

Deployment difficulties. Powerful LLMs like

CLAUDE-2 have long inference times Ð in some

cases, the entire hierarchy generation process can

take up to one minute to complete. This makes it

extremely challenging to deploy our hierarchy con-

struction pipeline as a real-time application. How-

ever, it is possible to conduct controlled lab studies

to evaluate the utility of our pipeline as a literature

review assistant, which opens up another line of

investigation for future work.

Reliance on curated sets of related studies. Our

current hierarchical organization pipeline relies on

the assumption that all provided studies are relevant

to the research topic being reviewed. However, in a

realistic literature review setting, researchers often

retrieve a set of studies from search engines, which

may or may not be relevant to the topic of interest,

and are interested in organizing the retrieved results.

In a preliminary qualitative analysis in Appendix

Section E, we show that our system can handle

some noise in retrieved studies, though we defer a

detailed robustness evaluation to future work.
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A Prompts for Hierarchy Generation

Pipeline

We present prompts for the hierarchy generation

pipeline in Fig. 3 and Fig. 4.

B Model Training Details

Flan-T5 fintuning. We fine-tuned the

flan-t5-base and flan-t5-large models

using the Hugggingface library (Wolf et al., 2019)

with NVIDIA RTX A6000 for both task 1 and task

3. For task 1, the learning rate is set to 1e-3 and the

batch size is 16. We train the model for up to five

epochs. For task 3, the learning rate is 3e-4 with

batch size 16, and the models are trained up to two

epochs. Each epoch takes less than 15 minutes

for both model sizes. The numbers reported for

each Flan-T5 model come from a single model

checkpoint.

GPT-3.5 Turbo and GPT-4 Turbo We perform

zero-shot CoT prompting for corrector models on

tasks 1 and 3 with prompts in Fig. 5 and Fig. 6.

C Model Selection for Hierarchy

Proposal Module

We conducted a qualitative evaluation of hierar-

chies generated by GPT-3.5-Turbo, GPT-4, and

CLAUDE-2 for 10 sampled research topics. Results

showed that GPT-3.5-Turbo does poorly at follow-

ing instructions and only generates well-formed

hierarchies 30% of the time, while GPT-4 produces

valid hierarchies but generates shallow ones with a

depth of 1 60% of the time. In comparison, Claude-

2 produces hierarchies with a higher depth (>1)

90% of the time.

D Qualitative Analysis on Generated

Claims

To better establish the accuracy of our NLI-based

verification process, we have conducted an addi-

tional qualitative assessment of 100 abstract-claim

pairs. We examined 50 pairs that the NLI model

marked as ªentailedº and 50 non-entailed pairs. Re-

sults show that the precision of the NLI model is

very high, with 47 out of 50 entailed claims being

correct, without hallucinations. Interestingly, we

find that 37/50 non-entailed pairs are false nega-

tives, indicating that in many cases, the generated

claim is correct even though the NLI model pre-

dicts non-entailment. This human evaluation fur-

ther validates that our claim generation process is

high quality.

E Qualitative Analysis on Retrieval

Quality

We conducted a brief experiment on 10 samples

(sets of related studies present in our dataset) by

injecting five irrelevant claims from other study

sets per sample. We observed that during hierarchy

generation, CLAUDE-2 was able to ignore irrele-

vant claims and generate hierarchies similar to the

ones it originally produced (in the non-noisy set-

ting). CLAUDE-2 can also differentiate between

relevant and irrelevant claims and does not assign

noisy claims to any categories in the hierarchy.
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Title:
{title}

Abstract:
{abstract}

Task:
Conclude new findings and null findings from the abstract in one sentence in the atomic format. Do not separate
new findings and null findings. The finding must be relevant to the title. Do not include any other information.

Definition:
A scientific claim is an atomic verifiable statement expressing a finding about one aspect of a scientific entity or
process, which can be verified from a single source.

Figure 3: Claim generation prompt for GPT-3.5 Turbo.
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**Review Title**
{systematic_review_title}

Frequent entities from study abstracts:
{freq_entities}

**Study Claim List**
{claim_list}

**Instruction:**
Your task is to process a review title involving relevant clinical studies as per the following requirements:

1. **Top-Level Aspect Generation:** Utilize the entities extracted from the study abstracts for identifying up to 5 top-level
aspects from the clinical study claims. You should list these aspects in a bulleted list format without incorporating any
extraneous information. Cite the entities in that support the aspects. This will be the [Response 1] section.

2. **Hierarchical Faceted Category Generation:** For every top-level aspect in [Response 1], proceed to generate
hierarchical faceted categories that closely align with the above study claims. The granularity of these categories must be
similar to their corresponding parent categories and the siblings categories. Avoid including unrelated information. Cite the
claims that support your categories. This will make up the [Response 2] section of your output.

**Remember:**
1. Precision is vital in this process; strive to avoid vague or imprecise extractions.
2. Include only relevant data and exclude any information not pertinent to the task.
3. Strictly adhere to the output format. The claims are cited in the format "(Claim 0, 2, 3, 12)" for each category and aspect.
4. The output should be in the form of a nested list using numbers. 

Here is an example:

If given the review title "The efficacy of Remdesivir in treating COVID-19 patients: A review," your task output might look
like this:

Frequent entities from study abstracts:
Efficacy, Remdesivir, treatment, COVID-19 patients

**Output Format**
[Response 1]:
Aspect 1: Efficacy of treatment (Efficacy)
Aspect 2: Application of Remdesivir (Remdesivir)
Aspect 3: Treatment of COVID-19 patients (treatment, COVID-19 patients)

[Response 2]:
Aspect 1: Efficacy of treatment (Claim 0, 2, 3, 12)
    1: Efficiency of alternative treatments (Claim 0, 2, 3, 12)
        1.1: Efficacy of Remdesivir (Claim 0, 12)
        1.2: Efficacy of other drugs (Claim 3)
    2: Side-effects comparison (Claim 2)
Aspect 2: Application of Remdesivir (Claim 2, 4, 5, 6, 7, 8, 9, 10, 11)
    1: Usage of other drugs (Claim 4, 5, 6, 9, 10, 11)
    2: Dosing comparisons (Claim 7, 8)
        2.1: Dosing of Remdesivir (Claim 7)
Aspect 3: Treatment of COVID-19 patients (Claim 1, 13, 14, 15, 16, 17, 18, 19, 20, 21)
    1: Treatment procedures for other diseases (Claim 13, 14, 16, 17, 18, 19, 20, 21)
    2: Treatment timeframe comparisons. (Claim 1, 15)

Figure 4: Hierarchy proposal module prompt for Claude-2.
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** Instruction **
In this task, you will be annotating the relationship among a set of sibling categories.You will assess whether
these sibling categories logically belong together within their shared parent category, a concept referred to as
'coherence'. 

Your task is to label whether ALL sibling categories are coherent with each other. 
If all sibling categories fit well and logically belongs to the broader group, label it 'These sibling categories are
coherent' to signify its coherence. Make sure silbings are at the same level of granularity for coherence
assessment.
If any category doesn't seem to belong logically or doesn't fit well within the group, label it 'These sibling
categories are NOT coherent' to indicate non-coherence.

Your decisions should be based solely on the level of coherence – how well these categories fit together under
their shared parent category and not on any other factors or personal preferences.

**Remember**
1. You should start with step-by-step reasoning and generate the answer at the end in the given format.
2. You should only reply with the answer in the format of [These sibling categories are coherent] or [These
sibling categories are NOT coherent].
3. You will be given a parent category and a set of sibling categories. You should assess each sibling category
independently.

Again, follow the format below to reply:

Step-by-step reasoning:

[Your reasoning]

Answer:
[These sibling categories are coherent] or [These sibling categories are NOT coherent]

** Question **
Parent category: {parent_category}

Sibling categories: {sibling_categories}

Figure 5: Prompt for task 1 sibling coherence for both GPT-3.5 Turbo and GPT-4 Turbo.
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** Instruction **
In this task, your role as an annotator is to assess whether a specific claim belongs to a provided category.

Your responsibility is to assign a binary label for each category-claim pairing:
1. "The claim belongs to the category" -  Choose this if any part or aspect of the claim is relevant to the category,
even if the connection is broad or indirect. This includes claims that are negations or opposites of the category.
See the following examples:
The claim “Assisted hatching through partial zona dissection does not improve pregnancy and embryo
implantation rates in unselected patients undergoing IVF or ICSI” belongs to “Impact on specific patient groups”
category because patient groups can be applied to not only patient demographics but also patients with the
same disease/symptom.
The claim “Sumatriptan is effective in reducing productivity loss due to migraine, with significant improvements in
productivity loss and return to normal work performance compared to placebo.” belongs to “Headache relief”
because headache is one of the symptoms of migraine even though it is not explicitly mentioned in the claim.

2. "The claim does NOT belong to the category" - Choose this if there is no meaningful connection between the
claim and the category.

**Remember**
1. Only reply with the answer in the format of [The claim belongs to the category] or [The claim does NOT belong
to the category].
2. Do not reply with any other format.
3. Start with step-by-step reasoning and generate the answer at the end in the given format.

**Claim**
{claim}

**Category**
{category}

Again, follow the format below to reply:

Step-by-step reasoning:
[Your reasoning]

Answer:
[The claim belongs to the category] or [The claim does NOT belong to the category]

Figure 6: Prompt for task 3 claim assignment for both GPT-3.5 Turbo and GPT-4 Turbo.
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