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In this article, we survey recent results concerning non-stability of discrete groups
with respect to the operator norm. We focus on topological obstructions to
perturbing almost representations of a discrete group Γ into unitary groups U(n)
to true representations. Several natural notions of stability are discussed: local-
to-local stability, uniform-to-uniform stability, uniform-to-local stability, and C∗-
stability.
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1. INTRODUCTION

Throughout the paper, Γ denotes a countable discrete group. We consider
unital maps of Γ into unitary groups U(n) that are almost representations, in
the sense that they are approximately multiplicative. For such maps, it is nat-
ural to inquire whether they can be perturbed to true representations. One
can assess the degree of multiplicativity and the closeness of potential pertur-
bations both locally and globally (uniformly). We formalize these possibilities
in the following sections.

There are several ways to construct almost representations of a discrete
group Γ which are far from genuine representations. Ultimately, all of these
constructions revolve around certain cohomological invariants of G. Voiculescu
[43] and Kazhdan [33] constructed almost representations, implicitly or explic-
itly utilizing central extensions of Γ, which correspond to non-torsion classes
in the second cohomology of Γ. Burger, Ozawa, and Thom in [4] constructed
uniform almost representations that are not uniformly perturbable to true rep-
resentations, based on nonzero elements in the kernel of the comparison map
H2

b (Γ,R) → H2(Γ,R) between bounded group cohomology and regular group
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cohomology. Connes, Gromov, and Moscovici utilized parallel transport in
almost flat bundles to construct almost representations capturing K-theory
invariants in [7]. These almost representations were then used to prove the
Novikov conjecture for large classes of groups. One is naturally led to the
question of constructing nontrivial almost flat bundles. Gromov described in
[24], [25] geometric methods for constructing nontrivial almost flat K-theory.

We introduced in [8] and [9] a functional analytic method for construct-
ing almost representations and almost flat bundles by exploiting the concept
of quasidiagonal K-homology classes of group C∗-algebras and fundamental
results of Kasparov [32], Yu [44], and Tu [42] on the Novikov conjecture and
the Baum–Connes conjecture. The applicability of this technique, revisited in
[13], was significantly broadened by Kubota in [36] through the consideration
of quasidiagonal C∗-algebras that are intermediate between the full and the
reduced group C∗-algebras. We discuss briefly this topic in the last section of
this article.

In the following sections, we survey results on stability and non-stability
involving almost representations constructed using the methods mentioned
above. An important role is played by the approximate monodromy corre-
spondence between almost flat bundles and almost representations introduced
in [7]. This correspondence was further studied in [28], [27], [5], [29] and [35].

2. LOCAL-TO-LOCAL STABILITY

A countable discrete group Γ is local-to-local stable if for any sequence of
unital maps {ρn : Γ → U(n)} such that

lim
n→∞

∥ρn(st)− ρn(s)ρn(t)∥ = 0, for all s, t ∈ Γ,

there is a sequence of unitary representations {πn : Γ → U(n)} satisfying

lim
n→∞

∥ρn(s)− πn(s)∥ = 0, for all s ∈ Γ.

Examples of local-to-local stable groups. Local-to-local stability is
referred to as matricial stability in the paper by Eilers, Shulman and Sørensen
[17], where it was systematically studied. Finite groups and finitely generated
free groups Fn, n ≥ 1 are local-to-local stable. More generally, it was shown in
[17] that finitely generated virtually free groups are also local-to-local stable.
Among the crystallographic groups, only the line groups, Z and Z/2 ∗Z/2 and
12 wall-paper groups (out of 17), namely those with H2(Γ,Q) = 0, are local-
to-local stable. It was shown recently by Gerasimova and Shchepin that the
class of local-to-local stable groups is closed under amalgamated free products
and HNN extensions over finite subgroups [20].
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Examples of groups which are not local-to-local stable.

Two-cohomology obstructions. In his groundbreaking paper, Voiculescu
showed that Z2 is not local-to-local stable, by employing a Fredholm index
argument [43]. He proposed that this instability stems from the non-zero 2-
cohomology of T2. Given that BZ2 equals T2, this essentially refers to the
nonvanishing of H2(Z2,Q). Voiculescu’s examples involve the sequence of pairs
of unitaries

un =


0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0

· · ·
0 0 · · · 1 0

 , vn =


λn 0 0 0 0
0 λ2n 0 0 0
0 0 λ3n · 0

· · ·
0 0 0 · · · λnn

 , λn = e2πi/n

which appear in the representation theory of the integral Heisenberg group

H3 =


 1 x z

0 1 y
0 0 1

∣∣∣∣∣∣ x, y, z ∈ Z

 .

The canonical central extension 0 → Z → H3 → Z2 → 0 represents a nonzero
element of H2(Z2,Z). Using the notation [s, t] = sts−1t−1 for multiplicative
commutators, one verifies that

[un, vn] = exp(−2πi/n) · 1n, ∥[un, vn]− 1n∥ = | exp(2πi/n)− 1| < 2π/n.

The winding number in C \ {0} of the loop t 7→ det((1 − t)1n + t [un, vn]) is
given by

wndet
(
(1− t)1n + t [un, vn])

)
=

1

2πi
Tr

(
log(exp(−2πi/n)1n)

)
= −1.

As noted in [33] and rediscovered by Exel and Loring, the nonvanishing of
the winding number implies that the pair of unitaries un and vn does not
admit commuting approximants. Subsequently, Exel and Loring highlighted
the significance of K-theory in understanding Voiculescu’s example by proving
a formula which asserts that two topological invariants associated to a pair
of almost commuting unitary matrices coincide, see [18]. Specifically, there
exist a universal constant ε > 0 and certain universal continuous functions
f, g, h : T → [0, 1] such that given any unitaries u, v ∈ U(n) with ∥uv−vu∥ < ε,
the selfadjoint matrix

e(u, v) =

(
f(v) g(v) + h(v)u∗

g(v) + uh(v) 1− f(v)

)
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satisfies ∥e(u, v)2 − e(u, v)∥ < 1/5 and hence, the spectrum of e(u, v) is con-
tained in [0, 1/3) ∪ (2/3, 1]. It follows by functional calculus that

e(u, v)♯ = χ( 2
3
,1]

(
e(u, v)

)
is a selfadjoint projection such that ∥e(u, v)♯ − e(u, v)∥ < 1/3.

The functions f, g, and h are chosen such that

e
(
e2πix, e2πiy

)
∈M2

(
C(T2)

)
is a projection representing a rank-one vector bundle over the 2-torus with first
Chern class equal to one. The Bott element associated with u, v is the K0-class

Bott(u, v) = e (u, v)♯ − n ∈ K0(C) = Z

Exel and Loring proved that

(1) Bott(u, v) =
1

2πi
Tr log

(
[u, v]

)
.

Eilers, Shulman and Sørensen [17] showed that certain concrete groups with
homogeneous relations are not local-to-local stable by using winding number
invariants of Kazhdan/Exel–Loring type. These invariants are connected to the
two-homology of the groups as we are going to explain briefly below. Many
other examples are implicit in the papers [9], [13] and [15].

In [11], we extended the Exel–Loring formula (1) from Z2 to arbitrary
countable discrete groups Γ as follows. Hopf’s formula expresses the second
homology of Γ as

H2(Γ,Z) =
R ∩ [F, F ]

[R,F ]
in terms of a free presentation

1 → R→ F
q−→ Γ → 1,

where q(a) = ā. Consequently, each element x ∈ H2(Γ,Z) can be represented
by a product of commutators

∏g
i=1[ai, bi] with ai, bi ∈ F , for some integer

g ≥ 1, such that
∏g

i=1[āi, b̄i] = 1.
Let βΓ : H2(Γ,Z) ∼= H2(BΓ,Z) → RK0(BΓ) be the (rationally injective)

homomorphism studied in [2], [39] and let αΓ : H2(Γ,Z) → K0(ℓ
1(Γ)) be the

composition αΓ = µΓ1 ◦ βΓ where µΓ1 is the ℓ1-version of the assembly map of
Lafforgue [37].

We showed in [11] that the linear extension ρ : ℓ1(Γ) → Mn(C) of a
sufficiently multiplicative unital map ρ : Γ → U(n) satisfies the following.

Theorem 2.1. Let x ∈ H2(Γ,Z) be represented by a product of com-
mutators

∏g
i=1[ai, bi] with ai, bi ∈ F and

∏g
i=1[āi, b̄i] = 1. There exist a fi-

nite set S ⊂ Γ and ε > 0 such that if ρ : Γ → U(n) is unital map with
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∥ρ(st)− ρ(s)ρ(t)∥ < ε for all s, t ∈ S, then

ρ♯(α
Γ(x))=wndet

(
(1−t)1n+t

g∏
i=1

[
ρ(āi), ρ(b̄i)

])
=

1

2πi
Tr log

( g∏
i=1

[ρ(āi), ρ(b̄i)]

)
.

Here, if we write αΓ(x) = [p0]− [p1], where pi are projections in matrices
over ℓ1(Γ), then ρ♯(α

Γ(x)) = ρ♯(p0)− ρ♯(p1), where ρ♯(pi) ∈ Z is the K-theory
class (i.e., the rank) of the perturbation of (id ⊗ ρ)(pi) to a projection via
analytic functional calculus. Moreover, we show in [11] that if Γ is a quasidi-
agonal group which admits a γ-element and x ∈ H2(Γ,Z) is of infinite order,
then there exist unitary almost representations ρn : Γ → U(n) for which the
winding number in the formula above is nonzero and hence, ρn are not per-
turbable to genuine representations. The proof of Theorem 2.1 relies crucially
on the corresponding result for surface groups of genus ≥ 1 from [8], where we
noted that the Exel–Loring formula is related to an index theorem of Connes,
Gromov and Moscovici [7] and to its extensions studied thereby. The joint
work with Carrión [5] led to a generalization of the result above for almost
representations into unitary groups of tracial C∗-algebras, see [11].

Ioana, Spaas and Wiersma [30] used nonvanishing of 2-cohomology groups
in conjunction with the relative Property (T) to exhibit obstructions to com-
pletely positive lifting for full group C∗-algebras. In particular, it follows from
their arguments that if Γ = Z2⋊SL2(Z) then there is a unital ∗-homomorphism
C∗(Γ) →

∏
nMn/

⊕
nMn which does not even have a unital completely pos-

itive lifting and hence, Γ is far from being matricially stable. However, it
should be noted that the absence of a unital completely positive lifting is
only one aspect of nonstability. Indeed, by [10, Theorem 1.2] there are unital
∗-homomorphisms C∗(Z2 ⋊ SL2(Z)) →

∏
nMn/

⊕
nMn which admit unital

completely positive liftings but do not lift to ∗-homomorphisms.

Higher-dimensional cohomology obstructions. After observing obstruc-
tions to stability originating in two-cosmology, it is natural to inquire about
the role of higher-dimensional cohomology. We showed in [10] that rational
cohomology in higher even dimensions also obstructs group stability for large
classes of groups.

Theorem 2.2. Let Γ be a countable discrete MF-group that admits a
γ-element. If H2k(Γ,Q) ̸= 0 for some k ≥ 1, then Γ is not local-to-local stable.

The theorem is proved by using the dual assembly map of Kasparov to
map quasidiagonal K-homology classes of C∗(Γ) to almost flat K-theory classes
of the classifying space BΓ. For local-to-local stable groups, these classes must
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be flat and hence, their Chern classes vanish over Q by a classic result of Milnor,
see [40].

Let us recall that a group Γ is MF if it embeds in U/N where we have
that U =

∏∞
n=1 U(n) and N = {(un)n ∈ U : ∥un − 1n∥ → 0}. Put simply, a

group is MF if it has enough approximate unitary representations that allow
to effectively separate its elements. The groups that are locally embeddable in
amenable groups are MF as a consequence of [41]. Linear groups are MF as
noted in [10]. There are no known examples of discrete, countable groups that
are not MF.

The class of groups possessing a γ-element encompasses a wide range, as
shown in [31], including those that can be uniformly embedded into a Hilbert
space as proved in [42]. Amenable groups, or more generally, the groups with
Haagerup’s property are uniformly embeddable in a Hilbert space [6] and so are
the linear groups [26]. Hilbert space uniform embeddability passes to subgroups
and products, direct limits, free products with amalgam, and extensions by
exact groups [14].

Using Theorem 2.2, we showed in [10] that the following groups are not
local-to-local stable.

(a) Γ a finitely generated torsion free, nilpotent group ̸= 0,Z.

(b) Γ an amenable group with H2k(Γ,Q) ̸= 0 for some k > 0.

(c) Γ a linear group with H2k(Γ,Q) ̸= 0 for some k > 0.

(d) Γ a hyperbolic, residually finite group with H2k(Γ,Q) ̸= 0 for some k > 0.

(e) Aut(Fn) and Out(Fn), n = 4, 6, 8.

(f) Mapping class groups Mod(Sg) for g ≥ 3.

Bader, Lubotzky, Sauer andWeinberger used Theorem 2.2 to demonstrate
that lattices in semisimple real Lie groups are typically not local-to-local stable.

Theorem 2.3 ([1]). If Γ is a cocompact lattice in a real semisimple Lie
group G which is not locally isomorphic to either SO(n, 1) for n odd or SL3(R),
then H2k(Γ,Q) ̸= 0 for some k ≥ 1 and hence, Γ is not local-to-local stable.

The important question of constructing concrete approximate represen-
tations corresponding to specific cohomology classes was addressed by Glebe
in [21]. For a class of groups Γ that includes all finitely generated nilpotent
groups, Glebe developed a method and an algorithm that, for any given ele-
ment of H2(Γ,Z), generates an approximate representation of Γ that cannot be
perturbed to a true representation. This conceptualizes the role of Voiculescu’s
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unitaries and extends their construction from Z2 to nilpotent groups. These
methods were refined in [22] to control the growth of the dimension of the
almost representations leading to results on non-stability with respect to the
Frobenius norm and other unnormalized p-norms.

3. UNIFORM-TO-UNIFORM STABILITY

A group Γ is uniform-to-uniform stable if for any sequence of unital maps
{ρn : Γ → U(n)} such that

lim
n→∞

(
sup
s,t∈Γ

∥ρn(st)− ρn(s)ρn(t)∥
)
= 0

there is a sequence of representations {πn : Γ → U(n)} satisfying

lim
n→∞

(
sup
s∈Γ

∥ρn(s)− πn(s)∥
)
= 0.

Uniform stability is called Ulam stability in [4].

Examples of uniform-to-uniform stable groups. Kazhdan proved
in [33] that all amenable groups are uniform-to-uniform stable. Burger, Ozawa
and Thom proved in [4] that if O is the ring of integers of a number field,
S ⊂ O is a multiplicatively closed subset, and OS is the localized ring, then
the group SLn (OS) is uniform-to-uniform stable, for n ≥ 3. In particular,
the groups SLn(Z), n ≥ 3, have this property. In a recent paper, Glebsky,
Lubotzky, Monod and Rangarajan [23] developed a new cohomology theory,
termed asymptotic cohomology, that captures the obstruction to uniform-to-
uniform stability. In particular, they extended the stability results of [4] to
numerous lattices in higher-rank semisimple Lie groups.

Examples of groups which are not uniform-to-uniform stable.
Kazhdan proved in [33] that the surface groups Γg of genus g > 1 are not
uniform-to-uniform stable. More generally, it was shown in [4] that if the
comparison map J : H2

b (Γ,R) → H2(Γ,R) is not injective, then Γ is not uni-
formly stable. Consequently, the non-elementary hyperbolic groups are not
uniformly stable, since J is not injective for such groups [19]. We write here
a sketch of the argument from [4]. Let QHh(Γ,R) denote the space of ho-
mogeneous quasimorphisms ϕ : Γ → R. These are maps such that the map
(s, t) 7→ ϕ(st)−ϕ(s)−ϕ(t) is bounded on Γ×Γ and ϕ(sk) = kϕ(s). One verifies
that ker J ∼= QHh(Γ,R)/Hom(Γ,R). If ϕ ∈ QHh(Γ,R) is not a homomorphism,
then the sequence of maps {ρn : Γ → U(1)}, defined by

ρn(s) = e
2πi
n

ϕ(s)
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is not uniformly perturbable to a sequence of homomorphisms since for any
n ∈ N and any homomorphism π : Γ → U(1) one has sup

s∈Γ
∥ρn(s)−π(s)∥ ≥

√
3.

4. UNIFORM-TO-LOCAL STABILITY

A countable discrete group Γ is uniform-to-local stable if for any sequence
of unital maps {ρn : Γ → U(n)} such that

lim
n→∞

(
sup
s,t∈Γ

∥ρn(st)− ρn(s)ρn(t)∥
)
= 0

there is a sequence of representations {πn : Γ → U(n)} satisfying

lim
n→∞

∥ρn(s)− πn(s)∥ = 0, for all s ∈ Γ.

It is clear that the class of uniform-to-local stable groups includes all the local-
to-local stable groups and all the uniform-to-uniform stable groups

The notion of uniform-to-local stability was introduced in [12]. This was
inspired by the observation that Kazhdan proves more that what he states
in Theorem 2 of [33], namely he shows that the surface groups Γg of genus
g > 1 are not only not uniform-to-uniform stable; in fact, they are not even
uniform-to-local stable. Uniform-to-uniform stability is a strictly stronger con-
dition than uniform-to-local stability. Indeed, if Γ has a finite index subgroup
isomorphic to a free group Fk, then Γ is local-to-local stable [17], [1] and hence
uniform-to-local stable, but Γ is not uniform-to-uniform stable if k ≥ 2, due to
the existence of nontrivial homogeneous quasimorphisms ϕ : Fk → R, [4].

By developing an idea of Gromov [25, p. 166], we prove that many of
the cocompact lattices in the Lorentz group SO0(n, 1), n > 1 are not uniform-
to-local stable. More generally, we have the following theorem. Let bi(M) =
dimRH

2i(M,R) denote the Betti numbers of a manifold M .

Theorem 4.1. Let M be a closed connected Riemannian manifold with
strictly negative sectional curvature and residually finite fundamental group. If
b2i(M) > 0 for some i > 0, then π1(M) is not uniform-to-local stable.

Concerning the assumption on Betti numbers, observe that if M is ori-
entable and dimM = 2m then b2m(M) = 1, while if M is orientable and
dimM = 2m+1, then it suffices to require that bi(M) > 0 for some 1 ≤ i ≤ 2m,
since bi(M) = b2m+1−i(M) by Poincaré duality and either i or 2m+1− i must
be even.

Corollary 4.2. Let Γ be a torsion free cocompact lattice in SO0(n, 1).

(i) If n is even then Γ is not uniform-to-local stable.
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(ii) If n is odd and bi(Γ) > 0 for some i > 0 then Γ is not uniform-to-local
stable.

The corollary reproves Kazhdan’s result since Γg ⊂ SO0(2, 1), g > 1. For
other concrete examples, consider

G = SO0

(
x21 + · · ·+ x2n −√

p x2n+1,R
) ∼= SO0(n, 1),

where p is a square free integer. Let O be ring of integers of Q√
p. Then

O = Z+Z√p if p ̸≡ 1 (mod 4) and O = {a+b
√
p

2 : a, b ∈ Z, a−b ≡ 0 (mod 2)} if
p ≡ 1 (mod 4) and GO is a cocompact arithmetic lattice in G, [3]. By a result
of Li and Millson [38], any arithmetic lattice in SO0(n, 1), n ̸= 3, 7 contains a
congruence subgroup Γ such that b1(Γ) > 0.

5. C∗-STABILITY

A countable group Γ is C∗-stable if for any sequence {ρn : Γ → U(Bn)}n
of unital maps, where Bn are unital C∗-algebras, such that

lim
n→∞

∥ρn(st)− ρn(s)ρn(t)∥ = 0, ∀ s, t ∈ Γ

there exist homomorphisms {πn : Γ → U(Bn)}n satisfying

lim
n→∞

∥ρn(s)− πn(s)∥ = 0, ∀ s ∈ Γ.

If in the definition above we consider only C∗-algebras Bn in a class B, we
say that the group Γ is C∗-stable with respect to the class B. We note that
local-to-local stability corresponds to C∗-stability relative to finite dimensional
C∗-algebras. Eilers, Shulman and Sørensen showed the following.

Theorem 5.1 ([17]). All finitely generated virtually free groups are C∗-
stable.

Prompted by a question of Shlyakhtenko concerning the possible role of
the odd-dimensional cohomology groups in group stability, we showed in [12]
the following.

Theorem 5.2. Let Γ be a countable discrete MF-group that admits a γ-
element. If Hk(Γ,Q) ̸= 0 for some k ≥ 1, then Γ is not C∗-stable with respect
to the class {Mn(C(T)) : n ≥ 1}.

Theorem 5.2 may be viewed as a weak topological converse of Theo-
rem 5.1: a C∗-stable group must have the rational cohomology of a (virtually)
free group.
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6. QUASIDIAGONAL GROUPS AND ALMOST
REPRESENTATIONS

As mentioned in the Introduction, for a discrete group Γ there are several
known methods for producing interesting almost representations with respect
to the operator norm. We introduced in [8], [9] a method for constructing
almost representations from quasidiagonal K-homology classes in K0(C∗(Γ)) =
KK(C∗(Γ),C). This relies on the concept of a quasidiagonal group.

A representation π : Γ → U(H) is quasidiagonal if there is an increasing
sequence (pn)n of finite dimensional projections which converges strongly to 1H
and such that limn→∞ ∥[π(s), pn]∥ = 0 for all s ∈ Γ. A group Γ is quasidiago-
nal if it admits a faithful quasidiagonal unitary representation on a separable
Hilbert space. Equivalently, Γ embeds in the unitary group of a unital and qua-
sidiagonal C∗-algebra. Quasidiagonality of Γ is weaker than quasidiagonality
of C∗(Γ). Indeed, the following assertions are equivalent, see [10]:

(i) Γ is quasidiagonal.

(ii) The left regular representation λΓ is weakly contained in some quasidi-
agonal representation π of Γ.

(iii) The canonical map C∗(Γ) → C∗
r (Γ) factors through a unital quasidiago-

nal C∗-algebra.

Let A and B separable C∗-algebras and assume that B is unital. An element
x ∈ KK(A,B) is quasidiagonal if it is represented by a Cuntz pair φ,ψ : A→
M(K(H) ⊗ B), φ(a) − ψ(a) ∈ K(H) ⊗ B, for all a ∈ A, with the property
that there exists an approximate unit of projections (pn)n of K(H) such that
limn→∞ ∥[ψ(a), pn ⊗ 1B]∥ = 0, for all a ∈ A. The quasidiagonal elements form
a subgroup of KK(A,B), denoted by KK(A,B)qd. Let Q =

⊗
n∈NMn(C)

denote the universal UHF-algebra. By combining techniques from [9] with
Kubota’s idea of considering intermediate group C∗-algebras [34], we showed
in [10] that the dual assembly map ν : KK(C∗(Γ), B)) → RK0(BΓ;B) of
Kasparov has certain properties for quasidiagonal groups that are crucial in
our results on group instability.

Theorem 6.1. Let Γ be a countable discrete quasidiagonal group and let
B be a separable nuclear unital C∗-algebra. If Γ admits a γ-element, then
γKK(C∗(Γ), B)) ⊂ KK(C∗(Γ), B)qd. It follows that ν(KK(C∗(Γ),Q)qd) =
RK0(BΓ;Q). If we also assume that Γ is torsion free, then ν(K0(C∗(Γ))qd) =
RK0(BΓ).

Remark 6.2. (i) All finitely generated linear groups are quasidiagonal.
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(ii) All maximally periodic groups are quasidiagonal. All residually amenable
groups are quasidiagonal as a consequence of [41].

(iii) If Γ1 is quasidiagonal and Γ2 is amenable, then the wreath product Γ1 ≀Γ2

is quasidiagonal, [16].

(iv) The class of quasidiagonal groups is strictly larger than the class of resid-
ually amenable groups. Indeed, we showed in [10] that the orthogonal
group On(Q), n ≥ 5 is quasidiagonal but not residually amenable. We
do not have examples of quasidiagonal groups which are not locally em-
beddable in amenable groups.

(v) Infinite simple property (T) groups are not quasidiagonal. More gener-
ally, Ozawa and Thom showed that an infinite property (T) quasidiagonal
group must have an infinite residually finite quotient.

Theorem 6.1 gives a powerful functional analytic method for constructing
almost flat K-theory classes which is complementary to the geometric methods
of Gromov [24], [25]. If we assume in addition that Γ is local-to-local stable,
then the image of KK(C∗(Γ),Q)qd under the dual assembly map restricted to
compact subspaces Y of BΓ consists entirely of flat K-theory classes.

νY (KK(C∗(Γ),Q)qd) ⊂ RK0(Y ;Q)flat = RK0(Y ;Q)flat.

Since the Chern classes of flat complex bundles vanish rationally, one deduces
that the cohomology groups H2k(BΓ,Q) ∼= H2k(Γ,Q) must vanish for k > 0.

We conclude this section by sketching the construction of almost repre-
sentations of Γ which are not near true representations starting from quasidi-
agonal K-homology classes in K0(C∗(Γ)) = KK∗(C∗(Γ),C). We assume that
Γ has a γ-element (this is the case if, for example, Γ is boundary amenable
(exact) or if Γ is linear or if Γ is hyperbolic.) For simplicity, also assume
that Γ is torsion free. Under these assumptions, Kasparov has shown that
the dual assembly map ν : KK(C∗(Γ),C) → K0(BΓ) is surjective with kernel
(1 − γ)KK(C∗(Γ),C). In particular, the restriction of ν to γKK(C∗(Γ),C)
is surjective. If we assume in addition that Γ is quasidiagonal (for example,
residually finite), then γKK(C∗(Γ),C) ⊂ KK(C∗(Γ),C)qd by Theorem 6.1
and hence, the restriction map ν : KK(C∗(Γ),C)qd → RK0(BΓ) is surjective.

Every class x ∈ KK(C∗(Γ),C)qd is represented by a pair of ∗-represen-
tations φ,φ′ : C∗(Γ) → M(K(H)) = B(H), such that φ(a) − φ′(a) ∈ K(H),
for all a ∈ C∗(Γ) and with property that there is an increasing approximate
unit (pn)n of K(H) consisting of projections such that (pn)n commutes asymp-
totically with both φ(a) and φ′(a), for all a ∈ C∗(Γ).
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It follows that the compressions φn(a) = pnφ(a)pn and φ′
n(a) = pnφ

′(a)pn
are completely positive asymptotic homomorphisms φn, φ

′
n : C∗(Γ) → K(H).

lim
n→∞

(
∥φn(ab)− φn(a)φn(b)∥+ ∥φ′

n(ab)− φ′
n(a)φ

′
n(b)∥

)
= 0, ∀a, b ∈ C∗(Γ).

It is routine to perturb these maps to unital completely positive asymptotic
homomorphisms φn : C∗(Γ) → Mk(n)(C) and φ′

n : C∗(Γ) → Mk′(n)(C). Their
restrictions to Γ are sequences of almost representations φn : Γ → GLk(n)(C)
and φ′

n : Γ → GLk′(n)(C), which we can further perturb to sequences of almost
representations (denoted by the same symbols) φn : Γ → U(k(n)) and φ′

n :
Γ → U(k′(n)), since φn(s) and φ

′
n(s) are almost unitaries. We can now use the

sequences (φn)n and (φ′
n)n that we associated to the class x ∈ KK(C∗(Γ),C)qd

to calculate ν(x) ∈ RK0(BΓ) as we describe in the sequel.

Mishchenko’s line-bundle ℓΓ is the canonical flat C∗(Γ)-bundle over the
classifying space of Γ, EΓ×ΓC

∗(Γ) → BΓ, defined by the diagonal action Γ ⊂
C∗(Γ). If BΓ is compact, then the bundle ℓΓ can be equivalently represented
by a projection eΓ ∈ Mm(C(BΓ)⊗ C∗(Γ)). Let id denote the identity map of
Mm(C(BΓ)). As argued in [9, Proposition 2.5],

ν(x) = ν
[
(φ,φ′)

]
= (id ⊗ φn)♯(eΓ)− (id ⊗ φ′

n)♯(eΓ) ∈ K0(BΓ)

for all sufficiently large n. Here, (id ⊗ φn)♯(eΓ) and (id ⊗ ψn)♯(eΓ) are the
K-theory classes of the projections in matrices over C(BΓ) obtained by contin-
uous functional calculus from the approximate projections (id ⊗ φn)(eΓ) and
(id ⊗ φ′

n)(eΓ). If one assumes that both sequences φn, φ
′
n can be perturbed to

sequences of true representations πn : Γ → U(k(n)) and π′n : Γ → U(k′(n))
such that

lim
n→∞

(
∥φn(s)− πn(s)∥+ ∥φ′

n(s)− π′n(s)∥
)
= 0, for all s ∈ Γ,

then

ν(x) = (id ⊗ πn)♯(eΓ)− (id ⊗ π′n)♯(eΓ).

But (id⊗πn)♯(eΓ) and (id⊗π′n)♯(eΓ) coincide with the K-theory classes of the
complex flat bundles

EΓ×Γ Ck(n) → BΓ and EΓ×Γ Ck′(n) → BΓ

associated to the representations πn and π′n. Thus, ν(x) ∈ K0(BΓ)flat and
hence, all the Chern classes of ν(x) vanish rationally. In view of the surjectivity
of ν, it follows that the cohomology groups H2k(BΓ,Q), k > 0 must vanish. If
BΓ is not compact, one proceeds similarly using restrictions of ℓΓ to compact
subspaces of BΓ.
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[7] A. Connes, M. Gromov, and H. Moscovici, Conjecture de Novikov et fibrés presque plats.
C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), 5, 273–277.

[8] M. Dadarlat, Group quasi-representations and index theory. J. Topol. Anal. 4 (2012), 3,
297–319.

[9] M. Dadarlat, Group quasi-representations and almost flat bundles. J. Noncommut.
Geom. 8 (2014), 1, 163–178.

[10] M. Dadarlat, Obstructions to matricial stability of discrete groups and almost flat K-
theory. Adv. Math. 384 (2021), article no. 107722.

[11] M. Dadarlat, Quasi-representations of groups and two-homology. Comm. Math. Phys.
393 (2022), 1, 267–277.

[12] M. Dadarlat, Non-stable groups. 2023, arXiv:2304.04645.

[13] J. R. Carrión and M. Dadarlat, Almost flat K-theory of classifying spaces. J. Noncommut.
Geom. 12 (2018), 2, 407–438.

[14] M. Dadarlat and E. Guentner, Constructions preserving Hilbert space uniform embed-
dability of discrete groups. Trans. Amer. Math. Soc. 355 (2003), 8, 3253–3275.

[15] M. Dadarlat and U. Pennig, Connective C∗-algebras. J. Funct. Anal. 272 (2017), 12,
4919–4943.

[16] M. Dadarlat, U. Pennig, and A. Schneider, Deformations of wreath products. Bull. Lond.
Math. Soc. 49 (2017), 1, 23–32.

[17] S. Eilers, T. Shulman, and A. P. W. Sørensen, C∗-stability of discrete groups. Adv. Math.
373 (2020), article no. 107324.

[18] R. Exel and T. A. Loring, Invariants of almost commuting unitaries. J. Funct. Anal. 95
(1991), 2, 364–376.

[19] D. B. A. Epstein and K. Fujiwara, The second bounded cohomology of word-hyperbolic
groups. Topology 36 (1997), 6, 1275–1289.

[20] M. Gerasimova and K. Shchepin, Stability of amalgamated free products and HNN ex-
tensions. 2023, arXiv:2305.08720v2.

[21] F. Glebe, A Constructive Proof that Many Groups with Non-Torsion 2-Cohomology are
Not Matricially Stable. 2024, arXiv:2204.10354.



484 M. Dadarlat 14

[22] F. Glebe, Frobenius non-stability of nilpotent groups. Adv. Math. 428 (2023), article
no. 109129.

[23] L. Glebsky, A. Lubotzky, N. Monod, and B. Rangarajan, Asymptotic Cohomology and
Uniform Stability for Lattices in Semisimple Groups. 2022, arXiv:2301.00476.

[24] M. Gromov, Geometric reflections on the Novikov conjecture. In: Novikov Conjectures,
Index Theorems and Rigidity, Vol. 1. London Math. Soc. Lecture Note Ser. 226, pp.
164–173, Cambridge Univ. Press, Cambridge, 1995.

[25] M. Gromov, Positive curvature, macroscopic dimension, spectral gaps and higher signa-
tures. In: Functional Analysis on the Eve of the 21st Century, Vol. II. Progr. Math. 132,
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