
Received 31 March 2024; revised 1 July 2024; accepted 15 July 2024.

Date of publication 9 September 2024; date of current version 29 November 2024.

This article has supplementary downloadable material available at

https://doi.org/10.1109/TVCG.2024.3456144, provided by the authors.

Digital Object Identifier no. 10.1109/TVCG.2024.3456144

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 31, NO. 1, JANUARY 2025 1235

1077-2626 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

ProvenanceWidgets:�A�Library�of�UI�Control�Elements�

to�Track�and�Dynamically�Overlay�Analytic�Provenance�

Arpit�Narechania� ,�Kaustubh�Odak� ,�Mennatallah�El-Assady� ,�and�Alex�Endert�

Perceive

View

Interact

Aggregate view

Temporal view

User

ProvenanceWidgets

Default view

Developer

Provenance

Properties

Controller

Base

Widget

Provenance

API

Data

Binding

All

Properties

All

Events

Base Properties

User Interactions

Provenance

Events

Model

Store

Provenance

Compute

Statistics

Track user interaction
if [freeze]="false"

Overlay Provenance
if [visualize]="true"

Fig.�1:�Overview�of�ProvenanceWidgets�and�the�underlying�Model-View-Controller-based�architecture.�The�Model�stores,�computes,�
and�updates�the�provenance.�The�View�shows�how�end-users�perceive�and�interact�with�the�widgets.�The�Controller�describes�how�the�
Model,�View,�and�developers�can�interact�with�ProvenanceWidgets.�

Abstract—We�present�ProvenanceWidgets,�a�Javascript� library�of�UI�control�elements�such�as�radio�buttons,�checkboxes,�and�
dropdowns�to�track�and�dynamically�overlay�a�user’s�analytic�provenance.�These�in�situ�overlays�not�only�save�screen�space�but�also�
minimize�the�amount�of�time�and�effort�needed�to�access�the�same�information�from�elsewhere�in�the�UI.�In�this�paper,�we�discuss�how�
we�design�modular�UI�control�elements�to�track�how�often�and�how�recently�a�user�interacts�with�them�and�design�visual�overlays�showing�
an�aggregated�summary�as�well�as�a�detailed�temporal�history.�We�demonstrate�the�capability�of�ProvenanceWidgets�by�recreating�
three�prior�widget� libraries:� (1)�Scented�Widgets,� (2)�Phosphor�objects,�and�(3)�Dynamic�Query�Widgets.�We�also�evaluated� its�
expressiveness�and�conducted�case�studies�with�visualization�developers�to�evaluate�its�effectiveness.�We�fnd�that�ProvenanceWidgets�
enables�developers�to�implement�custom�provenance-tracking�applications�effectively.�ProvenanceWidgets�is�available�as�open-source�

software�at�https://github.com/ProvenanceWidgets to�help�application�developers�build�custom�provenance-based�systems.�

Index Terms—Provenance,�Analytic�provenance,�Visualization,�UI�controls,�GUI�elements,�JavaScript�library

1 INTRODUCTION

Analytic�provenance�is�the�documented�history�of�data�and�analytical�
actions,�showing�how�data�was�obtained,�transformed,�and�analyzed.�In�
a�visualization�context,�analytic�provenance�tracks�how�users�interact�
with�visualizations�as�a�representation�of�their�reasoning�process�[55]�
and�can�be�helpful�for�recalling�the�analysis�process,�reproducing�it,�col-
laborating,�and�logging�for�evaluation�or�meta-analysis�[59].�Presenting�

•� Arpit�Narechania,�Kaustubh�Odak,�and�Alex�Endert�are�with�Georgia�Tech.�

E-mails:�{anarechania3,�kodak,�endert}@gatech.edu.�

•� Mennatallah�El-Assady�is�with�ETH�Zürich.�E-mail:�melassady@ai.ethz.ch.�

provenance�during�analysis�has�been�shown�to�increase�awareness�of�
analytic�behaviors�[50,57],�increase�confdence�[10],�reduce�exploration�
biases�[76],�and�result�in�more�unique�insights�[24, 78],�among�others.�

Prior�work�has�made�strides�in�libraries�that�help�developers�capture�
and�store�provenance�[1,�13,�16,�56].� For�example,�Trrack�[16]�is�an�
open-source� library� to�create�and� track� the�provenance�(history)�of�
interactions�in�web-based�applications�for�a�variety�of�purposes�such�as�
action�recovery,�reproducibility,�collaboration,�and�logging.�

While�logging�and�analyzing�provenance�after�analysis�has�immense�
value,�there�is�a�need�for�libraries�that�aid�developers�in�integrating�
provenance�into�visual�analytic�tools�in�a�manner�that�is�consistent�with�
common�UI�standards.�There�exist�many�open-source�libraries�of�UI�
controls�[4, 11, 36, 44, 58, 61, 72, 75]�that�enhance�user�interaction�and�
facilitate�data�input�in�software�applications�or�websites.�Even�in�visu-
alization�and�HCI�research,�there�are�libraries�of�enhanced�UI�controls�
that�facilitate�data�exploration�[30, 73, 79]�and�navigation�[78],�explain�

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 03,2025 at 20:01:01 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 31, NO. 1, JANUARY 20251236

transitions�in�the�user�interface�via�afterglow�effects�[7],�or�visualize�
group�awareness�information�[32].�However,�there�is�no�frontend�library�
of�UI�controls�that�tracks�and�presents�provenance�information�out�of�
the�box�during�analysis.�Tools�like�TrrackVis�(Trrack’s�[16]�frontend�
library)�visualize�the�logged�provenance�information�graph;�however,�
these�visualizations�are�available�in�a�separate�view/tool,�sometimes�
after�analysis.� So�we�ask:�how�can�developers�integrate�provenance�
directly�into�the�user�interface�of�visual�data�analysis�tools?�

In�response,�we�present�ProvenanceWidgets,�a�Javascript�library�of�
UI�control�elements�such�as�radio�buttons�and�dropdowns�to�track�and�
dynamically�overlay�a�user’s�analytic�provenance,�out�of�the�box.�These�
enhanced�widgets� track�how�often�(frequency)�and�when�(recency)�
a�user� interacts�with� them� (e.g.,� selecting�a�dropdown�option)� and�
present�visual�overlays�showing�an�aggregated�summary�as�well�as�
a�detailed� temporal�history.� The�aggregated�summary� is�presented�
in�a�bar�chart�overlay�visualization�encoding�the�frequency�(length)�
and�recency�(color)�of�user�interactions�with�the�widget.�The�detailed�
temporal�history�is�presented�as�a�timeline�visualization,�enabling�users�
to�access�granular�information�about�specifc�interactions�in�the�past.�
Presenting�provenance�as�overlays�not�only�saves�screen�space�but�also�
minimizes�the�amount�of�time�and�effort�needed�to�access�the�same�
information�from�other�views�or�external�tools.�

The� ProvenanceWidgets� library� consists� of� radio� buttons� ,�
checkboxes� ,�single�sliders� ,�range�sliders� ,�drop-

downs� ,�multiselects� ,�and�input�text�felds� .�The�
library�is�built�using�Angular�but�is�universally�compatible�across�dif-
ferent�frameworks�through�Web�Components.�The�library�is�also�highly�
customizable,�allowing�developers�to�realize�a�variety�of�confgurations�
such�as�setting�the�logging�frequency�(e.g.,�logging�every�interaction�or�
every�second),�or�initializing�with�a�provenance�log�previously�captured.�

We�demonstrate�the�capability�of�ProvenanceWidgets�through�two�
usage�scenarios�and�recreate�three�prior�widget�libraries:�(1)�Scented�
Widgets,�(2)�Phosphor�objects,�and�(3)�Dynamic�Query�Widgets.�In�ad-
dition,�we�evaluate�the�expressiveness�of�ProvenanceWidgets�through�
cognitive� dimensions� of� notations.� We� also� evaluate� the� effective-
ness� of� ProvenanceWidgets� through� case� studies� with� four� visual-
ization�developers.� We�fnd�that�ProvenanceWidgets�enables�devel-
opers�to�effectively�implement�custom�provenance-tracking�applica-
tions.� ProvenanceWidgets� is� available� as� open-source� software� at�
https://github.com/ProvenanceWidgets to� help� visualization�
developers�create�new�or�enhance�existing�provenance-based�systems.�

2 RELATED WORK

2.1 Analytic Provenance

Our�memory�has�a�limited�capacity�to�remember�and�track�our�prior�
interactions�with�data,�in�both�amount�and�decay�[42,47],�which�creates�
a�barrier�to�data�exploration.� Analyzing�prior�interactions�with�data�
in�visualization�is�a�form�of�analytic�provenance�[55, 59]�that�is�often�
used� to� infer�one’s�analysis�process.� In� fact,� provenance�has�been�
found�to�play�a�crucial�role�in�supporting�decision-making,�fostering�
collaboration,�and�enhancing�understanding�of�complex�data�analysis�
in�visualization�and�data�analysis�contexts�[43].�Provenance�has�also�
been�shown�to�affect�users’�confdence�levels�in�conclusions�developed,�
the�propensity�to�repeat�work,�fltering�of�data,�identifcation�of�relevant�
information,�and�during�typical�investigation�strategies�[10].�

Tracking�Analytic�Provenance.�Provenance�can�be�tracked�in�work-
fow�modeling�systems�[8]�as�well�as�the�analysis�process�within�an�
interactive�system�[55].� There�have�been�many�provenance-logging�
frameworks�[1,�13,�16,�56]�that�have�been�used�to�improve�empirical�
evaluations�of�visualization�techniques�[17,54]�or�teach�scientifc�visual-
ization�[68],�among�others.�VisTrails�[13]�is�an�open-source�system�that�
manages�the�data�and�metadata�of�visualization�products�by�capturing�
the�provenance�of�both�the�visualization�processes�and�the�data�they�
manipulate.�Trrack�[16]�is�an�open-source�library�to�capture�and�replay�
complete�provenance�graph;�Trrack�is�complemented�by�a�frontend�
library�(TrrackVis)�for�visualizing�and�interacting�with�this�data.�

Visualizing�Analytic�Provenance.�Visualizing�one’s�prior�interactions�
can�take�many�forms�and�lead�to�shifts�in�a�user’s�analysis�behavior.�

For�instance,�when�users’�prior�interactions�with�charts�or�data�points�
are�encoded�(e.g.,�analogous�to�coloring�previously�visited�hyperlinks�
on�a�webpage�purple),�people�tend�to�interact�with�more�unique�(or�
previously�unvisited)�data�[24]�or�the�same�data�repeatedly�[50,�76].�
Similarly,�when�exploration�history�is�shown�in�interactive�network�vi-
sualizations,�users�report�inspiration�for�conducting�further�analysis�and�
greater�recall�of�their�prior�explorations�[21].�Scientists�have�also�been�
found�to�effciently�and�effectively�explore�their�visualizations�by�return-
ing�to�previous�versions�of�a�datafow�(or�visualization�pipeline)�[13].�
Recently,�computational�notebooks�have�leveraged�provenance�informa-
tion�to�provide�direct�feedback�on�the�impact�of�changes�made�within�
cells�for�iterative�and�exploratory�data�analysis�[22, 23].�Well-designed�
histories�can�also�help�users�maintain�contextual�awareness�of�previ-
ously�visited�data�when�distortions�are�applied�that�would�otherwise�
make�contextual�awareness�a�challenge�(e.g.,�fsheye�lens)�[69].�

Graphical�traces�of�user�interactions�have�also�been�utilized�in�collab-
orative�visualization�settings,�e.g.,�to�facilitate�coordination�of�multiple�
users�by�showing�current�selections�and�interactions�as�“coverage”�of�
the�data�[6,�63]�and�in�personalized�integrated�development�environ-
ments�(IDEs),�e.g.,�Footsteps�for�VSCode�[77]�highlights�the�lines�of�
code�as�the�user�edits� them.� Similarly,� showing�social� information�
“scents”�on�data�visualization�widgets�(e.g.,�representing�others’�interac-
tions�with�radio�buttons,�sliders,�etc.)�leads�users�to�make�substantially�
more�unique�discoveries�in�the�data�[78].�

Traces�of�prior�interactions�have�also�been�applied�in�HCI�contexts,�
including�tracking�user�focus�while�browsing�a�webpage�using�eye-
tracking�[53]�and�mouse-tracking�[5]�gear,�tracking�interactions�with�
documents�by�authors�and�readers�[33],�facilitating�groupware�coor-
dination�[29],� revisiting�common�regions�of�a�page�using�scrollbar�
history�[2],�among�others.� We�refer�to�Heer�et�al.�[31]�for�a�detailed�
review�of�the�design�space�for�displaying�interaction�histories.�

2.2 Web and Gaming Analytics

Recently,�video�game�analytics�has�gained�popularity,�utilizing�game�
telemetry�data�[18,�40]�to�measure�player�performance�[15],�charac-
terize�player�behavior� [19,�26,�46]� and� experiences� [18,�35],� under-
stand�and�improve�game�design�[18,�35,�38,�39],� and�explore�social�
phenomenon�[41].� For�example,�Melo�et�al.�[46]�proposed�profling�
player�behavior�through�provenance�graphs�and�representation�learn-
ing.�Provchastic�[39]�analyzed�game�dynamics�to�predict�future�game�
events.�Jacob�et�al.�[35]�utilized�sequential�pattern�mining�algorithms�
to�identify�cycles�in�a�game�pattern,�making�the�game�less�tedious�and�
also�informing�diffculty�adjustments.�AIRvatar�[41]�studied�how�click�
events�and�time�durations�from�users’�customization�of�avatars�can�
highlight�gender-related�stereotypes�[41].�

Web-based�analytics�[27, 48, 52]�and�session�replay�[25, 34, 49]�tools�
also�aid�tracking�and�visualization�of�user�interactions�and�behavior�on�
websites.�These�tools�capture�a�variety�of�metrics�such�as�web�page�load�
times,�network�response�times,�error�rates,�including�user�interactions�
such�as�hovers,�clicks,�and�scrolls�with�the�page�elements.�Beyond�low-
level�data�collection,�these�tools�also�synthesize�high-level�user�patterns�
and�behaviors� that� aid�performance�monitoring� (e.g.,� detect� trends�
and�anomalies)�and�enhance�user�engagement�(e.g.,�provide�guidance).�
These�tools�also�employ�advanced�visualizations�such�as�heatmaps�to�
highlight�areas�of�user�interaction�on�web�pages,�helping�optimize�their�
layout�and�content�placement�(i.e.,�facilitate�A/B�testing)�[34, 49].�

In�contrast,�ProvenanceWidgets�tracks�and�visualizes�the�provenance�
of�user�interactions�that�alter�the�value�of�UI�controls,�independent�of�
broader�context�like�web�page�load�times�or�game�events.�

2.3 UI Controls and Libraries

There�are�many�open-source�libraries�of�UI�controls�that�enhance�user�
interaction�and�facilitate�data�input�in�software�applications�or�web-
sites�[4,11,36,44,58,61,72,75].�By�utilizing�these�libraries,�developers�
can�expedite�their�development�process�while�ensuring�consistency�and�
accessibility�across�various�platforms�and�devices.�

Visualization�and�HCI�researchers�have�also�developed�several�en-
hanced�UI�control�libraries.�For�example,�Phosphor�objects�[7]�instantly�
show�and�explain�state�transitions�in�GUI�controls,�e.g.,�manipulating�

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 03,2025 at 20:01:01 UTC from IEEE Xplore. Restrictions apply.

1237NARECHANIA ET AL.: PROVENANCEWIDGETS: A LIBRARY OF UI CONTROL ELEMENTS TO TRACK AND DYNAMICALLY...

a�phosphor�slider� leaves�an�afterglow�that� illustrates�how�the�knob�
moved.�Scented�Widgets�[78]�enhance�GUI�controls�with�embedded�
visualizations�that�facilitate�navigation�in�information�spaces.�Emotion�
scents�[14]�tracks�users’�emotional�reactions�while�interacting�with�
GUI�widgets�and�visualizes�these�reactions�on�the�widgets,�enhancing�
the�interface�for�emotional�awareness�and�decision�support.�TrrackVis�
provides�a�customizable�provenance�visualization�front-end�for� the�
Trrack�library�[16].� DynaVis�[73]�synthesizes�persistent�UI�widgets�
in�response�to�an�initial�natural�language-based�visualization�editing�
task,�enabling�the�user�to�make�subsequent�modifcations�by�directly�
interacting�with�the�widgets�(instead�of�re-typing�natural�language).�

In�contrast,�ProvenanceWidgets�is�a�library�of�UI�controls�with�built-
in�provenance�tracking�and�visualization�overlays,�and�APIs�to�integrate�
the�provenance�information�into�broader�application�workfows.�

3 PROVENANCE WIDGETS

3.1 Design Goals

We�derived�seven�design�goals�based�on�the�goals�of�prior�provenance�
visualization�tools�[7,16,78]�and our�own�assessment�of�the�capabilities�
we�aim�to�support�in�ProvenanceWidgets.�Our�overarching�design�goal�
was�to�consistently�achieve�the�underlying�goals�for�all�widgets.�

G1� Log�User� Interactions�on�UI�controls�as�provenance.� The�
library�should�automatically�track�relevant�user�interactions�with�
the�UI�controls�(e.g.,�dragging�a�slider�handle)�as�provenance.�

G2� Compute�Aggregated�Metrics�about�Recency�and�Frequency�
of�Provenance.� The�library�should�process�the�logged�user�in-
teractions�and�compute�aggregate�summary�metrics�pertaining�to�
interaction�recency�and�frequency.�

G3� Dynamically�Overlay�Provenance�on�UI�controls.�The�library�
should�enhance�UI�controls�with�a�visual�overlay�of�the�aggregate�
summary�metrics�and�an�on-demand�temporal�evolution�of�the�
users’�analytic�provenance.�

G4� Support�Action�Recovery.�The�library�should�allow�navigating�
historical�analysis�states�and�also�updating�the�current�state,�both�
programmatically�and�by�interacting�with�the�visual�overlays.�

G5� Allow�Developer�Agency.�Application�developers�should�have�
the�fexibility�to�tune�the�default�tracking�and�visualization�be-
havior,�including�being�able�to�disable�it�completely.�The�library�
should�provide�an�API�for�the�same.�

G6� Be�Framework-Agnostic.�Because�multiple�frameworks�exist,�
such�as�Angular,�React,�and�Vue,�we�derived�the�goal�to�design�
the�library�to�be�integrated�into�any�codebase.�

G7� Support�Meta-Analysis.� The�library�should�support� logging�
and�exporting�provenance�information�in�a�format�that�is�suitable�
for�different�kinds�of�analysis.� For�example,�ProvenanceWid-
gets’�internal�data�structure�maintains�fne-grained�logs�as�well�as�
higher-level�computed�aggregates.�

3.2 Design Process

As�part�of�our�design�process,�we�frst�reviewed�UI�controls�and�then�
conducted�multiple�design�exercises�to�decide�effcient�and�consistent�
visual�overlays�and�associated�interactions�across�all�of�them.�

3.2.1� UI�Controls�Review�

We�review�the�structure,�layout,�and�initial�values�of�radio�buttons� ,�
checkboxes� ,�single�sliders� ,�range�sliders� ,�drop-

downs� ,�multiselects� ,�and�input�text�felds� .�

Structure.� All�aspects�of�radio�buttons,�checkboxes,�single�sliders,�
and�range�sliders�are�completely�visible�at�all�times;�whereas,�drop-
downs,�multiselects,�and�input�text�felds�require�an�additional�click�and�
potential�scrolling�to�bring�certain�aspects�(e.g.,�options)�into�focus.�

Layouts.�Dropdowns,�multiselects,�and�input�text�felds�are�oriented�
horizontally�with�their�menus�opening�vertically�(above�or�below�de-
pending�on�screen�position);�whereas,�radio�buttons,�checkboxes,�single�
sliders,�and�range�sliders�can�be�oriented�vertically�or�horizontally.�

Initial/Default�Values.�Radio�buttons,�checkboxes,�dropdowns,�mul-
tiselects,�and�input�text�felds,�can�have�an�uninitialized�state�with�no�

(null,�empty)�selection(s)�or�value(s);�whereas,�single�sliders�and�range�
sliders�must�always�have�at�least�one�selection.�

Subsequent�Values.�Radio�buttons,�dropdowns,�input�text�felds,�single�
sliders,�and�range�sliders�can�have�at�most�one�selected�value;�whereas�
multiselects�and�checkboxes�can�have�multiple�selected�values.�

Interaction�Events.�Radio�buttons,�checkboxes,�dropdowns,�and�mul-
tiselects�are�selection-type�controls� that�require� the�user� to�click� to�
(de)select�target�options.�Sliders�and�range�sliders�require�the�user�to�
drag�the�handle(s)�to�or�directly�click�on�the�rail�at�the�target�value(s).�
Input�text�felds�generally�require�the�user�to�frst�type�and�then�press�
the�‘Enter’�key�on�keyboards�to�mark�the�typing�as�complete.�In�Prove-
nanceWidgets,�any�interaction�event�that�modifes�the�value�(or�state)�
of�a�widget�is�logged�and�included�in�its�provenance�computations;�
an�event�that�does�not�modify�a�widget’s�value,�such�as�mouseover�or�
keyup�is�not�logged.�In�addition,�clicking�on�a�historical�analytic�state�
in�the�visualization�overlays�of�ProvenanceWidgets�is�considered�a�new�
interaction�and�is�also�appended�to�the�widgets’�provenance.�

3.2.2� Design�Exercises�and�Considerations�

We�conducted�design�exercises�to�explore�what�provenance-related�
information�to�show,�where,�how,�and�when.�

What�metrics�to�log�as�provenance.� We�selected�two�provenance�
metrics/statistics:�frequency�and�recency�of�user�interactions�with�wid-
gets�(G2).� We�chose�these�metrics�for�their�relevance�to�provenance�
tracking,�intuitive�comprehension,�effective�visual�encoding,�and�broad�
applicability�across�various�domains.�Furthermore,�these�metrics�can�
help�derive�composite�metrics�such�as�durations�of�different�widget�
states�and�study�interaction�patterns�within�and�across�widgets.�

Where�to�present�provenance.�We�explored�on-demand�versus�always�
visible�visualizations�and�considered�whether�they�should�be�juxtaposed�
against�each�other,�or�overlaid�or�superimposed�on�the�widgets.�Then,�
we�discussed�the�trade-offs�of�having�separate�overlays�against�pushing�
surrounding�elements�away�to�accommodate�the�visual�provenance�
scents.�Inspired�by�Shneiderman’s�Mantra�[67],�we�eventually�chose�
to�overlay�aggregate�views�in-place�(overview)�and�temporal�views�
separately�on�demand�considering�the�level�of�detail�in�raw�interaction�
data.�We�designed�a�tri-state�button�that�would�let�us�toggle�between�
the�different�views�- default,�aggregate,�and�temporal.�

a b c d

Fig.�2:�Alternate�designs:�range�slider,�input�text,�radio�button,�checkbox.�

How�to�present�provenance.� We�conducted�design�exercises�to�ex-
plore�candidate�visualization�and�interaction�techniques�to�overlay�and�
interact�with�the�logged�provenance�information.�We�sketched�ideas�on�
draw.io�[20]�and�iterated�among�co-authors�over�multiple�brainstorming�
sessions.�These�low-fdelity�sketches�included�considerations�for�chart�
types�(e.g.,�bar�charts,�line�charts,�and�horizon�charts),�visual�encod-
ings�(e.g.,�color,�opacity,�size),�and�UI�layouts�(e.g.,�panels,�overlays).�
Keeping�in�mind�our�overarching�goal�of�ensuring�consistency,�we�
selected�the�bar�mark�and�size,�color�encodings�to�encode�frequency�
and�recency�information�(Figure�4).�Figure�2�shows�some�of�our�design�
considerations�for�sliders,�input�texts,�radio�buttons,�and�checkboxes.�
For�example,�we�sketched�horizon�charts�in�range�sliders�(Figure�2(a))�
and�chips�in�input�texts�(b),�but�did�not�implement�them�because�they�
did�not�generalize�across�all�widgets.�Similarly,�stepped�line�charts�in�
the�temporal�view�(c)�seemed�occluding�and�harder�to�interact�with.�We�
provide�all�alternate�design�considerations�in�supplemental�material.�

When�to�log�provenance.�We�considered�two�kinds�of�logging�frequen-
cies�–�interaction-based,�which�captures�every�user�interaction�when�it�
occurs,�and�time-based,�which�captures�snapshots�at�specifc�intervals.�
Finding�utility�in�both,�we�chose�to�support�both�modes�(G1,�Figure�3).�

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 03,2025 at 20:01:01 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 31, NO. 1, JANUARY 20251238

mode = “interaction” mode = “time”

Fig.�3:�ProvenanceWidgets:�[mode]="interaction" and�[mode]="time" log�
interactions�every�interaction�and�1�second�(by�default),�respectively.�

3.3 Widget Design

Figure�4�shows�our�chosen�designs�for�the�provenance�overlays.�The�
default�view�of�each�widget�is�enhanced�by�the�Aggregate�View�(ag-
gregate�summary)�and�a�Temporal�View�(detailed�history)�(G3).�

When� the� widget� has� not� been� interacted� with� (i.e.,� there� is� no�
logged�provenance),�a�disabled�footprint�icon-button� is�placed�next�
to�the�UI�control.�When�the�widget�is�interacted�with�for�the�frst�time,�
this�icon-button�is�enabled,�and�the�widget�switches�to�the�Aggregate�
view� ,�which�overlays�aggregate�provenance�information.�Clicking�
the�footprint� icon�toggles�between�this�Aggregate�view� and�the�
Temporal�view� ,�that�overlays�the�temporal�history�of�provenance.�

3.3.1� Single�Slider� ,�Range�Slider�

Aggregate�View.� We�designed�a�bar�chart�that�shows�previously�se-
lected�values�(slider)�or�ranges�of�values�(range�slider).�The�frequency�
of�a�selection�is�encoded�by�height,�and�the�recency�of�a�selection�is�
encoded�by�color.�Taller,�darker�bars�indicate�more�frequent�and�recent�
interactions,�respectively.�This�bar�chart�is�positioned�directly�above�the�
slider,�as�in�Scented�Widgets�[78].�Hovering�a�bar�shows�a�tooltip�with�
the�value,�timestamp,�frequency,�and�recency�of�the�selection.�Clicking�
a�bar�updates�the�slider�to�the�selected�value�or�range.�

Temporal�View.�To�visualize�the�temporal�evolution,�we�designed�a�
popover�that�is�overlaid�above�or�below�the�slider.�Within�this�popover,�
we�designed�a�line�chart�where�time�is�measured�along�the�y-axis,�and�
the�slider�itself�serves�as�the�x-axis.�This�line�chart�has�one�line�for�a�
single�slider�and�two�lines�for�a�range�slider�(one�for�each�handle).�The�
line(s)�have�circular�points�that�represent�the�exact�selections�made�over�
time.� These�points�are�also�colored�by�the�recency�of�the�selections.�
Hovering�a�point�shows�a�tooltip�with�the�corresponding�value�and�time�
of�the�selection.�In�addition,�clicking�a�point�updates�the�slider�to�the�
selected�value�or�range�(G4).�Lastly,�to�facilitate�navigation,�the�y-axis�
can�also�be�brushed�to�zoom�in�on�more�granular,�specifc�time�ranges.�

3.3.2� Dropdown� ,�Multiselect� ,�
Radio�Button� ,�Checkbox�

We�collectively�refer�to�dropdowns,�multiselects,�radio�buttons,�and�
checkboxes�as�selection-type�widgets�as�they�all�have�a�similar�visual�
and�interaction�design�for�interacting�with�provenance�information.�

Aggregate�View.� We�designed�a�bar�chart�and�placed�it�under� the�
options�list.�An�option’s�selection�frequency�is�encoded�by�the�length�
of�the�bar�underneath�it�and�the�recency�is�encoded�by�color.�Longer�and�
darker�bars�indicate�higher�frequency,�recency,�respectively.�Hovering�
a�bar�shows�a�tooltip�with�the�value,�timestamp,�frequency,�and�recency�
of�the�selection.�Clicking�a�bar�updates�the�option’s�selection.�

Temporal� View.� To� visualize� the� temporal� evolution,� we� directly�
modify�the�aggregate�bar�chart�unlike�that�in�sliders,�where�we�create�
a�new�popover.�Each�bar�represents�the�time�range�during�which�the�
option�was�selected.�The�length�of�the�bar�represents�the�duration�of�
the�selection,�and�the�color�represents�the�recency.�Longer,�darker�bars�
indicate�higher�frequency,�recency,�respectively.�Hovering�a�bar�shows�
a�tooltip�with�the�corresponding�time�range.�Clicking�a�bar�selects�the�

corresponding�option,�along�with�other�options�that�were�selected�at�
that�point�in�time.�Lastly,�to�facilitate�navigation,�there�is�a�horizontal�
range�slider�to�zoom�in�on�more�granular,�specifc�time�ranges.�

3.3.3� Input�Text�

Aggregate�View.� We�utilize�a�dropdown�list�of�previously�entered�
values�and�visualize�provenance�as�a�bar�chart�underneath�each�list�
item.�The�frequency�of�an�input�value�is�encoded�by�the�length�of�the�
bar�underneath�it,�and�the�recency�of�a�selection�is�encoded�by�color.�
Longer,�darker�bars�indicate�higher�frequency,�recency,�respectively.�
Hovering�a�list�item�shows�a�tooltip�with�the�corresponding�timestamp,�
frequency,�and�recency�of�the�input�value.�Clicking�a�list�item�updates�
the�text�input�selection�to�the�corresponding�value.�

Temporal�View.� To�visualize�the�temporal�evolution,�we�designed�
a�popover�that�is�overlaid�above�or�below�the�text�input.� Within�this�
popover,�we�designed�a�vertical�timeline�chart�that�shows�what�text�
input�was�searched�and�when.� This�timeline�has�circular�points�that�
represent�the�exact�search�inputs�made�over�time.�These�points�are�also�
colored�by�the�recency�of�the�input�searches.�Hovering�a�point�shows�
a�tooltip�with�the�corresponding�timestamp�of�input.�Clicking�a�point�
updates�the�current�text�input�selection�to�the�corresponding�value.�

3.4 Architecture

We�broadly�defne�the�architecture�of�ProvenanceWidgets�using�MVC�
(Model-View-Controller),�a�software�design�pattern�commonly�used�to�
develop�GUIs�(Figure�1).�We�describe�these�as�follows:�

View:�What�the�user�interacts�with�- The�View�handles�all�concerns�
related�to�the�appearance�of�the�widgets,�including�the�base�widgets�
and�the�overlaid�provenance.� Internally,�we�defne�it�almost�entirely�
with�Angular�templates�(HTML)�and�CSS.�

Controller:�What�the�developer�interacts�with�- The�Controller�serves�
as�a�hub�between�the�developer,�the�View,�and�the�Model.�Essentially,�
it�wraps�the�base�widget�and�exposes�all�of�its�properties�and�events,�
in�addition�to�the�ProvenanceWidgets�API.�It�passes�on�all�the�base�
widgets’�properties�to�the�View�templates,�and�intercepts�all�incoming�
events�before�re-emitting�them�for�the�developers.� If�not�frozen,� it�
relays�these�events�and�all�provenance-related�properties�to�the�Model.�

Model:�What�we�interact�with�- The�Model�stores�the�raw�interaction�
data�received�from�the�Controller,�and�uses�it�to�compute�frequency�
(how�many�times�a�value�was�input)�and�recency�(how�recently�a�value�
was�input).�Once�the�provenance�is�updated,�the�Model�can�emit�it�via�
the�Controller�as�an�event�for�the�developers�to�subscribe�to.�Then,�if�
visualization�is�enabled,�it�updates�the�View�with�aggregated�summaries�
of�frequency�and�recency�(Aggregate�View)�or�raw�temporal�history�
(Temporal�View)�depending�on�the�active�mode.�

3.5 Implementation

ProvenanceWidgets�is�implemented�using�Angular�[3]�with�an�exten-
sible�API�to�support�fexibility�across�different�systems.� To�ensure�
portability�across�frameworks�(e.g.,�Vue�[74],�React�[60]),�we�leverage�
the�WebComponents�API�(G6).�Below�we�describe�the�main�properties�
(attributes)�and�events�available�in�the�ProvenanceWidgets�API.�
1.� provenance:�The�information�recorded�and�computed�by�the�widget�

to�visualize�the�provenance�of�interactions.�While�each�widget�has�
a�unique�provenance�structure,�all�of�them�record�interactions�as�
an�array�of�objects�with�the�selected/input�value�and�the�timestamp�
of�the�interaction.� This�property�can�be�used�to�initialize,�restore,�
modify,�and�export�(G7)�the�provenance�of�the�widget.�

2.� provenanceChange:�An�event�that�is�triggered�whenever�the�user�
interacts�with�the�widget�such�that�its�value�(and�hence�provenance)�
changes.� For�example,�clicking�a�radiobutton�option�or�dragging�
a�range�slider�handle�constitute�a�valid�event;�however,�keyup�or�
mouseover�events�do�not�contribute�to�the�provenance.�

3.� mode:�This�property�confgures�the�provenance�logging�frequency�
(Figure�3).�When�‘mode’�is�set�to�“interaction”,�the�widget�logs�ev-
ery�user�interaction�and�accordingly�recomputes�provenance�metrics�
and�updates�the�subsequent�visualizations.�When�‘mode’�is�set�to�

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 03,2025 at 20:01:01 UTC from IEEE Xplore. Restrictions apply.

1239NARECHANIA ET AL.: PROVENANCEWIDGETS: A LIBRARY OF UI CONTROL ELEMENTS TO TRACK AND DYNAMICALLY...

SINGLE SLIDER RANGE SLIDER DROPDOWNRADIO BUTTONMULTISELECT CHECKBOX INPUT TEXT
D

EF
AU

LT
 V

IE
W

AG
G

RE
G

AT
E

VI
EW

TE
M

PO
RA

L
VI

EW

10s

Fig.�4:�ProvenanceWidgets:�UI�controls�(single�slider,�range�slider,�multiselect,�radio�button,�dropdown,�checkbox,�and�input�text)�enhanced�with�an�
aggregate�summary�(Aggregate�View)�as�well�as�a�detailed�temporal�history�(Temporal�View)�of�analytic�provenance.�

“time”,�the�widget�logs�interactions�every�‘t’�seconds�(t=1�second�by�
default)�and�accordingly�updates�everything�downstream.�

4.� freeze:� A�property� to�stop�logging�interactions�with� the�widget.�
When�‘freeze’�is�set�to�true,� the�widget�will�not�record�any�new�
interactions,�and�existing�visualizations�will�not�be�updated.�When�
‘freeze’�is�set�to�false,�the�widget�will�continue�recording�and�visual-
izing�the�provenance�from�the�last�recorded�interaction�(G4).�

5.� visualize:�A�boolean�property�to�toggle�the�visibility�of�the�prove-
nance�overlays.�This�property�can�be�used�(along�with�‘freeze’=true)�
to�completely�disable�provenance�in�the�widget�(G4,�G5).�

6.� data-label:� An�attribute�to�pass�additional�context�to�the�widget.�
This�is�displayed�as�“label”�in�the�widgets’�tooltips.�

1� provenance?: SliderProvenance | InputTextProvenance |

Provenance

2� mode?: "interaction" | "time"

1� <provenance-{slider,dropdown,multiselect ,radiobutton ,

checkbox ,inputtext}

2� [(provenance)]="provenance" [mode]="mode"

3� [visualize]="true" [freeze]="false"

4� [attr.data-label]="‘label’"/>

Understanding�code�snippets�and�notations.�We�describe�the�Prove-
nanceWidgets�API�using�TypeScript�and�Angular’s�data�binding�syntax,�
which�can�be�categorized�based�on�data�fow:�

1.� From�source�to�view�(property�binding).�[property]="expression"
binds�the�value�from�the�expression�to�the�property.�Can�be�also�
used�to�bind�class�and�style�properties,�and�data-* attributes.�

2.� From�view�to�source�(event�binding).�(event)="function($event)"
executes�the�bound�function with�the�$event object�emitted�by�
the�event.�

3.� In�both�ways�(two-way�binding).�[(property)]="expression" binds�
the�value�from�the�expression�to�the�property,�and�vice�versa.�It�is�
syntactic�sugar�for�combining�property�and�event�binding.�For�ex-
ample,�[(provenance)] is�syntactic�sugar�for�[provenance]
and�(provenanceChange).�

3.5.1� Single�Slider� ,�Range�Slider�

A�slider�allows�users�to�select�a�numeric�value�from�a�given�range.�
Traditionally�defned�as�<input type="range"> in�HTML,�these�
elements�only�allow�for�a�single�value�to�be�selected.� In�addition�to�

the�traditional�sliders,�ProvenanceWidgets�also�provides�Range�Sliders,�
which�permit�selection�of�a�range�of�values.�

1� value: number = 0

2� highValue?: number = 0 // Omit for Single Slider

3� handleChange(event: ChangeContext) {

4� value = event.value

5� highValue = event.highValue }

6� options: Options = { floor: 0, ceil: 100, step: 1 }

1� <provenance-slider [options]="options"

2� [value]="value" [highValue]="highValue"

3� (selectedChange)="handleChange($event)" />

The� Slider� widget� extends� SliderComponent� from� @angular-
slider/ngx-slider,� and�exposes�an�additional�selectedChange event�
which�is�triggered�at�the�end�of�user’s�interaction�with�the�slider.�

3.5.2� Text�Input�

A�Text�Input�allows�users�to�enter�values�comprising�of�text,�numbers,�
and� symbols.� Traditionally� defned� as�<input type="text"> in�
HTML,�these�elements�create�a�basic�single-line�text�input�feld.�

1� value: string = ’’

1� <provenance-inputtext [(value)]="value" />

The�Text�Input�widget�extends�PrimeNG’s�AutoComplete�compo-
nent�and�exposes�an�additional�valueChange event�which�is�triggered�
when�the�input�value�changes.�

3.5.3� Dropdown�

A�Dropdown�allows�users�to�select�a�single�value�from�a�list�of�options.�
In�HTML,�these�elements�are�defned�using�the�<select> tag�and�a�list�
of�<option> tags�nested�within�it.�

1� type Option = { label: string, value: string }

2� options: Option[] = []

3� selected?: Option

1� <provenance-dropdown [options]="options"

2� optionLabel="label" dataKey="value"

3� [(selected)]="selected" />

In�ProvenanceWidgets,�the�Dropdown�widget�extends�PrimeNG’s�
Dropdown�component�and�exposes�its�options attribute�to�allow�devel-
opers�to�provide�their�list�of�options.�

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 03,2025 at 20:01:01 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 31, NO. 1, JANUARY 20251240

3.5.4� Multiselect�

A�Multiselect�input�allows�users�to�select�multiple�values�from�a�list�
of�options.� In�HTML,� these�are�defned� in� the�same�way�as�Drop-
downs,� but�with� the�multiple attribute�set� to� true�on� the�<select>
tag.�However,�unlike�Dropdowns,�a�Multiselect�input�renders�a�list�of�
scrollable�options�and�requires�the�user�to�hold�down�the�control�key�
while�clicking�to�select�multiple�options.�

1� selected?: Option[]

1� <provenance-multiselect [options]="options"

2� optionLabel="label" dataKey="value"

3� [(selected)]="selected" />

In�ProvenanceWidgets,�the�Multiselect�widget�extends�PrimeNG’s�
MultiSelect�component�and�exposes�its�options attribute�to�allow�de-
velopers�to�provide�their�list�of�options.� Unlike�a�traditional�multis-
elect�input,� the�ProvenanceWidgets�Multiselect�widget�renders�in�a�
Dropdown-like�manner�and�does�not�require�users�to�hold�down�any�
keys�to�select�multiple�options.�

3.5.5� Radio�Button�

A�Radiobutton�allows�users�to�select�a�single�value�from�a�list�of�options.�
In�HTML,�these�are�defned�using�the�<input type="radio"> tag,�
and�all�radio�buttons�with�the�same�name attribute�are�grouped�together.�

1� selected?: string

1� <provenance-radiobutton [data]="options"

2� [(selected)]="selected" />

In�ProvenanceWidgets,�the�Radio�Button�widget�extends�PrimeNG’s�
RadioButton�component.�However,�unlike�traditional�Radio�Buttons,�
the�ProvenanceWidgets�Radio�Button�widget�represents�a�group�of�
vertically�aligned�self-contained�radio�buttons.� It�exposes�a�data at-
tribute,�which�allows�developers�to�provide�their�list�of�options�instead�
of�having�to�defne�each�radio�button�individually.�

3.5.6� Checkbox�

A� Checkbox� allows� users� to� select� or� deselect� a� single� value.�
Checkboxes�can�be�standalone,� or�grouped� together�with� the�same�
name attribute.� In� HTML,� these� are� defned� using� the� <input
type="checkbox"> tag.�

1� selected ?: string[]

1� <provenance-checkbox [data]="options"

2� [(selected)]="selected" />

In�ProvenanceWidgets,�the�Checkbox�widget�extends�PrimeNG’s�
Checkbox� component.� Like� the� Radio� Button� widget,� the� Prove-
nanceWidgets�Checkbox�widget�exposes�a�data attribute,�which�allows�
developers�to�provide�their�list�of�options.�All�selection-type�widgets�
expose�a�selected attribute,�that�allows�developers�to�provide�an�ini-
tial�selection�or�override�the�current�selection,�and�a�selectedChange
event,�triggered�when�the�selection�changes.�

4 EVALUATION

4.1 Example Usage Scenarios

Track�Data�Transformation�and�Visualization�Specifcation�Inter-
actions�(Widget�to�Visualization).�ProvenanceWidgets�can�help�users�
track�what�charts�they�make�(visualization�specifcation)�and�what�fl-
ters�they�apply�(data�transformations).�Consider�Figure�5�that�shows�a�
scatterplot�visualization�of�two�attributes:�“Year”�and�“Life�Expectancy”�
along�with�corresponding�single�slider�and�range�slider�ProvenanceWid-
gets.� As�the�user�drags�the�slider�handle(s):� “Year”:� 1970�→ 1990�
and�“Life�Expectancy”:�[40,�80]�→ [70.2,�80],�the�scatterplot�updates�
and�also�the�orange�provenance�overlays�become�visible.�In�this�way,�
the�user�can�utilize�ProvenanceWidgets�to�track�already�explored�data�
ranges,�potentially�informing�subsequent�explorations.�

Fig.�5:�Visualize�Visualization�Specifcations�and�Transformation�Interac-
tions�on�ProvenanceWidgets.�

Fig.�6:�Track�Direct�Manipulation-based�Interactions�in�Visualizations.�

1� const { view } = await embed("spec.vg.json", ...)

2� const slider = document.createElement("web-provenance -

slider");

3� slider.value = 0;

4� slider.addEventListener("selectedChange", e => {

5� view.signal("slider", e.detail.value).runAsync() })

In�the�above�listing,�the�developer�consumes�ProvenanceWidgets�as�
Web�Components�and�binds�properties�and�events�in�JavaScript.�They�
subscribe�to�"selectedChange" to�update�the�embedded�Vega�chart�[64].�

Track�Direct�Manipulation-based�Interactions�in�Visualizations�
(Visualization�to�Widget).� Because�not�all�user�interactions�happen�
via�UI�controls,�ProvenanceWidgets�can�be�externally�updated�when�
user�interactions�happen�elsewhere,�e.g.,�in�the�visualization.�

Consider�Figure�6�that�shows�a�scatterplot�visualization�of�two�at-
tributes�and�corresponding�range�slider�ProvenanceWidgets:�“Accelera-
tion”�and�“Horsepower”.�As�the�user�performs�a�brush�interaction�in�
the�visualization,�selecting�a�subset�of�points�within�a�specifc�range�
(“Horsepower”:� [27.5,�136.1]�and�“Acceleration”:� [16.7,�23.6]),�the�
corresponding�range�sliders�can�update�to�show�this�range.�In�this�way,�
the�user�can�utilize�ProvenanceWidgets�to�track�what�data�ranges�they�
have�already�explored,�potentially�informing�subsequent�explorations.�

1� visBrushed(brush_extent) {

2� acc.provenance["revalidate"] = true

3� acc.provenance["data"] = [{ ..., "value":

brush_extent }] // [16.7. 23.6]

4� }

1� <provenance-slider [(provenance)]="acc.provenance" />

In�the�above�listing,�the�developer�subscribes�to�the�visualization’s�
brush�event�via�"visBrushed()" and�updates�the�"provenance" of�the�“Ac-
celeration”�("acc")�range�slider.�

4.2 Replicating Prior Work

We�utilize�ProvenanceWidgets� to�replicate� three�prior�works�in� im-
proving� social� navigation� cues� (Scented� Widgets� [78]),� explaining�
transitions�in�the�user�interface�(Phosphor�Objects�[7]),�and�dynamic�

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 03,2025 at 20:01:01 UTC from IEEE Xplore. Restrictions apply.

1241NARECHANIA ET AL.: PROVENANCEWIDGETS: A LIBRARY OF UI CONTROL ELEMENTS TO TRACK AND DYNAMICALLY...

querying-based�[66, 79]�or�direct�manipulation-based�[30]�interactions�
with�a�visualization�system�(Dynamic�Query�Widgets).�

4.2.1� Scented�Widgets.�

Scented�Widgets�[78]�are�graphical�user�interface�controls�enhanced�
with�embedded�visualizations�that�facilitate�navigation�in�information�
spaces.� For�example,�each�option�in�a�radio�button�includes�a�visual�
scent�of�the�number�of�times�it�has�been�used�across�multiple�users.�

ProvenanceWidgets�can�be�confgured�to�recreate�these�widgets�by�
showing�static�information�about�(2)�social�navigation,�e.g.,�number�
of�times�each�radio�button�option�was�chosen�across�multiple�users�
and�when�(Figure�7A-shades�of�orange)�or�(2)�data�distribution,�e.g.,�
distribution�of�values�for�that�column�in�the�underlying�dataset�(Fig-
ure�7A-blue).�To�realize�the�range�slider�in�Figure�7A-shades�of�orange,�
the�developer�can�program�the�widget�in�the�following�way:�

1� historical_usage_logs = {

2� "revalidate": true,

3� "data": [{"value": [100, 160], "timestamp": _},

4� {"value": [100, 160], "timestamp": _},

5� {"value": [160, 200], "timestamp": _}, ...]

6� }

1� <provenance-slider [freeze]="true"

2� [(provenance)]="historical_usage_logs" />

In�the�above�listing,�the�developer�passes�the�"historical_usage_logs"
information�in�the�format�of�interaction�logs,�which�is�then�mapped�to�
the�[(provenance)] property.�The�[freeze]="true" property�will�ensure�
the�widgets�don’t�update�in�real-time�with�user�interactions.�

4.2.2� Phosphor�Objects.�

Phosphor�objects�[7]�employ�a�phosphor�transition�as�a�transition�that�
(1)�shows�the�outcome�of�the�change�instantly�via�an�afterglow�effect�
and�(2)�also�explains�the�change�in�retrospect�using�a�diagrammatic�
depiction.� For� example,� manipulating� a� phosphor� slider� leaves� an�
afterglow�that�illustrates�how�and�from�where�the�knob�moved.�Users�
who�already�understand�the�transition�can�continue�interacting�without�
delay,�while�those�who�are�inexperienced�or�may�have�been�distracted�
can�take�time�to�view�the�effects�at�their�own�pace.�

ProvenanceWidgets�can�be�confgured�to�recreate�Phosphor�objects�
by�limiting�the�recency�of�interaction�mapping�to�the�color�encoding�
channel�to�just�include�the�two�most�recent�interactions�(the�current�
and�the�previous�interaction).� That�way,�every�interaction�will�leave�
behind�a�single�visual�trace�(e.g.,�light�green�bar)�corresponding�to�the�
previous�value.�To�realize�the�single�slider�in�Figure�7B,�the�developer�
can�program�the�widget�in�the�following�way:�

1� widgetUpdated() {

2� if (provenance) provenance = {

3� "revalidate": true,

4� "data": provenance["data"].slice(-2) }

5� }

1� <provenance-slider [(provenance)]="provenance"

2� (provenanceChange)="widgetUpdated()" />

In�the�above�listing,�when�a�widget�is�interacted�with�("widgetUpdated
()"),�the�developer�modifes�the�"provenance" array�by�slicing�it�to�only�
keep�the�two�most�recent�interactions�and�then�commanding�the�library�
to�revalidate and�recompute�its�internal�model�and�update�the�view.�

4.2.3� Dynamic�Query�Widgets.�

Dynamic�querying.�Shneidermann�[66]�introduced�the�notion�of�dy-
namic�queries�to�continuously�update�the�data�that�is�fltered�from�the�
database�and�visualized.� These�queries�ideally�work�instantly�as�the�
user�adjusts�UI�controls�such�as�sliders�or�dropdowns�to�form�simple�
queries�or�to�fnd�patterns�or�exceptions.� Williamson�et�al.�[79]�then�
evaluated�this�approach�in�a�real-estate�system�called�HomeFinder.�

Figure�7C�shows�how�ProvenanceWidgets�can�create�HomeFinder.�
The�developer�can�program�the�“Rooms”�single�slider�as�follows:�

1� // Apply the filter and update the visualization

2� widgetUpdated(model) {}

1� <provenance-slider [visualize]="false" [freeze]="true"

2� (selectedChange)="widgetUpdated($event.value)"/>

In�the�above�listing,�the�widget�is�initialized�with�[freeze]=“true”�
and�[visualize]=“false”,�which�disables�logging�and�hides�any�overlays.�
When�a�widget�is�interacted�with�("widgetUpdated()"),�the�developer�can�
access�the�new�model,�flter�the�data,�and�update�the�visualization.�

Direct�manipulation.�Heer�et�al.�[30]�introduced�direct�manipulation�
techniques�that�couple�declarative�selection�queries�with�a�query�relax-
ation�engine,�enabling�users�to�interactively�generalize�their�selections�
using�dynamically�generated�query�widgets.�For�example,�if�a�user’s�
selections�on�a�housing�dataset�only�include�“Home�Type”=Single�Fam-
ily�and�“Year”=2007,� then�two�dynamic�query�widgets�are�created:�
a�checkbox�group�for�“Home�Type”�with� the�Single�Family�option�
checked;�and�a�single�slider�for�“Year”,�preset�to�2007.�

Figure�7C� shows�how�ProvenanceWidgets� can� support�dynamic�
query�widgets�created�via�direct�manipulation.� To�realize�the�“Year”�
single�slider,�the�developer�can�program�the�widget�as�follows:�

1� selectedYear = 2007;

2� showWidget = true;

1� <provenance-slider *ngIf="showWidget"

2� [visualize]="false" [freeze]="true"

3� [selected]="selectedYear" />

In�the�above�listing,�the�widget�is�created�(or�made�visible)�by�*ngIf
=“showWidget”�and�initialized�with�[selected]=“selectedYear”�(the�
output�of�the�generalized�selection�algorithm).� The�other�properties,�
[freeze] and�[visualize] are�still�set�to�“true”�and�“false”,�respectively.�

4.3 Cognitive Dimensions of Notation

We�self-assess�our�library�from�a�developer�standpoint�based�on�the�Cog-
nitive�Dimensions�of�Notation�[9],�a�framework�of�heuristics�commonly�
used�to�assess�the�effectiveness�of�notational�systems�(e.g.,�visualization�
grammars�and�toolkits).�Of�the�14�cognitive�dimensions,�we�select�a�
relevant�subset�for�comparing�our�work�with�existing�tools.�

Consistency:� Similar� semantics�are�expressed� in� similar� syntactic�
forms�–�ProvenanceWidgets�exposes�a�common�set�of�provenance-
related�properties�and�events,� which�behave�consistently�across�all�
underlying�widgets�(described�in�Section�3.5).� The�notation�is�also�
consistent�with�the�base�libraries�it�inherits�from,�as�well�as�consistent�
across�different�JavaScript�frameworks�when�used�as�Web�Components.�

Diffuseness:� Verbosity�of�language�and�Hard�Mental�Operations:�
high�demand�on�cognitive�resources�–�Since�provenance�is�built�into�
the�widgets,�developers�can�directly�use�components�from�the�under-
lying�libraries�to�create�provenance-aware�widgets.� Even�advanced�
use�cases�such�as�persisting,�restoring,�or�modifying�the�provenance�
only�require�minimal�code�and�cognitive�demand.�This�is�in�contrast�to�
existing�provenance�systems�such�as�Trrack�and�TrrackVis�[16],�which�
require�developers�to�set�up�states,�actions,�event�listeners,�and�other�
components�to�capture�and�visualize�provenance.�

Viscosity:� Diffculty�of�making�changes�–�The�widgets�have�a� low�
viscosity� for� primitive� attributes,� but� a� high� viscosity� for� complex�
attributes.� For�example,�developers�can�easily�add�labels�and�toggle�
provenance�tracking�and�visualization.�However,�changing�the�options�
and�provenance�data�structures�requires�more�effort.�

4.4 Expert Case Studies

In�this�section,�we�present�case�studies�with�developers�who�utilized�
ProvenanceWidgets� to� create� custom�applications� from� the�ground�
up.� Our� aim� was� to� evaluate� how� effective� ProvenanceWidgets� is�
for�building�provenance-focused�visual�data�analysis�systems,�as�well�
as�to�understand�developers’�experiences�working�with�it,�including�
installation,�confguration,�and�customization.�

Participants.�We�recruited�four�developers�(P1−4)�well�versed�in�front-
end�web�development�and�visual�data�analysis.�Demographically,�they�
were�men�(2)�and�women�(2)�in�the�18-24�(1)�and�25-34�(3)�age�groups.�

Task.�We�tasked�participants�to:�

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 03,2025 at 20:01:01 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 31, NO. 1, JANUARY 20251242

SCENTED WIDGETS PHOSPHOR OBJECTSA B DYNAMIC QUERY WIDGETSC

The four interacted
homes are Single
Family from 2007.

System adds dynamic
query widgets with
these selections for
further exploration.

Filter

Interact

Fig.�7:�ProvenanceWidgets�can�be�confgured�to�(re)create�the�core�functionalities�of�(a)�Scented�Widgets,�(b)�Phosphor�Objects,�and�(c)�Dynamic�
Query�Widgets.�Scented�Widgets�enhance�UI�controls�via�embedded�visualizations�of�some�pre-computed�metric,�e.g.,�visit�frequency�and�recency�
(in�shades�of�orange)�or�data�distribution�(in�blue)�to�facilitate�navigation.�Phosphor�objects�track�user�interactions�with�UI�controls�in�real-time�and�
leave�visual�scents�of�the�most�recent�(dark�green)�and�second�most�recent�(light�green)�interaction.�Dynamic�Query�Widgets�are�UI�controls�that�
continuously�update�a�visualization�and/or�its�underlying�data�as�the�user�adjusts�them.�For�example,�ProvenanceWidgets�can�facilitate�creating�a�
dynamic�query�[66]�to�lookup�affordable�(“Price”�<�$500k)�houses�with�fve�“Rooms”�and�“Lot�Confg”=Corner and�then�update�a�visualization�to�see�
the�query�result.�Alternatively,�these�widgets�can�also�be�created�on�the�fy,�e.g.,�if�a�user�interacts�with�“Home�Type”=Single Family and�“Year”=2007
houses,�the�system�can�add�new�query�widgets�for�“Home�Type”�and�“Year”�to�generalize�the�user’s�selection�[30]�and�facilitate�future�exploration.�

Develop�a�“Pokemon�Explorer”�visualization�system�for�a�
Pokemon�Fan�Club,� to�help�member�fans�visually�explore�
Pokemon�names�and�stats� to�pick� their�dream�team.� The�
visualization�system�should�consist�of�a�visualization,�and�UI�
controls,�that�help�specify�the�visualization�(e.g.,�map�vari-
ables�to�visual�encodings)�and/or�beautify�it�(e.g.,�modify�font�
styles�and�color�schemes).�The�Club�wishes�to�track�fans’�in-
teraction�behaviors�as�they�explore�the�data,�hence�you�must�
use�ProvenanceWidgets�as�your�UI�controls� to�help�track�
and�visualize�each�user’s�analytic�provenance.�In�addition,�
try� to� capture� relevant� user� interactions� from� other,� non-
ProvenanceWidgets�places�in�your�application,�and�manually�
update�ProvenanceWidgets.�For�example,�brushing�within�a�
scatterplot�visualization�should�log�the�brushed�extents�on�ei-
ther�axis�and�append�them�to�the�provenance�data�structures�
of�the�corresponding�attribute�flters.�

Dataset.�We�used�a�dataset�of�802�pokemon�[65]�comprising�nine�quan-
titative�variables�(Height_m,�Weight_kg,�HP,�Speed,�Attack,�Special�
Attack,�Defense,�Special�Defense,�Happiness),�fve�nominal�variables�
(Classifcation,�Name,�Primary�Type,�Secondary�Type,�Is�Legendary),�
and�two�ordinal�variables�(Pokedex�Number,�Generation).�This�variety�
of�variables�enables�developers�to�use�different�widgets.�

Logistics.�We�frst�conducted�a�30-minute�onboarding�interview�over�
Zoom,�during�which�we�sought�consent�from�participants�and�intro-
duced�them�to�ProvenanceWidgets�and�the�study�task.�We�also�asked�
them�their�preference�between�the�Angular�components�and�the�Web-
Component�versions�of�the�library.�Accordingly,�we�shared�a�Github�
repository�with�them�that�included�installation�instructions,�API�docu-
mentation,�task�instructions,�and�starter�code.�

Next,�we�gave�participants�up�to�one�week�to�complete�the�task.�Dur-
ing�this�week,�we�asked�them�to�document�their�experience�(e.g.�bugs,�
happy�moments)�working�with�the�widgets�in�a�FEEDBACK.md fle.�
If�and�when�stuck,�we�asked�participants�to�create�GitHub�issues�or�
directly�email�the�study�administrators.�

Finally,�we�conducted�a�30-minute�debriefng�interview�wherein�
we�reviewed�the�participants’�visualization�systems,�source�code,�and�
feedback�notes.�We�compensated�each�participant�with�a�$25�gift�card.�

Analysis.�We�manually�transcribed�the�audio�recordings�and�feedback,�
divided�them�into�smaller�sections,�and�applied�open�coding�[12],�specif-
ically,�constant�comparison�and�theoretical�sampling�[71].� Next,�we�
briefy�describe�the�participants’�applications,�development�experience,�
and�feedback�on�the�widgets,�including�future�enhancements.�

4.4.1� Developed�Applications�

Figure�8�shows�four�applications�developed�by�our�participants�using�
Angular�(P1,4)�and�Web�components�(P2,3).� All�participants�created�
a�scatter�plot-based�system�using�ProvenanceWidgets�to�apply�flters�
(P1,2,3,4),�specify�visual�encodings:�xy�(P1,2,4),�color�(P1,4),�and/or�ad-
just�styling�(P3,4).�P2’s�scatterplot�visualized�the�output�of�a�UMAP�[45]�
dimensionality�reduction�algorithm�that�groups�more�similar�pokemon�
to�be�closer�to�each�other.�P4� wanted�to�be�able�to�export�the�visualiza-
tions,�hence�they�provided�additional�options�to�confgure�the�font�size,�
point�size,�and�point�opacity.� Only�P4� attempted�the�bonus�task,� to�
capture�user�interactions�externally�(via�brushing�in�the�visualization)�
and�manually�update�the�provenance�on�the�relevant�widget.�

4.4.2� Developer�Experience�

General�Feedback.� All�four�developers�found�ProvenanceWidgets�
to�be�useful,�commending�its�built-in�capability�to�track�and�visualize�
provenance.�P1�said,�“I�was�initially�very�surprised�and�actually�very�
excited�like,�wow,� it’s�very�well-made,�doesn’t�really�break.� That’s�
all�you�can�ask�for�in�any�library�like�this.”�P3� particularly�found�the�
widgets�to�be�‘self-explanatory’,�especially�for�Angular�and�Javascript�
developers.�P4�appreciated�the�consistent�design�of�the�widgets�and�the�
ability�to�externally�modify�the�provenance.�

Development�Effort.�In�terms�of�overall�development�effort,�P1� took� 7�
hours�whereas�P2,3,4� took�3-4�hours�to�set�up�their�visualization�system�
and� integrate�ProvenanceWidgets.� While�P1� found� the�study� to�be�

“time-consuming”�but�“really�fun”,�P2,3,4�found�the�amount�of�time�and�
effort�to�be�appropriate.�P2� did�not�fnd�a�very�steep�learning�curve�and�
said,�“‘Intuitive’�will�be�a�very�good�word�to�describe�it.”�

Development�Strategies.�Participants�found�the�documentation�(P1,2,3)�
and�starter�code�(P2,3)�helpful.�P2� said,�“The�sample�code�to�start�with�
was�just�very�helpful�because�I�pretty�much�just�modifed�it�to�suit�my�
use-case�and�it�just�worked.� This�single-handedly�cut�the�amount�of�
time�I�spent�in�half.”�P2,3� requested�adding�more�advanced�examples�in�
the�eventual�documentation.�P1�accessed�the�original�PrimeNG�and�ngx-
slider�documentations�to�try�and�customize�the�dropdown�options�and�
slider�options,�respectively.�P2,4�requested�alternate�widget�layouts,�e.g.,�
horizontally�laid�out�radio�buttons�and�checkboxes�(P2)�and�vertically�
laid� out� sliders� (P4).� These� customizations� and� confgurations� are�
currently�restricted�and�unsupported,�respectively,�because�they�would�
confict�with�the�provenance�overlay�implementation.�A�takeaway�for�
us�is�to�acknowledge�these�limitations�in�the�library�documentation�and�
include�a�roadmap�for�future�features.�

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 03,2025 at 20:01:01 UTC from IEEE Xplore. Restrictions apply.

1243NARECHANIA ET AL.: PROVENANCEWIDGETS: A LIBRARY OF UI CONTROL ELEMENTS TO TRACK AND DYNAMICALLY...

P3

P2

P4

P1

Fig.�8:�Pokemon�Explorer�applications�as�developed�by�our�developer�participants.�All�participants�created�a�scatter�plot-based�visualization�system�

using�ProvenanceWidgets�to�apply�flters�(P1,2,3,4),�specify�visual�encodings:�xy (P1,2,4),�color (P1,4),�and/or�adjust�styling�(P3,4).�

4.4.3� Enhancements�and�Feature�Requests.�

Our�developer�participants�suggested�enhancements�to�ProvenanceWid-
gets�including�additional�visualizations�(P1,4),�custom�glyphs�for�check-
boxes� (P3),� responsiveness� to�browser�window� resize�events� (P1,4),�
better�tooltip�positioning�(P4),�and�better�support�for�styling�and�them-
ing�(P2,3).� P4� suggested�incorporating�selective�tracking�for�recency�
and�frequency,�and�high-precision�range�sliders�for�more�granular�and�
precise�fltering�in�temporal�views.�P4�also�suggested�enhancements�for�
making�the�tooltips�more�human-friendly,�such�as�lowering�the�preci-
sion�of�numeric�attributes�(e.g.,�attack=33.348375),�and�using�1-based�
indexing�for�displaying�interactions,�instead�of�‘0th/7th�interaction’.�

5 DISCUSSION

5.1 Limitations and Future Work

ProvenanceWidgets�may�require�developers�to�understand�certain�core�
concepts� of� its� dependencies� (PrimeNG,� ngx-slider,� and� Angular),�
which�might�lead�to�issues�and�limitations,�necessitating�workarounds.�
For�example,�customizing�the�option�templates�in�the�dropdowns�and�
re-orienting�the�sliders,�radio�buttons,�and�checkboxes�is�currently�re-
stricted�as�it�conficts�with�the�provenance�overlays.� Future�work�is�
planned�to�ensure�ProvenanceWidgets�inherits�all�base�library�features.�

Next,�ProvenanceWidgets�also�inherits�the�inherent�limitations�of�
standard�UI�controls�pertaining�to�scalability�and�usability.�For�instance,�
sliders�and�dropdowns�often�struggle�with�large�ranges�and�numerous�
options,� respectively.� As�a�workaround,� developers�can� increase�a�
slider’s�step�size�(reducing�the�number�of�selectable�values),�improv-
ing�usability�but�sacrifcing�precision;�and�dropdown�options�can�be�
reordered�or�fltered�based�on�frequency�or�recency�to�ensure�already�
interacted�options�are�always�visible�and�accessible.�

Next,�visualizations�often�involve�multi-dimensional�interactions�
like�brushing�and�linking�[37]�or�smart�brushing�[62],�wherein�multiple�
attributes�get�modifed�in�the�same�interaction.�ProvenanceWidgets�can�
currently�visualize�such�provenance�independently�on�each�widget�(as�
demonstrated�in�Section�4.1,�Figure�6),�leading�to�potential�misrepre-
sentation�and�information�loss.� Future�work�is�planned�to�track�and�
visualize�provenance�across�multiple�widgets.�

Lastly,�we�plan�to�provide�a�more�fexible�and�extensible�API�that�
will�support�more�widgets,�allow�customization�of�existing�widgets�
(e.g.,�placing�provenance�scents�more�freely,�e.g.,�use�stroke�and�opacity�

instead�of�color�and�size),�and�facilitate�creation�of�new�custom�widgets�
(e.g.,�date�pickers).�We�will�also�include�the�ability�to�compute�addi-
tional�metrics�beyond�frequency�and�recency�(e.g.,�their�combination).�

5.2 Research Opportunities

In�this�work,�we�evaluated�how�visualization�developers�can�confgure�
ProvenanceWidgets,�but�it�remains�to�be�studied�how�well�the�widgets�
can�enhance�users’�visual�data�analysis�workfows.�Below�we�present�
relevant�research�opportunities�to�pursue�in�the�future.�

Systematically�Studying�Analytical�Provenance.�ProvenanceWidgets�
can�be�used�to�compute�advanced�metrics�to�understand�co-usage�be-
havior�across�multiple�UI�controls,�detect�biases�in�control�panel�usage,�
and�identify�over-explored�or�under-explored�aspects�of�data�[50].�Such�
analyses�could�provide�valuable�insights�into�user�behavior�and�guide�
interface�improvements�to�mitigate�biases�and�optimize�user�workfows.�

Designing�Control�Panels.� Oftentimes,�certain�UI�controls�receive�
disproportionate�usage�due�to�their�visibility�or�positioning.� Prove-
nanceWidgets�could�offer�solutions�such�as�sorting�or�fltering�affor-
dances�to�re-layout�the�control�panel�widgets�based�on�usage�statistics.�
Additionally,�visual�cues�like�usage�provenance�indicators�could�be�im-
plemented�to�provide�users�with�insights�into�the�popularity�of�different�
controls,�promoting�more�uniform�interaction�behaviors.�

Facilitating�Co-Adaptive�Guidance.�ProvenanceWidgets�can�be�ex-
tended�to�facilitate�co-adaptive�guidance�[70],�where�UI�elements�dy-
namically�adapt�to�user�interactions�in�real-time.� Such�systems�can�
provide�personalized�assistance�while�optimizing�overall�analytical�
workfows,�fostering�a�more�symbiotic�relationship�with�the�user.�

6 CONCLUSION

We�presented�ProvenanceWidgets,�a�Javascript�library�of�UI�control�
elements�to�track�and�dynamically�overlay�a�user’s�analytic�provenance�
(i.e.,� the�history�of� their� interactions�with�the�UI�control�elements).�
Using�ProvenanceWidgets,�we�recreated�three�prior�widget�libraries:�
(1)�Scented�Widgets,�(2)�Phosphor�objects,�and�(3)�Dynamic�Query�
Widgets.�Case�studies�with�four�developers�revealed�the�effectiveness�
of�ProvenanceWidgets�to�build�custom�provenance-based�applications.�
ProvenanceWidgets� is�available�as�open-source�software�at�https:
//github.com/ProvenanceWidgets.�

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 03,2025 at 20:01:01 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 31, NO. 1, JANUARY 20251244

SUPPLEMENTAL MATERIALS

ProvenanceWidgets� is�available�as�open-source�software�at�https:
//github.com/ProvenanceWidgets/ProvenanceWidgets.� Sup-
plemental�material�is�available�in�the�IEEE�Xplore�digital�repository�
as� well� as� Github� (https://github.com/ProvenanceWidgets/
Supplemental-Material);� it� includes� (1)� a� video� demonstration�
of�ProvenanceWidgets,� (2)�a�design�document�illustrating�the�alter-
native� designs� we� explored� during� the� design� and� development� of�
ProvenanceWidgets,� (3)� the�application�source�code�demonstrating�
ProvenanceWidgets�replicating�prior�work,�and�(4)�the�detailed�infor-
mation�including�source�code�of�developer�case�studies�that�we�used�
for�evaluating�ProvenanceWidgets.�

ACKNOWLEDGMENTS

This�material�is�based�upon�work�supported�by�NSF�IIS-1750474.�We�
are�grateful�to�our�user�study�participants,�members�of�the�Georgia�
Tech�Visualization�Lab,�and�anonymous�reviewers�for�their�feedback�
at�different�stages�of� this�work.� We�used�Google�Scholar�[28]�and�
vitaLITy�[51]�to�assist�us�during�our�literature�review.�

REFERENCES

[1]� W.�Aigner,�S.�Hoffmann,�and�A.�Rind.�Evalbench:�A�software�library�for�

visualization�evaluation.�In�Computer�Graphics�Forum,�vol.�32,�pp.�41–50.�

Wiley�Online�Library,�2013.�doi:�10.1111/cgf.12091�1,�2�

[2]� J.�Alexander,� A.�Cockburn,� S.�Fitchett,�C.�Gutwin,� and�S.�Greenberg.�

Revisiting� read�wear:� analysis,� design,� and�evaluation�of�a� footprints�

scrollbar.� In�Proceedings�of�the�SIGCHI�Conference�on�Human�Factors�

in� Computing� Systems,� pp.� 1665–1674,� 2009.� doi:� 10.1145/1518701.�

1518957�2�

[3]� Angular.�https://angular.io.�Accessed:�March�31,�2024.�4�

[4]� Angular�Material.�https://material.angular.io,�2024.�1,�2�

[5]� E.�Arroyo,�T.�Selker,� and�W.�Wei.� Usability� tool� for�analysis�of�web�

designs�using�mouse�tracks.� In�CHI’06�extended�abstracts�on�Human�

factors�in�computing�systems,�pp.�484–489,�2006.�doi:�10.1145/1125451.�

1125557�2�

[6]� S.�K.�Badam,�Z.�Zeng,�E.�Wall,�A.�Endert,�and�N.�Elmqvist.�Supporting�

Team-First�Visual�Analytics�through�Group�Activity�Representations.� In�

Graphics�Interface,�pp.�208–213,�2017.�doi:�10.5555/3141475.3141515�2�

[7]� P.�Baudisch,�D.�Tan,�M.�Collomb,�D.�Robbins,�K.�Hinckley,�M.�Agrawala,�

S.�Zhao,� and�G.�Ramos.� Phosphor:� explaining�transitions� in� the�user�

interface�using�afterglow�effects.� In�Proceedings�of�the�19th�annual�ACM�

symposium�on�User�interface�software�and�technology,�pp.�169–178,�2006.�

doi:�10.1145/1166253.1166280�2,�3,�6,�7�

[8]� L.�Bavoil,� S.�P.�Callahan,� P.� J.�Crossno,� J.�Freire,� C.�E.�Scheidegger,�

C.�T.�Silva,�and�H.�T.�Vo.� Vistrails:�Enabling�interactive�multiple-view�

visualizations.� In�VIS�05.�IEEE�Visualization,�2005.,�pp.�135–142.�IEEE,�

2005.�doi:�10.1109/VISUAL.2005.1532788�2�

[9]� A.�F.�Blackwell,�C.�Britton,�A.�Cox,�T.�R.�Green,�C.�Gurr,�G.�Kadoda,�M.�S.�

Kutar,�M.�Loomes,�C.�L.�Nehaniv,�M.�Petre,�et�al.�Cognitive�dimensions�of�

notations:�Design�tools�for�cognitive�technology.�In�Cognitive�Technology:�

Instruments�of�Mind:� 4th�International�Conference,�CT�2001�Coventry,�

UK,�August�6–9,�2001�Proceedings,�pp.�325–341.�Springer,�2001.�doi:�10.�

1007/3-540-44617-6_31�7�

[10]� J.�E.�Block,�S.�Esmaeili,�E.�D.�Ragan,�J.�R.�Goodall,�and�G.�D.�Richardson.�

The�Infuence�of�Visual�Provenance�Representations�on�Strategies�in�a�

Collaborative�Hand-off�Data�Analysis�Scenario.� IEEE�Transactions�on�

Visualization�and�Computer�Graphics,�29(1):1113–1123,�2023.�doi:�10.�

1109/TVCG.2022.3209495�1,�2�

[11]� Bootstrap.�https://getbootstrap.com,�2024.�1,�2�

[12]� R.�E.�Boyatzis.�Transforming�Qualitative�Information:�Thematic�Analysis�

and�Code�Development.�Sage�Publications,�1998.�8�

[13]� S.�P.�Callahan,�J.�Freire,�E.�Santos,�C.�E.�Scheidegger,�C.�T.�Silva,�and�

H.�T.�Vo.�VisTrails:�visualization�meets�data�management.� In�Proceedings�

of�the�2006�ACM�SIGMOD�international�conference�on�Management�of�

data,�pp.�745–747,�2006.�doi:�10.1145/1142473.1142574�1,�2�

[14]� D.�Cernea,�C.�Weber,�A.�Ebert,�and�A.�Kerren.�Emotion�scents:�a�method�

of�representing�user�emotions�on�gui�widgets.� In�Visualization�and�Data�

Analysis�2013,� vol.�8654,� pp.�168–181.�SPIE,�2013.�doi:� 10.1117/12.�

2001261�3�

[15]� G.�K.�Chung.� Guidelines�for�the�design�and�implementation�of�game�

telemetry�for�serious�games�analytics.�Serious�games�analytics:�Method-

ologies�for�performance�measurement,�assessment,�and�improvement,�pp.�

59–79,�2015.�doi:�10.1007/978-3-319-05834-4_3�2�

[16]� Z.�Cutler,�K.�Gadhave,�and�A.�Lex.� Trrack:� A�library�for�provenance-

tracking�in�web-based�visualizations.� In�2020�IEEE�Visualization�Con-

ference�(VIS),�pp.�116–120.�IEEE,�2020.�doi:�10.1109/VIS47514.2020.�

00030�1,�2,�3,�7�

[17]� Y.�Ding,� J.�Wilburn,� H.�Shrestha,� A.�Ndlovu,� K.�Gadhave,� C.�Nobre,�

A.�Lex,� and�L.�Harrison.� reVISit:� Supporting�Scalable�Evaluation�of�

Interactive�Visualizations.�In�2023�IEEE�Visualization�and�Visual�Analytics�

(VIS),�pp.�31–35,�2023.�doi:�10.1109/VIS54172.2023.00015�2�

[18]� A.�Drachen.� Behavioral�telemetry�in�games�user�research.� Game�user�

experience�evaluation,�pp.�135–165,�2015.�doi:�10.1007/978-3-319-15985�

-0_7�2�

[19]� A.�Drachen,�M.�Seif�El-Nasr,�and�A.�Canossa.�Game�analytics–the�basics.�

Game�analytics:�Maximizing�the�value�of�player�data,�pp.�13–40,�2013.�

doi:�10.1007/978-1-4471-4769-5�2�

[20]� Draw.io.�https://www.draw.io.�Accessed:�March�31,�2024.�3�

[21]� C.�Dunne,�N.�Henry�Riche,�B.�Lee,�R.�Metoyer,�and�G.�Robertson.�Graph-

Trail:�Analyzing�large�multivariate,�heterogeneous�networks�while�sup-

porting�exploration�history.� In�Proceedings�of�the�SIGCHI�Conference�

on�Human�Factors�in�Computing�Systems,�pp.�1663–1672,�2012.�doi:�10.�

1145/2207676.2208293�2�

[22]� K.�Eckelt,�K.�Gadhave,�A.�Lex,�and�M.�Streit.�Loops:�Leveraging�Prove-

nance�and�Visualization�to�Support�Exploratory�Data�Analysis�in�Note-

books.�OSF�Preprint,�2023.�doi:�10.31219/osf.io/79eyn�2�

[23]� W.�Epperson,�D.�Jung-Lin�Lee,�L.�Wang,�K.�Agarwal,�A.�G.�Parameswaran,�

D.�Moritz,�and�A.�Perer.�Leveraging�analysis�history�for�improved�in�situ�

visualization�recommendation.� In�Computer�Graphics�Forum,�vol.�41,�pp.�

145–155.�Wiley�Online�Library,�2022.�doi:�10.1111/cgf.14529�2�

[24]� M.�Feng,�C.�Deng,�E.�M.�Peck,�and�L.�Harrison.�Hindsight:�Encouraging�

exploration�through�direct�encoding�of�personal�interaction�history.� IEEE�

Transactions�on�Visualization�and�Computer�Graphics,�23(1):351–360,�

2017.�doi:�10.1109/TVCG.2016.2599058�1,�2�

[25]� FullStory.�https://www.fullstory.com.�Accessed:�June�15,�2024.�2�

[26]� A.�R.�Gagné,�M.�S.�El-Nasr,�and�C.�D.�Shaw.�A�deeper�look�at�the�use�of�

telemetry�for�analysis�of�player�behavior�in�rts�games.� In�International�

Conference�on�Entertainment�Computing,�pp.�247–257.�Springer,�2011.�

doi:�10.1007/978-3-642-24500-8_26�2�

[27]� Google� Analytics.� https://marketingplatform.google.com/

about/analytics.�Accessed:�June�15,�2024.�2�

[28]� Google�Scholar.�https://scholar.google.com,�2024.�10�

[29]� C.�Gutwin.� Traces:� Visualizing� the� immediate�past� to� support�group�

interaction.� In�Graphics�interface,�pp.�43–50.�Citeseer,�2002.�doi:� 10.�

20380/GI2002.06�2�

[30]� J.�Heer,�M.�Agrawala,�and�W.�Willett.�Generalized�selection�via�interactive�

query�relaxation.� In�Proceedings�of�the�SIGCHI�Conference�on�Human�

Factors�in�Computing�Systems,�pp.�959–968,�2008.�doi:�10.1145/1357054.�

1357203�1,�7,�8�

[31]� J.�Heer,�J.�Mackinlay,�C.�Stolte,�and�M.�Agrawala.�Graphical�histories�for�

visualization:�Supporting�analysis,�communication,�and�evaluation.� IEEE�

Transactions�on�Visualization�and�Computer�Graphics,�14(6):1189–1196,�

2008.�doi:�10.1109/TVCG.2008.137�2�

[32]� J.�Hill�and�C.�Gutwin.�Awareness�support�in�a�groupware�widget�toolkit.�

In�Proceedings�of�the�2003�international�ACM�SIGGROUP�conference�on�

Supporting�group�work,�pp.�258–267,�2003.�doi:�10.1145/958160.958201�

2�

[33]� W.�C.�Hill,�J.�D.�Hollan,�D.�Wroblewski,�and�T.�McCandless.�Edit�wear�and�

read�wear.� In�Proceedings�of�the�SIGCHI�Conference�on�Human�Factors�

in�Computing�Systems,�pp.�3–9,�1992.�doi:�10.1145/142750.142751�2�

[34]� Hotjar.�https://www.hotjar.com.�Accessed:�June�15,�2024.�2�

[35]� L.�Jacob,�E.�Clua,�and�D.�de�Oliveira.� Oh�Gosh!!� Why�is�this�game�so�

hard?�Identifying�cycle�patterns�in�2D�platform�games�using�provenance�

data.�Entertainment�Computing,�19:65–81,�2017.�doi:�10.1016/j.entcom.�

2016.12.002�2�

[36]� jQuery�UI.�https://jqueryui.com,�2024.�1,�2�

[37]� D.�A.�Keim.� Information�visualization�and�visual�data�mining.� IEEE�

Transactions�on�Visualization�and�Computer�Graphics,�8(1):1–8,�2002.�

doi:�10.1109/2945.981847�9�

[38]� T.�C.�Kohwalter,�F.�M.�de�Azeredo�Figueira,�E.�A.�de�Lima�Serdeiro,�J.�R.�

da�Silva�Junior,�L.�G.�P.�Murta,�and�E.�W.�G.�Clua.�Understanding�game�

sessions�through�provenance.� Entertainment�Computing,�27:110–127,�

2018.�doi:�10.1016/j.entcom.2018.05.001�2�

[39]� T.�C.�Kohwalter,�L.�G.�Murta,�and�E.�W.�Clua.�Provchastic:�Understanding�

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 03,2025 at 20:01:01 UTC from IEEE Xplore. Restrictions apply.

1245NARECHANIA ET AL.: PROVENANCEWIDGETS: A LIBRARY OF UI CONTROL ELEMENTS TO TRACK AND DYNAMICALLY...

and�predicting�game�events�using�provenance.�In�International�Conference�

on�Entertainment�Computing,�pp.�90–103.�Springer,�2020.�doi:�10.1007/�

978-3-030-65736-9_7�2�

[40]� T.�C.�Kohwalter,�L.�G.�P.�Murta,�and�E.�W.�G.�Clua.� Capturing�game�

telemetry�with�provenance.� In�2017�16th�Brazilian�Symposium�on�Com-

puter�Games�and�Digital�Entertainment�(SBGames),�pp.�66–75.�IEEE,�

2017.�doi:�10.1109/SBGames.2017.00016�2�

[41]� C.-U.�Lim�and�D.�F.�Harrell.� Toward�telemetry-driven�analytics�for�un-

derstanding�players�and�their�avatars�in�videogames.� In�Proceedings�of�

the�33rd�Annual�ACM�Conference�Extended�Abstracts�on�Human�Fac-

tors�in�Computing�Systems,�pp.�1175–1180,�2015.�doi:�10.1145/2702613.�

2732783�2�

[42]� Z.�Liu�and�J.�Heer.�The�effects�of�interactive�latency�on�exploratory�visual�

analysis.� IEEE�Transactions�on�Visualization�and�Computer�Graphics,�

20(12):2122–2131,�2014.�doi:�10.1109/TVCG.2014.2346452�2�

[43]� K.�Madanagopal,�E.�D.�Ragan,�and�P.�Benjamin.�Analytic�provenance�in�

practice:�The�role�of�provenance�in�real-world�visualization�and�data�anal-

ysis�environments.� IEEE�Computer�Graphics�and�Applications,�39(6):30–�

45,�2019.�doi:�10.1109/MCG.2019.2933419�2�

[44]� Material-UI.�https://material-ui.com,�2024.�1,�2�

[45]� L.�McInnes,� J.�Healy,� and�J.�Melville.� Umap:� Uniform�manifold�ap-

proximation� and� projection� for� dimension� reduction.� arXiv� preprint�

arXiv:1802.03426,�2018.�doi:�10.21105/joss.00861�8�

[46]� S.�A.�Melo,�T.�C.�Kohwalter,�E.�Clua,�A.�Paes,�and�L.�Murta.� Player�

behavior�profling�through�provenance�graphs�and�representation�learning.�

In�Proceedings�of�the�15th�International�Conference�on�the�Foundations�

of�Digital�Games,�pp.�1–11,�2020.�doi:�10.1145/3402942.3402961�2�

[47]� G.�A.�Miller.� The�magical�number� seven,� plus�or�minus� two:� Some�

limits�on�our�capacity�for�processing�information.�Psychological�review,�

101(2):343,�1994.�doi:�10.1037/h0043158�2�

[48]� Mixpanel.�https://mixpanel.com.�Accessed:�June�15,�2024.�2�

[49]� Mousefow.�https://mouseflow.com.�Accessed:�June�15,�2024.�2�

[50]� A.�Narechania,�A.�Coscia,�E.�Wall,�and�A.�Endert.� Lumos:� Increasing�

Awareness� of� Analytic� Behavior� during� Visual� Data� Analysis.� IEEE�

Transactions�on�Visualization�and�Computer�Graphics,�28(1):1009–1018,�

2022.�doi:�10.1109/TVCG.2021.3114827�1,�2,�9�

[51]� A.�Narechania,�A.�Karduni,�R.�Wesslen,�and�E.�Wall.�vitaLITy:�Promoting�

Serendipitous�Discovery�of�Academic�Literature�with�Transformers�&�

Visual�Analytics.� IEEE�Transactions�on�Visualization�and�Computer�

Graphics,�28(1):486–496,�2022.�doi:�10.1109/TVCG.2021.3114820�10�

[52]� New�Relic.�https://newrelic.com.�Accessed:�June�15,�2024.�2�

[53]� J.�Nielsen�and�K.�Pernice.�Eyetracking�web�usability.�New�Riders,�2010.�

2�

[54]� C.�Nobre,�D.�Wootton,�Z.�Cutler,�L.�Harrison,�H.�Pfster,� and�A.�Lex.�

reVISit:�Looking�under�the�hood�of�interactive�visualization�studies.� In�

Proceedings�of�the�2021�CHI�Conference�on�Human�Factors�in�Computing�

Systems,�pp.�1–13,�2021.�doi:�10.1145/3411764.3445382�2�

[55]� C.�North,�R.�Chang,�A.�Endert,�W.�Dou,�R.�May,�B.�Pike,�and�G.�Fink.�

Analytic�provenance:�process+�interaction+�insight.� In�CHI’11�Extended�

Abstracts�on�Human�Factors�in�Computing�Systems,�pp.�33–36.�2011.�doi:�

10.1145/1979742.1979570�1,�2�

[56]� M.�Okoe�and�R.�Jianu.� Graphunit:� Evaluating�interactive�graph�visual-

izations�using�crowdsourcing.� In�Computer�Graphics�Forum,�vol.�34,�pp.�

451–460.�Wiley�Online�Library,�2015.�doi:�10.1111/cgf.12657�1,�2�

[57]� J.�R.�Paden,�A.�Narechania,�and�A.�Endert.�BiasBuzz:�Combining�Visual�

Guidance�with�Haptic�Feedback�to�Increase�Awareness�of�Analytic�Be-

havior�during�Visual�Data�Analysis.� In�Extended�Abstracts�of�the�CHI�

Conference�on�Human�Factors�in�Computing�Systems,�pp.�1–7,�2024.�doi:�

10.1145/3613905.3651064�1�

[58]� PrimeNG.�https://www.primefaces.org/primeng,�2024.�1,�2�

[59]� E.�D.�Ragan,�A.�Endert,�J.�Sanyal,�and�J.�Chen.� Characterizing�prove-

nance�in�visualization�and�data�analysis:� an�organizational�framework�

of�provenance�types�and�purposes.� IEEE�Transactions�on�Visualization�

and�Computer�Graphics,�22(1):31–40,�2016.�doi:�10.1109/TVCG.2015.�

2467551�1,�2�

[60]� React.�https://reactjs.org.�Accessed:�March�31,�2024.�4�

[61]� React�Bootstrap.�https://react-bootstrap.github.io,�2024.�1,�2�

[62]� R.�C.�Roberts,�R.�S.�Laramee,�G.�A.�Smith,�P.�Brookes,�and�T.�D’Cruze.�

Smart�brushing�for�parallel�coordinates.� IEEE�Transactions�on�Visual-

ization�and�Computer�Graphics,�25(3):1575–1590,�2019.�doi:�10.1109/�

TVCG.2018.2808969�9�

[63]� A.�Sarvghad�and�M.�Tory.� Exploiting�analysis�history� to�support�col-

laborative�data�analysis.� In�Proceedings�of�the�41st�Graphics�Interface�

Conference,�pp.�123–130,�2015.�2�

[64]� A.�Satyanarayan,�D.�Moritz,�K.�Wongsuphasawat,�and�J.�Heer.�Vega-lite:�

A�grammar�of�interactive�graphics.� IEEE�Transactions�on�Visualization�

and�Computer�Graphics,�23(1):341–350,�2017.�doi:�10.1109/TVCG.2016.�

2599030�6�

[65]� Serebii.net.�http://serebii.net.�Accessed:�March�31,�2024.�8�

[66]� B.�Shneiderman.�Dynamic�queries�for�visual�information�seeking.� IEEE�

software,�11(6):70–77,�1994.�doi:�10.1109/52.329404�7,�8�

[67]� B.�Shneiderman.� The�eyes�have�it:� A�task�by�data�type�taxonomy�for�

information�visualizations.� In�The�craft�of�information�visualization,�pp.�

364–371.�Elsevier,�2003.�doi:�10.1109/VL.1996.545307�3�

[68]� C.�T.�Silva,�E.�Anderson,�E.�Santos,�and�J.�Freire.� Using�vistrails�and�

provenance�for�teaching�scientifc�visualization.� In�Computer�Graphics�

Forum,�vol.�30,�pp.�75–84.�Wiley�Online�Library,�2011.�doi:� 10.1111/j.�

1467-8659.2010.01830.x�2�

[69]� A.�Skopik�and�C.�Gutwin.� Improving�revisitation�in�fsheye�views�with�

visit�wear.�In�Proceedings�of�the�SIGCHI�Conference�on�Human�Factors�in�

Computing�Systems,�pp.�771–780,�2005.�doi:�10.1145/1054972.1055079�

2�

[70]� F.�Sperrle,�A.�Jeitler,�J.�Bernard,�D.�Keim,�and�M.�El-Assady.�Co-adaptive�

visual�data�analysis�and�guidance�processes.� Computers�&�Graphics,�

100:93–105,�2021.�doi:�10.1016/j.cag.2021.06.016�9�

[71]� A.�Strauss�and�J.�Corbin.�Basics�of�Qualitative�Research:�Techniques�and�

Procedures�for�Developing�Grounded�Theory.� Sage�Publications,�1998.�

doi:�10.4135/9781452230153�8�

[72]� SvelteKit�UI.�https://kit.svelte.dev,�2024.�1,�2�

[73]� P.�Vaithilingam,� E.�L.�Glassman,� J.�P.� Inala,� and�C.�Wang.� DynaVis:�

Dynamically�Synthesized�UI�Widgets�for�Visualization�Editing.� In�Pro-

ceedings�of�the�CHI�Conference�on�Human�Factors�in�Computing�Systems,�

CHI�’24,�article�no.�985,�17�pages.�Association�for�Computing�Machinery,�

New�York,�NY,�USA,�2024.�doi:�10.1145/3613904.3642639�1,�3�

[74]� Vue.js.�https://vuejs.org.�Accessed:�March�31,�2024.�4�

[75]� Vuetify.�https://vuetifyjs.com,�2024.�1,�2�

[76]� E.�Wall,�A.�Narechania,�A.�Coscia,�J.�Paden,�and�A.�Endert.�Left,�Right,�

and�Gender:�Exploring�Interaction�Traces�to�Mitigate�Human�Biases.�IEEE�

Transactions�on�Visualization�and�Computer�Graphics,�28(1):966–975,�

2022.�doi:�10.1109/TVCG.2021.3114862�1,�2�

[77]� A.� Wattenberger.� Footsteps� for� VS� Code.�

https://marketplace.visualstudio.com/items?itemName=Wattenberger.footsteps,�

2021.�2�

[78]� W.�Willett,� J.� Heer,� and�M.� Agrawala.� Scented� Widgets:� Improving�

navigation�cues�with�embedded�visualizations.� IEEE�Transactions�on�

Visualization�and�Computer�Graphics,�13(6):1129–1136,�2007.�doi:�10.�

1109/TVCG.2007.70589�1,�2,�3,�4,�6,�7�

[79]� C.�Williamson�and�B.�Shneiderman.�The�Dynamic�HomeFinder:�Evaluat-

ing�dynamic�queries�in�a�real-estate�information�exploration�system.� In�

Proceedings�of�the�15th�annual�international�ACM�SIGIR�conference�on�

Research�and�development�in�information�retrieval,�pp.�338–346,�1992.�

doi:�10.1145/133160.133216�1,�7�

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 03,2025 at 20:01:01 UTC from IEEE Xplore. Restrictions apply.

