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Abstract—This paper presents a new look at the neural net-
work (NN) robustness problem, from the point of view of graph
theory analysis, specifically graph curvature. Graph curvature
(e.g., Ricci curvature) has been used to analyze system dynamics
and identify bottlenecks in many domains, including road traffic
analysis and internet routing. We define the notion of neural Ricci
curvature and use it to identify bottleneck NN edges that are
heavily used to “transport data” to the NN outputs. We provide
an evaluation on MNIST that illustrates that such edges indeed
occur more frequently for inputs where NNs are less robust.
These results will serve as the basis for an alternative method of
robust training, by minimizing the number of bottleneck edges.

I. INTRODUCTION

Autonomous systems (AS) increasingly use neural networks
(NNs) due to their ability to process high-dimensional data
such as camera images [1], LiDAR scans [2] and textual
prompts [3]. At the same time, NNs are known to suffer
from robustness vulnerabilities: a slightly perturbed or out-
of-distribution input [4], [5] may lead to very different and
unexpected outputs. In turn, such vulnerabilities may severely
compromise the safety and predictability of NN-based AS.

Since the discovery of NN robustness issues [4], there
has been an impressive amount of research on this topic.
Researchers have developed a number of robust training meth-
ods, including adversarial training [6], certified robustness [7],
[8], knowledge distillation [9], and semi-infinite constrained
learning [10]. Although significant progress has been made,
training robust NNs remains largely an unsolved and very
challenging problem (e.g., the current leader on the CIFAR-
10 robustness leaderboard [11] can only achieve high robust
accuracy for perturbations of at most 8/255).

We note that the vast majority of existing methods approach
the problem from an optimization point of view: e.g., in
adversarial training the goal is to train a NN that minimizes
the loss not only on training data but also on the worst-case
bounded perturbations of that data. This bilevel non-convex
optimization problem is challenging to solve and leads to
suboptimal solutions, especially if gradient descent is used.
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We take a fresh look at NN robustness through the lens
of graph theory and network science analysis, in particular
graph curvature (GC). GC (e.g., Ricci curvature [12]) has been
effectively applied in numerous domains that can be modeled
as graphs, including road traffic analysis [13], [14], internet
routing [15], machine learning [16], [17], and biological
networks [16], [18], due to its ability to capture intrinsic
geometric and local structure of the space, such as connectivity
and robustness in networks. GC can quantify the importance of
specific edges; for example, an edge with negative curvature
can be considered a bottleneck and is greatly important for
the overall graph functionality, e.g., such an edge may connect
different communities within the graph [19], [20].

In this paper, we employ GC in order to analyze the
robustness of NN classifiers. We introduce the notion of neural
Ricci curvature (NRC) that captures the bottleneck intuition
of standard Ricci curvature – if an edge has a negative NRC,
then it is heavily used by the NN and is thus likely a source of
robustness vulnerability. To calculate the NRC, we construct
a neural data graph, i.e., a graph in the shape of the NN
architecture, where edges are weighted by a combination of
the NN weights and the magnitude of data that goes through
each edge when an example is provided as input.

We evaluate the significance of the NRC using NNs trained
on MNIST. We show that neural data graphs corresponding
to more robust examples (i.e., examples which are correctly
classified even for an adversarial perturbation) indeed have
fewer negative-NRC edges. The results are consistent across
architectures, including adversarially trained ones. This result
will serve as the basis for an alternative, graph-based, method
for robust training, that minimizes the number of negative-
NRC edges and promotes balanced usage of all NN edges.

In summary, this paper makes two contributions: 1) we
define the concepts of neural data graphs and neural Ricci
curvature that can be used to identify bottleneck NN edges that
contribute to robustness issues; 2) we provide an evaluation on
MNIST that demonstrates that bottleneck edges indeed occur
more frequently in examples where NNs are less robust.

II. BACKGROUND

The concept of Ricci curvature [21] is used in Riemannian
geometry to quantify the degree to which the geometry of a



space deviates from being flat, as is the case for Euclidean
space. In continuous manifolds, positive curvature is seen in
spherical surfaces where geodesics converge, negative curva-
ture is found in hyperbolic surfaces where geodesics diverge,
and zero curvature characterizes flat Euclidean surfaces with
parallel geodesics. The Ollivier-Ricci curvature (ORC) [12]
serves as a discrete analogue, e.g., in the case of graphs,
to curvature measurements in continuous spaces, and it is
computed using transport theory via the Wasserstein distance.

Definition 1 (Ollivier-Ricci Curvature [12]). Given a graph
G(V,E) with vertex set V and edge set E, the ORC κ(u, v)
between two adjacent vertices u and v is given by

κ(u, v) = 1− W1(mu,mv)

d(u, v)
, (1)

where d(u, v) is the shortest-path distance between u and v,
mu and mv are the probability distributions over the neigh-
bors of u and v, respectively; W1(mu,mv) is the Wasserstein
distance between distributions mu and mv and is given by

W1(mu,mv) = inf
µu,v∈Πu,v

∑
(u′,v′)∈V×V

d(u′, v′)µu,v(u
′, v′),

where Πu,v is the set of probability measures µu,v that capture
all possible ways of transferring mass from mu to mv , i.e.,∑
v′∈V

µu,v(u
′, v′) = mu(u

′),
∑
u′∈V

µu,v(u
′, v′) = mv(v

′).

For unweighted nodes, the probability distribution is typ-
ically distributed uniformly to all the neighbors of u and v.
Otherwise, the probability distribution is adjusted based on the
edge weights, e.g., using an exponential function [22].

A positive curvature indicates that nodes within a particular
region are tightly connected (due to a smaller W1), suggesting
a robust community structure. A negative curvature points
to areas with more dispersed connections, often signifying
edges that act as bridges between different communities. For
example, if an edge e between u and v is a bottleneck, then all
paths from u’s neighbors to v’s neighbors have to go through
e; in this case, κ(u, v) < 0 since W1 > d(u, v). This makes
ORC particularly effective at identifying bottleneck edges that
may introduce robustness issues, i.e., the graph functionality
is not robust to removing such negative-curvature edges.

III. PROBLEM STATEMENT

Consider a trained NN classifier fθ : X → {1, . . . , N},
where X ⊆ Rn is the set of all input examples, and each
example is assigned a label from 1 to N . We assume fθ is
an L-layer feedforward NN (possibly including convolutional
layer), parameterized by θ = {(W1, b1), . . . , (WL, bL)}, where
Wi and bi are the weights and biases of layer i. Thus, each
layer i can be written as a function fi(x) = σ(Wix + bi),
where σ is the ReLU activation: σ(x) = max{0, x}.

An example (x, y) is ε-robust if there exists no ε-bounded
perturbation of x that changes the label predicted by f , i.e.,

fθ(x) = fθ(x+ δ) = y,∀δ ∈ Rn ∥δ∥∞ ≤ ε, (2)

where y is the true (unknown) label of x. An example is called
ε-nonrobust if there exists a δ that satisfies ∥δ∥∞ ≤ ε for

which fθ(x) ̸= fθ(x+ δ). Robust test accuracy is the fraction
of ε-robust examples in the test set. Although NN robustness is
distinct from graph robustness, we hypothesize that non-robust
NNs correspond to non-robust graphs.

The problem considered in this paper is to define the notions
of a neural data graph Gfθ,x and a corresponding neural Ricci
curvature. In particular, the NRC definition must capture the
notion of a bottleneck edge such that a NN with more negative-
NRC edges is less robust to input perturbations.

Notation. We use nl,i to denote neuron i in layer l in the
NN; nl,i(x) denotes the neuron’s activation given NN input x.
Similarly, wl,jk denotes the NN weight on the edge between
nl,j and nl+1,k, i.e., matrix entry [Wl]kj . Given graph nodes
u and v, we use w(u, v) to denote the weight of edge (u, v).

IV. NEURAL RICCI CURVATURE

Our approach is motivated by prior work on analyzing the
robustness of road and transit traffic networks to individual
segments [13], [14], [16]. To model the problem as a graph,
one can map each intersection to a node and each segment
to an edge; the edge weight is determined by historical data,
e.g., travel time per passenger. Thus, if an edge has a negative
ORC, i.e., its cost is lower than the costs of paths through the
node’s neighbors, then this edge is likely a bottleneck.

The above example has obvious analogues and differences
with respect to NNs. The main similarities are: 1) a NN has
a natural graph structure; 2) NN edges can be considered
as roads that carry data; 3) NN weights can be thought of
as edge weights such that a larger NN weight means more
data gets through (i.e., less travel time). However, two NN
characteristics distinguish it from the traffic network case:
i) the NN has non-linear activations which break the traffic
analogy (different levels of traffic “get through” depending on
the input); ii) the NN has positive and negative weights, which
makes it impossible to apply the vanilla ORC analysis.

In what follows, we define the concepts of a neural data
graph and neural Ricci curvature, through iteratively address-
ing the challenges above: 1) we start with a neural graph;
2) we address the non-linearity challenge through calculating
each ReLU’s phase (0 or linear) for the current input x; 3) we
address the mixed-sign challenge through normalizing the NN
weights for the current input x.
Definition 2 (Neural Graph). Given a NN fθ, we define a
neural graph Gfθ as follows:

• each NN neuron becomes a node in Gfθ and each NN
edge becomes an edge in Gfθ ;

• each edge (nl,i, nl+1,j) is assigned weight 1/|wl,ij |.

Definition 2 is based purely on the NN and thus cannot
address the challenges mentioned above. The following con-
struction provides an approach that alleviates those challenges.

Definition 3 (Neural Data Graph). Given a NN fθ and an
example x, we define a neural data graph Gfθ,x as follows:

• construct neural graph Gfθ according to Definition 2;
• an edge (nl,i, nl+1,j) is removed from Gfθ if nl,i(x) = 0,

i.e., the ReLU is in its zero phase;



Algorithm 1 Mixed-Sign Weights Normalization

Input: Mixed-sign NN weights wl,1j , . . . , wl,Kj , neuron ac-
tivations nl,1(x), . . . , nl,K(x)
//Assuming layer l has K neurons

Output: Graph weights w(nl,1, nl+1,j), . . . , w(nl,K , nl+1,j)

1: sum =
∑K

i=1 wl,ijnl,i(x)
2: //it must be the case that sum ≥ 0; otherwise ReLU would

be in 0 phase
3: for i = 1 to K do
4: if wl,ij < 0 then
5: w(nl,i, nl+1,j) = 0
6: else
7: pos sum =

∑K
i=1 1wl,1j>0wl,1jnl,1(x)

8: ŵl,ij = wl,ij
sum

pos sum

9: w(nl,i, nl+1,j) =
1

ŵl,ij

10: end if
11: end for

• if weights wl,1j , . . . , wl,Kj (where K is the number of
neurons in layer l) going into node nl+1,j(x) > 0 have
mixed signs, normalize weights using Algorithm 1.

The last two parts of Definition 3 modify the original neural
graph Gfθ based on the contribution of the input example x.
Algorithm 1 only applies when nl1,j(x) > 0 since otherwise
the ReLU would be its zero phase and all outgoing edges
would be removed. Algorithm 1 normalizes the weights such
that negative weights are reset to 0 and positive weights
are normalized so that overall sum remains the same. Given
Definition 3, we are ready to define the neural Ricci curvature,
which is essentially the ORC applied to the neural data graph.

Definition 4 (Neural Ricci Curvature). Consider a NN fθ, an
input example x and a corresponding neural data graph Gfθ,x,
as defined in Definition 3. The NRC of a NN edge (nl,i, nl+1,j)
is defined as the ORC of the corresponding edge in Gfθ,x.

V. EVALUATION

The evaluation aims to demonstrate the following: given a
NN, ε-robust examples with higher ε tend to result in neural
data graphs with fewer negative-NRC edges. Note that this
result is orthogonal to the overall NN robustness – even non-
robust NNs exhibit some ε-robust examples with large ε. This
finding implies that training NNs with fewer negative-NRC
edges would be an effective method for robust training.

We evaluate the NRC concept on the MNIST dataset [23].
MNIST consists of 28× 28 grayscale images of handwritten
digits; there are 60,000 training images and 10,000 test images.
We use two fully-connected NN architectures, [15,20] and
[15,25,20,15], where notation [K1, . . . ,KL] means the NN
has L layers, with Ki neurons in layer i. Each architecture
is trained in three ways: 1) using cross-entropy loss; 2) using
cross-entropy with weight decay regularization; 3) using ad-
versarial training [6]. For further evaluation, we also include
a convolutional NN (CNN), trained with cross-entropy, with
two convolutional layers (first layer has six 6× 6 kernels,

NN setup ε = 0.03 ε = 0.07 ε = 0.1 ε = 0.2
[15,20], CE 0.517 0.044 0.005 0.000
[15,20], WD 0.851 0.421 0.175 0.014
[15,20], AT 0.845 0.766 0.685 0.270
[15,25,20,15], CE 0.471 0.054 0.007 0.000
[15,25,20,15], WD 0.801 0.311 0.109 0.001
[15,25,20,15], AT 0.862 0.780 0.692 0.253
CNN, CE 0.939 0.725 0.409 0.017

TABLE I: Robust test accuracy (evaluated using the projected
gradient descent attack [6]) for all setups: cross-entropy (CE),
cross-entropy + weight decay (WD), adversarial training (AT).

NN setup ε = 0.03 ε = 0.07 ε = 0.1 ε = 0.2
[15,20], CE 1.48 1.30 1.28 N/A
[15,20], WD 1.47 1.45 1.37 1.24
[15,20], AT 1.15 1.15 1.14 1.12
[15,25,20,15], CE 2.04 1.81 1.66 N/A
[15,25,20,15], WD 1.93 1.92 1.86 N/A
[15,25,20,15], AT 2.10 2.09 2.10 2.08
CNN, CE 3.43 3.42 3.44 3.31

TABLE II: Average AUC over all labels for all considered
setups: cross-entropy (CE), cross-entropy + weight decay
(WD), adversarial training (AT).

stride of two; second layer has 16 6× 6 kernels, stride of two)
and two fully-connected layers, [120,84]. The models’ robust
accuracies are reported in Table I. All experiments were run
on a 95-core machine with an NVIDIA A40 unit; calculating
curvatures per example took on average 1.2s, 1.4s and 3.2s
for the two-layer NN, four-layer NN and CNN, respectively.

To perform the evaluation, we use the test set to identify
ε-robust and ε-nonrobust images for each setup, where ε is
incremented from 0.03 to 0.2. We calculate the NRCs for each
resulting neural data graph and plot them using a cumulative
distribution function (CDF). As shown in Fig. 1, the CDF
grows faster for examples which are less ε-robust, i.e., those
examples have more negatve-NRC edges, on average, than the
graphs corresponding to more ε-robust examples.

For further evaluation, we also present the average area
under the CDF curve (AUC) per label (averaged over 70 test
examples). Fig. 2 provides the average results for the two-layer
fully-connected (FC) NN. Fig. 2a very clearly demonstrates
that the AUC decreases with larger ε, i.e., more ε-robust
examples result in fewer negative-NRC edges on average.
Although the benefit is less pronounced for the other setups,
there is still a clear downwards trend as ε is increased. Finally,
Table II presents the AUC results for all setups. Once again,
we emphasize that the same trend can be observed across
all considered setups. Finally, we note that the CNN trends
are less emphasized, which is likely due to the fact that
convolutional layers have very few edges per node; we will
explore this phenomenon at greater depth in future work.

VI. CONCLUSION

This paper introduced neural data graphs and neural Ricci
curvature, which provide an alternative way of analyzing NN
robustness. We presented an evaluation on the MNIST dataset
to demonstrate that more robust NNs (as well as more ε-
robust examples) result in fewer negative-NRC edges. In future
work, we will perform an evaluation over multiple datasets
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Fig. 1: CDF plots of 10 test examples each for two levels of ε, for the three two-layer NN setups. Note that the 0.03-robust
examples are chosen such that they are 0.05-nonrobust.
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Fig. 2: AUC results, averaged over 70 test examples per label and per ε, for the three two-layer NN setups. Values of 0 mean
that no robust examples could be found for that value of ε.

and robust training methods [24]–[26], and will explore an
approach for robust training, e.g., by regularizing training
through a term that penalizes low-curvature edges.
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