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ABSTRACT
While various studies have shown effective parameter optimizations
for specific designs, there is limited exploration of parameter opti-
mization within the domain of 3D Integrated Circuits. We present
the first comprehensive study, both qualitatively and quantitatively,
comparing five state-of-the-art (SOTA) techniques for parameter
optimization applied to 3D ICs. Additionally, we introduce an end-
to-end machine learning-based framework, encompassing impor-
tant parameter selection through optimization, all without human
intervention. Extensive studies across six industrial designs under
the TSMC 28nm technology node reveal that our proposed frame-
work outperforms SOTA techniques in three different optimization
objectives in both optimization quality and runtime.

ACM Reference Format:
Hao-Hsiang Hsiao, Pruek Vanna-Iampikul, Yi-Chen Lu, and Sung Kyu Lim.
2024. ML-based Physical Design Parameter Optimization for 3D ICs: From
Parameter Selection to Optimization. In 61st ACM/IEEE Design Automation
Conference (DAC ’24), June 23–27, 2024, San Francisco, CA, USA. https://doi.
org/10.1145/3649329.3656509

1 INTRODUCTION
High-performance 3D ICs are commonly designed with pseudo-
3D[1] approaches, which utilize existing 2D IC commercial to func-
tion as 3D IC CAD tools. These methods start with constructing a
2D physical design using commercial 2D IC physical design tools
and then transform it into a 3D layout.

State-of-the-art (SOTA) pseudo-3D flows fall into two main cate-
gories: partitioning-first and partitioning-last. In partitioning-first
flows, tier partitioning (TP) is conducted before global placement.
In contrast, partitioning-last flows, like Compact-2D[2], perform
TP after an intermediate placement stage. The Compact-2D flow
emulates the final 3D IC footprint by scaling wire RC values by
1/
√
2 without shrinking cells and wires to generate intermediate

placement before TP. Pin-3D[3] is designed for true 3D routing and
optimization using 2D tools after TP. It optimizes one tier iteratively,
using transparent cells to represent the other tier’s cells and project-
ing their pins to the metal stack. This approach, as demonstrated in
[3], yields improved performance and lower power consumption
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compared to the original Compact-2D flow. However, the final de-
sign quality depends on the initial intermediate-2D design and tier
partitioning result.

Although pseudo-3D flows often demonstrate superior Quality
of Results (QoR) compared to their 2D counterparts or academic
true-3D design flows, [4] shows that the consistent improvement
of Power, Performance, and Area (PPA) metrics is not always guar-
anteed with pseudo-3D workflows. Pseudo-3D flows involve var-
ious parameters, including commercial tool parameters and tier-
partitioning parameters, which significantly influence design qual-
ity. Therefore, to fully exploit the potential of pseudo-3D workflows,
a properly optimized parameter configuration is crucial.

In this study, we explore parameter optimization for the Compact-
2D + Pin-3D approach in Face-to-Face (F2F)-bonded 3D ICs. Despite
considerable research in parameter autotuning within Electronic
Design Automation (EDA), there is a notable gap in research dedi-
cated to Design Space Exploration (DSE) in the context of 3D ICs.
Our objective is to introduce a comprehensive end-to-end automatic
tuning framework, covering parameter selection to optimization,
and eliminating the need for human intervention. The contribution
of our work is summarized as follows:

• We conducted the first comprehensive comparative study
of current research in parameter optimization techniques
within Electronic Design Automation (EDA) for 3D ICs.
• We introduce an end-to-end machine learning-based frame-
work for seamless parameter selection and optimization in
3D ICs, eliminating the need for human intervention.
• We introduce a reinforcement learning (RL)-based parame-
ter optimization framework that leverages advantages from
existing approaches, consistently outperforming SOTAmeth-
ods across various benchmarks and objectives.
• We introduce a hybrid framework that facilitates RL tuning
using a reward estimator pretrained offline, eliminating the
need for the time-consuming Pseudo-3D flow.

2 PRELIMINARIES
2.1 Parameter Selection
The Pseudo-3D flow provides a large spectrum of parameters, mak-
ing it impractical to tune them blindly. Consequently, identifying
the parameters that carry greater importance for our task becomes
a crucial step. However, quantifying the importance of each pa-
rameter to the final PPA is often nontrivial and counter-intuitive;
the interactions between parameters make this task even more
challenging. Therefore, many statistical techniques are employed.
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Table 1: Selected Parameters.

ID Parameter type range
1 place_glo_max_density float [0.6, 0.9]
2 place_glo_uniform_density bool 2
3 place_glo_clock_power_driven bool 2
4 place_glo_clock_power...effort enum 3
5 place_det_wire_length_opt_effort enum 3
6 place_glo_activity_power_driven bool 2
7 place_glo_activity...effort enum 2
8 place_glo_cong_effort enum 5
9 place_glo_timing_effort enum 2
10 max_fanout float [20, 100]
11 max_source_to_sink_net_length float [20, 200]
12 target_skew float [0.1, 0.24]
13 target_max_trans float [0.15, 0.85]
14 target_insertion_delay float [0, 0.12]
15 max_buffer_depth int [20, 100]
16 PdPUnbalance float [3, 15]
17 noPart int [20, 90]
Parameter selectionmethods can be broadly classified into testing-

based and model-based approaches. Testing-based methods, such
as Univariate Selection, rely on statistical tests to determine the
significance of individual parameters. These methods offer conve-
nience but overlook parameter interactions. On the other hand,
model-based approaches consider parameter interactions but come
with a higher cost. The process involves fitting a regression model
that takes parameters as input and predicts the PPA. The impor-
tance of each parameter is based on its impact on the model output.
In Tree-Based Selection, a decision tree recursively selects param-
eters to optimize dataset splitting, which inherently calculates an
importance score for each parameter during the splits. Recursive
Elimination (RE) and Sequential Selection (SS) are bothmodel-based
approaches that begin with all parameters and progressively re-
move the ones that least affect model performance upon removal,
which can be measured by cross-validation or impurity scores.

2.2 Parameter Optimization
In this paper we implement and compare the following MLmethods
widely adopted for parameter optimization:

Bayesian Optimization (BO): Bayesian Optimization employs
a surrogate Gaussian process model to probabilistically predict the
PPA based on parameter configurations. With the prediction, an
acquisition function guides the selection of the next configuration
to sample. The chosen configuration undergoes evaluation with
real 3D P&R, and the surrogate model is updated with the new
observation. This iterative process enhances the accuracy of the
surrogate model over successive steps.

Ant Colony Optimization (ACO): ACO, inspired by real ants,
models parameter optimization as a graph. With m parameters,
the graph has m+1 nodes, each representing a parameter. Edges
between nodes, associated with pheromone levels, denote possible
configurations for each parameter. Paths from the first to the last
node correspond to parameter configurations. After evaluating
performance, pheromone levels on the chosen path are updated
based on QoR. This iterative process continues until convergence.

Algorithm 1: Our Parameter Selection Flow.
Input:
1: P𝑎𝑙𝑙 : {𝑝1 . . . , 𝑝𝑛}: a list of unselected parameters

Output: Parameters P𝑠𝑒𝑙𝑒𝑐𝑡 ⊂ P𝑎𝑙𝑙 with high importance
1: 𝑃𝑠𝑒𝑙𝑒𝑐𝑡 = {}
2: for each netlist N do
3: Run Pseudo-3D to collect a dataset D with randomly

sampled of P𝑎𝑙𝑙
4: for each optimization objective do
5: Train an XGBoost model 𝑇 with D that minimizes

cross-validation RMSE score
6: end for
7: for each 𝑝𝑖 ∈ P𝑎𝑙𝑙 do
8: Calulate SHAP value 𝑆𝑖 for 𝑝𝑖 with 𝑇 and D
9: if 𝑆𝑖 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
10: 𝑃𝑠𝑒𝑙𝑒𝑐𝑡 = 𝑃𝑠𝑒𝑙𝑒𝑐𝑡 ∪ {𝑝𝑖 }
11: end if
12: end for
13: end for

Recommendation-Based: [5] utilized matrix factorization
(MF) for parameter suggestion. In our case, each netlist (𝑝𝑖 ) and
parameter configuration (𝑞 𝑗 ) have their latent features ∈ R𝑘 . The
predicted QoR ( ˆ𝑟𝑖 𝑗 ) for performing 3D P&R is given by 𝑝𝑖 ·𝑞 𝑗 . Latent
features are trainable by minimizing

∑
𝑖, 𝑗 |𝑟𝑖 𝑗 − ˆ𝑟𝑖 𝑗 | for all completed

netlist-parameter pairs. After training, these features predict unex-
plored pairs, suggesting configurations with high predicted QoR.
However, [5] lacks leverage of domain knowledge, and may face
challenges in high-dimensional or continuous design spaces.

Feature-Importance Sampling and Tree-Based (FIST): [6]
proposed an efficient sampling strategy. They leverage the inherent
characteristics of Tree-Based models, which recursively divide the
dataset into subsets based on parameter importance. FIST employs a
samplingmethodology that selects parameter configurations within
clusters after the dataset is split, facilitating an efficient exploration
of various configurations.

Reinforcement Learning Based (RL): [7] proposed a RL-
based tuning framework that iteratively adjusts a configuration
proposed by a human expert, to optimize cumulative PPA rewards.
However, the method starts from a preset configuration, introduc-
ing potential arbitrariness and uncertainty of reachability from a
suboptimal starting point within a limited episode length. Since it
doesn’t predict the optimal parameter directly, this method aligns
more closely with the parameter "fine-tuning."

3 OUR PARAMETER SELECTION
3.1 Challenges of Parameter Selection
Model-based selection algorithms are a preferable choice due to the
interactions among parameters in P&R tools, involving a trade-off
between performance and power. However, different methods and
models with varying hyperparameters can yield diverse importance
results that pose a significant challenge in identifying parameter im-
portance. To address these issues, we propose a strategy to achieve
consistent and reliable importance measurements.
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3.2 Selection Methodology

Tree-based methods often suffer from inconsistency issues due to

a lack of model performance evaluation, resulting in potentially

biased assessments in cases of overfitting or biased datasets. To

mitigate this, we incorporate cross-validation with Bayesian Op-

timization to train a reliable model structure for importance mea-

surement. XGBoost stands out as an optimal selection due to its

effectiveness and lightweight nature. With fewer hyperparameters,

it produces more consistent results and a reduced search time.

We leverage SHAP (SHapley Additive exPlanations), which is

a powerful tool for explaining the output of Machine Learning

models, for importance measurement. SHAP excels in providing

consistent and interpretable explanations, offering valuable insights

into the influence of each parameter on the model’s predictions.

Let 𝑓 : X → R be a model that maps input instances 𝑥 from

the parameter space X to predictions. The SHAP value 𝜙𝑖 (𝑥) for a
specific parameter 𝑖 in a given instance 𝑥 is defined as follows:

𝜙𝑖 (𝑥) =
∑

𝑆⊆{1,...,𝑝 }\{𝑖 }

|𝑆 |!(𝑝 − |𝑆 | − 1)!
𝑝!

[𝑓 (𝑥𝑆 ∪ {𝑖}) − 𝑓 (𝑥𝑆 )]

(1)

where 𝑆 is a subset of parameters excluding 𝑖 , 𝑥𝑆 represents the

instance with only parameters in 𝑆 , and 𝑝 is the total number of

parameters. The equation calculates the contribution of parameter

𝑖 to the model prediction by considering all possible subsets of

parameters. The term 𝑓 (𝑥𝑆 ∪ {𝑖}) − 𝑓 (𝑥𝑆 ) represents the change
in the model prediction when parameter 𝑖 is included.

The SHAP values satisfy the following desirable properties:

• Local Accuracy: 𝑓 (𝑥) = ∑
𝑖 𝜙𝑖 (𝑥) for all instances 𝑥 .

• Consistency: If 𝑥𝑖 ≤ 𝑥 ′𝑖 ∀𝑖 , then 𝜙𝑖 (𝑥) ≤ 𝜙𝑖 (𝑥 ′) ∀𝑖 .
• Symmetry: If 𝑓 (𝑥) = 𝑓 (𝑥 ′) for all instances 𝑥 and 𝑥 ′ that
only differ in features 𝑖 and 𝑗 , then 𝜙𝑖 (𝑥) = 𝜙𝑖 (𝑥 ′) and

𝜙 𝑗 (𝑥) = 𝜙 𝑗 (𝑥 ′).
These properties ensure that SHAP values provide accurate and

consistent measures of parameter importance, making them a pow-

erful tool for parameter selection. Our overall selection mechanism

is described in Algorithm 1.

3.3 Our Selected Parameters

Table 1 lists our selected parameters with Figure 1 visualizing the

five most critical ones. Each subplot in the figure provides a sum-

mary of SHAP values for a parameter, where each dot represents a

data point. The color of the dot corresponds to the parameter value.

Absolute SHAP values indicate the impact on the model’s output,

with the sign representing positive or negative impact.

For example, Param. 11 significantly affects power consumption

in both Rocket and AES designs by controlling the net length from

the clock source to the sink, where a lower value increases power

consumption. On the other hand, Param. 16, which governs the

area unbalance for bin-based Tier-partitioning (TP), has the most

significant influence on the WNS metric for Rocket. From Figure

1, within the specific range, higher values can enhance cut size,

thereby avoiding the snaking of 3D nets.

The trade-off between timing and power often involves consid-

ering the PDP metric. In the case of AES, reducing Parameter 11
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Figure 1: The important parameters of objective vs. netlist

decreases PDP, whereas for Rocket, a reduction in Parameter 11

results in a higher PDP. This highlights that the optimization efforts

during the P&R stage vary across different designs. As a result, 3D

IC parameters should be specifically optimized for different designs

to achieve the desired design goal.

4 OUR PARAMETER OPTIMIZATION

4.1 Motivation

Our first goal is to build a transferable framework that enables

leveraging design features, which [7] successfully leveraged design

features by training NN agent with RL. Our second goal is to reduce

the runtime of online tuning. The advantage of online tuning is

that it doesn’t necessitate a large prebuilt dataset. However, the

challenge is the slow turnaround time to obtain the PPA, which

is the bottleneck of optimization. [5] utilizes offline supervised

learning to predict the QoR for each design-parameter pair, enabling

fast parameter suggestions without iteratively running P&R.

Therefore, we propose a novel tuning strategy that uses NN

trained with RL to facilitate the utilization of design features. To

shorten the long tuning process, we train an additional reward

estimator to predict the QoR for each design-parameter pair.

4.2 Overall Optimization Flow

Figure 2 offers a high-level overview of our 3DTuner. We introduce

a hybrid tuning framework that integrates both online and offline

techniques. The tuning flow comprises the following phases:

(1) Offline Supervised Learning: We trained a reward estimator

as a substitute for 3D P&R using supervised learning with

a dataset D containing diverse netlist-configuration pairs,

and their corresponding ground truth QoR. The training is

to minimize the Mean Squared Error (MSE) loss between

predicted and actual PPA values.
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Figure 2: The 3DTuner sequentially optimizes parameters online to maximize the reward predicted by an offline pre-trained
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Figure 3: Our 3Dtuner includes: GNN, Transformer, and cus-
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(2) Online tuning: the 3DTuner employs netlist embeddings and

self-attention mechanism for autoregressive parameter tun-

ing. It samples parameter actions at each time step, calculates

rewards using the reward estimator, and updates its parame-

ters with the PPO algorithm until the reward stabilizes.

(3) Online Refinement: To further improve our 3DTuner and

reward estimator, after optimizing the estimated reward, the

3DTuner selects the most promising configuration to run

through the real 3D P&R flow. The completed data is added

to the dataset to refine the reward estimator.

4.3 Sequential Tuning with Transformer Tuner

We frame parameter optimization as a sequential decision-making

process, where parameters 𝑝1, 𝑝2, . . . , 𝑝𝑇 are tuned one after the

other. This approach has two primary benefits. Firstly, it enables au-

toregressive tuning, where the tuning of each parameter is informed

by the values for those before it. Secondly, it scales efficiently with

the number of parameters, as it adds a decision step for each param-

eter rather than expanding the model’s dimensionality. We chose

the Transformer language model as our tuner due to its proficiency

in handling sequential decisions. The self-attention mechanism in

the Transformer automatically assesses the importance of previ-

ous outputs for making the current prediction. To account for the

Table 2: Initial features of each node in our netlist graph.

features descriptions

wst slack worst slack of cell

wst output slew maximum transition of output pin

wst input slew maximum transition of input pin

drv net power switching power of driving net

int power cell internal power

leakage cell leakage power

diverse range of parameters, we have introduced a dedicated pa-

rameter layer for each parameter following the shared Transformer

layer. For discrete parameters, this layer is a softmax layer that

calculates the probability distribution across possible options. For

continuous parameters, the layer predicts the mean and standard

deviation of a normal distribution, as depicted in Figure 3.

4.4 Netlist Encoding with GNN

We utilize GNN to train a transferable tuner, capturing both netlist

connectivity and cell attributes. Node-level embedding begins with

handcrafted features from cell metadata, as shown in Table 2. An

aggregation function combines neighboring nodes’ embeddings

iteratively. Graph attention pooling retains high-attention nodes,

creating a condensed graph embedding. A global mean aggrega-

tion consolidates node-level embeddings, forming a holistic graph

representation. Our GNN framework has three graph convolution

layers and a final fully-connected layer, all with a shared hidden

dimension of 32, resulting in 16-dimensional graph embeddings.

4.5 Reinforcement Learning Formulation

To train with RL algorithm, we formulate the tuning process as a

MDP. To allow direct prediction of parameters, our MDP settings

differ from [7]. Below are our RL formulations:

• 𝑇𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦 (𝜏): A trajectory 𝜏 is the complete sequence of

parameter selections from 𝑝1 to 𝑝𝑇 .
• 𝑆𝑡𝑎𝑡𝑒𝑠 (𝑠): At time step 𝑡 , a state 𝑠𝑡 includes the configuration
of parameters tuned from time steps 1 through 𝑡−1, using the
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Transformer’s self-attention mechanism. It also integrates
design characteristics encoded by GNN.
• 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 (𝑎): An action 𝑎𝑡 represents all potential configura-
tions for the parameter to be tuned at time step 𝑡 .
• 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑟 ): our rewards are set to zero for intermediate
actions 𝑎1, 𝑎2, . . . , 𝑎𝑇−1, except for the last action, 𝑎𝑇 , corre-
sponding to the estimated PPA obtained after the 3D flow.

Each PPA estimator accepts input in the form of concatenated
parameter embeddings and graph-extracted features, resulting in a
total of 46 dimensions. This input is then processed through two
hidden layers with 16 and 8 outputs, respectively. During training,
the model is updated using the mean squared error (MSE) loss,
calculated between the ground truth and the predicted PPA value.

3DTuner’s learning depends heavily on the reward estimator,
and relying on a single estimator is risky. To mitigate this, we incor-
porate estimation uncertainty by approximating Bayesian learning.
By assuming uncertainty is parameterized by 𝜃 , the posterior dis-
tribution of 𝜃 is learned from data, and the expected reward is
calculated as E[𝑅] =

∫
𝑅(𝜃 )𝑝 (𝜃 |D)𝑑𝜃 ≈ 1

𝑁

∑
𝑖 𝑅(𝜃𝑖 ). We approxi-

mate uncertainty by training an ensemble of 5 models.

4.6 Training Methodology
The overall process is illustrated in Algorithm 2. We update our
3DTuner to optimize the expected reward with the SOTA Proximal
Policy Optimization (PPO) algorithm. The PPO clipped surrogate
objective that we aim to maximize is as follows:

L(𝜃 ) = E
[
min

(
𝜌 (𝜃 )𝐴, 𝑐𝑙𝑖𝑝 (𝜌 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴

)]
(2)

PPO promotes actions with positive advantage (outperforming
expectations) and discourages actions with negative advantage (un-
derperforming expectations). The advantage function 𝐴 represents
the difference between observed rewards 𝑅 and expected returns.

𝜌 (𝜃 ) quantifies the likelihood of taking a current action under
the new policy versus the old policy, governing policy updates. In
clipped PPO, a key constraint using min and clip functions restricts
policy updates to a specified range, typically [1 − 𝜖, 1 + 𝜖] with 𝜖

conventionally set to 0.2. These constraints prevent overly large
policy updates that could destabilize training.

5 EXPERIMENTAL RESULTS
We conduct experiments on six industrial benchmarks, as listed in
Table 3, to assess the optimization capabilities of SOTA algorithms
across three different objectives: WNS, total power, and PDP. We
employ Cadence Innovus for Cascade-2D + Pin-3D using face-to-
face hybrid bonding with 1𝜇m pitch under 28nm technology nodes
with parameter selection and optimization implemented in Python.

5.1 Experiment Setup
To evaluate the effectiveness of the existing optimization algorithms,
we implemented the following:

(1) BO: Similar setting as in [9]. We implement an asynchronous
setting with shared data. Matern Kernel is used and different
acquisitions (EI, UCB, POI) are used for different workers.
Offline data is used as prior for the same design.

Algorithm 2: Our Parameter Optimization Flow.
Input:
1: P𝑠𝑒𝑙𝑒𝑐𝑡 : {𝑝1 . . . , 𝑝𝑛 }: all parameters to be tuned
2: GNN for gate-level netlists
3: Dataset D = { (𝑃1,𝐺1, 𝑦1 ), . . . (𝑃𝑁 ,𝐺𝑁 , 𝑦𝑁 ) } which contains

parameter-netlist pairs and their ground truth PPAs
Output: parameters P∗ : {𝑝∗1 . . . 𝑝∗𝑛 } that optimize PPA
1: Initialize the Reward_Estimator with weight 𝜃𝐸𝑠𝑡
2: Initialize the 3DTuner with weights 𝜃𝑇𝑢𝑛𝑒𝑟

3: repeat
4: repeat
5: y′ ← 𝑅𝑒𝑤𝑎𝑟𝑑_𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 (P,G)
6: Update 𝜃𝐸𝑠𝑡 to minimize MSE loss: 𝐽 (𝜃 ) ← 1

2𝑚 ∥y − y′ ∥22
7: until 𝜃𝐸𝑠𝑡 converged
8: repeat
9: g← 𝐺𝑁𝑁 (𝐺 )
10: 𝑝′

𝑖
∼ 3𝐷𝑇𝑢𝑛𝑒𝑟 (𝑝′

𝑖
|𝑝′1, . . . , 𝑝′𝑖−1, 𝑔)

11: Compute reward: 𝑟 ← 𝑅𝑒𝑤𝑎𝑟𝑑_𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 (𝑝′1, . . . , 𝑝′𝑛, 𝑔)
12: Update 𝜃𝑇𝑢𝑛𝑒𝑟 by maximizing Eq. 2 using gradient ascent
13: until reward saturated
14: Query most promising 𝑃∗ ∼ 3𝐷𝑇𝑢𝑛𝑒𝑟
15: Run Pseudo-3D with 𝑃∗, obtained ground truth y
16: D = D ∪ { (𝑃∗,𝐺, 𝑦) }
17: until objective is optimized

(2) ACO: Similar settings as [8]. Three ACO engines are em-
ployed for different groups of parameters, and continuous
parameters are discretized.

(3) Recommender: Similar as [5], we implement MF algorithm
with offline data, and continuous parameters are discretized.

(4) FIST: We implement a similar approach based on [6] using
XGBoost. Offline data is used for model construction.

(5) RL-based: We implement the similar MDP setting as in [7]
using StableBaseline and OpenAI Gym API. The episode
length is set to 16 as described in [7].

We begin by sampling 1500 data points with randomly generated
configurations across six tuning designs, forming an offline dataset
that serves as prior knowledge for ACO, BO, and FIST. It also acts
as training data for our reward estimators and the latent features of
the Recommender. Notably, BO is restricted to data from the same
netlist, and RL[7] lacks a direct method to leverage offline data.

Within our framework, we conduct experiments to assess results
with andwithout online refinement. In the case of online refinement,
we allocate a tool run budget of 20 for each design. This process
not only optimizes the reward estimated by the reward estimator
but also involves running Pseudo-3D with promising parameters to
refine the reward estimator based on the newly acquired experience.

5.2 Optimization Result
The results in Table 3 indicate our framework consistently surpasses
SOTA methods. It utilizes offline data for transfer, outperforming
those with limited transferability. Our online refinement further
enhances performance but at the cost of online tool runs.

Despite the Recommender using neural networks for transfer-
ability, its reliance on collaborative filtering, overlooking known
features, and restricting parameter solution granularity, leads to
suboptimal results compared to SOTA. RL[7] emerges as a promis-
ing approach; however, it exhibits sensitivity to the starting point.
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Table 3: Comparison of tuning results between ours and SOTA [4 – 8 ] methods in optimizing 3 different objectives. Power,
worst negative slack (WNS), and power-delay product (PDP) are reported in mW, ps, and pJ, respectively. ’Tool’ represents the
automatic setting of the commercial tool and the tier-partitioner. The values in parentheses denote the percentage change
compared to the ’tool’ setting.

Metrics tool ACO[8] BO[9] Recommend[5] FIST[6] RL[7] (bad start) RL[7] Ours Ours (refine)
AES (#cells: 112K, #nets: 112K, #IO: 390)

power 433.44 423.62 (-2.26%) 423.54 (-2.28%) 426.33 (-1.64%) 422.18 (-2.59%) 445.22 (+2.72%) 416.4 (-3.93%) 420.23 (-3.05%) 416.35 (-3.94%)
wns -50 -25 (-50.00%) -27 (-46.00%) -33 (-34.00%) -28 (-44.00%) -67 (34.00%) -20 (-60.00%) -24 (-52.00%) -22 (-56.00%)
pdp 115.32 108.33 (-6.06%) 106.1 (-8.00%) 107.53 (-6.76%) 105.61 (-8.42%) 124.07 (7.59%) 104.45 (-9.43%) 106.24 (-7.87%) 103.53 (-10.22%)

Rocket Core (#cells: 120K, #nets: 120K, #IO: 379)
power 177 172.64 (-2.46%) 172.62 (-2.47%) 173.45 (-2.01%) 172.26 (-2.68%) 181.27 (2.41%) 171.88 (-2.89%) 172.21 (-2.71%) 171.02 (-3.38%)
wns -32 -12 (-62.50%) -6 (-81.25%) -14 (-56.25%) -9 (-71.88%) -35 (9.38%) -5 (-84.38%) -4 (-87.50%) -2 (-93.75%)
pdp 182.66 176.76 (-3.23%) 175.72 (-3.80%) 176.98 (-3.11%) 176.17 (-3.55%) 180.94 (-0.94%) 172.04 (-5.81%) 174.54 (-4.45%) 171.46 (-6.13%)

ECG (#cells: 83K, #nets: 84K, #IO: 1.7K)
power 534.63 518.02 (-3.11%) 514.67 (-3.73%) 522.6 (-2.25%) 517.04 (-3.29%) 548.75 (2.64%) 513.05 (-4.04%) 515.22 (-3.63%) 512.98 (-4.05%)
wns -84 -57 (-32.14%) -58 (-30.95%) -67 (-20.24%) -52 (-38.10%) -101 (20.24%) -53 (-36.90%) -52 (-38.10%) -49 (-41.67%)
pdp 161.24 154.57 (-4.14%) 150.5 (-6.66%) 155.4 (-3.62%) 153.28 (-4.94%) 180.54 (11.97%) 146.27 (-9.28%) 148.8 (-7.72%) 142.92 (-11.36%)

DMA (#cells: 13K, #nets: 14K, #IO: 961)
power 66.52 63.02 (-5.26%) 63.48 (-4.57%) 63.77 (-4.13%) 63.81 (-4.07%) 66.7 (+0.27%) 61.49 (-7.56%) 63.55 (-4.46%) 62.28 (-6.37%)
wns -120 -91 (-24.17%) -94 (-21.67%) -101 (-15.83%) -92 (-23.33%) -121 (0.83%) -91 (-24.17%) -95 (-20.83%) -88 (-26.67%)
pdp 23.09 21.97 (-4.85%) 21.95 (-4.94%) 21.94 (-4.98%) 20.76 (-10.09%) 23.89 (3.46%) 20.81 (-9.87%) 21.86 (-5.33%) 20.06 (-13.12%)

VGA (#cells: 52K, #nets: 52K, #IO: 184)
power 240.6 235.99 (-1.92%) 235.62 (-2.07%) 235.4 (-2.16%) 233.78 (-2.83%) 244.03 (1.43%) 232.43 (-3.40%) 234.3 (-2.62%) 232.33 (-3.44%)
wns -125 -51 (-59.20%) -47 (-62.40%) -46 (-63.20%) -50 (-60.00%) -142 (13.60%) -40 (-68.00%) -45 (-64.00%) -43 (-65.60%)
pdp 113.78 99.58 (-12.48%) 99.31 (-12.72%) 102.35 (-10.05%) 98.53 (-13.40%) 118.83 (4.44%) 94.35 (-17.08%) 99.02 (-12.97%) 93.16 (-18.12%)

LDPC (#cells: 39K, #nets: 41K, #IO: 4.1K)
power 203.12 199.59 (-1.74%) 199.3 (-1.88%) 200.58 (-1.25%) 198.68 (-2.19%) 207.96 (2.38%) 196.44 (-3.29%) 198.56 (-2.24%) 195.88 (-3.56%)
wns (ps) -29 -5 (-82.76%) -7 (-75.86%) -5 (-82.76%) -8 (-72.41%) -30 (3.45%) -2 (-93.10%) -5 (-82.76%) -3 (-89.66%)
pdp 107.45 100.07 (-6.87%) 102.69 (-4.43%) 99.94 (-6.99%) 102.48 (-4.63%) 108.68 (1.14%) 99.01 (-7.85%) 101.32 (-5.70%) 99.35 (-7.54%)

Total number of tool runs for each objective (6 designs)
# run 6 300 300 6 240 120 120 6 120

In addition to the normal setting, we adversarially sample an ex-
tremely poor starting point based on offline data. We observed that
the agent struggled to rectify when the starting point was too unfa-
vorable. Yet, when provided with an oracle of a good starting point,
this method proves effective as a practical fine-tuning framework.

6 CONCLUSION
We conducted the first comparative study on parameter optimiza-
tion for 3D ICs, introducing an end-to-end framework that spans
from parameter selection to optimization, thereby eliminating the
need for human intervention. Extensive experiments show that
our framework, leveraging transfer learning via GNN, achieves
high transferability across diverse designs. Our methods outper-
form state-of-the-art approaches within seconds and are capable of
further refinement online to achieve even more optimal results.
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