BUNDLES OF STRONGLY SELF-ABSORBING C*-ALGEBRAS
WITH A CLIFFORD GRADING

MARIUS DADARLAT AND ULRICH PENNIG

ABSTRACT. Let D be a strongly self-absorbing C*-algebra. In previous work, we showed that
locally trivial bundles with fibers  ® D over a finite CW-complex X are classified by the
first group Eh(X) in a generalized cohomology theory Ej (X). In this paper, we establish a
natural isomorphism Epge_ (X) & H'(X;Z/2) x,,, EL(X) for stably-finite D. In particular,
Eb_(X) =2 HY(X;Z/2) x,, EX(X), where Z is the Jiang-Su algebra. The multiplication
operation on the last two factors is twisted in a manner similar to Brauer theory for bundles
with fibers consisting of graded compact operators. The proof of the isomorphism described
above made it necessary to extend our previous results on generalized Dixmier-Douady theory
to graded C™*-algebras. More precisely, for complex Clifford algebras C/f,,, we show that the
classifying spaces of the groups of graded automorphisms of C/,, ® K ® D possess compatible
infinite loop space structures. These structures give rise to a cohomology theory E‘B (X). We
establish isomorphisms Eh(X) = H'(X;Z/2) x,,, Eb(X) and E5(X) = Ebgo.. (X) for stably
finite D. Together, these isomorphisms represent a crucial step in the integral computation
of Epgo.. (X).
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1. INTRODUCTION

Continuous fields of C*-algebras play the role of bundles of C*-algebras, in the sense of
topology, as explained in [6, Sec. 2]. These structures occur naturally in various generalizations
of the Gelfand-Naimark theorem. Indeed, Fell [21] showed that any separable C*-algebra A with
Hausdorff primitive spectrum X has a canonical continuous field structure over X with fibers
the primitive quotients of A. Equally important, continuous field C*-algebras are employed
as versatile tools in several areas, including index and representation theory, the Novikov and
the Baum-Connes conjectures, strict deformation quantization, quantum groups and E-theory.
While in general the bundle structure that underlies a continuous field of C*-algebras is typically
not locally trivial, in this paper we are concerned with locally trivial bundles, which we will call
C*-bundles.

Strongly self-absorbing C*-algebras [46] are separable unital C*-algebras D defined by a
crucial property that they share with the complex numbers C. Namely, there exists an isomor-
phism D — D ® D which is unitarily homotopic to the map d — d® 1p [17], [48]. Any strongly
self-absorbing C*-algebra D is either stably finite or purely infinite. The latter condition is
equivalent to D =2 D ® Oy, where O is the infinite Cuntz algebra. Due to recent progress
in classification theory [49] we now have a complete list of all the strongly self-absorbing C*-
algebras that satisfy the Universal Coefficient Theorem (abbreviated UCT) in KK-theory, see
Subsec. 2.1.

In a series of papers [14, 15, 16], we have extended Dixmier-Douady theory [18] and the
complex Brauer group [23] from C*-bundles with fibers Morita equivalent to C to C*-bundles
with fibers Morita equivalent to a self-absorbing C*-algebra D. Just as in the case of com-
pact operators /C on an infinite dimensional separable Hilbert space when the classifying space
BAut(K) is a model for the Eilenberg-McLane space K(Z, 3), it turns out that BAut(D ® K) is
an infinite loop space. This not only implies that the set of isomorphism classes of D® K-bundles
[X, BAut(D ® K)] =: E}L(X) has an abelian group structure as it corresponds to the 1-group of
a generalized cohomology theory E7,(X), but also that its study is amenable to methods from
stable homotopy theory. Remarkably, the group law on E}(X) coming from the infinite loop
space structure of BAut(D ® K) coincides with the operation induced by the tensor product of
D ® K-bundles. Moreover, similarly to the scalar case, the Brauer group associated to bundles
with fibers M, (C) ® D, n > 1, is isomorphic to Tor EL(X), where E}(X) is the subgroup of
E}(X) corresponding to orientable D @ K-bundles, [14].

Twisted K-theory goes back to the work of Donovan and Karoubi [19] and Rosenberg [39].
Donovan and Karoubi studied bundles of graded algebras with fibers matrices over (complex)
Clifford algebras C¢,, and computed the corresponding graded Brauer group, [19]. The infinite
dimensional version of the graded Brauer group was computed in [36] by Parker for bundles
with fibers the graded compact operators /.

Our previous investigation into Eb(X ) resulted in the discovery of new cohomological
invariants that supplement the Dixmier-Douady class and give rise to higher twistings of K-
theory. These higher twists, first studied in [1], are relevant in both algebraic topology [37], [25]
and mathematical physics [11], [32], as they extend the classical twists [2], [3] represented by
third cohomology.

In this context, our primary objective is to calculate the group Ell) (X) for all strongly self-
absorbing C*-algebras D that belong to the UCT class. This question is inherently interesting
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and gains further relevance in light of its connections to other areas previously discussed. Ad-
ditional impetus for our study comes from a recent advance: an insightful conjecture by Izumi
which was presented and explored in [27], [28] has been recently proved due to combined work
of Meyer [35] and Gabe and Szabé [22]. The conjecture posits that for a countable torsion
free amenable group I' and for a Kirchberg algebra D, there is a bijection between the cocy-
cle conjugacy classes of outer actions of I' on D ® K and the isomorphism classes of principal
Aut(D ® K)-bundles over the classifying space BI'. It follows that if BI' admits a model as
a finite CW-complex and if D is a strongly self-absorbing Kirchberg algebra that satisfies the
UCT, then the set of cocycle conjugacy classes of outer actions of I' on D® K forms a group with
respect to the tensor product operation. Furthermore, this group is isomorphic to Ell) (BT).

In this paper, we extend the results from [19] and [36] to bundles with fibers Morita equiva-
lent to DRCY, for strongly self-absorbing C*-algebras D. We are not pursuing this generalization
merely for its own sake; rather, we were led to it in our efforts to understand the classification of
C*-bundles with fibers Oy, ® K and, more generally, with fibers D ® O, ® K, as we will explain
below. In fact, the only way in which we know how to compute E(l%o (X) is by establishing the
isomorphisms

Ep_(X) = Ex(X) = HY(X;Z/2) x,, E5(X).

In addition to [15, 16], computing EB(X ) for general strongly self-absorbing C*-algebras D
necessitates two further steps. The first step is addressed in this paper, while the second step is
completed in a subsequent paper that is a collaborative effort with Jim McClure [13].

The first step consists in showing that in analogy with the ungraded case, the classifying
space of the group of graded automorphisms Autg, (Cl, ® K ® D) has an infinite loop space
structure such that the associated generalized cohomology theory E‘B(X ) has three attractive
properties described in the following three theorems which are contained in Theorem 5.9, The-
orem 6.7 and Corollary 5.6 in the text. The tensor product with idcy, induces an equivalence
of infinite loop spaces Autg, (Cl, @ K ® D) = Autg(Clp 11 ® K ® D). Hence, these groups lead
to the same cohomology theory for all n > 1. We assume that X is a finite CW-complex and
that D is a stably finite strongly self-absorbing C*-algebra satisfying the UCT.

Theorem 1.1. The tensor product operation defines a group structure on the isomorphism
classes of locally trivial bundles of graded C*-algebras A with fibers A(x) = Cly,) ® D ® K,

x € X, k(z) > 1. This group is isomorphic to HO(X,7Z/2) ® EL(X).
Theorem 1.2. There is an isomorphism of groups
EH(X) = HY(X;2/2) x,, EH(X)
with multiplication on the direct product
(w,m)- (W, ™) =(w+w, 7+ 7 +joBwuUw))

for w,w' € HY(X,7Z/2) and 7,7 € EL(X), where B: H*(X,Z/2) — H3(X,Z) is the Bockstein
homomorphism, j: EL(X) — EL(X) is the map induced by the unital x-homomorphism C — D,
and we identify EL(X) = H3(X,Z).

Theorem 1.3. If D # C, there is a natural isomorphism EB(X) = Ehgo. (X)

From Theorems 1.2 and 1.3 we deduce that if D # C is stably finite, then
Ebgo. (X) = H'(X;2/2) x,, Ep(X)
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The second step of our endeavor is accomplished in [13] and concerns the calculation of
EL(X) for D stably finite. Altogether one obtains a calculation for E}(X) whether D is stably
finite or purely infinite.

Let us preview the result from [13] for the Jiang-Su algebra Z and for the infinite Cuntz
algebra Os = Z ® Oy. Let k*(X) denote the complex connective K-theory of the space X.
For a finite based CW-complex X with skeleta X;, k'(X) = K'(X,X;_s) and in particular
E(X) & KY(X, X3).

Theorem 1.4 ([13]). Let X be a finite connected CW-complex. There are (not natural) iso-
morphisms

(a) Ex(X) = HY(X,Z) & k>(X).

(b) By _(X) = (HYX,Z/2) x,, H}(X,Z)) & k°(X).

The multiplication on H'(X;7Z/2) x H3(X,7Z) is given by
(w, ) (W', 7)) = (w+w, 7+ 7"+ BlwUw))

forw,w' € H'(X,Z/2) and 7,7 € H*(X,Z), where 3: H*(X,7Z/2) — H3(X,7Z) is the Bockstein
homomorphism.

We refer the reader to [13] for a computation of E},(X) and E},_ o, (X) for all stably finite
strongly self-absorbing C*-algebras satisfying the UCT.

In the last part of the paper we show that the Brauer group Brp (X) arising from graded
bundles with fibers M, (D) ® C/}, is isomorphic to

HY(X,7/2) x H'(X,Z/2) x,, TorEp(X),

where EL(X) C EL(X) classifies D ® K-bundles with structure group Auto(D ® K), the con-
nected component of identity of Aut(D ® K).

Let us give some background and describe in more detail the strategy taken in this paper.
The link between cohomology theories, spectra and infinite loop spaces is reviewed in Sec. 4.1.1.
We rely on work of Schlichtkrull [41]. Let Top, denote the category of based compactly generated
Hausdorff spaces. Let Z be the category with objects n = {1,...,n} for n € Ny (so including the
empty set 0) and morphisms given by injective maps. This is a symmetric monoidal category
where mUin = {1,...,m+n} and fUg acts by identifying the first m entries of mUn with m
and the last n entries with n. The symmetry mLin — nlUm is given by block permutation. An
Z-space is a functor Z — Top, and an Z-monoid is a monoid object in the category of Z-spaces
(note that this makes use of the monoidal structure on Z). The symmetry of Z can be used
to define commutative Z-monoids. These provide the input to one of the many infinite loop
space machines in algebraic topology [34]. More precisely, any commutative Z-monoid X gives
rise to a I'-space denoted by I'(X) and if the Z-space is grouplike in the sense that the monoid
mo(hocolimz X)) is actually a group, then Xj7 = hocolimz X is an infinite loop space and the
higher deloopings, ie. the spaces in the 2-spectrum are explicitly constructible from the I"-space
structure [45].

The category of spectra is a closed model category in the sense of Quillen. In particular,
it comes with distinguished subsets of the morphisms called weak equivalences, fibrations and
cofibrations generalising the corresponding concepts for topological spaces. Using this structure
it is possible to formally invert the weak equivalences. The resulting category is called the stable
homotopy category of spectra. Using the Atiyah-Hirzebruch spectral sequence one verifies that a
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weak equivalence of spectra induces a natural isomorphism of the cohomology theories on finite
CW-complexes represented by them. In [8] Bousfield and Friedlander developed a similar model
category structure on I'-objects in simplicial sets, such that its homotopy category is equivalent
to the stable homotopy category of connective spectra [8, Thm. 5.8]. This was later refined by
Schwede in [42], who also extended it to I-spaces (i.e. [-objects in topological spaces) and proved
it to be immaterial whether one considers topological spaces or simplicial sets [42, Thm. B1].
While Schwede’s model category structure has slightly different fibrations and cofibrations, it
does have the same weak equivalences. Thus, its homotopy category is still equivalent to the
one of connective spectra.

We will not use the full model category structure in this paper, but we will frequently adopt
the following notation: If a map of I'-spaces I'(X) — I'(Y) induces an equivalence in the stable
homotopy category of spectra, we write I'(X) ~ I'(Y'). In this case I'(X) and I'(Y) are called
stably weakly equivalent (see [8] or [42, p. 331]).

In this paper we focus on three commutative Z-monoids (Q°KUP)*, Gp, and G, associ-
ated to a strongly self-absorbing C*-algebra, and which we describe in the sequel. In order to
prove Theorem 1.3 we show first that for stably finite D there is an equivalence of I'-spaces

(1) ['(G%) ~ T((Q*KUP)").
We have shown in [15] that
(2) I(Gpgo,.) ~ D(Q®°KUP®O=),

From (1) and (2) we obtain that if D # C is a stably finite strongly self-absorbing C*-algebra
satisfying the UCT, then

(3) I'(G%) ~T'(Gpgo..)

since T(Q®°KUP) ~ T(Q® KUP®%<) by [15]. Now Theorem 1.3 follows from (3) since E%(X)
is the cohomology theory associated to T'(GY)) while E}, o, (X) is associated to T'(Gpgo.,)-

Let us discuss (Q°KUP)* first. We have shown in [15] that each strongly self-absorbing
C*-algebra D gives rise to a symmetric spectrum KUP with nth space

KUP = homg(5,(Ct & D& K)°"),

where § = Cy(R) is viewed as a graded C*-algebra equipped with the grading by odd and
even functions and C/y; is the complex Clifford algebra. Moreover, the sequence of spaces
QKUP, KUP,KUP, ... is an Q-spectrum, in which the maps KU} — QKUTLD+1 for n > 1 are
induced by Bott periodicity. The associated cohomology theory is X — K,.(C(X) ® D), [24,
Sec. 1.5] (see also [44, Constr. 6.4.9]).

In fact, since D is strongly self-absorbing, these groups form a multiplicative cohomology
theory. There is a comultiplication A: S — S®S that can be used to give KUP the structure of a
commutative symmetric ring spectrum implementing this multiplication. Just as a commutative
unital ring S has a group of invertible elements GL1(S), a commutative symmetric ring spectrum
R has an associated spectrum of units gl; (R). The associated infinite loop space GL;(R) consists
of those path-components of Q°°R that are invertible in the ring mo(R).

In [41] Schlichtkrull found a convenient way of obtaining the spectrum gl; (R) as a diagram
spectrum. The commutative Z-monoid that gives the unit spectrum of KUP is defined as follows:
First note that there is a unit element 7, € (2" KUL) corresponding to the map S™ — KUZL
that is part of the structure of a symmetric ring spectrum. Denote by fiy, ., K UDANKUP —
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KUP,, the ring spectrum multiplication. Let (2"KUJL)* be those elements that are stably
invertible in the sense that there exists g € (QmKUL) for some m € Ny such that pi,m o (f A g)

and i, o (g A f) are both homotopic to ny1m € Q"MK upb The sequence of spaces

n+m:*
(Q°KUP)*(n) = (Q"KUY)*
extends to a commutative Z-monoid that gives the unit spectrum gl; (KU”) when plugged into
the infinite loop space machine.
The sequence of groups Gp(n) = Aut((D ® K)®") equipped with the pointwise norm
topology can be extended to a commutative Z-monoid as well and therefore also gives rise to an
(-spectrum. We showed in [15] that the associated cohomology theory E7,(X) satisfies

E%S =2 [X, Aut(D®K)] , Eb=[X,BAut(D®K))].

For each n € N the group Aut((D ® K)®") acts on KUP by composition. This action induces
a morphism of commutative Z-monoids Gp — (Q®°KUP)*, which then gives rise to a map
BAut(D ® K) — BGL1(KUP) that turns out to be an isomorphism on all homotopy groups
except for mp, where it corresponds to the embedding GLi(Ko(D))+ — GL1(Ko(D)). Hence,
the above map is an equivalence for purely infinite strongly self-absorbing C*-algebras, since
GL1(Ky(D))+ = GL1(Ko(D)) in this case.

The Z-monoid Gp is constructed from automorphisms of the ungraded C*-algebras D ® K
and ignores the Clifford algebras that feature in the definition of KUP. In this paper we will
complete the picture by also considering the commutative Z-monoid G‘% of graded automor-
phisms given by

G (n) = Aute, ((Cl ® D@ K)®™) .
As alluded to above, mo(GL1(KUP)) = GL1(Ky(D)), while mo(Aut(D ® K)) = GL1(Ko(D))+.
Because of the close link between the graded Clifford algebras and the additive group completion
in K-theory, the expected effect of including them into the definition of Gp is that my should
change from GL1(Ko(D))+ to GL1(Ko(D)). As we will show in Lem. 3.1 and Lem. 3.3, we have

70(GE(n)) = Z/2 x Ko(D)% .

In case D is purely infinite we see that we are “group-completing twice” here. Nevertheless, the
action on KUP remedies this and our main technical result (namely, the isomorphism (1)) can
be summarized as follows (see Thm. 5.4):

Theorem 1.5. The canonical action of the commutative Z-monoid G% on the ring spectrum
KUP gives a map of T'-spaces I'(G3) — T'((Q°KUP)*) which induces an isomorphism on all
homotopy groups m, with n > 0 of the corresponding connective spectra and the homomorphism
{£1} x Ko(D)X — Ko(D)*, (a,b) = a-b on my. In particular, it is an equivalence in the stable
homotopy category of spectra if D is stably finite and satisfies the UCT.

The article is structured as follows: Section 2 contains preliminary material about strongly
self-absorbing C*-algebras — including a full list of all of the ones that satisfy the UCT — followed
by some background about graded C*-algebras. In Section 3 we study the homotopy type of
the automorphism groups Autg, (Cl,, ® A) for simple, trivially graded C*-algebras A (sometimes
under the additional stability assumption that A ®@ K = A).
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In Section 4 we give some background on spectra and review the necessary details about
commutative Z-monoids and their relation to unit spectra. We give details about the spec-
trum KUP and its unit spectrum. Then we highlight the relationship between KUM? and the
localisation KU[P~!].

Section 5 contains the first main result of this work. In Subsect. 5.1 we give a summary
of the previously obtained results on generalised Dixmier-Douady theory. The commutative
Z-monoid G% is introduced in Sec. 5.2 and its stable homotopy type is studied in Lem. 5.2 and
Lem. 5.3. The comparison with the commutative Z-monoid that represents the unit spectrum
of KUP is then completed in Thm. 5.4. The resulting list of commutative Z-monoids that
represent the same cohomology theories is given in Cor. 5.6. This corollary is crucial for the
computation of E}(X) for stably finite D discussed in Section 6. In Subsect. 6.2 we compute
the graded Brauer group, see Theorem 6.10 .

2. C*-ALGEBRAS

2.1. Strongly self-absorbing C*-algebras. The class of strongly self-absorbing C*-algebras
was introduced by Toms and Winter [46]. They are separable unital C*-algebras D singled out
by the property that there exists an isomorphism D — D® D which is unitarily homotopic to the
map d — d®1p [17], [48]. Any strongly self-absorbing C*-algebra is either stably finite or purely
infinite. Due to recent progress in classification theory [49] we now have a complete list of all the
self-absorbing C*-algebras that satisfy the Universal Coefficient Theorem (abbreviated UCT) in
KK-theory. We review this list below.

Recall that Z denotes the Jiang-Su algebra, Oy the Cuntz algebra with two generators and
O the Cuntz algebra on infinitely many generators. The C*-algebra Z can be viewed as the
infinite dimensional stably finite version of C whereas Oy, can be viewed as the purely infinite
version. There are isomorphisms Z @ C = Z and Oy @ Z = O.

The unital *-homomorphisms C — Z — Oy are K K-equivalences. Oy is KK-contractible.
All UCT strongly self-absorbing C*-algebras with the exception of C and Qs are obtained from
either Z or O via a construction similar to localization at a set of primes.

For a prime p, we let M, denote the infinite tensor product M, = M,(C)®>. If P is a set
of primes, then Mp is defined as the tensor product

Mp = ) M,.
peP
We adopt the following convention: if P = (), then Mp = C. Any UCT stably finite self-
absorbing C*-algebra is isomorphic to either: C, Z, or Mp for some nonempty set P of primes.
Any purely infinite UCT self-absorbing C*-algebra is isomorphic to either: O, or Mp ® O
for some nonempty set P of primes or to Os.

It is known that Mp ® Z = Mp. More generally if D is strongly self-absorbing and D # C,
then D = D ® Z. Note that if P C P/, then Mp @ Mp = Mp,. If P is the set of all primes,
we denote Mp by Q. The following diagram illustrates the relationships between strongly self-
absorbing C*-algebras.

Z > M. > Q
\ / 2
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An arrow D — D’ in the diagram above indicates the property that D' ® D = D’. If P is the set
of all primes different from a fixed prime p, the corresponding algebra Mp is denoted by M,).

If D is any UCT strongly self-absorbing C*-algebra, then K;(D) = 0 and Ky(D) =
Ky(Ox ® D) has a natural unital commutative ring structure with multiplication induced by
the isomorphism D ® D = D. Let Z, = Z[%] denote the localization of Z away from p and Zy,)
the localization of Z at p. We have

Ko(C) = Ko(2) 2 K(Ou) = Z.

Ko(Mp) = Ko(Mp @ Ox) = R) Z =: Zp,
peP
Ko(O2) = 0.
Thus: Ko(M)) = Zy, Ko(My)) = Zp), and Ko(Q) = Q. If D is purely infinite D® O = D.
The invertible elements of the commutative ring Ko(D) are denoted by Ko(D)* = GL1(Ko(D)).

The subgroup of positive elements of Ky(D)* corresponding to classes of projections in D ® K
is denoted by Ko(D)%. If D is in addition purely infinite then Ko(D)} = Ko(D)*.

2.2. Graded C*-algebras. We recall some basic points about graded C*-algebras, mostly to
fix notation: A grading on a C*-algebra A is an automorphism v € Aut(A), called the grading
automorphism, with v> = id 4. We define

A% ={a € A|~(a) =a} and A = fa e A| y(a) = —a}

and note that both are closed, linear and self-adjoint subspaces of A such that A = A%V @ A° a5
Banach spaces. Moreover, A is a C*-subalgebra of A and A°dd. godd C gev  godd. gev C godd
and A . A°dd C A°dd Tf 4 = idy, then A% = A, A°d = 0 and we say that A is trivially
graded. We say that elements of A®Y have degree 0 and write deg(a) = 0 for a € A%, likewise
elements of A°d4 have degree 1 and we write deg(a) = 1 for a € A°dd. These elements are
called homogeneous. Recall that graded tensor products of two graded C*-algebras A and B are
obtained as completions of the algebraic tensor product A ® B equipped with the multiplication
and involution defined on homogeneous elements by

(a®b)-(d @b) = (—1)de®)rdeeld) 4o/ @ pp’ and (a @ b)* = (—1)des(a)des®) o p*

for a € A and b € B. We will use the symbol ® for the minimal graded tensor product. The
tensor flip in graded C*-algebras takes the following form on homogeneous elements:

(4) €AB: ARB—+B®A , a®@b— (_1>deg(a)deg(b)b®a

2.2.1. Standard even grading. If A is any ungraded C*-algebra, the standard even grading of
M5 (A) =2 M3(C) ® A is induced by the diagonal/off-diagonal grading of My(C). By identifying
the compact operators K with My(K) one obtains the standard even grading of K (the choices
made here are inconsequential) [5].

2.2.2. Clifford algebras. One of the main examples of graded C*-algebras that we need are the
Clifford algebras Cf,,. Let V = C" and consider the tensor algebra T'(V) = @5, VE* modulo
the ideal I(V) generated by the relation v - v — (v,v)1 = 0. Then C¢, = T(V)/I(V). These
are finite-dimensional algebras and if {ej,...,e,} denotes the standard basis of C", then the
following relations hold in C/,:

6%:1 and eiej—i—ejei:Ofori;éj.
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The algebra C/{,, carries a natural grading, with respect to which the vectors v € V are odd
elements. It also carries a natural involution, such that the standard basis vectors are self-
adjoint. These structures turn C¢,, into a graded C*-algebra, [30].

By the classification of complex Clifford algebras (see for example [31, Thm. 4.3]) there are
graded isomorphisms

(5) Cls,, =2 Cly ® Mon—1 ((C) and Clop11 = Cly @ Mon ((C)

where the matrix algebra My.—1(C) is trivially graded.
Let A be a trivially graded C*-algebra. Under the isomorphism Cly ® A = Ms(A) the
grading induced by Cls corresponds the standard even grading of My (A).

2.2.3. The graded suspension. Another graded C*-algebra that will play a crucial role in the
construction of the symmetric spectrum representing K-theory in the next section is the algebra
S = Cy(R) equipped with the grading by odd and even functions. As explained in [29, p. 94] the
algebra S can be equipped with a coassociative and cocommutative comultiplication A: § —
S® S and a counit €: S — C, where S ® S is the graded tensor product. To fix A note that
by [47, §3] the essential x-homomorphisms & — A correspond bijectively to odd, self-adjoint,
regular unbounded multipliers of A. If X denotes the identity function of R, then A is the
x-homomorphism corresponding to the unbounded multiplier 1 ® X + X ® 1. The counit is
easier to define and is given by e(f) = f(0).

3. AUTOMORPHISMS OF C*-ALGEBRAS WITH A CLIFFORD GRADING

In this section we study the homotopy type of the groups Aut,, (Cl,, ® A), ie. the automor-
phism groups of graded C*-algebras C/,, ® A, where A is a trivially graded simple C*-algebra
and C/,, carries its natural Z/2Z-grading.

The periodicity of complex Clifford algebras (5) reduces this question to understanding
Autg, (Cly ® A) and Autg (Cly @ A). If we denote the even and odd parts of C¢,, by C£5V and
(Cﬁ,?dd, respectively, then we have a (non-canonical) isomorphism of ungraded algebras

(6) CLe = Clyy

Lemma 3.1. Let A be a simple and trivially graded C*-algebra. The grading automorphism v
is the generator of Autg,(Cly) = 7Z/2. The group homomorphism

¥ Autg (Cly) x Aut(A) = Auty, (CHL @A), (B,a) = R a.
s an isomorphism of topological groups.

Proof. Cly is generated by e; with €2 = 1. It follows that C/; has two proper orthogonal central
projections ¢t = 14 and ¢~ = 152, One has ¢ (z+ye1) = (z+y)ct and ¢~ (z+yer) = (z—y)c~
for z,y € C. The grading automorphism v of C¢; satisfies v(x + ye1) = x — ye;. We identify the
multiplier algebras M (Cl; ® A) = Cl; ® M(A). The decomposition

CHRA=(T)(CHRA) +(c @) (CHLRA) XA A

gives an isomorphism of graded C*-algebras § : C/y @ A - AD A, 6(1®a+e ®b) = (a+
b,a — b) under which the grading automorphism v ® id4 corresponds to the map v4 that flips
the components of direct sum of C*-algebras A @ A, v4(a,b) = (b,a). Since A is simple, the
primitive ideal space Prim(A @ A) consists of two points. Thus any automorphism v of A @ A
is either of the form (a,b) — (a(a),B(d)) or (a,b) — (a(b), B(a)) for some «, 5 € Aut(A). Since
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any graded automorphism must commute with v4 we must have o = 3. It follows that §~'oyof
is equal to either idgy, ® o or v ® « for some o € Aut(A). O

Next we will consider the group Autg, (Cly® A) of graded automorphisms for simple trivially
graded C*-algebras A. By (6) the even subalgebra of Cly® A is isomorphic (as a trivially graded
algebra) to

ChHoA=ADA.
In the following we will identify Cly ® A with Ms(A), equipped with the grading in which
even elements correspond to diagonal matrices and odd elements to off-diagonal ones. To fix
this isomorphism we just need to pick corresponding matrix units in Cly: Let {e1, ea} be the
standard basis of R? and consider the following elements of Cls
1+iee0 ’ f22=1

fi1 = —1ie e1+1ies
11 — 2 9

NVES 617 =fuer , fa= — = e1fi1 -
Note that f1; and foo are even, fi2 and fz; are both odd and f;; - fjr = fir for all 4,5,k €
{1, 2}, since e; and ey anti-commute. Hence, we can identify Cly with M2(C) equipped with its
diagonal /off-diagonal grading.

The restriction of o € Autg, (Clo® A) to Cl5¥® A = A@ A corresponds to the restriction of
the « to the diagonal elements. Since A is simple, the primitive ideal space Prim(A@® A) consists
of two points. Thus the restriction of o to A @ A is either of the form (a,b) — (a1 (a), az(b)) or
of the form (a,b) — (a1(b), az(a)).

We identify the multiplier algebras M(Cla® A) = Clo@ M (A). For a unitary u € U(M(A))
let = (§9) e Clyo M(A).

— ’i€162

Lemma 3.2. Let A be a simple and trivially graded C*-algebra. The map
O :U(M(A)) x Z/2 x Aut(A) — Auty(Cla @ A), (u,z,01) = a = Ady o (Ader @ a)
is a homeomorphism. Here, U(M(A)) is equipped with the strict topology.

Proof. Any automorphism a € Autg (Cly ® A) extends to a unital graded automorphism of
the multiplier algebra M (Cly ® A) = Cly @ M(A). We will identify Cly with M5 (C) equipped
with its diagonal/off-diagonal grading. The element a(s) € Cly ® M(A) for s = e; ® 1 is odd,
self-adjoint and satisfies a(s)? = 1. Hence, it is of the form a(s) = (9%") for a unique unitary
uw € U(M(A)). Let u=(}2). Then & := Adg o a € Autg, (Cly ® A) fixes the element s.

Under the isomorphism Cly 2 Mj(C), the element e; = f12+ f21 corresponds to (9 ). The
restriction of & € Autg (Cly ® A) to A® A is either of the form (a,b) — (aq(a), az(b)) or of the
form (a,b) — (a1(b), az(a)) for some a; € Aut(A). In the first case we have

()= (DG DE N -CICE )6

which shows that a; = as. Since

(G a) = (60 0 0))= (0 i) G 0) = Lol ™)

we see that & = idgy, ® 1.
Similar arguments show that in the second case we also have ay = ao and that

o= Ad((lj [1)) o (id(CZQ ®041) = Ad61 ® aq.
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Since a = Ady o &, we obtain that the map © from the statement is a bijection. The continuity
properties of © and of its inverse are immediately verified. O

Lemma 3.3. Let A be a simple, stable and trivially graded C*-algebra. The group homomor-
phism
Z/2 x Aut(A) = Autg(Clhr® A) (z,a) = Ader @ a

1s a homotopy equivalence.

Proof. In view of Lemma 3.2, the result follows from the contractibility of U(M (A)) in the strict
topology. O

Lemma 3.4. Let A be a stable C*-algebra and let n € N. The group homomorphisms
Aut(A) - Awt(K® A) , a—idg®a,
Aut(4) - Aut(M,(C)® A) , awidy,@a.

are homotopy equivalences.

Proof. Let M,, = M, (C). Using an isomorphism A = K ® A we see that it suffices to show that
Aut(K® A) = Awt(KoK®A) , a—idg®a,
Aut(K® A) - Aut(M, ® K® A) , a—idy, @«

are homotopy equivalences. In fact, if the first map induces a homotopy equivalence, then so
does the second. To see this note that the composition

a—idyr, ®a B—idxc®p

Aut(K® A) Aut(M, ® K® A) Aut(Ko M, @ K® A)

maps « to idggr, ® a. If a— idge ® « is a homotopy equivalence, then so is a — idggr, ® o
(because K ® M,, = K) and therefore also «a — idy;, ® .

Let e € K be a minimal projection. By [16, Lemma 2.4] there exists a continuous map
¥: [0,1] - Hom (K, K ® K) with the property that ¥)(0)(7) = e® T for all T € K and (t) is
an isomorphism for all ¢ € (0, 1] (see also the proof of [16, Thm. 2.5]). The homotopy inverse of
a — idg ® « is given by £ — (1/11_1 ®idg) o fo (11 ®ida). The homotopy

o ift=0,
(W7t @ida) o (idx ® a) o (Yr @ida)  else.

shows that (¢ ®id4) o (idk ® @) o (¥ ® id4) is homotopic to the identity map. The proof
that the other composition of the two maps is also homotopic to the identity can be reduced to
this argument and is therefore omitted. O

H: Awt(K® A) x I - Aut(K® A) , (a,t)l—>{

Proposition 3.5. Let A be a simple, stable and trivially graded C*-algebra. For every n € N
the group homomorphism

U, Aut g (Cl, ® A) = Aut g (Clpp1 ® A) |
induced by Auty(Cl,®A) = Auty,(ClHRCL,®A), a — id®@a and the isomorphism Cl1 @Cl,, =

Cly+t1, is a homotopy equivalence.

Proof. By the periodicity of Clifford algebras, it suffices to show the statement for n = 1 and
n = 2, which will become apparent in the proof of the case n = 2. In the first case consider the
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diagram
Autgr (Cﬁl & A *) Autgr((C@ & A)

| /

Z])2 x Aut(A)

where the vertical arrow is the isomorphism from Lemma 3.1 and the diagonal arrow is given by

(7,a) = Ader ® o, the homomorphism from Lemma 3.3. To see that this diagram commutes,

we observe that if v is the grading automorphism of C/q, then idg,, ® v € Autg (Cl @ Cly) =

Autg, (Cly) is implemented in Cly by conjugation by e;. So this case follows from Lemma 3.3.
To handle the case n = 2 it suffices to show that the homomorphism

Uy 0 Wyt Aut(Cly) x Aut(A) = Autg, (Cl ® A) = Autg, (Cl @ Cl @ Cl @ A),

(B,a) — idey, ® idey, ® B ® a is a homotopy equivalence. Let o be the automorphism of
Cl1®ClCl ® A that permutes cyclically the first three tensor factors and acts as identity on A.
Since conjugation by o is a homeomorphism of Autg, (Cl; ® Cl; @ Cl; ® A) it suffices to show that
the map ¥(8,a) = f® id(cg1 ®idgy, ® av is a homotopy equivalence. The grading automorphism
of B := Cl; ® Cly = M;(C) is inner, implemented by the unitary v = (§ % ). It follows that the
graded tensor product C/; ® B is isomorphic to C¢; ® B where B stands for the C*-algebra B
with the trivial grading. The isomorphism 6 : C¢; @ B — Cl; ®B is given by 1®b — x®@wvb. Next
we observe that the homomorphism ¢/(—) := (0®id4)ot)(—)o(d®ida)~L: Aut(Cly) x Aut(A) —
Autg, (Cl ® Cly ® Cly ® A) maps (8, a) to B ®idygc) ® o Indeed if x € Cly,b € Cl @ Cly
and a € A,

P(B,a)(z@b®a) = (0 ®ida)(Y(B,a)(z @ v*b® a))
= (0 ®ida)(B(z) @ D ® a(a)) = f(zr) ®b® ala)

It follows that 1’ is a homotopy equivalence by Lemma 3.3 applied for M5(C)® A and Lemma 3.4.
We conclude that 1) and hence ¥y o ¥y is a homotopy equivalence. O

4. SPECTRA IN ALGEBRAIC TOPOLOGY
4.1. Spectra, commutative Z-monoids and units.

4.1.1. Spectra and cohomology theories. To understand the link between cohomology theories
and infinite loop spaces, we need to recall some basic facts from stable homotopy theory. A
sequence (Ep)nen, of pointed topological spaces together with weak equivalences E,, — QE, 1
is called an Q-spectrum. A topological space Z is an infinite loop space if there is an Q2-spectrum
(En)nen, with Z ~ Ey. This is often written as Z = Q°E. It is an easy exercise in homotopy
theory to check that N
h'(X) = [X, En]+

where the right hand side denotes based homotopy classes of based continuous maps, defines
a reduced cohomology theory on the category of pointed finite CW-complexes. For all pairs
(X, A) of a finite CW-complex X and a subcomplex A, the groups A" (X, A) = h"(X/A) provide
an (unreduced) cohomology theory (where we set X /() := X, ie. X with an added disjoint base
point). Using the mapping cone instead of the quotient this is easily extended to pairs (X, A)
of a finite CW-complex with a subspace A. Note in particular that

W(X) = WX, 0) = [Xa, Buls = [X. B, .
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4.1.2. Commutative symmetric ring spectra. The terminology “space” will always refer to com-
pactly generated Hausdorff spaces. A symmetric spectrum consists of a sequence of pointed
spaces E,, for n > 0, a basepoint preserving left action of the symmetric group >, on F, and
Yp-equivariant based maps oy, : E,AS' — E, 41 for n > 0. There is a category Sp> of symmetric
spectra, which has a symmetric monoidal structure (via the smash product). The (commutative)
monoid objects in Sp™ are called (commutative) ring spectra. For details about the category
of symmetric spectra we refer the reader to [26]. An “unpacked” version of the definition of a
commutative symmetric ring spectrum can be found in [15, Def. 2.1].

4.1.3. Units. Let R be a commutative unital ring. The set of invertible elements in R forms the
group of units denoted by GL;i(R). Likewise, for a commutative ring spectrum E and a space
X, E°(X) is a commutative ring with units GL;(E"(X)). By May, Quinn, Ray, Tornehave
[33], if £ is an E-ring spectrum, one can lift this construction to a spectrum of units denoted
gli(E) so that gl (F)°(X) = GLi(E°(X)). In particular this is the case if E is a commutative
symmetric ring spectrum in the sense of [26].

4.1.4. Commutative T-monoids. In [41] Schlichtkrull gave a description of the infinite loop space
underlying gl; (E) in terms of commutative Z-monoids, which will be convenient for us and which
we outline here.

We recall the following definition from [41, 40]. Let Z be the category with objects given by

the finite sets n = {1,...,n} including the empty set 0 and morphisms injective maps between
these sets. An Z-space is a (covariant) functor from Z to the category of topological spaces and
continuous maps. The category Z is symmetric monoidal, where n Um = {1,...,n + m} on

objects, 0 is the tensor identity, and tensor products of morphisms act by identifying the subset
{1,...n} Cc {1,...,n+m} with n and {n + 1,...,n + m} with m. The category of Z-spaces
inherits a symmetric monoidal structure and monoids with respect to this structure are called
Z-monoids. To spell out explicitly what this means note that an Z-space X is an Z-monoid if it
comes equipped with a multiplication

fnm: X(n) x X(m) - X (nUm)

that is a morphism between Z x Z-spaces, such that the obvious associativity and unitality
diagrams commute. An Z-monoid X is commutative if the following diagram commutes

Hn,m

X(n)x X(m) —— X(nUm)
™ ! [
X(m) x X(n) -— X(mUln)

where the left vertical arrow interchanges the factors and the right vertical arrow is induced by
the block permutation 7,,, :nlUm — m U n.

4.1.5. The unit spectrum of a commutative symmetric ring spectrum. Given a commutative
symmetric ring spectrum E and n € Ny, let (Q"E,,)* be the union of path components in Q"FE,,
that have a stable multiplicative homotopy inverse in the sense that for each f: S™ — E, in
(Q"E,,)* there exists g € Q™ E,, such that

srasm TN BB, T B
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is homotopic to the unit map S™"*™ — E, ., of the ring spectrum in Q""" E,, ,,, and similarly
for pummn o (g A f). This can be extended to a functor n — (Q"E,,)* as follows: Permutations act
on (Q"E,)* by permuting the circle coordinates and using the ¥, -action on E,,. Moreover, the
map n — n+ 1 given by ¢ — i+ 1 maps f € (Q"E,)* to the composition

uN

SUASY M B AE, M B,

where u: S' — E; denotes the unit map of the ring spectrum E. Now define
(8) GL;(E) = hocolimz Q" (E,)" .

Under suitable connectivity assumptions (see [41, Sec. 2.3]) we have 7o(GL1(E)) = GL;(mo(E))
and in this case the Z-monoid n — (Q"E,)* has the homotopy type of the unit space of the
ring spectrum E. Since we assumed E to be commutative, there is also a connective spectrum
gl1(E) associated to this Z-monoid, which is called the spectrum of units of E. For its underlying
infinite loop space we have Q*°gl(F) ~ GLi(E).

4.2. Spectra representing K-theory and its units.

4.2.1. The K-theory spectrum KUP. To any strongly self-absorbing C*-algebra D we can asso-
ciate a commutative symmetric ring spectrum KUP defined by the sequence of spaces

KUP = homg, (S, (CH ® D® K)*") ,

where the set of x-homomorphisms is equipped with the point-norm topology and the algebra
D®K is trivially graded. The x-homomorphisms in (4) give a ¥,-action on (C¢; ® D ® K)®™ by
permuting the tensor factors. The ¥,,-action on KU?P is given by composition with these maps.
The multiplication of KUP stems from the maps

KUP x KUE — KUP., . (o) = (p@¢) o A= px1

and uses the comultiplication A: § — § ® S described in the previous section. Note that we
can identify QKU with the space

homgr(S, C()(R, Cl1 ® D® /C)) ,
where Cp(R) is trivially graded. Let e € K be a fixed minimal projection. The map
R—-CheDK |, tl—>t(€1®1p®e)

is an odd, self-adjoint, regular unbounded multiplier on Cy(R,Cl; ® D ® K) and therefore
corresponds to a x-homomorphism 7, € QKU . The structure map KUY AS' — KUP, | is the
adjoint of

KUP - QKUnDH , P exm
We refer the reader to [15, Thm. 4.2] for a proof that KUP indeed defines a commutative
symmetric ring spectrum. Inductively, we define n; = 1 * 71 € Q'K UZD .

4.2.2. The unit spectrum of KUP. In the case of the commutative symmetric ring spectrum
KUP introduced above, the map n — n + 1 defined by i — i + 1 for n > 1 induces the group
homomorphism

K;(Co(R™, Cl, @ D®™)) = K;(Co(R"™,Clpy1 ® D®(n+1)))

)
on 7;(Q"KUP) = K;(Co(R", Cl,,@ D®™)) given by the tensor product with the element b®[1p] €
Ko(Co(R,Cl; ® D)), where b € Ko(Co(R,Cty)) is the Bott class [5, 19.9.3]. Since this is an
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isomorphism, the Z-monoid n ~ (Q"KUP)* is convergent, in fact, all maps n — m for n > 1
induce weak homotopy equivalences.

Definition 4.1. The unit spectrum of KUP is the connective spectrum gly (KUP) associated
to the commutative Z-monoid n + (Q"KUP)* defined in Sec. 4.1.5 and 4.2.1. We define the
space of units as the underlying infinite loop space, ie. GL1(KUP) = Q> (gl (KUP)).

4.3. Localization of spectra. Given a commutative ring R with unit and a subset S C R
of non-zero divisors we can invert the elements in S and form the localization R[S™!] at the
multiplicative closure of S. This procedure extends to spectra. In fact, Bousfield gave a more
general construction in [7] that localizes a spectrum with respect to a homology theory. We will
only need the simplest case here, which is the spectral analogue of Zp for a set of primes P,
ie. we would like to define a commutative symmetric ring spectrum E[P~!] starting from a
commutative symmetric ring spectrum E. As explained for example in [12, Sec. 3.3] such a
localization is smashing, ie. E[P~'] ~ EAS[P~!], where S[P~!] is the corresponding localization
of the sphere spectrum S. The spectrum S[P~!] can be obtained as a commutative symmetric
ring spectrum as follows: Following [20, Chap. V, Def. 1.12] and [20, Chap. V, Prop. 2.3] there is a
model as a commutative S-algebra. The functor ® constructed in [43] produces a commutative
symmetric ring spectrum S[P~!] from this, which we will also assume to be cofibrant in the
positive model structure on commutative symmetric ring spectra. This ensures that the smash
product in Def. 4.2 has the correct homotopy type. Let P C N be the set of all prime numbers.

Definition 4.2. Let P C P. Let E be a symmetric spectrum and let S[P~!] be the cofibrant
commutative symmetric ring spectrum obtained from the sphere spectrum S as described above.
We define the P-localization of E to be

E[PY1=EAS[PY].

Let p € P and P C P. From the above discussion we obtain the following commutative
symmetric ring spectra

KU :=KU® | KU,:=KU[{p}™'] , KU, =KU[P\{p})'] , KUp:=KUP'].

Lemma 4.3. Let P C P and let Mp be the associated UHF-algebra. There is a zig-zag of stable

equivalences of commutative symmetric ring spectra KU[P™'] ~ KUMP ynder KU.

Proof. Using [15, Thm. 4.2] we see that the homotopy groups of the localization satisfy
m(KUP[P7Y) = my(KUP) @ Z[P~'] = K;(D) ® Z[P~]

for i € Z. Since Keyen(Mp) = Z[P7Y], Koqa(Mp) = 0 and Z[P~!] ® Z[P~!] = Z[P~!], the map

on the right and the bottom map in the following commutative square

KU — KUMr

l\l

P~ — KUMr[P

are stable equivalences of commutative symmetric ring spectra. 0
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Theorem 4.4 (cf. [15]). There are stable equivalences of spectra:
gl (KU®) = gl (KU?) ~ gli(KU>)
gl (KUMP) = gl (KUMPEO)

Proof. Since the unital x-homomorphisms C — Z — O are K K-equivalences, the argu-
ments from the proof of [15, Thm.4.7] show that they induce m.-isomorphisms in the sense
of [4, Def. 5.3.10]. By [4, Prop. 5.3.12] they give stable equivalences of commutative symmet-
ric ring spectra KUP ~ KUP®Z ~ KUP®P for any strongly self-absorbing C*-algebra D.
Since KUP is a positive Q-spectrum, the above x-homomorphisms induce weak equivalences
Q"KUP ~ Q"KUP®Z ~ Q" KUP®%~_ Moreover, the invertible components of Q"KUP corre-
spond to those elements in mo(Q"KUP) = mo(QKUP) that are invertible with respect to the
multiplication
To(AKUP) x mo(AKUP) = mo( VP KUP) = mo(QKUP) |

Since these are identified by the maps induced by the x-homomorphisms, they induce morphisms
of commutative Z-monoids (Q"KUP)* — (Q"KUP®Z)* and (Q"KUP)* — (Q"KUP®0=)*
that are weak equivalences on the respective homotopy colimits. Hence, they give rise to stable
equivalences of the corresponding unit spectra:

gli(KUP) ~ gl (KUP®?) ~ gl (KUP®9=) |

Furthermore, by Lem. 4.3 there are zig-zags of stable equivalences of commutative symmetric
ring spectra KUp ~ KUMP which induce a stable equivalence

gli(KUM?P) ~ g1, (KUp) . O

5. GENERALIZED DIXMIER-DOUADY THEORY

5.1. Bundles of strongly selfabsorbing C*-algebras. If D is a strongly self-absorbing C*-
algebra and K is the C'*-algebra of compact operators on a separable infinite dimensional Hilbert
space then (D ® K) ® (D ® K) = D ® K. In particular, the fibrewise tensor product induces a
semigroup structure on the set of locally trivial C'*-algebra bundles with fibre D ® IC. We have
shown in [16, 15] that the isomorphism classes of such bundles over a compact metrizable space X
in fact form an abelian group under the operation of fibrewise tensor product. This was achieved
by showing that the group Aut(D ® K) admits an infinite loop space structure such that the
tensor product operation on the classifying space BAut(D ® K) coincides with the composition
of loops in QB(BAut(D ® K)) up to homotopy. Since infinite loop spaces give rise to connective
spectra, there is a cohomology theory E7} (X)) such that its zeroth group E%(X ) computes the
homotopy classes E%(X) 2 [X, Aut(D ® K)] and its first group EhH(X) = [X, BAut(D ® K)]
computes the group of isomorphism classes of locally trivial bundles with fibers D ® K endowed
with the operation of tensor product. The coefficients of the cohomology theory E7},(X) are

given by the homotopy groups of Aut(D ® K) computed in [16]:
» Ko(D)X, ifi =0

9 E7'(x) 2 m(Aut(D®K)) =

©) (x) = mi(Aut( ) {Ki(D), if 4 > 1.

The coefficients determine a cohomology theory only rationally, ie. up to torsion. In pursuit of a
better understanding of E})(X) it was further shown in [15] that its spectrum is closely related
to gli(KUP) and in fact is equivalent to it, if D is purely infinite. In the following we will give
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more context in order to explain the results of [15] in preparation for their extension to graded
algebras.

Let KUP be the commutative symmetric ring spectrum introduced in Sec. 4.2. The spaces
representing its units gl (KUP) are denoted by GL1(KUP), BGL(KUP), BBGL{(KUP), etc.
Consider the commutative Z-monoid Gp defined by

Gp(n) = Aut((D ® K)®") .

The map Gp(m — n) associated to a morphism m — n permutes the tensor factors labelled
by the elements in the image of the morphism and acts as idpgi on the remaining ones. The
monoid structure is induced by the tensor product of automorphisms (see [15, Sec. 4.2]). Note
that Gp takes values in topological groups. Denote the Z-monoid multiplication by i, , and
the composition of automorphisms by

Vn: Gp(n) x Gp(n) = Gp(n) .

Observe that (o ® ag) o (f1 ® f2) = (g 0 1) ® (g 0 fB2) implies that the following diagram
commutes:

(Wm,n X fm,n )oT

Gp(m) x Gp(m) x Gp(n) x Gp(n) Gp(mUn) x Gp(m Un)
(10) meunl \Ll/m#»n
Gp(m) x Gp(n)

Gp(mUn)

Hm,n

where 7 flips the two middle factors of the product in the upper left hand corner. Therefore Gp
is an EH-Z-group (Eckmann-Hilton Z-group) in the sense of [15, Def. 3.1]. This EH-Z-group
acts on KUP | and the action gives rise to a morphism of commutative Z-monoids [15, Thm. 3.8]
Gp — (Q°KUP)* |

which induces an isomorphism on all homotopy groups 7, for n > 0 and produces an equivalence
of the underlying infinite loop spaces (Gp),; — GL1(KUP) if D is purely infinite [15, Thm. 4.6].
Since all maps m — n with m > 1 induce homotopy equivalences, we have (Gp),; ~ Aut(D®K)
for the homotopy colimit [15, Lem. 3.5]. The first delooping B,,(G'p)nz of (Gp)nz with respect to
the Z-monoid structure has the homotopy type of BAut(D ® K) according to [15, Thm. 3.6]. It
was also shown in [15, Thm. 4.9] that the infinite loop space structure on BAut(D® K) obtained
in this way agrees with the one found in [16]. Hence the connective spectrum underlying Gp
indeed represents the cohomology theory X — E7,(X).

Theorem 5.1 ([15],Thm.4.6). Let D be a strongly self-absorbing C*-algebra. The action of Gp
on the ring spectrum KUP induces a map

(11) [(Gp) = T((QXKUP)")

of the associated I'-spaces. In turn, this induces an isomorphism on all homotopy groups m, with
n > 0 of the corresponding connective spectra and the homomorphism

{il} X Ko(D)_T_ — Ko(D)X R (a, b) —a-b

on m. In particular, (11) induces an equivalence in the stable homotopy category of spectra if
D s purely infinite and satisfies the UCT and hence E}(X) = gly (KUP)*(X).

As stated in (9) we have mo(Aut(D ® K)) = Ko(D)’, whereas mo(GL1(KUP)) = Ko(D)*.
Hence, the assumption that D is purely infinite is needed, because the tensor product with Oy
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trivialises the order structure on Ko(D). The group gli (KU)!(X) is closely related to the graded
Brauer group discussed for example in [36]. This suggests a different approach to correct m
making use of graded C*-algebras, in particular the Clifford algebras that appear in the definition
of the spectrum KUP. Following the proof outlined above we will see in the next sections that
this idea indeed motivates another very natural EH-Z-group representing gli (KUP).

Apart from this we obtain from Theorem 5.1 and Theorem 4.4 the isomorphisms:

Eo (X) = gh(KU)'(X)  and  Ejgo. (X) = gh(KUp)"(X)

These groups will be further discussed in the sequel.
5.2. Bundles of strongly selfabsorbing C*-algebras with a Clifford grading.

5.2.1. Eckmann-Hilton Z-groups and graded C*-algebras. Let D be a strongly self-absorbing
C*-algebra. Motivated by the above considerations we define the Z-space G%, by

G2 (n) = Auty ((Cl ® D  K)®")

where the graded automorphism groups are equipped with the point-norm topology. Note that
G%(0) = Aute,((Cl @ D ® K)®Y) = Aut(C) is the one-point space. The value of G on the
morphisms of Z is fixed by the following: If o: n — n denotes a permutation, then G% (o) is
defined by a + €, o a o€, !, where

(12) € (ClLeD®K)*™ - (ChHh @D K)*"

is the graded permutation of the tensor factors corresponding to o (see (4)). In fact, because
each a € G% (n) preserves the degree of homogeneous elements, the sign that appears in (4)
cancels out when we conjugate by ¢,. Hence, the conjugation actually agrees with the one by
the ungraded tensor flip (which is, however, not an algebra automorphism).

If m =n+1and ¢: n — m denotes the map i — i+ 1, then GH(¢): GH(n) - GH(m)
maps « to id ® a. Just as in the case of Gp (see [15, Sec. 4.2]) defining G%)(¢) and G$ (o) fixes
the Z-space structure completely. We can equip G% with a multiplication that turns it into an
Z-monoid as follows:

pmn: GH(m) x G%)(n) - G (mUn) ; (a1,09) = a1 ® az .
In particular, the single point in GgDr(O) acts as a unit for ji,, . Consider the block permutation
o:mlUn — nUm. Since 6,0 (g ®az)oe, ! = as ®aq, the Z-monoid G} is commutative in the

sense of (7). As in the ungraded case we still have (a1 ® ag) o (81 ® B2) = (a1 0 B1) ® (g © f2).
Therefore G$) is an EH-Z-group in the sense of Def. [15, Def. 3.1]

Lemma 5.2. Let D be a strongly self-absorbing C*-algebra. The EH-I-group GY) is stable, ie.
the functor G maps all morphisms m — n with m > 0 in Z to homotopy equivalences.

Proof. Since the maps G% (n — n) are homeomorphisms, the statement is true for m = n.
Hence, it suffices to prove it for m =1, n > 1 and the morphism ¢,,: 1 — n with ¢,(1) = n. Let
A=D®K and j, = G5 (1) : Autg(Cl; @ A) — Autg, ((Cl ® A)®™) . We shall write j, as the
composition of three maps each of which is a homotopy equivalence. Let

®: Aut(Cly) x Aut(A) 2 Autg (Cl @ A) — Autg, (Cl @ A®™) =2 Aut(Cly) x Aut(A®™)

be the map ®(f®@a) = f®id om-1) @, f € Aut(Cly), a € Aut(A). As explained in the proof
of [15, Thm. 4.5], the map Aut(A4) — Aut(A®"), a — id 4em-1) ® a is a homotopy equivalence,
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therefore ® is as well. Let
J : Autg, (Cl @ A®") — Autg, (CUE" @ A®™),  J(y) = id(cel‘g’("’l) ®
be the homotopy equivalence given Proposition 3.5. The permutation homomorphism (C€1®n ®
AP — (Cly @ A)®" defined by
(1®@ - Qap) QM@ ®ap) = (1R a1) R+ @ (Tn, ® ay)
induces an isomorphism of topological groups
Ui Autg, (CLE" @ A®™) — Autg ((Cl @ A)®™).
Then j, = ¥ o J o ®. Indeed
V(J(P(Lf®a)))=YJ(idgemn1 ®a)) = ‘I’(idul@mm ® B Rid em-1 ®a) = jn(f® a).
This completes the proof. O

Lemma 5.3. Let D be a strongly self-absorbing C*-algebra. For eachn € N the group mo(G%(n))
is abelian and the EH-I-group G% has compatible inverses in the sense of [15, Def. 3.1].

Proof. Note that the second statement is a consequence of the first, because it implies that for
a given o € G} (n) there is a path that connects id ® a € G$(n L n) to
co(id®a)ooc ' =a®id,

where ¢ € Aut((Cl; ® D ® K)®" @ (Cly @ D ®@ K)®") = GH(n U n) is the graded permutation
of the first n and the last n tensor factors.

By the periodicity of Clifford algebras it suffices to show the first statement for n € {1,2}.
By Lem. 3.1 and Lem. 3.3 there are group isomorphisms

FQ(G%(H)) = Z/2 X ﬂo(Aut(D & IC)) = Z/2 X K@(D)j_

in these cases (see [16, Thm. 2.18]) and the right hand side is abelian. O

5.2.2. The action of GJ on KUP. We can now define an action x5 : G%(n) x KUY — KUY
of G% on the symmetric ring spectrum KU D as follows:

Ky () =aop.
We will see in Thm. 5.4 that this map indeed defines an action. Let Gp be the EH-Z-group
from [15, Sec. 4.2] and let
0,: (Cl ® D®K)®" — Cl, ® (D ®K)*"

be the unique *-isomorphism preserving the order of the tensor factors and identifying (C¢1)®"
with C¢,,. The maps ,,: Gp(n) — G&(n) defined by a +— 6,10 (idcy, ® ) 06, form a morphism
of EH-Z-groups such that the following diagram commutes

Kn

Gp(n) x KUP - KUP

o

G%( ) X KU,ij

5.3. The main technical result. We now show the analogue of Theorem 5.1 holds for the
action of G%) on KU D and will discuss some of its consequences.
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Theorem 5.4. Let D be a strongly self-absorbing C*-algebra. The EH-I-group GY) acts via k8"
on the ring spectrum KUP in the sense of [15, Def. 8.7]. The induced map

(13) L(GH) = L(Q*KUP))

of the associated I'-spaces induces an isomorphism on all homotopy groups m, with n > 0 of the
corresponding connective spectra and the homomorphism

{£1} x Ko(D)X — Ko(D)* , (a,b) > a-b

on m. In particular, (13) induces an equivalence in the stable homotopy category of spectra if
D is stably finite and satisfies the UCT.

Proof. The map rf§ satisfies [15, Def. 3.7 (i)]. Let p € KUP, ¢ € KUL, a € G5 (n) and
B € G%(m). We have ((aop)® (Boy)) oA = (a® fB)o(p® 1) oA, which shows that the
diagram in [15, Def. 3.7 (ii)] commutes. With ¢ € KUL and n € Q'KUP as in Sec. 4.2 we
have 7, % (a0 ) = (id @ a) o (g * ) € Q'KUL™. This proves that [15, Def. 3.7 (iii)] also
commutes. Hence, k8 indeed defines an action of G%) on K UP. The map in (13) is induced by
the morphism of Z-monoids G§ — (2°KUP)* that exists by Lem. 5.3 and [15, Thm. 3.8].

To understand the induced maps on homotopy groups note that v,: Gp(n) — GH(n)
induces a homotopy equivalence on 7, for all n > 0 by Lem. 3.1, Lem. 3.3 and Proposition 3.5.

Moreover, the following diagram of Z-spaces commutes:

Gp —— (Q®KUP)*

gr
Gh
Since Gp as well as G% are both stable, the induced maps on the homotopy colimits and

therefore also on the I'-spaces give isomorphisms on all 7, for n > 0. By stability it suffices to
show that 11 induces the homomorphism from the statement on mg, ie. that

Y1 Wo(Autgr(Cfl RKD® IC)) — ﬂ'o((QKUlD)*)

is the desired map. By Lem. 3.1 the left hand side is isomorphic to Z/2 x mp(Aut(D ® K)). The
restriction of 11, to {1} x mo(Aut(D ® K)) agrees with the inclusion Ko(D)} — Ko(D)* under
the identifications mo(Aut(D ® K)) = Ko(D)} and Ko(D)* = mo((QKUP)*) = m((KUP)*)
by [15, Thm. 4.6]. The non-trivial automorphism 6 € Aut(C/¢;) acts by 0(e;) = —e; on the
odd degree generator e; € Cf1. Let 1 € QKUY be as above and denote by i: ST — S the
map reversing the orientation of the circle, ie. i(z) = z. Since fon; = ny oi: St — KUlD,
the element [§ ® idpgx] € mo(Aute(Cl @ D ® K)) is mapped to (—1) € Ko(D)*. Since the
morphism of Z-monoids G% — (Q®KUP)* gives rise to a group homomorphism on 7 the proof
is finished. O

It is convenient to introduce the commutative Z-monoid G'p that associates to n the path-
components of the identity, i.e. Gp(n) = Auto((D®K)®"). The maps are defined just like those
of G D-

Definition 5.5. The cohomology theories defined by the I'-spaces I'(Gp), I'(Gp), ['(G}) are
denoted by E%(X), E5(X), and % (X) respectively.
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The following corollary yields Theorem 1.3 from the introduction. Let P be a set of prime
numbers.

Corollary 5.6. The following maps of I'-spaces are all equivalences:
I'(G%) = T((Q®KU?)*) —» T((Q*KU%)*) + T'(Go..)

D(GZonr,) = T(QCKUZEMP) ) o D(QXKU=EMP)*) « T(Goomp)
In particular, for any n € N these equivalences induce natural group isomorphisms
E5(X) 2 Ep (X) B (X) = Ep g (X).
for any finite CW-complex X.

Proof. If P = () we use the convention Mp = C. The first line of equivalences then follows
from the second. Applying Thm. 5.4 in the case D = Z ® Mp shows that the first map is an
equivalence. Theorem 5.1 applied for D = Oy ® Mp gives the third equivalence.

The equivalence in the middle was shown in [15, Thm. 4.7] for Mp = C. More generally,
as argued earlier in the proof of Thm. 4.4, the arguments from the proof of [15, Thm.4.7] show
that the KK-equivalence Z ® Mp — Oy ® Mp induces an equivalence

T((QXKUZ®MP)*) 5 D((Q®° KUO=®Mpy*), O

Corollary 5.7. The cohomology theories E%(X) and EA}V[P(X) classify principal bundles with
structure groups Autg,.(Cl, ® Z ® K) and Auty,(Cl, @ Mp ® ), respectively. Furthermore, for
P # () and any n > 1 we have natural isomorphisms

EL(X) 2 [X, BAuty,(Cl, ® 2@ K)] = [X, BAut(Oe ® K)] 2 EH_(X)
B, (X) 2 [X, BAut,(Cl, ® Mp ® K)] 2 [X, BAut(Ooe ® Mp ® K)] =2 Eb_gar, (X)

Proof. By Lemma 5.2 the Z-monoids G% are stable. The same argument as in [15] shows
that the first group E}:,(X ) of the associated cohomology theory EB(X ) classifies bundles.
We summarise the main steps: Since G% takes values in topological groups, the homotopy
colimit (G%)xz is a topological group as well. Let B(G}))nz be its classifying space. Since the
classifying space functor preserves products, n — BG% (n) defines a commutative Z-monoid
with homotopy colimit (BGgDr Jnz- By [15, Lem. 3.4], those two spaces are homotopy equivalent,
ie. (BGY)nz ~ B(G})nz. Hence, (BGH)nz is a delooping of (G}))nz. Note that the Z-monoid
multiplication of n — BG$(n) encodes the tensor product of bundles.

There is another space delooping (G))nz. It is the one obtained from the infinite loop
space structure (the I-space delooping), and we will denote it by Bg(G%)sz. By definition of
the cohomology theory, FhH(X) = [X, Bg(G%)nz]. A priori this space could be different from
B(GY)nz, but because G%) is a stable EH-Z-group, [15, Thm. 3.6] implies

BAutgr(Cél ®D® ]C) = BG%(].) ~ B(G%)hz ~ B@(G%)hz .

and therefore Eb(X ) = [X, BAutg, (Cl ® D ® K)], where the group structure of EE(X ) is iden-
tified with the tensor product of bundles by the observations above. The group homomorphism
(idee, ,® ) Autg (CHRDRK) — Aute (Cl,@D®K) is an equivalence for any n € N. Therefore
BAutg, (Cl ® DRK) ~ BAutg, (Cl, ® D®K). This shows EL(X) 2 [X, BAutg, (Cl, ® D@K)],
for all n € N. The equivalences of I'-spaces established in Cor. 5.6 in particular give homotopy
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equivalences

Bg(G%)nz ~ Be(Go. )iz and  Bg(GY) )iz ~ Be(Go.emp)nT -

Hence, we obtain natural isomorphisms EL(X) & E}_(X) and E]1\4P (X) = Ep_ g, (X). The
stability of the Z-monoids Go_, and Go_ gum, was established in [15] showing that the groups
E(l%O (X) and E(l900® M (X) also classify bundles. O

Corollary 5.8. Suppose that Ay, Ao are locally trivial bundles of graded C*-algebras with all
fibers isomorphic to Cl,,, ® D ® K and structure groups Auty(Cl,, ® D®K), i = 1,2. Then Ay
is isomorphic to Ay if and only if [A1] = [Ag] in EL(X) and ny = ny (mod 2).

Proof. Indeed, by stability of G%), the inclusion G%)(n) — G%)(n+ 1), a — idcs, ® o induces a
bijection

[X, BAutg, (Cl,, ® D ® K)] — [X, BAutg(Cl+1 @ D ® K)].
At the bundle level this corresponds to the map A — Cl; ® A. O

The following is the same as Theorem 1.1 from the introduction.

Theorem 5.9. The tensor product operation defines a group structure on the isomorphism
classes of locally trivial bundles of graded C*-algebras with fibers isomorphic to Cl, @ D ® IC,
k > 1 variable. This group is isomorphic to H*(X,7/2) x EL(X).

Proof. Let A be a bundle as in the statement with fibers A(z) = Cly,) ® D ® K. The map
x — k(z) is locally constant by assumption. The reduction (mod 2) of k(z) defines element of
H°(X,7/2) associated to the isomorphism class of A. We conclude by applying Corollary 5.8
for each connected component of X. O

6. COMPUTATION OF EL(X) AND E}; (X)

In this section we will (implicitly) present a new model for BG L1 (KUP) that is compatible
with classical results about the Brauer group and Clifford algebras. As a space, BGL1(KU)
decomposes as a product

BGLy(KU) ~ K(Z/2,1) x K(Z,3) x BBSUg, .

However, this decomposition does not respect the infinite loop space structure. In fact, the
first two factors K(Z/2,1) x K(Z,3) split off from the rest and the group structure induced on
homotopy classes, ie. on the set H'(X,Z/2) x H3(X,Z), is

(w,7) - (w',7) = (w+w', 7+ 7"+ BwUw))
for w,w' € HY(X,Z/2) and 7,7 € H3(X,Z), where B: H*(X,Z/2) — H?(X,Z) is the Bockstein

homomorphism. As explained in [19] the appearance of the Bockstein homomorphism is closely
linked to the behaviour of Clifford bundles with respect to the fibrewise tensor product.

6.1. Comparing Ejl\/[p (X) with E’}VIP (X). Let H be a multiplicative commutative group with
unit 1. The constant Z-monoid H associated to this group has objects H(n) = H if n > 0
while H(0) = {1}. The morphisms corresponding to m — n are identity maps for m > 0. The
multiplication H(m) x H(n) — H(m Un) is the group multiplication on H.

Proposition 6.1. Let G be a stable Eckmann-Hilton T-group. Suppose that each permutation
n — n induces the identity map on mo G(n). Then the group w9 G(1) is abelian and there is
canonical map of Z-monoids 0 : G — 7y G(1).
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Proof. Since each morphism n — n induces the identity map on 7y G(n), it follows that all
morphisms 1 — n induce the same map j, : 790 G(1) — 7o G(n). Since G is stable, j, is an
isomorphism of groups. Define 6,, : G(n) — 79 G(1) as the composition

1
G(n) — m G(n) 22— 7o G(1),
It follows that for all m > 0 and all morphisms f : m — n the diagram

o G(m i}WQG (n)

o G(1)

is commutative. This shows that 6 is a map of Z-spaces. The transformation 6 preserves
multiplication if the following diagram is commutative:

o G(m) x 19 G(n) —— 7 G(m U n)

s T w

0 G(l) X 10 G(l) — T G(l)
By naturality of p, , the diagram
G(m) x G(n) —— G(mUn)

[ [

G(1) xG(1) —— G(1u1)

is commutative and hence we may assume that m =n = 1 in (14). For simplicity we will write
gh for v,(g,h), g,h € G(n). The class of g in my G(n) is denoted by [g].
Our task is to verify that

jolgh] = [p1,1(g, h)]-

As noted in the third line of the proof of [15, Lemma 3.2], by the naturality properties of
fom,n it follows that p1(1,9) = (t2)«(g), where 12 : 1 — 2, 12(1) = 2. From this we see that
[11,1(1, g)] = jalg] for g € G(1). Thus we need to show that

[n1,1(1, gh)] = [p1,1(g, B)).
The Eckmann-Hilton property requires that u; 1(g,¢")u1,1(h,h') = p1.1(gh, ¢'h’). It follows that

pa(1, gh) = pia(1,9)paa(1,h)
and
p1,1(9,h) = pa,1(g, D a (L, h) = (1,1) (1,1 (1, 9)) (1, h),
since any Eckmann-Hilton Z-monoid is commutative by [15, Lemma 3.2]. The 7 class of the
block permutation (71,1)« equals the identity map (by hypothesis). It follows that

(11,19, h)] = [, (L, )] 1,1 (1, h)] = [, (1, gh)].
Since
jalghl = [k1(g, B)] = [(T1,0)« (1,1 (R, 9)] = [p1,1 (R, 9)] = J2[hyg],
the commutativity of 7wy G(1) follows from stability. O
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Let D be a strongly selfabsorbing C*-algebra. Fix the idempotent e = 1p ® e17 € D @ K
where e is a rank one projection. For each n > 1 fix an isomorphism 6, : (D ® K)®" — D® K
such that 6,(e®™) = e. The space of all such isomorphisms in contractible by [16]. Define maps

Aut((D ® K)¥™) — Ko(D)X by o [0 ((e®™))] for n > 0 and Aut(C) = {id} — {1}.
Lemma 6.2. The maps Gp(n) — Ko(D)} define a morphism of T-monoids.

Proof. It was shown in [16] that Gp is a stable EH-Z-group and that mo Gp(1) = Ko(D)%, via
the map o — [a(e)]. Any permutation n — n induce an automorphism o € Aut((D @ K)®")
which fixes e®" and hence ¢ is homotopic to the identity map [16]. Thus [0 o a0 0~1] = [a] in
m9 Gp(n), for all « € Gp(n). The statement follows now from Proposition 6.1. O

Lemma 6.3. The maps G}5(n) = Z/2 x Ko(D)X — Z/2 define morphisms of Z-monoids.

Proof. By Lemma 5.2 the EH-Z-group G%) is stable and m9 G%)(1) = Z/2 x Ko(D)Z. Moreover
we have shown in the proof of Lemma 5.3 that each permutation n — n induces the identity
map on my G%)(n). We conclude the proof by applying Proposition 6.1. O

Theorem 6.4. Let X be a finite CW-complex and let D be a stable finite strongly self-absorbing
C*-algebra satisfying the UCT. The groups E}(X) and EL(X) fit into a short ezact sequence

0 —— EL(X) —— EL(X) -2 HY(X,Z/2) — 0.

If L is an euclidean real line bundle on X with associated complexified Clifford bundle Cly,
Ctr, = Cliff (L) ®r C = Cliff (L ®@g C), then 6o(Clr ® D @ K) = wy (L), where wi(L) is the first
Stiefel- Whitney class of L.

Proof. There are maps of Z-monoids:
Gp(n) — G5 (n) - 7o(GE(n))/m(Gp(n) = Z/2.

The first map was discussed earlier in this section. The second map sends the mp-class of
the image of the grading homomorphism v ® idpgi in GH(n) to the generator of Z/2. If
cij: Uij = Z/2 is the cocycle representing w1 (L) for the euclidean real line bundle L — X, then
C/y, is the algebra bundle represented by d;;: U;; — Aut(C/;) obtained by composing ¢;; with
the isomorphism Z/2 — Aut(C/;) that maps the generator of Z/2 to a+be — a—be for a,b € C
and e € C/; with e? = 1. But this is the homomorphism that is used in the definition of &y to
map H (X, mo(Aut(Cl, ® D® K))) to H'(X,Z/2). Hence, we have 6o(Cl;, ® D ® K) = w1 (L).
The isomorphism of groups

Z]2 x Aut(D ® K) = Autg,(Cl1) x Aut(D @ K) — Autg(Cl @ D @ K)
from Lemma 3.1 induces a homotopy equivalence
B(Z/2) x BAut(D ® K) — BAutg,(Cl; ® D ® K)
and hence a bijection
(15) H'(X,Z/2) x Eb(X) — Eb(X),
whose restriction to the second component induces a morphism of groups Eb(X) — EL(X). O

Remark 6.5. We shall use several times the following basic fact, [9, p.93]. Suppose that
0 A" E-"5@ 0
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is an extension of abelian groups and ¢ : G — E is a map such that ¢(0) =0 and 7 oo = idg.
Let ¢ : G x G — A be the normalized 2-cocycle defined by i(c(g,h)) = o(gh)o(h) to=1(g),
g,h € G. Then the group F is isomorphic to G x A endowed with the group law:

(9,0)(d',a") = (g+ 9 ,a+d +clg.9))
Proposition 6.6 (Cf. [19], [36]). For any finite CW-complez X, EL(X) = HY(X,Z/2) x,,
H3(X,Z) with group structure:
(w,7) - (', 7)) = (w+w', 7+ 7"+ Blwuun))

forw,w' € HY(X,7/2) and 7,7 € H3(X,Z), where 3: H*(X,7/2) — H3(X,Z) is the Bockstein
homomorphism.

Proof. By Theorem 6.4 there is an extension
0 —— EAX) —— EMX) —— HYX,Z/2) —— 0

and we know already that EL(X) = H3(X,Z) via the Dixmier-Douady invariant 6. To complete
the proof we show that a normalized 2-cocycle ¢ : HY(X,Z/2) x HY(X,Z/2) — H3(X,Z) for
the extension above is given by ¢(w,w’) = f(w - w') where “” stands the for the cup-product.
We will need the remark that 3(z%) = 0 for all z € H'(X,Z/2). Indeed, since x + B(2?) is a
natural operation H'(X,7Z/2) — H?(X,Z), it must be induced by a map K(Z/2,1) — K(Z,3).
But all such maps are null-homotopic since H3(K(Z/2,1),7Z) = H3*(RP>*,Z) = 0. For w,w' €
H'(X,7/2),let L, L’ be euclidean real line bundles such that w (L) = w and wy(L’) = w’. Then
w1 (L® L") =w+w'. By Theorem 6.4, [L] — [Clr] = [Clr ® K] is a section of dy. We are going
to verify that [Cly] is a element of order two in E(X). For this purpose we need to show that

50(C€L®C£L):O, and 5(C€L®C€L):O.

The first equality holds since all elements of H'(X,Z/2) have order two. Let us note that the
total Stiefel-Whitney class of L® L is (1+w1(L))? = 14wy (L)2. For an oriented euclidean real
vector bundle V' of even rank it is known that the Dixmier-Douady class of the complex Clifford
bundle associated to V satisfies 6(Cly) = B(w2(V)) where wo(V) € H?(X,Z/2) is the second
Stiefel-Whitney class of V', [38, Thm.2.8]. It follows that

(5((CEL & C€L> = 5(CEL€BL) = 5(11)2([1 D L)) = 5(?1}1(11)2) =0.
Consequently, a normalized 2-cocycle for the extension above is given by
c(w,w') = [(C[L@(CKL/ & CgL@L’] = [CEL@L/@[@L/].

[Clrarersr] = [Clrarersre] in EY(X), where 1 denotes the trivial line bundle. The vector
bundle V= L& L' ® L ® L' ® 1 is orientable since wi(V) = wi(L) + wi (L) + wi(L® L") =
2wy (L) + 2wi (L) = 0.
One computes wo(LO L' @ L QL ®1) = wo(L® L") +wi (L& L)w (L ® L) =w (L) -
w1 (L) + (w1 (L) +wi (L)% Tt follows that
c(w,w') = §(Cly) = B(wz(V)) = Bwi(L) - wi(L')) = Bw - w').

We conclude the proof by applying Remark 6.5. O

The following is the same as Theorem 1.2 from the introduction.
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Theorem 6.7. Let X be a finite CW-complex and let D be a stably finite strongly self-absorbing
C*-algebra satisfying the UCT. There is an isomorphism of groups

Eb(X) = H'(X;2/2) %, Ep(X)
with multiplication on the direct product H(X;Z/2) x EL(X) given by
(w,7) - (W', 7) = (w+w', 7+ 7"+ jp o flwUw))

for w,w' € HY(X,Z/2) and 7,7" € EL(X), where jp: EL(X) — EL(X) is the map induced by
the unital x-homomorphism C — D and we identify EL(X) = H3(X,Z).

Proof. The first isomorphism follows from Corollary 5.6. If D’ — D is a unital *-monomorphism
of strongly self-absorbing C*-algebras, by Lemma 6.3 there is a commutative diagram of com-
mutative Z-monoids:

Gpn) —— GH(n) —— Z/2

I I H

Gp(n) — G, (n) —— Z/2

which induces a commutative diagram

0 —— EL(X)

i i |

0 —— Eé(X)

ST
>
=
o
N
S
o

SIe
s’
T
B

0 — H3X;Z) — H3(X;Z) x,, H(X;Z/2) —— HYX;Z/2) —— 0
Let j : H3(X,Z) = E.(X) — E}L(X) be the map induced by the unital *-homomorphism
C — D. From the diagram above, Proposition 6.6 and Remark 6.5 we obtain that
(16) EL(X) = H'(X;Z/2) x,, Ep(X)

where the group structure is given by (w,z) - (w',2') = (w + w',x + 2" + j(B(w U w'))) for
w,w' € HY(X,Z/2) and z,2" € E}L(X). Note that the image of j is contained in E5(X) since

EL(X) = EL(X). O
Corollary 6.8. Let X be a ﬁnite CW complex of dimension < 4 and let P be a nonempty set
of primes. Then Ef, (X)= Eg(X). More generally
Erpeo., (X) 2 H' (X, Z/2) x,, H (X, Zp)

with group structure:

(w,7)- (W, ™) =(w+w, 7+ 7+ BplwUw))
for w,w' € HYX,Z/2) and 7,7 € H3*(X,Zp), where Bp: H*(X,Z/2) — H3(X,Zp) is the
composition of the Bockstein homomorphism with the coefficient map H?(X,7Z) — H3(X,Zp).

We refer the reader to [13] for computations of EL(X), E}WP (X) and E(l%o@MP(X ) =
E}VIP (X) for a general finite CW-complex.
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6.2. The Brauer group. Let F' be a graded unital C*-algebra and let X be a connected
compact metrizable space. We denote by ?F(X ) the set of locally trivial continuous fields
of graded C*-algebras with fiber F. We will tacitly identify the isomorphism classes of such
continuous fields with the isomorphism classes of locally trivial principal Autg, (F')-bundles.
Let D be a strongly self-absorbing C*-algebra. A graded continuous field of C*-algebras is
called negligible if it is isomorphic with p(C(X, My(D) ® C¢,))p for some full projection p €
C(X,Mn(D) ® Ct,) of degree zero, for some 7, N > 1. Due to the periodicity of the Clifford
algebras, there is no loss of generality if one assumes that r € {1,2} in the definition of negligible
C*-algebras.

Definition 6.9. The graded Brauer group Brp (X)) consists of equivalence classes of continuous
fields A € U, 1>1 Cm,(p)oce, (X). Two continuous fields A; € CM,, (D)&Ct,, (X),i=1,2 are
equivalent, if there is a graded C(X)-linear isomorphism

A ®Cp = Ay ® Oy,

for some negligible continuous fields C1,Cy. We denote by [A] 5, the class of A in Brp(X).
The multiplication on BTD(X ) is induced by the tensor product operation, after fixing an
isomorphism D ® D = D. We will show in a moment that the monoid Brp(X) is a group.

If B € €pexace, (X), its class in EL(X) is denoted by [B]. Let k € Z/2 denote the mod 2
reduction of k. For A € €y, (pyace, (X) we show that the map A — (k, [A® K]) descends to an
injective group homomorphism 6 : Brp(X) — HO(X,Z/2) x E1(X) whose image we identify in
the sequel. We will sometimes write k4 for k to trace this integer back to A.

Recall from [14] that the ungraded Brauer group Brp(X) consists of equivalence classes of
continuous fields A € 51 €, (p)(X). Two continuous fields 4; € CgMni(D) (X), i =1,2 define
the same class in Brp(X) if and only if

A1 @ p1C(X, My, (D))p1 = Az @ p2C(X, M, (D))pe,
for some full projections p; € C(X, My, (D)), ¢ = 1,2. We have shown in [14] that § : Brp(X) —
EL(X), [A] = [A® K], is an injective homomorphism onto the subgroup TorEL(X) of EL(X).
Recall that E},(X) classifies D @ K-bundles with structure group Auto(D ® K), the connected
component of identity iof Aut(D ® K).

Theorem 6.10. Let X be a finite connected CW-complex and let D be a stably finite strongly
self-absorbing C*-algebra satisfying the UCT, thus D = C or D = Z or D = Mp for some set
of primes. The map

0:Brp(X)— H(X,Z/2) x H'(X,7/2) x,, TorEL(X),

[A] 5, — (ka,[A ® K]) is an isomorphism of groups. The multiplication on H'(X,Z/2) x
TorEL(X) is twisted as in Theorem 6.7.

Proof. If C is negligible, then C ® K = C(X) ® K ® D ® C{, by the graded version of Brown’s
theorem [10]. Since the group operation on ElD (X) coincides with the tensor product operation,
if A€ G, (pyecey,(X), then [A® C@K] = [A® K]+ [C ®K] = [A® K] in EL(X). This
implies that the map 0 : Brp(X) — H(X,7/2) x E'lD(X), A (ka, [A®K)]), is well-defined.
We describe next the image of this map.
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Consider the following commutative diagram

Brp(X) —— Brp(X)

el lo

EL(X) —— EL(X) —2— HY(X,Z/2) x EL(X)

where 6;[A] 5. = [A®K]. We have seen in equation (15) from the proof of Theorem 6.4
that there is a bijective map EhL(X) — H'Y(X,Z/2) x EL(X). We denote this bijection
by ® and write its components as ® = (g, ¢). We described the homomorphism dy in Theo-
rem 6.4. The set-theoretic map ¢ : B (X) — EL(X) is induced by the map CéD@@K@CZ% (X)—
CDoKaM,), (X) which identifies Cly, with My, as complex algebras and forgets the grading.
Now if A € ?MH(D)@ce%(X), then (p o él)[A] = (i 0 0)[A], where A € %Mn(D)G@Mzk (X) is
A regarded as an ungraded C*-algebra. This shows that the image of 6, is contained in
the subgroup H'(X,Z/2) x,, TorE}L(X) of EL(X) and hence the image of 0 is contained in
HY(X,Z/2) x HY(X,Z/2) x,, TorEL(X). Let us show that this is precisely the image of 0.
This clearly reduces to identifying the image of ;. Let (z°,z) € HY(X,Z/2) x TorE}L(X). By
[14] there is some B € @), (p)(X) such that (i o 0)[B]p, = . As explained in the proof of
Proposition 6.6, there is a real line bundle L on X such that §o[ClL] = zo. It follows that
(® 0 0,)[B®Cl] = (x0,2). It remains to show that the monoid Br(X) is a group and that 0
is injective. As noted in the proof of Theorem 2.15 from [14], if we show that 6~1(0) = 0] 5,.»
this property will imply not only that 0 is injective but also that BT(X ) is a group. Let
Ae CKAMH(D)@)WT (X)) and suppose that é[A]Br = 0. Thus 7 must be even and [A ® K] = 0 in
EL(X). Tt follows that there is an isomorphism ¥ : A ® K — C(X) ® D ® Cly ® K. If we
set p = U(ly ® e), where e is a rank one projection in K, then p is a full projection since
14 ® e is full. After conjugating ¥ by a unitary in the multiplier algebra we may arrange that
p € C(X)®D®RCly®@ My for some integer N > 1. It follows that A = p(C(X)@D®Cly® My)p,
so that A is negligible. O
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