


1 Introduction

Information access—which includes Information Retrieval (IR), Recommender Systems (RS), and
Natural Language Processing (NLP)—has a long tradition of relying heavily on experimental eval-
uation, dating back to the mid-1950s, a tradition that has driven the research and evolution of the
field. However, nowadays, research and development of information access systems are confronted
with new challenges: information access systems are called to support a much wider set of user
tasks (informational, educational, and entertainment, just to name a few) which are increasingly
challenging, and as a result, research settings and available opportunities have evolved substan-
tially (e.g., better platforms, richer data, but also developments within the scientific culture) and
shape the way in which we do research and experimentation.

Therefore, we face two problems: Can we re-innovate how we do research and experimentation
in the field by addressing emerging challenges in experimental processes to develop the next gener-
ation of information access systems? How can a new paradigm of experimentation be leveraged to
improve education to give an adequate basis to the new generation of researchers and developers?

The Dagstuhl Seminar 23031 on “Frontiers of Information Access Experimentation for Research
and Education” brought together experts from various sub-fields of information access to create a
joint understanding of the problems and challenges presented above, to discuss existing solutions
and impediments, and to propose next steps to be pursued in the area [Bauer et al., 2023a].

We started the seminar week with a series of long and short talks delivered by participants.
This helped in setting a common ground and understanding and in letting emerge the topics and
themes that participants wished to explore as the main output of the seminar.

This led to the definition of five groups which explored challenges, opportunities, and next
steps in the following areas:

❼ Reality check: Ferwerda, Hanbury, Knijnenburg, Larsen, Michiels, Papenmeier, Said,
Schaer, and Willemsen [2023] identified the main challenges in doing real-world studies in
RS and IR research – and points to best practices and remaining challenges in both how
to do domain-specific or longitudinal studies, how to recruit the right participants, using
existing or creating new infrastructure including appropriate data representation, as well as
how, why and what to measure.

❼ Human-machine-collaborative relevance judgment frameworks: Clarke, Demartini,
Dietz, Faggioli, Hagen, Hauff, Kando, Kanoulas, Potthast, Soboroff, Stein, and Wachsmuth
[2023] studied the motivation for using Large Language Models (LLMs) to automatically
generate relevance assessments in information retrieval evaluation, and raises research ques-
tions about how LLMs can help human assessors with the assessment task, whether machines
can replace humans in assessing and annotating, and what are the conditions under which
human assessors cannot be replaced by machines.

❼ Overcoming methodological challenges in IR and RS through awareness and
education: Given the potential limitations of today‘s predominant experimentation prac-
tices, Bauer, Fröbe, Jannach, Kruschwitz, Rosso, Spina, and Tintarev [2023b] discussed the
need to better equip the various actors in the scientific ecosystem in terms of scientific meth-
ods, and identified a corresponding set of helpful resources and initiatives, which will allow
them to adopt a more holistic perspective when evaluating such systems.
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❼ Results-blind reviewing: The current review processes lead to undue emphasis on perfor-
mance, rejecting papers focusing on insights in case they show no performance improvements.
Beel, Breuer, Crescenzi, Fuhr, and Li [2023] proposed to introduce a results-blind reviewing
process forcing reviewers to put more emphasis on the theoretical background, the hypothe-
ses, the methodological plan and the analysis plan of an experiment, thus improving the
scientific quality of the papers being accepted.
This proposal has been then taken up by the CLEF 2023 conference which, as an experiment
and a first attempt to put these ideas into practice, introduced a new submission and review
model, based on two stages, i.e. a methodology and and experimental stage1.

❼ Guidance for authors: The Information Retrieval community has over time developed
expectations regarding papers, but these expectations are largely implicit. In contrast to
adjacent disciplines, efforts in the ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR) community have been rather sparse and are mostly due to
individuals expressing their own views. Drawing on materials from other disciplines, Di Nun-
zio, Maistro, Seifert, Urbano, and Zobel [2023] built a draft set of guidelines with the aim
of them being understandable, broad, and highly concise. The working group believes that
their proposal is general and uncontroversial, can be used by the main venues, and can be
maintained with an open and continuous effort driven by, and for, the community.

In the following sections, we report one by one the outcomes and recommendations of the
above working groups. For each working group, we discuss their motivations, their proposals,
and some next steps and recommendations. Finally, the last section reports the complete list of
participants who attended the seminar and contributed to the full report [Bauer et al., 2023a].

2 Reality Check—Conducting Real World Studies

As information retrieval and recommender systems are deployed in real world environments, we
should study their characteristics in “real world studies”. This raises the question: What does it
mean for a study to be realistic? Does it mean the user has to be a real user of the system or
can anyone participate in a study of the system? Does it mean the system needs to be perceived
as realistic by the user? Does it mean the manipulations need to be perceived as realistic by the
user?

Arguably, the most realistic users can be found on existing systems, which will typically have
a sufficiently large user base. However, this raises some additional questions. Firstly, how to
sample from this user base to obtain a representative sample. Secondly, these users may have
some expectations of the system, which may make them somewhat resistant to (drastic) changes.
On the other hand, recruiting new users comes with its own set of challenges.

In a similar vein, the largest degree of “system realism” would be achieved by studying real users
of an existing system. For example, log-based studies have been considered the best examples of
real world studies [Kelly, 2007] since they capture behavior in a real-life setting, with little chance
of contamination or bias. However, this limits the amount of control we, as researchers, can exert,
and thus the research questions we can pose and answer. On the other hand, highly controlled

1https://clef2023.clef-initiative.eu/index.php?page=Pages/cfp.html
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to be considered. Moreover, to make a real world study sufficiently realistic and also understand
how behavior changes over time and how habits are formed, we will need to consider longitudinal
studies which come with their own set of challenges.

Even when we carefully design our experiments and research questions and select the appro-
priate participants, we may arrive at conclusions that do not necessarily generalize beyond the
domain.

Finally, the cost of running a real world study is typically many times higher than performing
offline evaluation [Zangerle and Bauer, 2022]. Therefore it is important to also consider the
available research infrastructure, and promote the development of reusable research infrastructure
and provide datasets in sufficiently general formats to promote reuse.

Next Steps and Recommendations

The following steps should be taken to carefully determine the goals of conducting real world
studies:

❼ Classify domains by knowledge task types
❼ Establish context-specific evaluation targets
❼ Carefully consider users’ information needs when conducting studies
❼ Develop a checklist of sample characteristics and user task details that should be collected
and reported for each study

The following resources would expedite the design, execution and evaluation of real world
studies:

❼ Provide researchers with access to flexible real world research infrastructure
❼ Obtain sufficiently large and rich content corpora that can be used in real world studies
❼ Create a repository of validated measurement scales
❼ Standardize practices for scale development
❼ Establish effective recruitment methods to find the “right” participants for a study
❼ Develop metrics that are as unobtrusive as possible to measure
❼ Design standardized but flexible ways to represent the data and meta-data collected in real
world studies

❼ Study effective ways to limit attrition in longitudinal studies
❼ Produce best-practices guidelines for developing real world systems, getting infrastructures
up and running, maintaining them and providing support for both users and researchers

❼ Establish guidelines to protect the privacy of research participants

The following steps must be taken to allow researchers to integrate the findings of real
world studies into generalizable knowledge:

❼ Use theory to integrate domain-specific knowledge into a generalized knowledge
❼ Define a theoretical framework for measurement
❼ Develop an infrastructure for researchers to contribute analyses of and insights about real
world datasets in a centralized manner
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out (not provided to the IR system) supporting information about the topic would yield the
best and fastest annotations? What weighting between human and LLMs and AI-assisted
annotations is ideal?

❼ RQ2: Can machines (either in the form of LLMs or in general as Artificial Intelligence (AI)
models) replace humans in assessing and annotating? This question raises also concerns
about what annotation target (e.g., relevance labeling, summarization, paragraph highlight-
ing, exam questions [Sander and Dietz, 2021]) would yield the best and fastest annotations.

❼ RQ3: What are the conditions under which human assessors cannot be replaced by ma-
chines? Alternatively, in which role can the Human assessor most productively provide
relevance assessments?

Answering the questions mentioned would also require finding viable solutions for a set of
additional questions and open issues that touch a number of IR evaluation process steps.

❼ Assessors And Collections:

– How to use LLM to help assessors: some examples of possible usages include, sum-
marising text, associating keywords and identifying the content of long podcasts to
help assessors annotate the documents, for example by highlighting relevant fragments
of text/podcast or segments with correct answers.

– What is the effective role of the human assessor in annotating material for generative
models? Should the annotator provide input at the beginning of the pipeline, by
annotating the original documents, or are they more useful downstream, after the task
has been carried out?

– Generative models can be used to create new collections: corpora, conversations,
queries, abstracts and so on.

❼ LLM and generative models to retrieve information in a broader sense:

– IR tasks that employ LLMs have the means to provide more details: often a single
answer is not satisfactory for the user. How to support the user in exploring the results
further (for example via links and connected pages). Generative models can help,
but is this helpful when the model simply generates the response without knowing
where it comes from? In many cases, the user is not interested in receiving only the
direct/short answer, but rather in seeing which documents contain it and related pieces
of information to expand their knowledge.

❼ LLMs as an evaluation tool:

– The model is biased: how can we use it to evaluate itself? If a model has been trained
on biased data, then also the evaluation is prone to the same biases. How to detect
and account for such biases?

❼ Evaluating LLMs and their trustworthiness:

– Can we find a way to understand and measure to what level we can trust the results
of a generative model?

– How to carry out fact-checking, for example by identifying the source of information of
a generative model and verifying that it is presented accurately.
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Prompt Select the passage that answers the question better.
- If both answers are similar, select the one with the least extraneous information.
- If both answers are still similar, select the one with the best formatting.

Question:
What are anemia’s possible causes?

Passage 1:
If you have anemia, your blood does not carry enough oxygen to the rest of your body.
The most common cause of anemia is not having enough iron. Your body needs iron
to make hemoglobin. Hemoglobin is an iron-rich protein that gives the red color to
blood. It carries oxygen from the lungs to the rest of the body. Anemia has three main
causes: blood loss, lack of red blood cell production, and high rates of red blood cell
destruction

Passage 2:
Broadly, causes of anemia may be classified as impaired red blood cell (RBC) produc-
tion, increased RBC destruction (hemolytic anemias), blood loss and fluid overload
(hypervolemia

ChatGPT Passage 1:
If you have anemia, your blood does not carry enough oxygen to the rest of your body.
The most common cause of anemia is not having enough iron. Your body needs iron to
make hemoglobin. Hemoglobin is an iron-rich protein that gives the red color to blood.
It carries oxygen from the lungs to the rest of the body. Anemia has three main causes:
blood loss, lack of red blood cell production, and high rates of red blood cell destruction.

YouChat Passage 1 is the better answer, as it provides an explanation of what anemia is, and
then lists the three main causes in detail, which is the most relevant information for
the question. Passage 2, while providing some good background information, does not
provide the same level of specificity as Passage 1, and includes extraneous information
that is not directly relevant to the question.

Figure 3. Response of two well-known LLMs in comparing two passages as answer for the query 54 8
from CAsT ’19: “What are anemia’s possible causes?”

– Distinguish between human and machine-generated data: Important for many tasks,
such as journalism, where it is of uttermost importance to verify the information.
Human-generated data is more trusted.

We argue that the collaboration between humans and Machine Learning (ML), especially
under the form of LLMs, could be abstracted in the form of a spectrum. On the two extremes of
this spectrum, we have either the human or the machine entirely tasked to annotate documents
for relevance with respect to a query. Within the spectrum, humans and LLMs interact to a
different extent. Theoretically, such a spectrum corresponds also to moving from highly expansive
annotations in terms of human effort, cost and time, but with high-quality annotations, to a much
less expensive annotation procedure with also a decreased annotation quality. We also argue
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Prompt Select the passage that answers the question better.
- If both answers are similar, select the one with the least extraneous information.
- If both answers are still similar, select the one with the best formatting.

Question:
What is a DC half smoke?

Passage 1:
However, celebrities at Ben’s are not limited to American citizens. In 1998, former
DC mayor Marion Barry described having traveled to Ghana and meeting the Mayor
of Accra, an alumnus of Howard University, whose greeting was, “Glad to have you in
Accra. Is Ben’s Chili Bowl still there?” And when French President Nicolas Sarkozy and
his wife Carla Bruni-Sarkozy visited Washington, D.C. in March 2010, they reportedly
each had two of Ben’s half smokes during their visit to the restaurant.

Passage 2:
A half-smoke is a “local sausage delicacy” found in Washington, D.C. and the
surrounding region. Similar to a hot dog, but usually larger, spicier, and with more
coarsely-ground meat, the sausage is often half-pork and half-beef, smoked, and served
with herbs, onion, and chili sauce.

ChatGPT Passage 2:
A half-smoke is a local sausage delicacy found in Washington, D.C. and the surrounding
region. Similar to a hot dog, but usually larger, spicier, and with more coarsely-ground
meat, the sausage is often half-pork and half-beef, smoked, and served with herbs, onion,
and chili sauce.

YouChat Passage 2 is the better answer as it more directly answers the question and does not
include any extraneous information.

Figure 4. Response of two well-known LLMs in comparing two passages as answer for the query 67 8
from CAsT ’19: “What is a DC half smoke?”

that something exists beyond the spectrum; it corresponds to the scenario in which the machine
overcomes the human, by producing relevance judgments without any form of bias. We observed
this phenomenon happening already in several tasks and scenarios, and therefore we can aspect
this to happen also with respect to the construction of the relevance judgments.

Next Steps and Recommendations

Figures 3 and 4 report two examples of document annotation done with two well-known LLMs:
YouChat3 and ChatGPT4. It is interesting to notice that, in both cases, both models provided
the correct answer, correctly identifying the passage which was annotated as more relevant. It is
possible to observe that, while ChatGPT simply repeats the relevant passage, YouChat is capable
of correctly identifying the reason why a passage is more relevant than the other.

3https://you.com/
4https://chat.openai.com/
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To assess the feasibility of the proposed approaches, next steps would include an experimental
comparison of the different Collaborative-Human-Machine paradigms. This should include multi-
ple test collections (e.g., TREC-8 and TREC Deep Learning), multiple types of judgments (e.g.,
binary, graded, preference), and multiple models (e.g., GPT-2, GPT-3, chatGPT, etc.). Compar-
ison between human-generated judgments and machine-generated judgments may be performed
both using inter-assessor agreement metrics as well as IR system ranking correlation methods.

A more detailed discussion can be found in the full report [Clarke et al., 2023]. Since the
workshop, a follow-up article about the study, conclusions, and expert opinions was published
[Faggioli et al., 2023].

4 Overcoming Methodological Challenges in Information

Retrieval and Recommender Systems through Aware-

ness and Education

In recent years, we have observed a substantial increase in research in IR and RS. To a large
extent, this increase is fueled by progress in ML (deep learning) technology. As a result, countless
papers are nowadays published each year which report that they improved the state-of-the-art
when adopting common experimental procedures to evaluate ML based systems. However, a
number of issues were identified in the past few years regarding these reported findings and their
interpretation. For example, both in IR and RS, studies point to methodological issues in offline
experiments, where researchers for example compare their models against weak or non-optimized
baselines or where researchers optimize their models on test data rather than on held-out validation
data [Armstrong et al., 2009; Ferrari Dacrema et al., 2019; Sun et al., 2020; Yang et al., 2019].

Besides these issues in offline experiments, questions concerning the ecological validity of the
reported findings are raised increasingly. Ecological validity measures how generalizable exper-
imental findings are to the real world. An example of this problem in information retrieval is
the known problem of mismatch between offline effectiveness measurement and user satisfaction
measured with online experimentation [Chen et al., 2017; Hassan et al., 2010; Mao et al., 2016;
Sanderson et al., 2010; Zhang et al., 2020] or when the definition of relevance does not consider
the effect on a searcher and their decision-making. For example, the order of search results,
and the viewpoints represented therein, can shift undecided voters toward any particular candi-
date if high-ranking search results support that candidate [Epstein and Robertson, 2015]. This
phenomenon—often referred to as the Search Engine Manipulation Effect (SEME) —has been
demonstrated for both politics [Epstein and Robertson, 2015; Epstein et al., 2017] and health [Al-
lam et al., 2014; Pogacar et al., 2017]. By being aware of the phenomena, methods have been
adapted to measure its presence [Draws et al., 2023, 2021a], and studies to evaluate when and
how it affects human decision-makers [Draws et al., 2021b]. Similar questions of ecological validity
were also raised in the RS field regarding the suitability of commonly used computational accu-
racy metrics as predictors of the impact and value such systems have on users in the real world.
Several studies indeed indicate that the outcomes of offline experiments are often not good proxies
of real-world performance indicators such as user satisfaction, engagement, or revenue [Beel and
Langer, 2015; Gomez-Uribe and Hunt, 2016; Jannach and Bauer, 2020].
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Overall, these observations point to a number of open challenges in how experimentation is
predominantly done in the field of information access systems. Ultimately, this leads to the ques-
tions of (i) how much progress we really make despite the large number of research works that are
published every year [Armstrong et al., 2009; Lin et al., 2021; Zobel, 2023] and (ii) how effective
we are in sharing and translating the knowledge we currently have for doing IR and RS experi-
mentation [Ferro and Sanderson, 2022; Sakai, 2018]. One major cause for the mentioned issues,
for example, seems to lie in the somewhat narrow way we tend to evaluate information retrieval
and recommender systems: primarily based on various computational effectiveness measures. In
reality, information access systems are interactive systems used over longer periods of time, i.e.,
they may only be assessed holistically if the user’s perspective (task and context) is taken into
account, cf. [Lykke et al., 2022; White, 2016; Zangerle and Bauer, 2022]. Studies on long-term
impact furthermore need to consider the wider scope of stakeholders [Bauer and Zangerle, 2019;
Jannach and Bauer, 2020]. Moreover, for several types of information access systems, the specific
and potentially competing interests of multiple stakeholders have to be taken into account [Bauer
and Zangerle, 2019]. Typical stakeholders in a recommendation scenario include not only the con-
sumers who receive recommendations but also recommendation service providers who for example
want to maximize their revenue through the recommendations [Jannach and Adomavicius, 2017;
Jannach and Bauer, 2020].

Various factors contribute to our somewhat limited view of such systems, e.g., the difficulties of
getting access to real systems and real-world data for evaluation purposes. Unfortunately, the IR
and RS research communities to a certain extent seem to have accepted to live with the limitations
of the predominant evaluation practices of today. Even more worryingly, the described narrow
evaluation approach has become more or less a standard in the scientific literature, and there is
not much debate and—as we believe—sometimes even limited awareness of the various limitations
of our evaluation practices.

There seems to be no easy and quick way out of this situation, even though some of the
problems are known for many years now [Ekstrand et al., 2011; Hassan et al., 2010; Konstan
and Adomavicius, 2013; Sanderson et al., 2010]. However, we argue that improved education
of the various actors in the research ecosystem (including students, educators, and scholars) is
one key approach to improve our experimentation practices and ensure real-world impact in the
future. As will be discussed in the next sections, better training in experimentation practices is
not only important for students, but also for academic teachers, research scholars, practitioners
and different types of decision-makers in academia, business, and other organizations. This will,
in fact, help address the much broader problems of reproducibility5 and replicability6 that we
face in Computer Science [Cockburn et al., 2020; Freire et al., 2016] in general and in AI in
particular [Gundersen and Kjensmo, 2018].

Finally, Combining and integrating resources and efforts in novel ways has the potential to
reduce or even remove barriers between research and education, ultimately enabling Humboldt’s
ideal to combine teaching and research. Students who participate in shared tasks as part of
their curriculum already go in this direction [Elstner et al., 2023]. Continuously maintaining and
promoting the integration of test collections and up-to-date best practices for shared tasks into a

5https://www.wired.com/story/machine-learning-reproducibility-crisis/
6https://cacm.acm.org/magazines/2020/8/246369-threats-of-a-replication-crisis-in-empirical

-computer-science/abstract
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defined.8 These guidelines may inspire educators on how to characterize the role of these tools in
learning & teaching environments, including assessment design and plagiarism policies.9

In addition, a current culture of ‘publish or perish’ incentivizes short-term and incremental
findings,10 over more holistic thinking and thoughtful comparative analysis. The problem of
‘State-of-the-Art (SOTA)-chasing’ has also been discussed in other research areas, e.g., in NLP
[Church and Kordoni, 2022]. Change in academic incentive systems both within institutions and
for conferences and journals change slowly but they do evolve.

Students and Educators. Thankfully, institutions are increasingly recognizing the need for
reviewing studies before they are performed, such as Ethics and Data Management plans.11 In
Bachelor and Master education, in particular, this means that instructors may require training in
writing such documents, and institutions appreciate and are equipped for timely review. Therefore,
planning of education would benefit from allowing sufficient time for submission, review, and
revision.

In that context, teaching evaluation methodologies may require some colleagues to retrain, in
which case some resistance can be expected. Improving access to training initiatives and materials
at post-graduate level can support colleagues who are willing but need additional support. Various
forms of informal or even organized exchange between teachers may be a helpful instrument to
grow the competency of educators.

Furthermore, certain evaluation concepts and methodologies cannot be taught before certain
topics are covered in the curriculum. A student in recommender systems may need to understand
the difference between a classification and regression problem; or the difference between precision
and recall (for a given task and user it may be more important to retrieve accurate results, or to
retrieve a wider range of results) before they can start thinking about the social implications.

Moreover, some students are prone to satisfice, thinking that “good enough is good enough”:
there are many methodologies available for evaluation, and the options are difficult to digest in
a cost-effective way at entry-level—highlighting the need for availability of tutorials and low-
entry level materials. Embedding participation to shared tasks and competitions (e.g., CLEF labs
or Text REtrieval Conference (TREC) tracks) which provide a common framework for robust
experimentation may help overcome this challenge—although the synchronization between the
semester and participation timelines may not be straightforward.

Finally, there is a growing number of experiments in developing multi-disciplinary curricula
– with the appreciation that different disciplines bring to such a program. Successful initiatives
include group projects consisting of students in both Social Sciences and Humanities (SSH) and
Computer Science. In fact, one of the underlying principles of the continuously growing iSchools
consortium12 is to foster such interdisciplinarity. The challenge here is not only the design of the
content but also accreditation and support from the strategic level of institutions.

8For instance, see the Association for Computational Linguistics (ACL) 2023 Policy on AI Writing Assistance:
https://2023.aclweb.org/blog/ACL-2023-policy/.

9https://www.theatlantic.com/technology/archive/2022/12/chatgpt-ai-writing-college-student

-essays/672371/
10https://harzing.com/resources/publish-or-perish
11Further proposals for methodological review are also under discussion in Psychology, but will likely take longer

to reach Computer Science: https://www.nature.com/articles/d41586-022-04504-8
12https://www.ischools.org
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Practitioners. Maintenance of resources used to translate knowledge about models and method-
ologies for evaluation is challenging given the fast pace of the field. This can make it hard to
compare results across studies and to keep up with the SOTA of best practices in experimen-
tation. In this regard, lowering the entry barrier to participating in initiatives such as shared
tasks/challenges [Ferro, 2019; Harman and Voorhees, 2005] and maintaining documentation of
resources commonly used by non-experts are increasingly helpful.

Another issue is the homogeneity of actors. Often there is no active involvement of actors
outside a narrow academic Computer Science sphere, who otherwise might have indicated as-
sumptions or limitations early on. It can be challenging to set up productive collaborations
between industry and academia, as well as across disciplines. Typical issues include, for instance,
common terminology used in a different way, or different levels of knowledge of key performance
indicators. Co-design in labs has set a good precedent in this regard. Examples are ICAI in the
Netherlands13, its extension in the new 10-year ROBUST initiative14, and the Australian Centre
of Excellence for Automated Decision-Making and Society (ADM+S)15, where PhDs in multiple
disciplines (Social Sciences & Humanities, Computer Science, Law, etc.) are jointly being trained
in shared projects.

Research Advisory Boards are another effective instrument to draw in practitioners but here
the challenge is to make the most of the little time that is usually available for the exchange of
ideas between practitioners and academics.

Decision-makers. The output of evaluation and experimentation in IR and RS may be used
to inform decision-making on the societal level. Consequently, if the evaluation is poorly done,
or the results incorrectly generalized, the implications may also be poor decision-making with
far-reaching impacts on society, e.g. [Kahneman, 2011, Ch. 10].

The ability of the other actors to support education on evaluation is constrained and shaped
by decision-makers. Policy-makers in public organizations and program managers or deans in
academia play a crucial role in curriculum design. Scholars and educators will have to communicate
effectively the importance of experimental evaluation in information access in order to inform the
decision-making process. The challenge here is to initiate change in the first place and to drive
such changes. Any new initiative will necessarily involve not just a single decision-maker but more
stakeholders and committees making this a more effortful but possibly also more impactful process
than many of the other initiatives we have identified.

Additionally, decision-makers within academic institutions, namely libraries and career devel-
opment centres, can play an important role towards developing the competency of students and
educators. Making best practices in evaluation available as a commodity through these channels
will require making resources more accessible for non-experts in IR and RS.

Concluding Remarks

Education and dissemination represent key pillars to overcoming methodological challenges in
Information Retrieval and Recommender Systems. What we have sketched here can be interpreted
as a general roadmap to create more awareness among and beyond the IR and RS communities.

13https://icai.ai/
14https://icai.ai/ltp-robust/
15https://www.admscentre.org.au/
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We hope the recommendations—and the identified challenges to consider—on what we can do
will help to support education for better evaluation in the different stages of the lifelong learning
journey. We acknowledge that facets such as incentive mechanisms and processes in institutions
are often slow-moving. The vision proposed in this section is therefore also aimed at a longer-term
(5–10 years) perspective.

A more detailed discussion can be found in the full report [Bauer et al., 2023b].

5 Results-blind Reviewing

Campbell and Stanley [1963, p. 1] defined experiments as “that portion of research in which
variables are manipulated and their effects upon other variables observed”. Scientific experiments
are used in confirmatory research to test a priori hypotheses as well as in exploratory research to
gain new insights and help to generate hypotheses for future research [Shadish et al., 2002]. In
information access research, the ultimate goal is to gain insights into cause and effect. Unfortu-
nately, many reviewers of information access experiments place undue emphasis on performance,
rejecting papers that contain insights if they fail to show improvements in performance. The focus
on performance numbers not only leads to publication bias. It also puts additional pressure on
early-career researchers who must publish or perish, thus being tempted to cheat if their pro-
posed method does not yield the desired results. Moreover, reviewers pay little attention to the
experimental methodology and analysis in case the results are impressive [Fuhr, 2017]. Focusing
primarily on performance (and in particular aggregated performance) can lead to a neglect of
insights; gaining insights is critical to move the information access field forward and essential to
be able to make performance predictions [Ferro et al., 2018].

We think that one important step to change the situation is if we alter the review process such
that there is more emphasis on the theoretical background, the hypotheses, the methodological
plan and the analysis plan of an experiment, while improvement or decline of performance should
play less of a role when deciding about the quality of a paper. It is hoped that this will lead to
a higher scientific quality of publications, more insights, and improved reproducibility (as there
is less incentive for beautifying results). As Woznyj et al. [2018] note in their survey of editorial
board members, overall there are positive attitudes towards results-blind reviewing and advantages
for the scientific community outweigh concerns.

In order to move the review focus away from performance improvement, appealing to reviewers
alone will not be sufficient. A more drastic measure is the change of the review process such that
reviewers decide about acceptance vs. rejection of a paper without knowing the outcome of the
experiments described.

Next Steps and Recommendations

We propose several changes to the reviewing processes for information access papers to reduce
publication biases

Recommendation 1: Pilot test of results-blind reviewing in conference(s) or jour-
nal(s). Our first and most important recommendation is that the information access research
communities (i.e., IR and RS communities) adopt a results-blind approach to peer reviewing for
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possible to recover the blinded text. There should be a way for reviewers to easily determine
the differences between the results-blind version of the paper and the one with the results.

❼ Reviewers for the results-blind reviewing track have to be recruited. In the beginning,
additional or different expertise will be required for this track. A special introduction of
training for the reviewers might be necessary in order to make them familiar with the new
process and criteria.

❼ The reviewing software will need to be configured for multiple stages of review for the results-
blind reviewing. In the first stage of reviewing, only the blinded version of the papers should
be distributed to reviewers (see below for the process for reviewers).

❼ After the final decision by the PC, the authors will be provided with the review and informed
about the final accept or reject decision. In the case of a rejection decision, authors should
also be notified at which stage the paper was rejected.

❼ The organizers should give special recognition to the PC member of the track (on the con-
ference Web site and in the proceedings)

❼ The success of the new track and the process should be evaluated.

Once the reviewers are provided with instructions about the general process and received
additional training, we recommend the following process:

❼ In the first stage, the reviewers are provided with the results-blind version of the submission
and complete their review including a recommendation about the in-principle acceptance.

❼ Once the reviews are complete, a discussion phase with the SPC follows, leading to a rec-
ommendation for each paper.

❼ The PC for the track meets and makes an initial decision (in-principle acceptance or rejec-
tion) for each paper.

❼ For the second reviewing stage, only in-principle accepted papers are considered. Reviewers
get the full versions of the papers they reviewed before. They add an additional part to
their review focusing on the results which were previously blinded. Also, they make a
second recommendation about acceptance.

❼ As for the first phase, a discussion phase with the SPC follows leading to a recommendation
for each paper.

❼ The track PC meets for the second time and makes the final decision for each paper.

Authors will have to understand the new reviewing scheme, and possibly be trained for or
educated on how to prepare manuscripts that satisfy the new reviewing criteria. They will have
to prepare and submit two versions of a paper, a version with the results as in the traditional
model as well as one in which the results are blinded.

Recommendation 3: Emphasize insights in papers. We recommend that authors, confer-
ence organizers, and reviewers place additional emphasis on communicating expected insights to
be gained from experiments. Guidelines (and review forms) should ask the reviewers to comment
on the theoretical background, the hypotheses, the methodological plan and the analysis plan of
the experiment(s) described. Special attention should be given to the expected insights to be
gained from experiments, i.e. regarding cause and effect.
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Recommendation 4: Extra space for methods information. Another recommendation
is for the community to consider explicitly allowing methodological appendices for authors to
provide additional methodological details outside of page and/or word limits and to include these
appendices with the text of the paper and not as supplementary materials. While not needed for
all publications, this would be very beneficial for some types of studies so that the authors can
include all study materials. For example, in user studies, researchers may administer multiple
questionnaires, conduct a semi-structured interview, and read from a script. It is not uncommon
for researchers to administer multiple questionnaires and conduct a semi-structured interview.

This would be especially important if adopting a results-blind reviewing process as careful
scrutiny of the study design and all study materials is needed to ascertain whether the authors
will be able to answer the research questions. For example, due to page limits, it is common
for authors to describe the topics of an interview but uncommon to include the full text of an
interview guide due to page limits.

In addition, this would have an additional benefit for other researchers who wish to replicate
the study. While, for example, authors can currently make supplementary materials available in
ACM Digital Library (ACM DL), these materials are not included in the downloadable version of
the article or when reading online in the ACM DL in the eReader or HTML formats.

Recommendation 5: Consider a two-stage review process adapted from preregistered
or registered reports. Although our primary recommendation is for conference organizers
or journal editors to embrace a results-blind reviewing approach, we also recommend that they
consider piloting a conference track or article type in which the study protocol undergoes peer
review and is accepted in-principle before data collection or analysis begins. This may be more
appropriate for certain types of research (e.g., user studies).

Concluding Remarks

At first glance, the new result-blind reviewing scheme might seem to be only attractive for papers
describing failed experiments, while authors with successful results would go to the established
tracks. In order to avoid this impression, it is essential that the new scheme is piloted as a
highly visible and prestigious track in an established conference. Furthermore, it should be clearly
communicated that the results-blind reviewing scheme aims at establishing high standards for the
design, execution and analysis of experiments while shielding the reviewers from being blinded
by shiny experimental results. Thus, it is our hope that papers published in this track will be
regarded as high-quality publications which thoroughly address research questions and clearly
demonstrate the insights that may be gained from the research.

A more detailed discussion can be found in the full report [Beel et al., 2023].

6 Guidance for Authors

The IR community has over time developed a strong shared culture of expectations of published
papers, particularly in our leading venues. However, these expectations are not explicit and the
evidence of submitted papers is that many authors are not aware of what elements, or omissions,
are likely to be of concern to reviewers. While accepted papers do provide an indication of what
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an author should do, they are, of course, uneven, and the small set of papers that an author is
consulting in their new work could easily be unrepresentative of the best IR work as a whole.

In this section, our aim is to provide a basis for general guidance for authors and reviewers,
with a focus on people who are new to the community. It should communicate to authors and
reviewers a range of factors that the community regards as significant. Such guidance, if well
designed, should help authors to lift the standard of their work and provide context should it not
be accepted; for reviewers, especially those new to the task, it can provide checklists and (at a
high level) advice about the field from beyond their immediate research environment.

Some elements in papers have attracted specific criticism in publications; this is particularly
true of effectiveness measurement, where a long history of research on method has argued for and
against a range of measures, forms of evidence for statistical validity, treatment of test collections,
and so on. Such literature is critical to improving the quality of our research but does not
necessarily represent a settled, shared view of best practice.

In our view, it is essential that general advice be constructive, readily understandable by new
IR authors and reviewers, and—to the extent that is possible—not the subject of active debate.
We used the following approach to create our guidelines: (1) search of existing guidelines; (2) brain-
storming to identify common pitfalls; (3) categorization of the outcomes from the brainstorming
exercise and comparison of these with existing guidelines; and (4) consolidation and integration
with existing SIGIR guidelines. The existing guidelines include the ACM Special Interest Group
on Information Retrieval (SIGIR) recommenda- tions to strengthen IR papers; Empirical Evalua-
tion Guidelines from the ACM Special Interest Group on Programming Languages (SIGPLAN);
the Special Interest Group on CHI SIGCHI69 guide for reviewing papers sub- mitted to the CHI
conference; an ACL tutorial instructing reviewers on the ACL Rolling Review process, which in-
cludes common reasons for rejection: and Ulmer et al. [2022]’s list of best practices and guidelines
for experimental standards within NLP.

Throughout each step of the process, we adhere to the principle of keeping only issues that we
believe to be widely agreed upon within the community. How this work might develop over time
is considered under “next steps”.

Our proposed guidance is as follows.16

Motivation and claims

❼ The problem is well characterised and motivated, and the potential impact is discussed.
❼ The proposed application of the work is contextualised by pertinent knowledge from that domain,

including potential ethical, social, or environmental impacts.
❼ The research goals and original contributions (that is, the elements that are a contrast to the

prior art) are stated and are clearly distinguished from prior work.
❼ The claims are properly scoped and supported.
❼ There are explicit statements of what was done and what was not.

16This guidance has since been adopted by the SIGIR-AP 2023 conference.
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Presentation

❼ The literature review considers competitive previous solutions for the problem, that is, it is not
limited to consideration of other work on the same technology as that explored in the submission.

❼ There is a reasoned justification for each of the choices made in each step of the research and
each element of the method.

❼ Results are presented in keeping with the norms in the field as exemplified in strong prior work.
❼ A substantive, focused, and insightful discussion accompanies the results taking into account

limitations and scope of the work.

Experiments

❼ The experimental design and its scale are appropriate to the problem.
❼ In comparative studies, appropriate baselines are used; they are deployed and optimized in ways

comparable to those used for the proposed method.
❼ The experimental results are reliable and generalizable, and preferably show illustrative individ-

ual cases as well as aggregated results.
❼ Where appropriate, a diversity of data sets are used, including public-domain data sets used in

prior work.
❼ Sufficient details (with data and code where appropriate) are provided to enable other researchers

to assess and reproduce the experiments; this includes the nature, source, and collection process
for the data, and the data preparation steps.

Results and analysis

❼ The evaluation methods and measures address the research questions; the use of redundant or
highly correlated measures should be avoided.

❼ Statistical analysis is used and reported appropriately.
❼ Development data, training data, and test data are distinguished from each other.
❼ User studies are based on adequately sized, representative cohorts; data is gathered in ways that

meet ethical norms, or where appropriate in keeping with prescribed ethics practices.
❼ Final results were obtained after all development was complete, that is, not selected because

they are the best outcomes amongst a larger set of experiments or hand-fitted to the data.

Common problems that lead to rejection

Issues with papers in relation to the recommendations above can lead to rejection. Other problems
that can lead to rejection are as follows.

❼ Literature reviews that lack critical analysis of prior work or that largely consist of lists of
papers, that is, do not have an insightful discussion.

❼ Contributions that consist of small modifications to established techniques, particularly where
the contribution is a straightforward variation of the established technique or where there are
numerous prior papers exploring similar variations.

❼ Methods that appear to be developed and hand-tuned on a specific data set without discussion
or demonstration of their lessons for future work or of how the methods would be more generally
applicable.

❼ Justification of a method solely by its score in experiments, lacking an a priori rationale for why
the method is worth exploring.

❼ Experiments where the data volumes are too small to support the conclusions.
❼ Any form of academic fraud, misrepresentation, or dishonesty.
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Next Steps and Recommendations

Guidance and lists of issues should be living documents that reflect a current and uncontroversial
agreement in the community. Therefore, they should be open to change because there can always
be some disagreements and expectations of authors can change over time, in some cases quite
quickly, especially as the subjects of research shift to focus on new topics. For that reason, no set
of advice should be regarded as fixed, but revision should be undertaken consultatively and with
a spectrum of colleagues.

We suggest that the detailed list of issues of concern, such as those reported in Appendix 6.4 of
the full report [Di Nunzio et al., 2023], be made available in some form as educative for reviewers.
We stress here that it is not our intention that reviewers simply reject papers because of these
issues. It could also provide a resource at forums such as doctoral consortia.

We thus believe that it would be valuable for the community to:

❼ Ensure that the guidelines are prominent in the calls-for-papers at our major conferences
and journals, or otherwise disseminated.

❼ Encourage the SIGIR executive committee to take ownership of the guidelines and to occa-
sionally convene a panel to produce an update.

❼ Use these resources educatively for new members of the community and for new reviewers.

In this exercise, we have not produced guidance for reviewers, which in other disciplines tends
to consist of two parts: general advice on how to approach the task and specifics for the field. An
example that we found was produced by the ACL, as discussed above; a particular strength of
these guidelines in our view is the enumeration of unfair grounds for rejection. We believe that
such guidance would be of value to our community, and could make use of the materials we have
presented here.

A more detailed discussion can be found in the full report [Di Nunzio et al., 2023].

7 Participants

Below is a list of researchers who attended the seminar and contributed to the full report [Bauer
et al., 2023a].
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Jöran Beel and Stefan Langer. A comparison of offline evaluations, online evaluations, and user
studies in the context of research-paper recommender systems. In Proceedings of the 22nd
International Conference on Theory and Practice of Digital Libraries, TPDL ’15, pages 153–
168, 2015.
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