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ABSTRACT
Music invites measurable changes in a listener’s physiology. Heart
rate variability (HRV), defined as the beat to beat variation across
successive heartbeats, is a frequently used physiological measure
of the activity of the autonomic nervous system. Galvanic skin
response (GSR) is defined by changes in electrical potentials in the
skin and has also been shown to serve as a biomarker of autonomic
nervous system activity. Prior work has shown that listening to
various genres of music will elicit measurable changes in heart
rate, HRV, and GSR. However, what remain underexplored are any
potential correlations between low level audio features of music
and their associated physiological responses in listeners. We begin
filling this gap in knowledge by performing a secondary analysis
of the DEAP dataset. We extract heart rate, HRV features, and
GSR features from participant data corresponding to when they
listened to music. Then we extract low-level audio features from
the music that participants listened to. Using mixed effects models
and multiple regression analyses, we find correlations between two
low-level audio features and extracted physiological data which
suggest that vocal or vocal-like sounds and percussive or noisy
sounds in music may have particularly strong effects on the body.
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1 INTRODUCTION
For most people, listening to music may invite an emotional re-
sponse.Music serves as a focus aid formany people, it is increasingly
utilized in music therapy contexts, and it plays a large role in social
development [33]. Additionally, music has been repeatedly shown
to elicit responses from our physiology [16, 20, 43]. In recent years,
researchers have explored the mechanisms that underlie the brain’s
response to music, attempting to explain how emotional responses
to music manifest in the brain [9] to how music may be a regulator
of pain [27]. However, an equally interesting question concerns
how music manifests in our peripheral physiological signals. One
piece of music might cause our heart to beat faster while another
may cause an increase in the conductivity of our skin.

Analyzing these physiological states over time can tell us a
surprising amount about our internal state and stress response.
Two physiological responses in particular are heart rate variability
(HRV) and galvanic skin response (GSR). HRV is the natural change
in time intervals between heart beats1, and a higher level is typically
an indicator of health [41]. HRV has become a focus in psychophys-
iological research due to its link with the parasympathetic nervous
system which is relevant to "several self-regulation mechanisms
linked to cognitive, affective, social, and health phenomena" [24].
Colloquially, the parasympathetic nervous system is referred to as
the "rest and digest" portion of the nervous system and pulls the
body into more relaxed states. Galvanic Skin Response (GSR) is
defined as "a change in the electrical properties of the skin", and it
is considered an indicator of sympathetic activity [42]. Sympathetic
activity is a portion of the general arousal pattern that is present
at the onset of emergencies which helps ready us for stressing
stimuli [42]. In a similar colloquial fashion, the sympathetic nervous
system is associated with the "fight or flight" response and activates
in response to various stressors. While acute sympathetic activa-
tion is helpful and natural, long-term sympathetic activation from
chronic stress is linked to cardiovascular disease and other ailments.
These insights and studies on the sympathetic nervous system have
greatly influenced clinical practice [44]. The parasympathetic and
sympathetic nervous systems are two components of the broader
autonomic nervous system2 which governs involuntary motor
functions. As stated prior, the parasympathetic nervous system is
constantly pulling the body towards a more relaxed state while

1The heart does not beat at a constant rate but rather it continuously beats faster and
slower over time. We invite the reader to feel for their pulse and then take slow, deep
breaths. Heart rate increases during inhalation and decreases on exhalation. This is a
basic demonstration of HRV.
2The third and final component is the enteric nervous system whose discussion lies
outside the scope of this work.
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Figure 1: Electrocardiogram (ECG) is measured via electrodes
placed on the body. Photoplethysmogram (PPG) uses optics
to measure blood volume through the skin of typically a
finger tip, earlobe, or wrist. PPG is the technology used by
smartwatches to gather cardiac data.

the sympathetic nervous system is constantly pulling the body
towards a more aroused state. The exact balance at any given time
is determined by different levels of various neurotransmitters in the
nervous system. Through measuring physiological responses such
as heart rate, HRV, and galvanic skin response, we can measure
relative effects and activity of the ANS, giving us insight into health
and stress information about an individual. More detail about the
ANS can be found in [14].

Prior work has introduced numerous extractable features for
both HRV and GSR. HRV features can be extracted from both
electrocardiogram and photoplethysmogram signals (see figure 1).
Time- and frequency-domain features exist for HRV. The time do-
main features rely on time differences between consecutive R waves
(see figure 2), while frequency domain features are calculated by
performing a Fourier transform on the signal. GSR signals can be di-
vided into two main components: skin conductance response (SCR)
and skin conductance level (SCL). SCR, or the tonic component,
represents a slowly changing baseline of the signal that modulates
based on hydration, autonomic regulation, and skin moisture. SCL,
or the phasic component, is a faster-changing component which is
sensitive to emotionally arousing stimuli [42]. Common features to
extract from a GSR signal include the first four statistical moments,
minimum and maximum values, and the number of peaks over
a defined period of time from the SCL component [35]. Below is
a selection of HRV metrics found in [41] and [33]. Formulas and
in-depth explanations for those utilized in our analysis are given in
section 3.1.

• Time domain
– SDNN: Standard Deviation of NN intervals
– pNN50: Percentage of successive RR intervals that differ
by more than 50 milliseconds

– RMSSD: Root Mean Square of Successive Differences
• Frequency domain

Figure 2: In an ECG signal, a QRS complex represents de-
polarization (or contraction) of the left and right ventricles
in the heart [40]. The duration between successive R peaks
is measured in milliseconds. HRV can be seen in different
durations between multiple successive R peaks.

– ULF power: Absolute power of the ultra-low-frequency
band (≤ 0.003 Hz) (ms2)

– VLF power: Absolute power of the very-low-frequency
band (0.003 - 0.04 Hz) (ms2)

– LF power: Absolute power of the low-frequency band (0.04
- 0.15 Hz) (ms2)

– HF power: Absolute power of the high-frequency band
(0.15 Hz - 0.4 Hz) (ms2)

The choice to focus solely on physiological signals stemming
from the heart and the skin is a matter of scope. Other physiological
signals such as electroencephalography (EEG) for brainwaves,
electromyography (EMG) for muscle activity, and respiration rate
are studied to great effect in the context of music perception
and cognition. Of these, EEG is the most common, and several
datasets are available online to study music perception with EEG
[7]. Due to the popularity of studying EEG in this context and the
aforementioned connections of peripheral physiological signals to
the autonomic nervous system, we chose to focus on HRV and GSR.

1.1 Music, Emotion, the Heart, and the Skin
Scholarly research has explored the effects of different music and
sounds on both heart rate and HRV. White noise has been shown
to increase the LF power and the ratio of LF power to HF power
( 𝐿𝐹
𝐻𝐹

) [25]. In [43], researchers tested how speech noise, traffic
noise, and mixed noise affect HRV compared to background noise.
The researchers described speech noise as multiple people talking
simultaneously, traffic noise as aircraft and road traffic sounds,
mixed noise as a combination of speech and traffic noise. No
description of background noise is given. They reported that speech
noise decreased participants’ LF power and 𝐿𝐹

𝐻𝐹
when compared

with traffic noise and mixed noise, but results were not significant.
Musical structure was shown to play a role when a group of singers
had both higher RMSSD values and synced HRV when singing
a mantra designed to produce a 0.1 Hz breathing rate (ie one
full breath every 6 seconds) compared to independent humming
(no coordinated breathing) or the hymn Fairest Lord Jesus (semi-
coordinated breathing) [47]. In a study comparing sedative music
(Erik Satie’s Gymnopedie No. 1, arranged by Claude Debussy) to
excitative music (Igor Stravinsky’s "Sacrificial Dance" from The Rite
of Spring), participants had increased HF power when listening to
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sedative music when compared to excitative music while LF power
and 𝐿𝐹

𝐻𝐹
increased with the number of repetitions [19]. Separately,

[20] came to similar conclusions, finding lower heart rate and
higher RMSSD values when participants listened to ambient music
instead of metal music.

We note that the meaning of LF power and 𝐿𝐹
𝐻𝐹

is debated. While
LF power and 𝐿𝐹

𝐻𝐹
traditionally refer to joint sympathetic and

parasympathetic nerve activation and the sympatho-vagal balance3
[25, 43], respectively, these ideas are challenged. Billman provides
an argument against the relationship between sympatho-vagal
balance and the LF-to-HF ratio [4], and Laborde et. al. state that the
relationship between LF power and sympathetic nervous system
activity is loose. Due to this uncertainty in LF power and 𝐿𝐹

𝐻𝐹
, we

choose to focus on two HRV metrics recommended by [24]: RMSSD
and SDNN. Mathematical definitions for these features are given in
section 3.1.

In addition to HRV metrics, [20] also investigated GSR. They
found increased rapid fluctuations in GSR according to greater
amount of stimuli and an increase in skin conductivity correlated
with rhythm changes. The authors do not report numerical values
for these specific observations. In [21], engineering students were
tasked with one of three tasks: yogic breathing, religious hymn
listening, or flute music listening. GSR values were recorded, and,
when compared with a control group that only received instruction
to silently remain seated, the researchers reported statistically
significant lower values of GSR for the experimental conditions
than for the control group. In [15], GSR was found a useful feature
in discriminating whether or not men and women were listening to
music. The idea of GSR as a sympathetic index has been successfully
utilized in both emotion recognition [35, 51] and in the recognition
of perceived valence and arousal of affective sounds [6].

1.2 Our Contribution
Despite music’s several influential roles in social relationships [38]
and its ability to evoke numerous basic emotions in us, a mystery
of why music possess such power remains. With insights about the
influence of musical attributes like genre [20] and structure [47]
on physiological state, we address potential answers to the broader
mystery. But with these higher level investigations, whether or
not specific qualities of music like frequency distributions, sound
brightness, and rhythmic variation lead to physiological changes is
largely unknown. Researchers in [43] perform a basic audio analysis
alongside the physiological analysis. The researchers stated that
the speech noise had different specific loudness, specific roughness,
fluctuation strength, and tonality when compared with traffic noise
and mixed noise, though the authors do not report formulae for
these features. It is important to expand on the investigation of
these low level features and the physiological correlates. There
exists a controversy in the music perception community about
why (or even if) music induces emotion, and [22] believes that
the controversy is fueled by a lack of understanding about the
underlying mechanisms contributing to musically induced emotion
and physiological arousal. In this work, we aim to go beyond

3Sympatho-vagal balance simply refers to the balance betweent the sympathetic and
parasympathetic nervous systems. The vagus nerve is the one of the main components
in the parasympathetic nervous system.

the higher level genre and structure tasks routinely seen in the
literature, and we investigate low level audio features that could
provide insight into pertinent building blocks of sound that correlate
with physiological response.

2 THE DEAP DATASET
The DEAP (Database for Emotion Analysis using Physiological
Signals) dataset [23] was originally developed in 2012 to explore "the
possibility of classifying emotion dimensions induced by showing
music videos to different users." The researchers recorded EEG and
peripheral physiological signals (PPG, GSR, and respiration) from 32
participants. A 2-minute baseline recordingwas conducted, and then
each participant watched a minute long excerpt from 40 different
music videos. After each video, participants gave subjective ratings
to each music video based on perceived valence, arousal, familiarity,
liking, and dominance. The researchers presented a discussion on
found correlations between the EEG and the emotions ratings,
and they later used extracted features from the audio and video
alongside the peripheral physiological data to train classification
models for emotion prediction. Both the peripheral physiological
signals and the audio features served as inputs to the DEAP models,
whereas we utilize the peripheral physiological signals as outcome
variables in our correlational analyses.

3 PHYSIOLOGICAL SIGNAL ANALYSIS
We chose to analyze the GSR data and the PPG data of the DEAP
dataset. As stated in section 1.1, GSR and HRV are indicators of
sympathetic and parasympathetic nervous system activity, respec-
tively. We also analyzed the mean interbeat interval (IBI) given
by

𝐼𝐵𝐼𝑚𝑒𝑎𝑛 = 1000 ∗ 60
𝐻𝑅𝑚𝑒𝑎𝑛

, (1)

where 𝐻𝑅𝑚𝑒𝑎𝑛 is average heart rate over a period of time. 60 refers
to the number of seconds in a minute, and multiplying by 1000
provides 𝐼𝐵𝐼𝑚𝑒𝑎𝑛 in milliseconds.

3.1 HRV
Each PPG signal was filtered using the filter_signal function from
the Python package Heartpy [46]. The filter was designed as a 4th
order bandpass filter with lower and upper frequency bounds of
0.5Hz and 10Hz, respectively. The signals were then segmented
into the appropriate portions corresponding to music listening
timestamps. The HRV metrics that we extracted from the PPG data
are the Root Mean Square of Successive Differences (RMSSD) and
the Standard Deviation of NN intervals (SDNN). Both of these
features are explained in figure 3.

In addition to the two raw HRV feature vectors for RMSSD and
SDNN, we created two additional feature vectors: ΔRMSSD and
ΔSDNN. These are defined as

𝐻𝑅𝑉Δ = 𝐻𝑅𝑉𝑠 − 𝐻𝑅𝑉𝑏 , (2)

where 𝐻𝑅𝑉𝑠 is an HRV value during stimulus presentation, and
𝐻𝑅𝑉𝑏 is baseline HRV.
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Figure 3: RMSSD and SDNN are two of the features extracted from the cardiac data in the DEAP dataset, and they both rely on
RR intervals. An RR interval is simply the time in milliseconds from one R peak to the next. RMSSD is calculated by first
calculating the time differences between successive RR intervals. We then perform a root mean square on the resulting set of
successive differences. SDNN is simply the standard deviation of the NN intervals. A set of NN intervals is defined as a set of
RR that has been cleaned and is free of irregular beats. Cleaning can be performed in a variety of ways. Expert visual analysis
of the signal can be used to manually verify beat timings, digital filters can be utilized to reduce noise, and various outlier
detection algorithms can be used to discard irregular beats [46].

3.2 GSR
The GSR signals were preprocessed using the eda_process func-
tion from the Python package Neurokit2 [30]. Afterwards, the
phasic component was extracted using the eda_phasic function.
We then segmented each GSR signal corresponding to music listen-
ing. The features that we extracted from GSR include the first four
statistical moments, the first and second derivatives of the first two
statistical moments, root mean square, and the first and second
derivatives of root mean square.

4 AUDIO ANALYSIS
Methodologies in this section were largely informed by chapter 3 in
An Introduction to Audio Content Analysis by Alexander Lerch [26].
Lerch is a leader in the field of music information retrieval, and his
book provides clear instruction on validated methodologies.

4.1 Audio Preprocessing
The DEAP dataset provides the audio stimulus in the form of
YouTube.com video links. We utilized the open source PyTube4
package to download the videos from YouTube. About half of the
video links did not work because of age-restricted errors, videos
being taken down, etc. In these instances, we manually found what
we believed to be the same or similar video at a different link, and
used those to finish the audio downloading process.

Each audio file was read into Python using the Scipy [48] library.
Each audio file was downmixed to mono if necessary, and the DC
offset was removed. All audio was normalized such that sample
4https://github.com/pytube/pytube

amplitudes ranged between -1 and 1. Lastly, the 60 second long
sections as denoted by the DEAP metadata were extracted and
saved as new WAV files. Of the 40 audio stimuli, six of the audio
segments were slightly less than 60 seconds.

4.2 Feature Extraction and Preprocessing
We chose to utilize Librosa [31] for audio feature extraction since
it is a validated and widely used Python package. This limited the
features that we extracted from the audio. Where necessary, a block
size of 2048 and a hop size of 512 were used in the Librosa feature
extraction methods.

The 17 extracted features were:

• Spectral Features [26]
– Spectral Centroid: The center of gravity, or mean, of the
magnitude spectrum of a signal.

– Spectral Spread: The concentration of the magnitude
spectrum around the spectral centroid.

– Spectral Contrast: The difference between the spectral
peak and spectral valley in each frequency band.

– Spectral Flatness: The ratio of the geometric mean and
the arithmetic mean.

– Spectral Rolloff: A measure of bandwidth of a block of n
audio samples.

• Cepstral Features: Typically, anywhere from 4 to 20 Mel-
Frequency Cepstral Coefficients (MFCCS) are extracted, and
it has been shown that the first few coefficients contain the
priciple information [26]. Based on this, we extracted the
first 10 MFCCs and used the Librosa-default 128 mel bands.
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• Zero Crossing Rate (ZCR): The number of times in a block
of audio samples that a signal changes sign.

• Tempo (Note: Tempowas determinedmanually. In checking the
accuracy of Librosa tempo estimates, many were inaccurate.)

We then calculated the mean and the standard deviation across
audio blocks for each feature except tempo, resulting in 33 feature
vectors per minute-long audio segment. Finally, we applied z-score
normalization as described in [26] to each feature vector.

5 STATISTICAL METHODS
All statistical analyses were performed using R statistical software
(v4.3.3) [37]. The final stages of data preprocessing and formatting
for use in R were performed and visualizations generated using
Tidyverse [49] packages, ggplot2 [17], and cowplot [50] unless
otherwise stated.

Some of the physiological features were positively skewed. We
applied a natural log transformation to remedy this. In order to
determine which covariates to include in our model, we utilized two
separate tools: random forest and a model selection exercise. We
note that while random forest algorithms are typically associated
with large amounts of data, they are also useful with smaller
amounts of data [12]. For the model selection exercise, we utilized
the dredge function from the MuMIN [2] package for R. Dredge
takes a linear model that includes all candidate covariates as an
input and outputs the AIC of models built using every possible
combination of covariates. We created these models, and all later
models, using the lme4 package [3] in R.We repeated these methods
using each physiological feature as the outcome variable, and both
methods consistently produced two audio features of interest:

• Standard deviation of zero crossing rate (ZCR) and
• Standard deviation of MFCC number 6.

To determine whether or not mixed effects models would be
necessary for our analysis, we calculated the AIC using the AIC
function in R for the linear fixed effects models and the corre-
sponding linear mixed effects models utilizing these audio feature
predictors. Consistently, the mixed effects models produced lower
AICs which confirmed the need for mixed effects models.

Next, we performed model comparisons using the Flexplot [11]
package in R. Flexplot calculates the AIC, BIC, and Baye’s factor for
both models in a comparison. Each model comparison used a full
model (consisting of predictors) (equation 3) and a reduced model
(consisting only of the data mean) (equation 4) created using lme4:

𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑖 𝑗 = 𝑏0𝑗 + 𝑏1𝑗 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟1𝑖 ) + 𝑏2𝑗 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟2𝑖 ) + 𝜖𝑖 𝑗 (3)

𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑖 𝑗 = 𝑏0𝑗 + 𝜖𝑖 𝑗 (4)
where 𝑖 represents trial number, 𝑗 represents participant number,
and 𝜖 represents the residual.

We determined that the most likely outcome variables were the
natural logarithm (𝑙𝑛) of the standard deviation (𝜎) of GSR and
mean interbeat interval.

With this insight, we created two multiple regression mod-
els. Model 1 examined the relationship between 𝑙𝑛(𝜎(GSR)) with
𝜎(MFCC 6) and 𝜎(ZCR). Model 2 examined the relationship between
mean interbeat interval with 𝜎(MFCC 6) and 𝜎(ZCR). Derived from

further model comparisons, both models utilize random intercepts
while only model 1 utilizes random slopes. The random intercepts
and slope account for variability between participants. The final
models that present a global fit across all participants are shown in
equations 5 and 6.

𝑙𝑛(𝜎 (𝐺𝑆𝑅)) = −4.18 + 0.12(𝜎 (𝑀𝐹𝐶𝐶 6)) + 0.04(𝜎 (𝑍𝐶𝑅)) + 𝜖 (5)

𝑀𝑒𝑎𝑛 𝐼𝐵𝐼 = 853.13 − 2.65(𝑀𝐹𝐶𝐶 6) − 3.734(𝑍𝐶𝑅) + 𝜖 (6)

6 RESULTS
To test model significance, we utilized the report [29] package in
R to compute p-values using a Wald t-distribution approximation.
In model 1, 𝜎(ZCR) did not show a significant effect on 𝑙𝑛(𝜎(GSR))
(𝛽 = 0.04, 𝑝 = 0.316) while 𝜎(MFCC 6) showed a significant positive
effect (𝛽 = 0.12, 𝑝 = 0.021). For model 2, both audio features show
significant negative effects (𝜎(ZCR) : 𝛽 = −3.74, 𝑝 < 0.001; 𝜎(MFCC
6) : 𝛽 = −2.66, 𝑝 = 0.013). We tested for co-linearity between
𝜎(ZCR) and 𝜎(MFCC 6) and found that the predictor variables were
independent. These results are summarized in table 1 and visualized
in figure 4. Residual plots (created with Flexplot [11]) are shown in
figure 5.

7 DISCUSSION
The two audio features which showed significant correlations were
the standard deviations of MFCC 6 and zero crossing rate. While
there is discussion in the academic community that zero crossing
rate is correlated with the noisiness of a signal [26] and that the
MFCCs are correlated with timbre [32], instantaneous features
such as these do not have agreed upon perceptual meaning [26].
There is no clear parallel between physiological response and
known perceptual dimensions. Attempts to use popular features
to classify music into perceptual categories has performed poorly
[36]. While progress has been made in similar areas like emotion
classification using neural networks [8], automatically classifying
music into subjective bins such as emotion and perception is still
an open research area. As of 2022, state-of-the-art accuracy is 69%
[18]. That being said, there exist patterns throughout the music
information retrieval literature where the features in question
repeatedly present themselves. In other words, each feature has
proven to be an effective candidate for specific audio classification
tasks.

7.1 Zero Crossing Rate
Zero crossing rate (ZCR) has been a common feature used in audio
classification tasks for decades due to its simple calculation. ZCR
provides an indirect estimate of the fundamental frequency of a
signal [1, 26, 39]. In [13], ZCR, the MFCCs, spectral centroid, and
energy are utilized for musical instrument classification. ZCR only
performed worse than the MFCCs, and it particularly excelled in
drum recognition. The authors postulate about the good perfor-
mance in noting that the drum is an unharmonic, noisy sound. In
[39], ZCR, the MFCCs, and other features were used as an input
into various support vector machine models for drone detection
based on audio. ZCR, being a single-value feature, performed worse
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Model 𝑅2 Outcome Predictors Estimate (𝛽) p-value
1 0.5 𝑙𝑛(𝜎(GSR)) 𝜎(ZCR) 0.04 0.316

𝜎(MFCC 6) 0.12 0.021
2 0.92 Mean IBI 𝜎(ZCR) -3.74 < 0.001

𝜎(MFCC 6) -2.66 0.013
Table 1: Summary of results. 𝑙𝑛 = natural log, 𝜎 = standard deviation

Figure 4: Four plots showing the partial regressions of the audio features plotted against the physiological features. The global
best fit line (black) is the average of all individual participant best fit lines (colored). Five participants chosen at random are
also included on the plots. The audio features are normalized with the horizontal axes representing z-scores. See section 4.2.
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Figure 5: The utilized statistical methods make four assumptions about the data: normality, linearity, heteroskedasticity, and
independence. These three plots address the first three assumptions for the GSR model (see equation 5) and visually show the
degree to which the data satisfies these assumptions. The fourth, independence, was addressed in a separate col-linearity test
where the assumption was deemed satisfied. A second set of residual plots for the mean IBI model (equation 6) is located in
supplementary materials. Plots generated using Flexplot [11].

than the MFCCs and the other multivalue features. It did, however,
improve classification performance when utilized alongside the
MFCCS and other multi-value features.

Various authors note that a higher ZCR is indicative of a more
noisy signal, while a lower ZCR implies a more periodic signal
[13]. This could partially explain why ZCR was a useful feature
in drum classification and drone sound classification. The feature
has also been utilized in works aiming at discriminating speech
from music [1, 34]. A potential explanation for the utility of ZCR
in music-speech discrimination is that speech signals may be more
inherently noisy than music signals, raising the ZCR [52].

7.2 The Mel-Frequency Cepstral Coefficients
While only the standard deviation of the 6th MFCC showed any
significant correlation to physiological values in our work, it is
worth discussing the MFCCs more generally. The coefficients are
calculated by taking the discrete cosine transform of a log-mel
spectrogram. In this way, they are a "spectrum of a spectrum."
They have performed excellently in musical instrument recognition
[13, 28] and music-speech discrimination [52] tasks, among others.
Historically, they have been widely used in speech signal processing

[13, 26, 52]. Such speech signal processing tasks include word
recognition in continuous speech [10] and health monitoring via
detecting speech changes in patients with Parkinson’s disease [45].
Some researchers have stated a link between the MFCCs and timbre
[32] which makes sense given that the features are a description of
the spectral envelope of an audio signal [26].

7.3 Conclusions
Considering the links between fundamental frequency and noisiness
with ZCR and the link between the MFCCs and timbre, we are left
to reason why the standard deviation of these features correlated
with the standard deviation of GSR and the mean interbeat interval.
Let us first return to the discussion about GSR. In general, changes
in GSR reflect activity in the sympathetic nervous system, and we
know that the phasic component is particularly responsive to acute
stimuli. More variation in ZCR across audio blocks is consistent
with less periodicity in a signal [26] (and thus more randomness),
and this variation across blocks could be interpreted physiologically
as increased amounts of acute emotional stimuli. Perhaps this lack
of periodicity could also be associated with more unpredictability. It
is possible that experiencing less predictability, and thusmoremusic
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Figure 6: The global best fit lines in figure 4 represent the average slope estimates across all participants. These histograms
show the various individual participant slope estimates. Note the variation and sparsity in the histograms due in part to the
limited sample size.

expectancy violation, is associated with increased physiological
arousal [22]. The observed negative correlation between mean IBI
and the audio features can also be explained through this logic.
Increased sympathetic response has been repeatedly shown to
decrease mean IBI (i.e. increase heart rate).

We may postulate in a similar fashion about the correlation
between the physiological features and the standard deviation of
MFCC 6. The triangular filter for MFCC 6 (using 128 mel bands)
corresponds to the frequency range of approximately 152Hz to
213Hz5. While we reiterate that the MFCCs have no real perceptual
dimension correlate, we note that the much of the human voice
spectral power lies near this range. We also note that whether or
not music has lyrics has been shown to have differing effects on
brain response to music [5]. If MFCC 6 can be attributed to a portion
of the spectral envelope where a large portion of the human voice’s
frequencies reside, then variation in these voice-like frequencies
could be linked to higher physiological arousal. More generally, it
may be that increased frequency variation in the lower frequency
bands may correlate with increased physiological arousal.

5In audio engineering, too much of this frequency band is often associated with the
"boominess" or "muddiness" of a mix, and it is often cut using an audio equalizer.
However, boosting this frequency band when necessary can add a desired fullness to
the mix.

As a small post hoc experiment, we extracted the amplitude
values of the log-mel spectrogram across the 128 mel bins. We noted
negative correlations between the standard deviation of GSR and
average decibel measurements between approximately 152Hz and
426Hz. While further study is needed to support this correlation,
the potential link between physiological arousal and average power
in the aforementioned frequency band is worth noting. Following
this train of thought, applying a band stop filter on the audio from
152Hz to 426Hz removed any correlation between physiological
arousal and the standard deviation of MFCC 6. Applying a low pass
filter with a cutoff frequency of 750Hz to the audio preserved the
correlations between the audio and physiological features.

The discussed correlations between physiological arousal and
the variation in ZCR and MFCC 6 seem to point towards the ratio
of periodicity to noisiness and the amount of the spectral power
from about 150Hz to 420Hz as being correlated to an individual’s
physiological response to music. There is also the question of the
human voice such that variation of innate human frequencies might
correlate with physiological arousal

8 LIMITATIONS
Of the total 32 participants in the dataset, we only analyzed the data
from 28 of them. Data from participants 31 and 32 was unavailable
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to us, and we were unable to extract some of the physiological data
from participants 23 and 29 due to potential noise. For some PPG
segments, the heart rate output byHeartPy [46] was above 90bpm or
below 50bpm.We considered these values noise. Some of the output
HRV values also fell outside of accepted ranges and were thrown
out. Inherently from our methodology of analyzing data collected
for a different purpose, there may be confounding variables present,
but we believe that attaining significant results given the limitations
present speaks positively of our results. Analyzing data from a
larger set of participants would be beneficial. We can visualize the
benefit of more participants in figure 6. Variation across participants
exists, and a larger sample size would help mitigate that effect.
Lastly, there might be issues with data heteroskedasticity (see figure
5).

9 FUTURE WORK
In this study, we analyzed correlations between low-level audio
features and peripheral physiological features. A future study
could expand on this by including data from other open source
datasets with audio(visual) stimuli and peripheral physiological
data. Further study with a custom curated dataset is needed to
determine any causal effects. There is also an opportunity to collect
data designated for measuring the effects of music on peripheral
physiological signals. There are numerous open source datasets
that contain electroencephalogram data and music, and there are
many that contain audiovisual stimuli and peripheral physiological
signals[7]. The DEAP dataset was used largely because we were
unable to locate other open source datasets that contained audio
stimuli and peripheral physiological data with sufficient duration
for calculating HRV metrics [24].

Another potential route to explore is physiological data collected
from commercially available sensors such as smartwatches. These
devices are becoming increasingly ubiquitous in society, and they
could potentially allow for more ecologically valid data despite
being lower quality than what would be expected from research
grade equipment. Methods to consider for analyzing this type
of data largely stem from the fields of data mining and machine
learning. Such methods would provide ways to deal with and glean
insight from large amounts of physiological data collected while
listening to music.
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[3] Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. 2015. Fitting
Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67, 1
(2015), 1–48. https://doi.org/10.18637/jss.v067.i01

[4] George E. Billman. 2013. The LF/HF ratio does not accurately measure cardiac
sympatho-vagal balance. 4, Article 25 (February 2013). https://doi.org/10.3389/

fphys.2013.00026
[5] Elvira Brattico, Vinoo Alluri, Brigitte Bogert, Thomas Jacobsen, Nuutti Vartiainen,

Sirke Nieminen, and Mari Tervaniemi. 2011. A Functional MRI Study of Happy
and Sad Emotions in Music with and without Lyrics. 2, Article 308 (December
2011). https://doi.org/10.3389/fpsyg.2011.00308

[6] Aaron Frederick Bulagang, Ng Giap Weng, James Mountstephens, and Jason
Teo. 2020. A review of recent approaches for emotion classification using
electrocardiography and electrodermography signals. 20, Article 100363 (June
2020). https://doi.org/10.1016/j.imu.2020.100363

[7] Vybhav Chaturvedi, Arman Beer Kaur, Vedansh Varshney, Anupam Garg, Gur-
pal Singh Chhabra, and Munish Kumar. 2022. Music mood and human emotion
recognition based on physiological signals: a systematic review. 28 (February
2022), 21–44. https://doi.org/10.1007/s00530-021-00786-6

[8] Deepti Chaudhary, Niraj Pratap Singh, and Sachin Singh. 2021. Development
of music emotion classification system using convolution neural network. 24
(September 2021), 571–580. https://doi.org/10.1007/s10772-020-09781-0

[9] Ian Daly, Asad Malik, Faustina Hwang, Etienne Roesch, James Weaver, Alexis
Kirke, Duncan Williams, Eduardo Miranda, and Slawomir J. Nasuto. 2014. Neural
correlates of emotional responses to music: An EEG study. 573 (June 2014), 52–57.
https://doi.org/10.1016/j.neulet.2014.05.003

[10] S. Davis and P. Mermelstein. 1980. Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences. 28, 4 (August
1980), 357–366. https://doi.org/10.1109/TASSP.1980.1163420

[11] Dustin Fife. 2024. flexplot: Graphically Based Data Analysis Using ’flexplot’. R
package version 0.20.3.

[12] Dustin A. Fife and Juliana D’Onofrio. 2023. Common, uncommon, and novel
applications of random forest in psychological research. 55 (August 2023),
2447–2466. https://doi.org/10.3758/s13428-022-01901-9

[13] Seema Ghisingh and V. K. Mittal. 2016. Classifying musical instruments using
speech signal processing methods. In 2016 IEEE Annual India Conference (IN-
DICON) (Bangalore, India). IEEE, 1–6. https://doi.org/10.1109/INDICON.2016.
7839034

[14] Christopher H. Gibbons. 2019. Basics of autonomic nervous system function. In
Clinical Neurophysiology: Basis and Technical Aspects, Kerry H. Levin and Patrick
Chauvel (Eds.). Handbook of Clinical Neurology, Vol. 160. Elsevier, 407–418.
https://doi.org/10.1016/B978-0-444-64032-1.00027-8

[15] Atefeh Goshvarpour, Ataollah Abbasi, and Ateke Goshvarpour. 2014. Impact of
Music on College Students: Analysis of Galvanic Skin Responses. 35 (December
2014), 11–20. https://api.semanticscholar.org/CorpusID:73082965

[16] Alberto Greco, Gaetano Valenza, Luca Citi, and Enzo Pasquale Scilingo. 2017.
Arousal and Valence Recognition of Affective Sounds Based on Electrodermal
Activity. 17, 3 (February 2017), 716–725. https://doi.org/10.1109/JSEN.2016.
2623677

[17] Wickham Hadley. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag New York. https://ggplot2.tidyverse.org

[18] Donghong Han, Yanru Kong, Jiayi Han, and Guoren Wang. 2022. A survey
of music emotion recognition. 16, Article 166335 (January 2022), 11 pages.
https://doi.org/10.1007/s11704-021-0569-4

[19] Makoto Iwanaga, Asami Kobayashi, and Chie Kawasaki. 2005. Heart rate
variability with repetitive exposure to music. 70, 1 (September 2005), 61–66.
https://doi.org/10.1016/j.biopsycho.2004.11.015

[20] Mariana C. Jacob Rodrigues, Octavian Postolache, and Francisco Cercas. 2023.
The Influence of Stress Noise andMusic Stimulation on the Autonomous Nervous
System. 72 (June 2023), 1–19. https://doi.org/10.1109/TIM.2023.3279881

[21] Anurag Joshi and Ravi Kiran. 2020. Gauging the effectiveness of music and
yoga for reducing stress among engineering students: An investigation based on
Galvanic Skin Response. 65, 3 (2020), 671–678. https://doi.org/10.3233/WOR-
203121
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Ben-Shachar, and Brenton M. Wiernik. 2023. Automated results reporting as
a practical tool to improve reproducibility and methodological best practices
adoption. (2023). https://easystats.github.io/report/

[30] Dominique Makowski, Tam Pham, Zen J. Lau, Jan C. Brammer, François
Lespinasse, Hung Pham, Christopher Schölzel, and S. H. Annabel Chen. 2021.
NeuroKit2: A Python toolbox for neurophysiological signal processing. 53, 4
(February 2021), 1689–1696. https://doi.org/10.3758/s13428-020-01516-y

[31] Brian McFee, Matt McVicar, Daniel Faronbi, Iran Roman, Matan Gover, Stefan
Balke, Scott Seyfarth, AyoubMalek, Colin Raffel, Vincent Lostanlen, Benjamin van
Niekirk, Dana Lee, Frank Cwitkowitz, Frank Zalkow, Oriol Nieto, Dan Ellis, Jack
Mason, Kyungyun Lee, Bea Steers, Emily Halvachs, Carl Thomé, Fabian Robert-
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Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
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