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Abstract
We present a machine learning framework capable of consistently inferring
mathematical expressions of hyperelastic energy functionals for incompress-
ible materials from sparse experimental data and physical laws. To achieve this
goal, we propose a polyconvex neural additive model (PNAM) that enables us
to express the hyperelastic model in a learnable feature space while enforcing
polyconvexity. An upshot of this feature space obtained via the PNAM is that (1)
it is spanned by a set of univariate basis functions that can be re-parametrized
with a more complex mathematical form, and (2) the resultant elasticity model
is guaranteed to fulfill the polyconvexity, which ensures that the acoustic ten-
sor remains elliptic for any deformation. To further improve the interpretability,
we use genetic programming to convert each univariate basis into a compact
mathematical expression. The resultant multi-variable mathematical models
obtained from this proposed framework are not only more interpretable but
are also proven to fulfill physical laws. By controlling the compactness of the
learned symbolic form, the machine learning-generated mathematical model
also requires fewer arithmetic operations than its deep neural network counter-
parts during deployment. This latter attribute is crucial for scaling large-scale
simulations where the constitutive responses of every integration point must be
updated within each incremental time step. We compare our proposed model
discovery framework against other state-of-the-art alternatives to assess the
robustness and efficiency of the training algorithms and examine the trade-off
between interpretability, accuracy, and precision of the learned symbolic hypere-
lastic models obtained from different approaches. Our numerical results suggest
that our approach extrapolates well outside the training data regime due to the
precise incorporation of physics-based knowledge.
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1 INTRODUCTION

Engineering analysis and computer simulations of solid behaviors often involve solvers that predict admissible solutions
that fulfill a set of constraints. As explained in Kirchdoerfer and Ortiz,1 these constraints can be (1) balance princi-
ples, which are often regarded as ground truth, and (2) constitutive laws, of which the legitimacy of employing such
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supplemental constraints depends on the specific situation upon which the model is used.2 For instance, while vehicle
crash simulations for safety analysis3,4 and those for computer animation and gaming5 can both benefit from improving
high fidelity, the demands for robustness, accuracy, efficiency, and risk tolerance in predictions are significantly different
for these two applications. This difference often leads to different modeling choices, ranging from simplified models that
offer speed and robustness, often at the expense of accuracy, to highly sophisticated models or multiscale constitutive
updates from representative elementary volumes that exhibit higher fidelity, precision, and accuracy, even at the expense
of efficiency.6

For soft materials that remain elastic while undergoing large isochoric deformation, modeling frameworks, such as
hypoelasticity (cf. Truesdell,7 Green,8 and Freed et al.9) and hyperelasticity (cf. Ogden,10 Holzapfel et al.,11 Mihai et al.,12

Mooney,13 and Rivlin and Saunders14) are some of the more popular choices for these different applications. In the former
framework, one may directly establish a relationship between a pair of stress and strain measures. For instance, one may
compose an isotropic function that maps the left Cauchy–Green tensor b to the Cauchy stress for isotropic elastic mate-
rials.7 Hyperelastic models, on the other hand, provide an alternative strategy where one considers that the deformation
increases the Helmholtz free energy, and the stress and its corresponding tangent stiffness are the Jacobian and the Hes-
sian of this free energy with respect to the deformation measure. This latter approach provides a convenient and flexible
way to fulfill thermodynamics consistency, enforce different symmetries, and, if desired, ensure the stability of the mate-
rial models by enforcing properties (e.g., growth condition, convexity, polyconvexity) on the elastic energy functionals. As
such, prior knowledge of the material behaviors, such as the lattice structure of a crystal (for symmetries) and the shape
memory effect of certain alloys (for multiple potential wells), can be easily incorporated into the modeling process. If this
prior knowledge can be incorporated by deducing the specific form of the energy functional, then the last remaining task
to complete the model is to find the actual parametrization of the model that fulfills all constraints of both experimental
data and prior physical knowledge.

In addition to hand-crafted mathematical expressions, a variety of alternatives, such as artificial neural networks
(ANNs),15–19 Gaussian processes,20,21 and symbolic regression (SR),22 are often used to generate closure of the consti-
tutive laws. In the former case, feedforward ANNs may provide the expressivity (the ability to fit any complex data)
necessary to yield precise models.23,24 However, underfitting, overfitting, the lack of interpretability, and the incompat-
ibility with physics constraints could all negatively impact the quality of the learned models. While the underfitting
and overfitting issues can be circumvented with hyperparameter tuning, both the lack of interpretability and the incom-
patibility with known physics constraints are issues that make the resultant models not feasible for the intended
engineering applications, especially of high consequences, such as patient-specific simulations or design of structural
components for civil infrastructure systems. For example, Shen et al.25 and Liang and Chandrashekhara26 proposed
training a hyperelastic energy functional for elastomeric foams. Liang and Chandrashekhara26 use strain invariants
as inputs for an ANN and conducted training based on the calculated stress as labeled data for supervised learning.
Meanwhile, Le et al.27 introduce neural network hyperelastic models to upscale constitutive responses for represen-
tative elementary volumes where the energy, stress, and stiffness are obtained from ANNs. There has been a rapidly
growing body of work on hyperelastic models parametrized by ANNs trained using Sobolev norms,15,28,29 neural ordi-
nary differential equations19 as well as multi-objective optimization problems that attempt to fulfill all data and physics
constraints.18,30

This article aims to formulate a feasible machine learning framework that can consistently generate hyperelastic mod-
els whose properties can be easily interpreted and fulfill all known physics constraints. A critical technical barrier we
would like to overcome is the difficulty of determining the expression tree in the SR that simultaneously satisfies the
polyconvexity of the learned model. While there have been works on generating polyconvex neural network models via
neural networks, to the authors’ best knowledge, this contribution is the first attempt to develop a machine learning
algorithm to generate a polyconvex hyperelastic model expressed via mathematical expressions. To achieve this objective,
we use a parameterization strategy similar to the neural additive model31 and the recently proposed quadratic exten-
sion,32 of which the feature space is spanned by univariate functions obtained from neural networks while improving the
machine learning algorithm by introducing physics constraints and polyconvexity to ensure desirable properties of the
learned hyperelastic models. To improve interpretability without comprising expressivity and accuracy, we introduce an
additional step where we use SR on the feature space such that it can be approximated by basis functions expressed ana-
lytically. As polyconvexity can be guaranteed by energy functionals written in the specific additive form (cf. Hartmann
and Neff33), this feature enables us to express the resultant polyconvex hyperelastic model as a function of the features of
the strain invariants.
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1.1 Reviews of physics constraints for elasticity models

Previous machine learning models have been trained with prior physical knowledge incorporated as constraints (e.g.,
Teichert et al.,34 Liu et al.,16 Masi et al.,35 Tac et al.,19 and Vlassis et al.29). The basic strategy is similar to those used in
physics-informed neural network paradigms considered seminal by many for solving partial differential equations where
a variety of loss functions are employed to ensure that the learned solution satisfies physics constraints.36,37 However, as
the training is designed to minimize, not eliminate, discrepancies, there is a possibility of violating these constraints when
dealing with data not used during training, especially in the extrapolation regime.38 Furthermore, enforcing multiple
constraints into the loss function may lead to a multi-objective optimization problem where gradient conflicts among
different objectives may further complicate the search for global optima,39,40 which is an NP-hard problem.41

Several neural network architectures have been proposed to explicitly incorporate all or a subset of physical laws by
design for constitutive modeling.19,42–47 The by-design strategy can be selecting the optimal parameterization of input
variables (e.g., using strain invariants instead of the strain tensor for isotropic materials) or modifying neural network
architectures to preserve symmetry, invariance, and equivariance. By fulfilling the proposed physics constraints by design,
the learned models that inherently fulfill the physics constraints are more robust, especially in the data-limited regime.
In fact, this incorporation of physics constraints is in line with the history of hand-crafted hyperelastic models in which
material symmetry has already been heavily leveraged to yield a specific form of mathematical expressions that reduces
the number of independent variables, enforce symmetry and thermodynamics constraints,10,11,48 and induce desirable
properties, such as polyconvexity33,48–50 and quasiconvexity.51,52 In this article, we will adopt this latter by-design strategy
while leveraging the power of the neural additive model and symbolic regression to further improve the model obtained
from the machine learning algorithm.

1.2 Reviews on interpretable machine learning constitutive laws

Learnable parameters, such as weights and biases, parametrize the learned function obtained from training neural net-
works. As such, the current trend of increasingly deep and large neural networks often leads to significant challenges in
interpreting and examining the global property of machine learning models.53,54 For instance, while it is possible to use a
sampling technique to test the robustness of the learned model for a set of strain inputs against constraints, satisfying the
physics constraints for a subset of data points only estimates the population loss. Model accuracy shown in the sampling
test is only a necessary but not sufficient condition for generalizability.

An obvious strategy to circumvent this issue is to derive alternative parameterization that may lead to more compact
mathematical expressions where analyses (such as calculating the acoustic wave speed and detecting the loss of elliptic-
ity) typically performed on hand-crafted models can be conducted. In contrast to ANN-based methods, SR methods are
free-form approaches where the equation form is discovered in a data-driven manner using gradient-free methods like
genetic programming. The application of SR algorithms in data-driven mechanics has proven effective in discovering
yield functions for plasticity.55–57 While initial attempts do not enforce physics knowledge, data augmentation via physi-
cal intuitions has shown improvements in the SR performance.55 In a recent work by Abdusalamov et al.,22 a SR method
for discovering hyperelastic materials is introduced, directly utilizing energy functionals. This approach offers advan-
tages in terms of thermodynamics consistency. However, it can be computationally expensive due to the requirement for
symbolic gradient calculations during optimization iterations.

The advantage of SR machine learning methods is their ability to provide explicit equation forms, which are
often simpler than neural network operations. However, various challenges have hindered their popularity compared
to ANN-based methods in mechanics. First, their lack of scalability, especially in multidimensional data settings, is
attributed to the combinatorial nature of their search space. Second, incorporating mechanistic constraints, especially
those related to gradient operations like ellipticity, is not a straightforward task in these algorithms. This difficulty arises
from their use of gradient-free optimizers and the costly process of symbolic gradient calculations, in contrast to the
efficiency of automatic differentiation methods used in ANN-based methods.

Sparse regression within a predefined library of modes58 offers a potential method to bridge the gap between scalability
and interpretability in model identification. Flaschel et al.59 and Wang et al.60 develop a material discovery formulation
from a predefined library of material models. Their approach indirectly discovers a material model from displacement and
force data over the boundary of the material sample. Similarly, Linka and Kuhl61 employ a library of modes inspired by
classical constitutive models and prior physical knowledge to directly learn energy functionals from strain and stress data.
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Each mode’s contribution to the final prediction is trained using a gradient-based optimizer with automatic differentiation
as the backbone algorithm. Nevertheless, such predefined modes may introduce significant bias in the modeling and
might restrict the learning of complex modes not present in the library. For instance, Wang et al.62 parameterize the stress
tensor as a polynomial function of the strain tensor. However, since physics constraints, such as material symmetry and
thermodynamics constraints, are not explicitly enforced in the formulation, the model is not guaranteed to be compatible
with these constraints.

Remark 1 (Alternative approaches for elasticity problems). The model-free or distance minimization
method1 is extended to finite deformation,63,64 eliminating the need for any model assumptions. Another
model-free approach known as What-You-Prescribe-Is-What-You-Get (WYPIWYG)65 is also employed. Fol-
lowing the WYPIWYG idea, methods based on spline shape functions are also introduced.66–68 Some studies
formulate the learning of constitutive laws as a manifold learning problem, searching for the response surface
rather than using conventional surrogate models for input-to-output mapping.69–73

1.3 Notations and organization of the remaining article

The remaining content of this article is organized as follows. In Section 2, we review crucial elements needed to construct
our model structure, adhering to physical knowledge and mechanical properties of incompressible hyperelastic materi-
als. These properties include isotropy, material objectivity, polyconvexity, and coercivity. Our model discovery method is
outlined in Section 3, where we summarize our two-step approach. We then describe the specific structure of the neural
network and SR algorithms used to ensure polyconvexity of the final discovered energy functional. In Section 4, we provide
reduced forms of the proposed formulation to handle common experimental setups, which will be useful for calibrating
the model from experimental data. To demonstrate the effectiveness of our framework, we find two symbolic models for
real and synthetic data in Section 5. Additionally, we provide a discussion on the formal analysis of the discovered models
in Section 6.

As for notations and symbols, bold-faced and blackboard bold-faced letters denote tensors (including vectors which
are rank-one tensors); the symbol “⋅” denotes a single contraction of adjacent indices of two tensors (e.g., a ⋅ b = aibi or
c ⋅ d = cijdjk); the symbol “:” denotes a double contraction of adjacent indices of tensors of rank two or higher (e.g., C ! !=
Cijkl!kl); the symbol “⊗” denotes a juxtaposition of two vectors (e.g., a ⊗ b = aibj) or two symmetric second-order tensors
[e.g., (" ⊗ #)ijkl = #ij$kl]. We also define identity tensors: I = %ij and I = (%ik%jl + %il%jk)∕2, where %ij is the Kronecker delta.
As for sign conventions, unless specified, tensile stress and dilative pressure are considered positive.

2 HYPERELASTICITY FORMULATION

In this section, we establish the theoretical foundation upon which we construct our modeling structure, ensuring the
incorporation of physical knowledge in the model. First, we delve into the kinematics of finite strain elasticity. Next, we
review essential conditions for incorporating physically or empirically inspired constraints, such as polyconvexity. Finally,
we derive the most general form of the energy functional, introducing unknown functions that will be parametrized by
appropriate hypothesis classes in the following section.

2.1 Kinematics of finite deformation

For completeness, we briefly review the kinematics of a continuum, which is the input of a path-independent elastic
energy functional. Recall that the motion of a material point at the reference configuration can be described by the vector
field $(X) ! R3 → R3 which moves points X = XIEI in the reference configuration Ω0 (i.e., X ∈ Ω0) to locations x = xiei
in the current configuration Ω. The deformation gradient tensor F, the primary measure of deformation, is the tangent
operator of the motion $, that is,

F = %X$; FiJ =
&$i
&XJ

. (1)
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The stretch vector %N along the direction of the unit vector N at X ∈ Ω0 is defined as,

%N = FN; 'N
i = FiJNJ . (2)

For practical reasons, one may prefer to use the right Cauchy–Green tensor C as the deformation measure,

C = FTF; CIJ = FIiFiJ . (3)

The right Cauchy–Green tensor is symmetric and positive-definite which is more favorable for numerical calculations.
Moreover, it is fully described with respect to the reference coordinate system which may ease analytical derivations by
avoiding conversion between spatial and material coordinate systems. The first three principal invariants of the right
Cauchy–Green tensor are calculated as follows,

I1 = tr(C) = CII , (4)

I2 = tr(adj(C)) = 1
2
(

I2
1 − tr(C2)

)
= 1

2 (CIICJJ − CIJCIJ), (5)

I3 = det(C) = J2, (6)

where J is the Jacobian of the deformation gradient, that is, J = det(F), and tr(⋅) and det(⋅) are trace and determinant
operators, respectively. In these relations, adjugate operator is defined as adj(C) = cof(C)T = det(C)C−1, where cof(⋅) is the
cofactor operator. The importance of the tensor representation based on its invariants will be clarified later. For isotropic
hyperelastic materials, these three invariants are sufficient to predict the elastic stored energy and the corresponding
stress measure due to coaxiality.

2.2 Physics constraints for isotropic elastic materials

Presumably, one may, for instance, develop constitutive theories by establishing relations between the deformation gra-
dient and the first Piola–Kirchhoff stress P(F). However, caution must be exercised to avoid violating physical principles
such as thermodynamic consistency.74 Here, our focus is on the modeling of Green-elastic (hyperelastic) materials that
postulate the existence of the Helmholtz free energy.

2.2.1 Thermodynamic consistency for Green-elastic materials

Assuming that a material produces no entropy locally,75 then the material is perfectly elastic. In this case, the second law
of thermodynamics, which requires nonnegative internal dissipation, is fulfilled by the existence of the Helmholtz free
energy, that is,

" = P ! Ḟ − Ẇ(F) = P ! Ḟ − &W(F)
&F ! Ḟ ≥ 0, (7)

where W is the Helmholtz free energy, and by definition, since the dissipation is always zero for perfectly elastic materials,
we have,

P = &W(F)
&F . (8)

2.2.2 Objectivity and frame indifference

The free energy functional W must be invariant with respect to any rigid rotation of the reference coordinate system. This
is equivalent to saying,
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W(F) = W(QF) ∀Q ∈ SO(3), (9)

where Q is any arbitrary rotation tensor belonging to the special orthogonal group SO(3), that is, QTQ = I. This require-
ment can be satisfied if one defines the strain energy functional solely based on the right Cauchy–Green deformation
tensor, that is, W(C) = W(F), which leads to the following relation,

(W(C) s.t. P = &W(C)
&F = 2F&W(C)

&C ⇒ frame indifference. (10)

2.2.3 Isotropy condition

An isotropic material exhibits the same strain-stress response under a symmetry transformation, that is,

W(F) = W(FQT) ∀Q ∈ SO(3). (11)

For the free energy written in terms of C, the isotropy of the constitutive responses implies that,

W(C) = W(QCQT) ∀Q ∈ SO(3) ⇒ isotropic material. (12)

From the representation theorem for invariants76,77 one may show that this constraint is satisfied if the free energy is
expressed as a function of only the principal invariants, that is,

( )(I1(C), I2(C), I3(C)) s.t. S = 2&)(I1, I2, I3)
&C ⇒ Isotropic material, (13)

&)(I1, I2, I3)
&C =

(
&)
&I1

+ I1
&)
&I2

)
I − &)

&I2
C + I3

&)
&I3

C−1, (14)

where S is the second Piola–Kirchhoff stress and P = FS.

2.2.4 Incompressibility condition

In this article, we limit our focus to deducing the mathematical expression of elastic stored energy functionals for incom-
pressible materials. A Material is considered incompressible when it only deforms in an isochoric manner, that is, the
det(F) = J = 1. For practical purposes, the constitutive responses of many solids that exhibit significant isochoric defor-
mation with negligible volumetric deformation (e.g., rubber), as well as liquids in room temperature (e.g., water), are
idealized as incompressible.2,10,77 In these cases, one may introduce a scalar variable p (hydrostatic pressure) that serves
as a Lagrange multiplier to account for the energy required to maintain this incompressibility constraint. Under this
condition, the second Piola–Kirchhoff stress can be written as,

) = )uc(I1, I2) −
1
2 pU(I3) ⇒ incompressible and isotropic material, (15)

S = 2&)
uc(I1, I2)
&C − p&U

&C , (16)

&)uc(I1, I2)
&C =

(
&)uc

&I1
+ I1

&)uc

&I2

)
I − &)uc

&I2
C, (17)

where U(I3) is the energy contribution to penalize the incompressibility constraint, that is, |I3|→ 1.
There are various expressions for U(I3) such as U(I3) = I3 − 1 and (J − 1)2∕2 to enforce incompressibility.33 In our

case, we use U(I3) = I3 − 1 such that &U∕&C = I3C−1.77
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2.2.5 Solution existence and uniqueness: Polyconvexity condition

In this section, we will show that the combination of convex functions of principal invariants is a subclass of polyconvex
functions with respect to the deformation gradient, which leads to the existence of solutions for the elasticity boundary
value problem.

Let us consider the functional I(u) defined below,

I(u) = ∫Ω0

W
(
%Xu

)
dΩ, (18)

where u(X) ! Ω0 → R3 is the displacement vector field defined over the open set Ω0 ⊂ R3. The stationary points of this
functional satisfy the equilibrium equations of nonlinear elasticity for a homogeneous body under zero body forces. How-
ever, an arbitrary free energy functional may not guarantee the existence of minimizers. Convexity of the free energy with
respect to the deformation gradient guarantees this existence and uniqueness.78 However, the uniqueness of the solution
is too restrictive and not physical in bifurcation scenarios such as buckling. A less restrictive condition is polyconvexity,
which is a sufficient condition for the global existence of the solution.79

Definition 1 (Convexity). A function f (x) ! D → R is called convex with respect to its input argument
when f ('x + (1 − ')y) ≤ 'f (x) + (1 − ')f (y) for any arbitrary x, y ∈ D and 0 < ' < 1. The convexity condition
becomes strict when the equality part becomes inadmissible. Here, D resembles the function domain, that is,
D = dom(f ), which is, in this article, a subset of real-valued vectors or tensors of rank two.

Definition 2 (Rank-one convexity and ellipticity). A twice differentiable free energy W(F) = )(C) leads to
an elliptic system iff (if and only if) the Legendre–Hadamard or rank-one condition holds80–82:

(M ⊗ m) ! &2W
&F&F ! (M ⊗ m) ≥ 0 ∀M,m ∈ R3, (19)

where M and m are arbitrary vectors in the reference and current coordinate systems, respectively. The elliptic-
ity (strongly elliptic) condition is satisfied if the inequality is strictly positive. Rank-one convexity is a sufficient
condition for material stability and the well-posedness of the elasticity boundary value problem. Notice that
the ellipticity requirement does not necessarily result in convexity of the strain energy functional, so multiple
minimizers can be found.

Definition 3 (Quasiconvexity). Morrey’s quasiconvexity condition reads,

∫D
W
(

F0 + %Xv(x)
)

dx ≥ |D|W(F0), (20)

for all bounded open sets D ∈ R3 and all vector fields v(x). The quasiconvexity condition along with certain
growth and continuity conditions result in the existence of minimizers.83

Definition 4 (Polyconvexity). The free energy )(F) is polyconvex iff it is convex with respect to
(F, adj F, det F):

( convex f s.t. )(F) = f (F, adj F, det F), ∀F ∈ R3)3 ⇔ polyconvex )(F). (21)

Polyconvexity results in quasiconvexity but not necessarily convexity.

Notice that all rank-one convexity, quasiconvexity, and polyconvexity conditions are sufficient conditions for the
existence of minimizers. However, working with polyconvexity is preferable since, compared to the others, it is more
straightforward to be applied as it has locality without any dependence on arbitrary objects (i.e., m and M) other than
the deformation gradients. In summary, the sequence of conditions presented below illustrates a progression where
a condition on the right results from a condition on the left, with arrows indicating these implications. For example,
quasiconvexity leads to rank-one convexity:

polyconvexity → quasiconvexity → rank-one convexity → existence of minimizers. (22)
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Lemma 1. A subclass of polyconvex functions can be constructed by convex functions f1(F), f2(adjF), f3(det F)
in the additive fashion ) = f1(F) + f2(adjF) + f3(det F).

Proof. For brevity, we refer readers to Schröder and Neff48 for details. ▪

Lemma 2. If a tensor-valued function h(A) ! R3)3 → R and a scalar-valued function g(a) ! R → R are convex
and g(⋅) is a non-decreasing function, then g◦h is convex.

Proof. For two arbitrary tensors A,B ∈ R3)3

(g◦h)('A + (1 − ')B) = g(h('A + (1 − ')B)), (23)

≤ g('h(A) + (1 − ')h(B)) using convexity of h and g non-decreasing, (24)

≤ 'g(h(A)) + (1 − ')g(h(B)) using convexity of g. (25)
▪

Lemma 3. If )1(I1), )2(I2), and )3(I3) are convex and non-decreasing functions, then ) = )1(I1) + )2(I2) +
)3(I3) is polyconvex in F.

Proof. I1(F), I2(adjF), and I3(det F) are convex functions (see Appendix A for details). Based on the composi-
tion lemma )1(F), )2(adjF), and )3(det F) are convex as well. Hence, ) is polyconvex in F. ▪

In this work, the polyconvexity constraint is guaranteed by choosing parameterized functions for )1(I1) and )2(I2)
which are convex and nonnegative; this choice will be clarified later. We use an additive structure in the unconstrained
part of the free energy in Equation (15), that is, )uc(I1, I2) = )1(I1) + )2(I2).

2.2.6 Coercivity (growth) conditions

As mentioned earlier, certain coercivity (growth) conditions along with polyconvexity result in the existence of global
minimizers. These conditions ensure that infinite strains result in unbounded stresses. The growth condition is
satisfied if,

)(F) ≥ #(||F||p + ||adjF||q + (det F)r) + $, (26)

for # > 0, $ > 0, p ≥ 2, q ≥ p
p−1 , and r > 1. The matrix norm is ||F||2 = tr(FTF). For incompressible materials, this

inequality can be simplified to,

)(F) ≥ #(Ip
1 + Iq

2 ) + # + $. (27)

In this work, we do not explicitly enforce the coercivity condition, however, we will check the admissibility of the
discovered equations according to the coercivity condition.

Remark 2. Compressing material towards zero volume should require an infinite amount of energy. Thus one
needs to enforce ) →∞ when J → 0+ if the material is compressible.

2.2.7 Stress free and positivity conditions

The free energy functional should remain nonnegative for all possible deformations. For practical purposes, it is often
desirable to assume that the initial reference configuration does not exhibit any residual stress when C = F = I (cf.
Hoger84). These two conditions can be expressed as,
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BAHMANI and SUN 9 of 29

W(F) ≥ 0, (28)

W(F)|F=I = 0, S(F)|F=I = 0. (29)

The nonnegative condition can be satisfied by selecting parameterizations that lead to nonnegative free energy function-
als. These parameterizations will be elaborated further in latter sections.

Adopting a similar cancellation/counterbalancing strategy used in As’ad et al.45 and Chen and Guilleminot,46 we
formulate the energy functional such that a counterbalance term is added to ensure that the stress-free condition corre-
sponds to the undeformed reference configuration by construction. This is done as follows. Consider an energy functional
)(I1, I2) that does not necessarily meet the stress-free condition in its undeformed state. According to Equation (14), the
non-zero stress state is as follows,

(
&)
&I1

(I1 = 3, I2 = 3) + 2&)
&I2

(I1 = 3, I2 = 3)
)

I. (30)

By introducing an extra energy component to the energy functional, which operates independently of )(I1, I2), we can
generate an equivalent stress value with an opposite sign. This approach effectively neutralizes the non-zero stress initially
observed. For the incompressible scenario, an effective approach is to formulate the additional energy contribution solely
as a function of I3, which remains unaffected by the deformation state (namely, I1 and I2). A practical example of this is
setting )P0 = #0(I3 − 1), where the parameter #0 is adjustable. This adjustment ensures that the total energy functional,
represented by )(I1, I2) − )P0 , equals zero in the undeformed state:

#0 = &)
&I1

(I1 = 3, I2 = 3) + 2&)
&I2

(I1 = 3, I2 = 3). (31)

2.2.8 Final form of hyperelastic energy functional for model discovery

To fulfill the physical constraints and assumptions we listed in the previous sections, we limit the mathematical expression
of the learned model to be in the following form,

) final(I1, I2, I3) = )1(I1) + )2(I2)
⏟,,,,,,,⏟,,,,,,,.

)(I1,I2)

− 1
2 p(I3 − 1)
⏟,,,⏟,,,.

incompressibility

− #0(I3 − 1)
⏟,,⏟,,.
)P0 zero stress

− ()1(3) + )2(3))
⏟,,,,,,,⏟,,,,,,,.
)0 zero energy

. (32)

In particular, we hypothesize that the additive decomposition of the unconstrained energy functional,)(I1, I2) = )1(I1) +
)2(I2) is valid. As discussed in Agarwal et al.,31 restricting the energy functional to take the form of a linear combination
of input variables may reduce the expressivity. This assumption, however, can also reduce the difficulty of the symbolic
regression by reducing the dimensionality of the learned functions. This trade-off will be further demonstrated in the
numerical examples.

As mentioned previously, by restricting the learned model to take the form of Equation (32), one may enforce the
zero-stress condition by calculating the parameter #0 such that the four terms in Equation (32) canceling out each other
at the reference configuration, that is,

#0 = d)1
dI1

|||I1=3
+ 2 d)2

dI2

|||I2=3
. (33)

One can straightforwardly show that the constructed strain energy satisfies the zero-stress condition at the undeformed
state, that is, when I1 = I2 = 3, I3 = 1, and p = 0.

We will formulate the supervised learning problem such that the resultant expression is compatible with the form in
Equation (32). As we will discuss in next section, this setting limits the expression trees included in the combinatorial
optimization and hence reduces the difficulty of the SR problem.
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10 of 29 BAHMANI and SUN

3 INTERPRETABLE MODEL DISCOVERY COMPATIBLE WITH PHYSICS
CONSTRAINTS

Deriving a physics-constrained model consistent with the proposed form in Equation (32) directly through a single SR
algorithm remains challenging for the following reasons. First, it is challenging to straightforwardly restrict each expres-
sion tree to yield a convex function over the entire data range and beyond. Ensuring convexity can be complex and may
lead to sub-optimal results. Second, as illustrated in Figure 1, the stress objective function requires access to the gradi-
ents of the energy functional. This requirement can significantly increase the computational time of SR, especially when
dealing with deep expression trees with many terms. Finally, there is a high likelihood of encountering expression trees
with unstable functions, thus further complicating the SR training process.

To overcome these well-known challenge for SR, we modify our recently developed interpretable data-driven approach
for uncovering yield surfaces32 such that the learning process now takes into account physics constraints. Our divide
(step 1 in Figure 1) and conquer (step 2 in Figure 1) strategy still aims to merge the scalability of training neural-network
models with the interpretability offered by SR. However, instead of deducing a model consistent with just the data, we
establish a theoretical link between this computational approach and the classical discovery of a polyconvex energy
functional for isotropic hyperelasticity, which features an additive structure, as stated in Lemma 3.

3.1 Polyconvex neural additive model

Here, we introduce the polyconvex neural additive model (PNAM). Each shape function )i(Ii) in the PNAM is
parameterized by a separate neural network which must be convex, positive, and non-decreasing. A particular class
of neural networks known as input-convex neural networks (ICNNs) designed by Amos et al.85 fulfills all these
properties.

F I G U R E 1 Proposed interpretable hyperelastic model discovery via a two-step approach. In step 1, a PNAM is trained using a scalable
gradient-based optimizer with multivariate hyperelasticity data. In step 2, an evolutionary-based optimizer finds interpretable symbolic
equations by conducting SR over univariate functions in parallel. The data are assumed to be available in the form strain-stress pair (F,P).
Trainable neural network parameters are shown in blue, that is, &1,&2. The unknown structure of the expression trees are shown in green,
that is, #1,#2, which are found by an evolutionary-based algorithm.
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BAHMANI and SUN 11 of 29

The forward operations to obtain ) ICNN(I;&) in an ICNN are as follows,

h1 = g0(Iv0 + b0); v0,b0,h1 ∈ Rl1 , (34)

hj+1 = gj(Wjhj + Ivj + bj); vj,bj,hj ∈ Rlj+1 ,Wj ∈ R+lj)lj+1 , 1 ≤ j < L, (35)

) ICNN = hL, (36)

where, as shown in Figure 2, L is the number of hidden layers, gj are activation functions for each layer, hj are the hidden
representation of data at each layer, and Wj, bj, and vj are unknown, trainable parameters of the neural network.

Proposition 1. The function ) ICNN(I; &) is convex with respect to the input I if all Wj are nonnegative, and all
activation functions gj are convex.

Proof. For the sake of completeness, we provide a straightforward proof. The first step in Equation (34) estab-
lishes the convexity of each component in the vector h1 (see Lemmas 9 and 2). To verify the proposition, we
must demonstrate the convexity of each component of hj+1 with respect to I for j ≥ 1. Equation (35) confirms
this result, as each component of the resulting vector Wjhj is convex (see Lemma 4). ▪

Lemma 4. A weighted sum of convex functions hi(x) with nonnegative wights wi results in a convex function in
x ∈ R.

Proof. Let us define g(x) = wihi(x) with constants wi ∈ R+ and convex functions hi, for any arbitrary
x1, x2, and ' we have, with summation over i,

g('x1 + (1 − ')x2) = wihi('x1 + (1 − ')x2), (37)

≤ wi
[
'hi(x1) + (1 − ')hi(x2)

]
via convexity of hi and positivity of wi, (38)

= 'wihi(x1) + (1 − ')wihi(x2), (39)

= 'g(x1) + (1 − ')g(x2). (40)
▪

Remark 3. In this study, we utilize the softplus and softplus2 activation functions, both of which are convex,
smooth, and non-decreasing. These functions are defined as follows,

softplus(x) = ln(1 + exp(x)), (41)

F I G U R E 2 Input-convex neural network which is guaranteed to be convex with respect to the input I, non-decreasing, and
nonnegative by construction.
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12 of 29 BAHMANI and SUN

softplus2(x) = softplus(x)2. (42)

Previous works18,45,86 demonstrate the application of these activation functions in the context of ICNN
modeling of hyperelastic energy functionals.

3.2 Objective function for neural network training

Each shape function )i(Ii) in Equation (32) is parametrized by a different ICNN ) ICNN
i (Ii;&i) where each &i concate-

nates all trainable parameters associated with the i-th ICNN. In this work, we assume we only have access to strain
and stress measurements stored in a dataset  = {Fk,Pk}Ndata

k=1 for Ndata number of measurements. Notice that in realistic
experiments, access to values of the energy functional or its Hessian is not possible although one may obtain them from
numerical simulations.

To calibrate parameters & = {&i}2
i=1, we minimize the following loss function,

& = arg min
&

Ndata∑
k=1

||||
||||
&) tot(I1, I2; /)

&F
||||Fk
− Pk||||

||||
2

F
, (43)

where || ⋅ ||F is the Frobenius norm for a second-order tensor. We use the ADAM algorithm87 to minimize this single
objective function.

3.3 Symbolic regression

Symbolic regression aims to identify a mathematical expression that optimally fits a provided dataset without predefining
the expression’s form. The set of possible expressions is typically defined by establishing a range of mathematical oper-
ators, functions, variables, and constants, which are then efficiently represented using binary trees (refer to Figure 3).
Genetic programming is a widely adopted stochastic optimization technique for exploring the combinatorial space encom-
passing all conceivable mathematical expressions.88–90 Moreover, recent advancements have been made utilizing deep
reinforcement learning methods, offering alternative and efficient means for discrete searches within the domain of tree
data structures.91,92

F I G U R E 3 Binary expression tree for equation representation. The program log(x) − 1.2
x + 0.1 is represented by an expression tree with

a depth 3 and size of 8 (the total number of nodes).
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BAHMANI and SUN 13 of 29

Genetic programming employs a population of candidate solutions, randomly generated at the algorithm’s start, to
represent the space of potential expressions. Each individual candidate solution is described as a binary expression tree
(refer to Figure 3), where the leaves symbolize input variables or constants, and the internal nodes denote mathematical
operations or functions. The algorithm evaluates the fitness of each candidate solution by comparing its output values to
the target values. In this study, we use the mean square error (MSE) as the fitness measure, that is,

MSE(ymodel, ydata) = 1
Ndata

Ndata∑
i=1

(ymodel
i − ydata

i )2. (44)

The genetic programming algorithm utilizes an iterative process that evolves the population of candidate solutions
through three main operations: selection, crossover, and mutation. This process draws inspiration from natural selection.
In the selection step, higher-performing individuals from the current population are chosen based on their fitness scores.
Crossover (shown in Figure 4A) combines the genetic information of two individuals to generate offspring with charac-
teristics inherited from both parents. On the other hand, mutation (depicted in Figure 4B) involves randomly altering
some genetic components of the individual, thereby introducing new variations into the population.

The genetic programming algorithm creates improved candidate solutions iteratively until it finds a satisfactory math-
ematical expression that fits the data well. During SR optimization, there is a tradeoff between model complexity and
expressivity. Striking a balance between the complexity and expressivity of the discovered analytical expression is vital to
enhance interpretability and mitigate overfitting. Users can choose the best equation for their requirements, considering
desired accuracy and simplicity.

Definition 5 (Complexity score in SR). The assessment of a symbolic equation’s complexity is often quali-
tative due to the lack of a universally agreed-upon definition. In this study, we adopt the complexity measure
proposed in Cranmer,93 which uses the number of nodes in the expression tree as the complexity score. While
assigning varying weights to different node types is feasible, such as considering exp(⋅) as more complex than
+, we refrain from incorporating such weightings in our analysis.

Symbolic equations used during inference have a smaller memory footprint compared to neural networks, making
them more portable. Research has shown that equations discovered by SR generalize well beyond the training data sup-
port.94 However, when dealing with multi-dimensional vector-valued or tensor-valued functions, SR becomes notably

F I G U R E 4 (A) Crossover and (B) mutation operations in an evolutionary-based SR algorithm.
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14 of 29 BAHMANI and SUN

more challenging due to the complex combinatorial nature of the optimization problem involved in searching for the
appropriate mathematical expression.95 Our proposed method overcomes this concern, as mentioned earlier, by extracting
a symbolic equation for each single-variable to single-variable ICNN submodel. This feature facilitates parallel computing,
allowing SR algorithms to run simultaneously without any issues.

4 REDUCED FORMS FOR EXPERIMENTAL CALIBRATION

Motivated by real experimental setups, we calibrate model parameters for uniaxial extension (UE), equibiaxial extension
(EBE), and pure shear (PS) loading conditions in the incompressible limit. In this section, we summarize reduced forms
of equations for a general incompressible, isotropic free energy functional)(I1, I2) associated with each of these boundary
conditions.

4.1 Uniaxial extension

The easiest experimental setup is UE where only one side of the cubic sample is deformed along its normal axis, for
example, the X-axis as shown in Figure 5A. Based on this condition, we only control the stretch 'X = ', but, due to the
symmetry induced by isotropy, the other two stretches are equal, and, hence the incompressibility condition leads to
'Y = 'Z = '−0.5. Under these boundary conditions, only P11 becomes non-zero which can be found in Equations (16) and
(32). In summary, the following reduced form is obtained for the UE loading condition,

F = diag(', '−0.5, '−0.5), (45)

P = diag(P1, 0, 0), (46)

P1 = 2
(
&)
&I1

+ 1
'
&)
&I2

)(
' − 1

'2

)
. (47)

4.2 Equibiaxial extension

EBE is similar to UE where the extension loading is applied over two faces of the cubic sample as depicted in Figure 5B.
Based on this condition, we control the stretches 'X = 'Y = ', while the other stretch is constrained to 'Z = '−2, due

F I G U R E 5 Different loading conditions for model calibration and training.
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BAHMANI and SUN 15 of 29

to incompressibility. Under these boundary conditions, only P11 and P22 become non-zero and the same because of the
symmetry induced by isotropy. In summary, the following reduced form is obtained for EBE loading condition,

F = diag(', ', '−2), (48)

P = diag(P1,P1, 0), (49)

P1 = 2
(
&)
&I1

+ '2 &)
&I2

)(
' − 1

'5

)
. (50)

4.3 Pure shear

PS loading condition can be achieved by restricting UE from any movement in the Z-axis, that is, 'Z = 1 (see Figure 5C.)
We control the stretch 'X = ', while the other stretch is constrained to 'Y = '−1. Under these boundary conditions, only
P11 and P33 become non-zero. In summary, the following reduced form is obtained for PS loading condition,

F = diag(', '−1, 1), (51)

P = diag(P1, 0,P3), (52)

P1 = 2
(
&)
&I1

+ &)
&I2

)(
' − 1

'3

)
, (53)

P3 = 2
(
&)
&I1

+ '2 &)
&I2

)(
1 − 1

'2

)
. (54)

5 NUMERICAL EXAMPLES

We demonstrate the application of our proposed method in discovering hyperelastic constitutive models through
two numerical examples. First, in Section 5.1, we utilize experimental data from the literature to identify a material
model. We compare the simplicity and accuracy of our discovered model with recent efforts in the field. Addition-
ally, we assess and discuss the extrapolation capabilities of our method compared to a standard neural network
approach.

In the second problem, in Section 5.2, we showcase the method’s potential for modeling more complex materials. To
showcase this ability, we generate virtual experimental data using finite element simulations for a randomly synthesized
particle-reinforced composite.

Remark 4. Our framework is implemented using PyTorch96 and PySR93 open-source packages for neural
network and SR training, respectively.

5.1 Treloar’s data for vulcanized rubber

In this example, we demonstrate the application of the proposed scheme in finding a hyperelastic energy functional for
the well-known Treloar’s experimental data for vulcanized rubber.97 We then compare the accuracy and simplicity of
the discovered model with a reference model. Additionally, we highlight the significance of physics augmentation and
interpretability for achieving better generalization compared to black-box neural network models.

We use 90% of Treloar’s data to train the model discovery algorithm and the remaining 10% to validate. Training-related
hyperparameters and setups are discussed in Appendix B.1. The proposed algorithm discovers the following equation,

) = c11I1 + c12 exp(c13I1) + c21I2 + c0, (55)
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16 of 29 BAHMANI and SUN

where c11 = 0.1502, c12 = 0.0771, c13 = 0.0665, c21 = 0.0035, and c0 = 261.5397. In Table 1, we compare its accuracy with
another equation found by a recently introduced SR algorithm in Abdusalamov et al.,22

)ref =
√

0.93296 exp(0.08031I1) +
√

I1 − 0.080316 + (0.0232113I1 + 0.021633)I1. (56)

In this table, the R2-score is chosen as the measure of accuracy over the entire data. The R2-score between predicted values
{yi}Ndata

i=1 and ground-truth values {y+i }
Ndata
i=1 is defined as follows,

R2(y+, y) = 1 −
∑Ndata

i=1 (y+i − yi)2

∑Ndata
i=1 (y+i −mean(y+))2

. (57)

Based on this measure, our discovered equation shows improved performance in the EBE dataset, with slight enhance-
ments observed in the UE and PS datasets as well. Considering the depth of the expression tree and square root operators
as more complex, our discovered equation is qualitatively simpler. Additionally, in our work, we use 90% of the data to
find the equation, whereas the reference utilizes the entire dataset.

The trained ICNN model )1(I1) for the PNAM solution )(I1, I2) = )1(I1) + )2(I2) is depicted in Figure 6 by the orange
curve. The result for)2(I2) is omitted for brevity as it exhibits characteristics of a linear function, making it straightforward
to handle. As mentioned earlier, in step 2 of the proposed method, we apply the SR algorithm to extract an equivalent
symbolic equation for the learned model. The SR training process takes less than 3 min on a MacBook Pro laptop with a
quad-core Intel Core i5 processor running at 1.4 GHz and using 16 GB of RAM. The SR algorithm lists several candidates
ranked by their accuracy/simplicity, with more accurate candidates being less simple in forms.

In Figure 7, we present accuracy versus complexity plots for both the function )1(I1) and its gradient ) ′1(I1). While
the gradient information is not employed in the fitness measure, we recommend considering this information for model

T A B L E 1 Comparing R2-scores of our discovered equation and the reference equation for Treloar’s data.

Equation Uniaxial extension Equibiaxial extension Pure shear

This work (Equation 55) 0.9983 0.9904 0.9963

Reference (Equation 56) 0.9979 0.8692 0.9887

F I G U R E 6 Discovered symbolic function from the trained neural network representation. The discovered function and its gradient are
shown in left and right plots, respectively. Only data within the training range (orange curves) are used for the SR.
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BAHMANI and SUN 17 of 29

F I G U R E 7 Complexity (parsimony) versus accuracy of the discovered function and its gradient for Treloar’s data. More accurate
equations tend to be more complex (i.e., contain more terms). Achieving a balance between accuracy and simplicity is essential for both the
discovered function and its gradient.

(A) (B)

F I G U R E 8 Training and validation losses for model calibration in step 1 where a neural network solution is found. 90% of the data is
utilized for training, and 10% is utilized for validation. (A) PNAM. (B) Vanilla ANN.

selection during the post-processing step among all available candidates. This consideration is crucial because the accu-
racy of the gradient directly impacts the final stress predictions. We employ these selection criteria based on two factors:
candidates must (1) have errors below a specified threshold and (2) exhibit an abrupt accuracy improvement compared
to their simpler counterparts (see the red vertical line in Figure 7). A comparison between the selected equation and the
ICNN model is illustrated in Figure 6, with the symbolic equation depicted by the blue curve. A good agreement between
the ICNN model and the symbolic equation is observed. Moreover, the behavior of the symbolic function beyond the
ICNN training data appears to be reasonable.

We further compare the proposed scheme with the solution obtained from a vanilla ANN. In the case of the vanilla
ANN, we substitute )(I1, I2) in Equation (32) with a conventional multilayer perceptron (MLP), accepting both I1 and
I2 in its input layer. The model accuracy during the optimization iterations in step 1 for the PNAM and vanilla ANN
is illustrated in Figure 8 for both the training and validation data. While the final loss value of the training curve for
the vanilla ANN is lower than that for the PNAM, the larger discrepancy between the validation and training curves
for the vanilla ANN indicates overfitting. This overfitting may lead to less reliable predictions in the extrapolation
regime.
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18 of 29 BAHMANI and SUN

To assess both models’ capabilities, we compare their R2-scores for all three datasets, as shown in Figure 9. Both
models exhibit satisfactory R2-scores across all available data. The PNAM demonstrates better performance for UE and
EBE, while the vanilla ANN shows slightly better accuracy in the case of the PS dataset. However, it is essential to note that
we observe non-physical behavior for the vanilla ANN in the case of the EBE dataset when moving beyond the training
data regime.

In order to highlight the extrapolation power resulting from physics augmentation, simplicity, and interpretability of
the proposed scheme, we compare predictions of the symbolic equation discovered in this work (Equation 55), the one
found in the reference (Equation 56), and the vanilla ANN in Figure 10, where we extend far beyond the training data
ranges. Given that we lack access to real data at these ranges, we cannot assess the accuracy of the symbolic equations.

(A) (B)

(C) (D)

(E) (F)

F I G U R E 9 Predictions of the symbolic equation discovered from the PNAM and a vanilla ANN for Treloar’s data. The dashed vertical
dashed line shows the distinction between training and validation data, where validation data are to the right of the line. The R2-score
indicates the accuracy measure of the entire data (training and validation) for each experimental loading condition. Training is conducted on
all three loading conditions at the same time. (A) UE symbolic. (B) UE vanilla ANN. (C) EBE symbolic. (D) EBE vanilla ANN. (E) PS
symbolic. (F) PS vanilla ANN.
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F I G U R E 10 Extrapolation capabilities of (A) symbolic equations, (B) the vanilla ANN for Treloar’s data. In (A), we compare results
obtained via Equation (55) and the reference Equation (56). The dashed vertical lines indicate the distinction between training and validation
data, where validation data are to the right of the lines. Our discovered equation extrapolates well and shows slightly better accuracy than the
reference’s equation. Predictions of the vanilla artificial neural network are not accurate beyond the training data regimes.

However, both equations exhibit reasonable behavior. On the other hand, the response of the vanilla ANN is notably
unacceptable, especially under the EBE loading condition.

5.2 Particle-reinforced composite

In this example, we synthesize data through numerical experimentation on a fabricated particle-reinforced composite.
This demonstration highlights the method’s efficacy in handling more complex material behaviors. A cubic sample of the
composite material with a length of 1 cm is generated by random placements of hard particles in a soft matrix as shown
in Figure 11. Neo-Hookean10 and the Exp-Log model98 are assumed for the particles and the matrix, respectively,

)NH = 1
20(I1 − 3), (58)

)exp-log = A
[1

a exp(a(I1 − 3)) + b(I1 − 1)
(
1 − log(I1 − 2)

)
− 1

a − b
]
, (59)

where material parameters 0 = 0.5 MPa, A = 0.195 MPa, a = 0.018, and b = 0.33; in the limit of small deformation A is
analogous to the shear modulus 0 in the Neo-Hookean model. The uniaxial behavior of these constituents are shown in
Figure 11B.

We subject the composite to a uniaxial extension loading condition using a displacement control FEM simulator.
During this process, we collect 64 data points with a displacement increment of 0.8 mm by recording the average forces
calculated over the sample surface where the loads are applied; forces are then used to compute stresses. The generated
dataset for training the models is depicted in Figure 12.

For training purposes, we utilize 75% of the data, represented by green circle points in Figure 12. The remaining portion
of the data, which entirely lies in the extrapolation regime, is used for validation. Our method discovers the following
equation,

) = c11I1 + c12I4
1 + exp(c13I1) + c21I2 + c22I2

2 ln(I2) + c0, (60)

where c11 = 0.06948, c12 = 1.82532 ) 10−6, c13 = −0.05967, c21 = 0.91519, c22 = 0.0069682, and c0 = 15.87993107.
R2-scores of this symbolic equation and the PNAM from which it is discovered are almost the same, with the PNAM
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20 of 29 BAHMANI and SUN

F I G U R E 11 (A) Particle-reinforced composite at 100% longitudinal strain, and (B) uniaxial behavior of each constituent. In (A),
random particles with a total volume fraction of 0.22 are shown in yellow.

F I G U R E 12 Comparison between the discovered symbolic energy functional and the learned PNAM for particle-reinforced composite
data.

demonstrating slightly better performance, as shown at the top of Figure 12. Additionally, the comparison between the
symbolic representation of each of the learned ICNN models )i(Ii) is presented in Figures 13 and 14. The results indicate
good agreement between the neural networks and symbolic equations for both the function values and their gradients.

Remark 5. In this example, the inclusions are randomly distributed, without a particular geometric pattern
or shape, and their volume fraction is relatively small (less than 30%). Therefore, at the RVE level and under
these circumstances, the anisotropic behavior is not significant, allowing us to approximate it with an isotropic
model.99 A similar approach to the random generation of inhomogeneities is utilized in other research for the
data generation of isotropic models.100

5.2.1 Remarks on model execution time

Another advantage of obtaining symbolic equations is their computational efficiency when compared to their neural
network-based counterparts. In Figure 15, we compare the execution times for inference between the PNAM and SR. As
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BAHMANI and SUN 21 of 29

F I G U R E 13 Discovered symbolic function from the trained neural network representation. The discovered function and its gradient
are shown in left and right plots, respectively. Only data in the training range (orange curves) are used for SR.

F I G U R E 14 Discovered symbolic function from the trained neural network representation. The discovered function and its gradient
are shown in left and right plots, respectively. Only data in the training range (orange curves) are used for SR.

anticipated, the runtime for symbolic calculations is shorter than that of neural network forward operations, primarily due
to the reduced number of floating-point operations in the symbolic equation. While automatic differentiation provides
implementation flexibility, it introduces additional overhead due to the construction of the computational graph, which
can be avoided if symbolic operations are effectively managed manually.

6 DISCUSSION AND ANALYSIS

Thanks to the symbolic forms, classical analysis can be applied to investigate the entire range of the deformation gra-
dient, determining when polyconvexity and growth conditions are violated. In our specific formulation, we can assess
polyconvexity by examining the convexity and non-decreasing conditions of shape functions )i(Ii). To verify coercivity,
we analyze the energy functional’s growth behavior as the invariants approach infinity, that is, I1, I2 →∞. It is important
to note that our goal is not to find the tightest bounds on the coefficients but rather to ensure that the derived equations
satisfy the required conditions.
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(A) (B)

F I G U R E 15 Comparing execution times between an artificial neural network and a symbolic strain energy functional. Shown are
mean and standard deviation trends for (A) the strain energy and (B) its gradient with respect to the invariants. The gradient of a symbolic
equation can be hand-crafted or obtained through automatic differentiation, as showcased in (B). The horizontal axis represents the number
of query points in each experiment. Each experiment is replicated for 20 times with distinct random seeds.

6.1 Treloar machine learning model

The convexity )2(I2) = c21I2 is evident. The non-decreasing condition requires c21 ≥ 0. For )1(I1) = c11I1 + c12 exp(c13I2)
to be convex, it is required that c12 ≥ 0, which can be confirmed by checking the positivity of its second-order derivative.
This function will be non-decreasing if its first derivative is nonnegative, which can be easily determined when c11 ≥ 0.
By employing the Taylor series expansion for the exponential function and considering any positive integer p, we obtain
the following inequality,

)(I1, I2) ≥ cp
12

p! Ip
1 + c21I2. (61)

To ensure asymptotic satisfaction of Equation (27), we can set # = min(cp
12∕p!, c21) with c21 > 0 and q = 1, where p is

chosen to be a large value approaching infinity. However, it is essential to note that even for a very large p, the condition
q ≥ p∕(p − 1) is marginally violated, and the fulfillment of conditions c21 > 0 and c12 > 0 may not guarantee coercivity
based on the presented justification.

6.2 Particle-reinforced composite machine learning model

The convexity of )1(I1) = c11I1 + c12I4
1 + exp(c13I1) is ensured if its second-order gradient is nonnegative, that is, 12c12I2

1 +
c2

13 exp(c13I1) ≥ 0. Thus, it requires only that c12 ≥ 0 to satisfy convexity. To evaluate the non-decreasing condition, we
consider ) ′1(I1) = c11 + 4c12I3

1 + c13 exp(c13I1) ≥ 0. First, note that I1 = '2
1 + '2

2 + '
2
3 > 0. For very large values of I1 → +∞,

the exponential term will dominate, implying c13 ≥ 0. Under the incompressibility condition ('3 = 1∕('1'2)), it can be
shown that I1 ≥ 2 serves as a lower bound. Therefore, it suffices to have c11 ≥ −(32c12 + c13 exp(2c13)).

Similarly, for )2(I2) = c21I2 + c22I2
2 ln(I2), the convexity requirement is c22(2 ln(I2) + 3) ≥ 0, which is satisfied if c22 ≥

0. For the non-decreasing condition, considering I2 = '2
1'

2
2 + '

2
1'

2
3 + '

2
2'

2
3 ≥ 0, one can determine that the sufficient

condition is c21 ≥ 0.
By utilizing the Taylor series expansion for the exponential function, we have,

)1(I1) ≥ c11I1 + c12I4
1 +

c4
13

4! I4
1 ≥

(
c12 +

c4
13

4!

)
I4

1 . (62)
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Furthermore, leveraging the fact that ln(x) ≥ x−1
x for positive x (as x ln(x) − x + 1 has a positive slope), we can write,

)2(I2) ≥ c22I2
2 + (c21 − c22)I2 ≥ ĉ22I2

2 , (63)

where 0 ≤ ĉ22 ≤ c22 accounts for the possibility of c21 < c22.
Based on these bounds, if we choose # = min(c12 + c4

13∕4!, ĉ22) and set p = 4 ≥ 2 and q = 2 ≥ p∕(p − 1), the inequality
in Equation (27) is satisfied, provided that # > 0. Consequently, the sufficient conditions to ensure coercivity are c22 > 0
and c12 > 0.

Notice that, within the training data regime of symbolic regression, and even slightly beyond that, the discovered
symbolic function is non-decreasing; see the derivative function in the right Figure 13, which is positive. However, based
on the above discussion, the equation found through symbolic regression violates the non-decreasing condition for I1 →
+∞ since c13 < 0. The learned neural network function )1(I1) does not suffer from this issue because it satisfies this
condition by construction. Since such a constraint has not been encoded during the search in symbolic regression, we
may violate this condition, particularly beyond the training regime of symbolic regression. To mitigate such issues at the
symbolic regression discovery step, the simplest way would be to generate data from the learned neural network with a
wider coverage of I1 and denser data sampling to train the symbolic regression. A more rigorous approach would be to limit
the symbolic regression to search only in the space of all convex and non-decreasing functions. However, incorporating
this second restriction is a challenging task for symbolic regression as a discrete search algorithm and requires further
research in this area.

7 CONCLUSION

In this work, we present an efficient machine learning framework capable of directly inferring the mathematical expres-
sions of multivariate elastic stored energy functionals from data that fulfill physics principles (e.g., polyconvexity, material
frame indifference) without sacrificing expressivity. A salient feature of this proposed model is the introduction of input
convex neural networks for constructing the feature space. This treatment enables us to retain the convexity of the fea-
ture mapping that ensures polyconvexity of the learned neural network hyperelastic models. By expressing polyconvex
hyperelastic models in the feature space, we can then apply SR on each of the feature space basis. This setting enables
us to overcome the challenging curse-of-high-dimensionality issue well known in the SR literature while deducing
interpretable mathematical models that can be easily comprehended, analyzed, and implemented. The compactness of
the mathematical models also leads to computationally efficient constitute updates that require less arithmetic opera-
tions than those of deep neural networks and hence are well-suited for large-scale physics simulations where repeated
executions of the models must be carried out in a large number of integration points.
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APPENDIX A. BASIC CONVEXITY RELATIONSHIPS

Lemma 5. A tensor-valued function W(F) is convex with respect to F if its Hessian has the following property
such that for any F and %F,

%F ! &
2W(F)
&F&F ! %F ≥ 0. (A1)

Proof. See Lemma B.3 in Schröder and Neff.48 ▪

Lemma 6. The mapping W(F) ! F → tr(FTF) is convex. As a result, the first invariant I1(C) is a convex function
of F.

Proof. Hessian of the function with respect to F is as follows:

&2W
&FiJ&FkL

= 2%ki%LJ . (A2)

By setting A = %F, the convexity criterion becomes as follows,

A ! &
2W(F)
&F&F ! A = 2AiJ%ki%LJLkL = 2AiLAiL ≥ 0. (A3)

▪

Lemma 7. The second invariant I2(C) is a convex function with respect to adj(F).

Proof. One can obtain the following relationships for the second invariant,

I2 = tr
(
adj(FTF)

)
, (A4)

= tr
(
adj(F)adj(FT)

)
from Lemma A.6.3 in Reference 48, (A5)

= tr
(
adj(F)adj(F)T) from Lemma A.6.4 in Reference 48, (A6)

= tr
(
adj(F)Tadj(F)

)
. (A7)

Utilizing the last equation, in conjunction with Lemma 6, we deduce that the second invariant is a convex
function with respect to adj(F). ▪

Lemma 8. The third invariant I3(C) is a convex function with respect to det(F).

Proof. By utilizing basic properties of matrix operations, we can derive the following relationships:

I3 = det(C) = det(FTF) = det(FT) det(F) = det (F)2. (A8)

Therefore, the third invariant is a quadratic function of det(F), making it convex in relation to this
determinant. ▪

 10970207, 2024, 15, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7473 by C
olum

bia U
niversity Libraries, W

iley O
nline Library on [03/03/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



28 of 29 BAHMANI and SUN

APPENDIX B. MODEL SETUP AND HYPERPARAMETERS

In the PNAM, for each shape function, both examples employ ICNN models using a single hidden layer consisting of
50 neurons. The activation functions for the first and second layers are softplus and softplus2, respectively. To ensure
non-negativity of the weights, ReLU activation is utilized. The optimization process utilizes the ADAM optimizer with
an initial learning rate of 0.001. Strain invariants are normalized using the MinMaxScaler method in both examples.
Furthermore, in the first example, the stress data undergoes a pre-processing step and is scaled by a factor of 0.05.

B.1 Treloar’s data
In the vanilla ANN model, one hidden layer with 50 neurons is utilized with an ELU activation layer101 (see the following
remark). Its training parameters remain consistent with those of the PNAM.

In the SR configuration of )1(I1), we confine the binary operators to addition and multiplication, while the unary
operator is limited to the exponential function (exp). The time budget is capped at 6 minutes or a maximum of 100 itera-
tions, whichever comes first. The expression trees’ maximum depth and size are both set to 30. As a result of the observed
simplicity in the learned ICNN function for )2(I2), the maximum size and depth of the expression trees is reduced to 10,
and the exponential function is excluded as a possible operator for applying SR to find )2(I2).

Remark 6. The ELU activation function is defined as follows,

ELU(x) = xH(x) + (exp(x) − 1)(1 −H(x)), (B1)

where H(x) is the Heaviside function.

B.2 Composite data
In the SR configuration of )1(I1), the binary operators are restricted to addition and multiplication, and the unary opera-
tors are limited to the exponential (exp) and logarithm (ln) functions. The time budget is set to 6 minutes or a maximum
of 100 iterations, whichever is reached first. The expression trees are constrained to a maximum depth of 10 and a size of
50. Classical energy functionals rarely employ nested ln or exp operators; therefore, during the SR iterations, we exclude
the possibility of such combinations. A similar SR configuration is employed for )2(I2) with the following differences: the
expression trees have a maximum size of 15 and a maximum depth of 5.

APPENDIX C. REMARK ON INPUT DATA NORMALIZATION

Input data normalization is a practical technique to enhance the training of machine learning models,102 particularly
when the input or output has more than one feature. StandardScaler and MinMaxScaler are two common normalization
methods. In StandardScaler, the input features are linearly mapped to have zero mean and unit standard deviation, that
is, (x − 'x)∕(x where 'x and (x are mean and standard deviation per feature, respectively. In MinMaxScaler, the input
features are linearly mapped to have zero min and unit max, that is, (x −mx)∕(Mx −mx) where mx and Mx are minimum
and maximum values per feature, respectively.

Since our formulation requires the convexity of the built neural network, the following lemma is provided to ensure
that common linear normalization does not affect our utilized formulation.

Lemma 9. Affine transformation preserves convexity.

Proof. Assuming the convexity of f (x) in x ∈ Rn and defining g(x) = f (Ax + b) where A ∈ Rn)n,b ∈ Rn are
constants, then for two arbitrary x1, x2 ∈ Rn

g(4x1 + (1 − 4)x2) = f (A(4x1 + (1 − 4)x2) + b), (C1)

= f (4(Ax1 + b) + (1 − 4)(Ax2 + b)), (C2)

≤ 4f (Ax1 + b) + (1 − 4)f (Ax2 + b) using convexity of f , (C3)

= 4g(x1) + (1 − 4)g(x2). (C4)
▪
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The affine transformation lemma guarantees that the usual linear data normalization (standardization) in machine
learning, such as StandardScaler and MinMaxScaler,103 do not alter the convexity results.

APPENDIX D. FINITE ELEMENT DISCRETIZATION

For ease of implementation, we use penalty approach to weakly impose incompressibility. Although this method does not
enforce incompressibility exactly, it leads to a simple system of nonlinear equations based solely on the displacement field.
Other multi-field formulations104,105 are possible but they are computationally more demanding which is not considered
in this work.

For numerical stability reasons, one may prefer to additively decompose the strain energy functional to volumetric
)vol and deviatoric )dev parts, that is, )(C) = )dev(C) + )vol(J). In the nearly incompressible regime, the volumetric part
acts as a penalty term to enforce |J − 1| < 5. In this work, the penalty term is chosen as follows,

)vol =
1
26ln2(J), (D1)

where 6 is the penalty parameter. Higher value of this parameter enforces incompressibility more strictly, however for
numerical instability issues one may need to choose it reasonably high. The deviatoric part of the right Cauchy–Green is
defined,

C = J−
2
3 C. (D2)

The unknown displacement field U(X) defined over the undeformed domainΩ0 is the stationary point of the total energy
functional when neglecting body forces and having non-zero traction boundary conditions,

U = arg min
U

Π(U(X)), (D3)

Π(U) = ∫Ω0

)(U(X)) dΩ. (D4)

To find the minima, we discretize the domain using hexahedral elements and use linear basis functions for the
displacement field,

Π(U) ≈ Π(U) =
Nelem∑
i=1
∫Ωe

i
)
(

NT(X)U
)

dΩ, (D5)

where interpolation using finite element basis is utilized, that is, U = NT(X)U, and N is the linear basis function for the
vector field in 3D. The element-level integration is performed using a second-order quadrature rule. To solve the nonlinear
system of equations based on the nodal displacement U, we employ the Newton–Raphson method. For more detailed
information, readers are referred to Belytschko et al.106 Our implementation is carried out using FEniCS.107
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