ML-based Physical Design Parameter Optimization for 3D ICs:
From Parameter Selection to Optimization

Hao-Hsiang Hsiao Pruek Vanna-Iampikul

thsiao@gatech.edu v.pruek@gatech.edu
Georgia Institute of Georgia Institute of
Technology Technology
Atlanta, GA, USA Atlanta, GA, USA
ABSTRACT

While various studies have shown effective parameter optimizations
for specific designs, there is limited exploration of parameter opti-
mization within the domain of 3D Integrated Circuits. We present
the first comprehensive study, both qualitatively and quantitatively,
comparing five state-of-the-art (SOTA) techniques for parameter
optimization applied to 3D ICs. Additionally, we introduce an end-
to-end machine learning-based framework, encompassing impor-
tant parameter selection through optimization, all without human
intervention. Extensive studies across six industrial designs under
the TSMC 28nm technology node reveal that our proposed frame-
work outperforms SOTA techniques in three different optimization
objectives in both optimization quality and runtime.

ACM Reference Format:

Hao-Hsiang Hsiao, Pruek Vanna-Iampikul, Yi-Chen Lu, and Sung Kyu Lim.
2024. ML-based Physical Design Parameter Optimization for 3D ICs: From
Parameter Selection to Optimization. In 61st ACM/IEEE Design Automation
Conference (DAC °24), June 23-27, 2024, San Francisco, CA, USA. https://doi.
org/10.1145/3649329.3656509

1 INTRODUCTION

High-performance 3D ICs are commonly designed with pseudo-
3D[1] approaches, which utilize existing 2D IC commercial to func-
tion as 3D IC CAD tools. These methods start with constructing a
2D physical design using commercial 2D IC physical design tools
and then transform it into a 3D layout.

State-of-the-art (SOTA) pseudo-3D flows fall into two main cate-
gories: partitioning-first and partitioning-last. In partitioning-first
flows, tier partitioning (TP) is conducted before global placement.
In contrast, partitioning-last flows, like Compact-2D[2], perform
TP after an intermediate placement stage. The Compact-2D flow
emulates the final 3D IC footprint by scaling wire RC values by
1/¥2 without shrinking cells and wires to generate intermediate
placement before TP. Pin-3D[3] is designed for true 3D routing and
optimization using 2D tools after TP. It optimizes one tier iteratively,
using transparent cells to represent the other tier’s cells and project-
ing their pins to the metal stack. This approach, as demonstrated in
[3], yields improved performance and lower power consumption

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

DAC ’24, June 23-27, 2024, San Francisco, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0601-1/24/06.

https://doi.org/10.1145/3649329.3656509

Yi-Chen Lu Sung Kyu Lim
yclu@gatech.edu limsk@ece.gatech.edu
Georgia Institute of Georgia Institute of
Technology Technology

Atlanta, GA, USA Atlanta, GA, USA

compared to the original Compact-2D flow. However, the final de-
sign quality depends on the initial intermediate-2D design and tier
partitioning result.

Although pseudo-3D flows often demonstrate superior Quality
of Results (QoR) compared to their 2D counterparts or academic
true-3D design flows, [4] shows that the consistent improvement
of Power, Performance, and Area (PPA) metrics is not always guar-
anteed with pseudo-3D workflows. Pseudo-3D flows involve var-
ious parameters, including commercial tool parameters and tier-
partitioning parameters, which significantly influence design qual-
ity. Therefore, to fully exploit the potential of pseudo-3D workflows,
a properly optimized parameter configuration is crucial.

In this study, we explore parameter optimization for the Compact-
2D + Pin-3D approach in Face-to-Face (F2F)-bonded 3D ICs. Despite
considerable research in parameter autotuning within Electronic
Design Automation (EDA), there is a notable gap in research dedi-
cated to Design Space Exploration (DSE) in the context of 3D ICs.
Our objective is to introduce a comprehensive end-to-end automatic
tuning framework, covering parameter selection to optimization,
and eliminating the need for human intervention. The contribution
of our work is summarized as follows:

e We conducted the first comprehensive comparative study
of current research in parameter optimization techniques
within Electronic Design Automation (EDA) for 3D ICs.

e We introduce an end-to-end machine learning-based frame-
work for seamless parameter selection and optimization in
3D ICs, eliminating the need for human intervention.

e We introduce a reinforcement learning (RL)-based parame-
ter optimization framework that leverages advantages from
existing approaches, consistently outperforming SOTA meth-
ods across various benchmarks and objectives.

e We introduce a hybrid framework that facilitates RL tuning
using a reward estimator pretrained offline, eliminating the
need for the time-consuming Pseudo-3D flow.

2 PRELIMINARIES

2.1 Parameter Selection

The Pseudo-3D flow provides a large spectrum of parameters, mak-
ing it impractical to tune them blindly. Consequently, identifying
the parameters that carry greater importance for our task becomes
a crucial step. However, quantifying the importance of each pa-
rameter to the final PPA is often nontrivial and counter-intuitive;
the interactions between parameters make this task even more
challenging. Therefore, many statistical techniques are employed.

https://doi.org/10.1145/3649329.3656509
https://doi.org/10.1145/3649329.3656509
https://doi.org/10.1145/3649329.3656509

DAC 24, June 23-27, 2024, San Francisco, CA, USA

Table 1: Selected Parameters.

l ID ‘ Parameter H type ‘ range ‘
1 place_glo_max_density float | [0.6,0.9]
2 place_glo_uniform_density bool 2
3 place_glo_clock_power_driven bool 2
4 place_glo_clock_power...effort enum 3
5 | place_det_wire_length_opt_effort || enum 3
6 | place_glo_activity_power_driven || bool 2
7 place_glo_activity...effort enum 2
8 place_glo_cong_effort enum 5
9 place_glo_timing_effort enum 2
10 max_fanout float | [20, 100]
11 | max_source_to_sink_net_length float [20, 200]
12 target_skew float | [0.1, 0.24]
13 target_max_trans float | [0.15, 0.85]
14 target_insertion_delay float [0,0.12]
15 max_buffer_depth int [20, 100]
16 PdPUnbalance float [3, 15]
17 noPart int [20, 90]

Parameter selection methods can be broadly classified into testing-
based and model-based approaches. Testing-based methods, such
as Univariate Selection, rely on statistical tests to determine the
significance of individual parameters. These methods offer conve-
nience but overlook parameter interactions. On the other hand,
model-based approaches consider parameter interactions but come
with a higher cost. The process involves fitting a regression model
that takes parameters as input and predicts the PPA. The impor-
tance of each parameter is based on its impact on the model output.
In Tree-Based Selection, a decision tree recursively selects param-
eters to optimize dataset splitting, which inherently calculates an
importance score for each parameter during the splits. Recursive
Elimination (RE) and Sequential Selection (SS) are both model-based
approaches that begin with all parameters and progressively re-
move the ones that least affect model performance upon removal,
which can be measured by cross-validation or impurity scores.

2.2 Parameter Optimization

In this paper we implement and compare the following ML methods
widely adopted for parameter optimization:

Bayesian Optimization (BO): Bayesian Optimization employs
a surrogate Gaussian process model to probabilistically predict the
PPA based on parameter configurations. With the prediction, an
acquisition function guides the selection of the next configuration
to sample. The chosen configuration undergoes evaluation with
real 3D P&R, and the surrogate model is updated with the new
observation. This iterative process enhances the accuracy of the
surrogate model over successive steps.

Ant Colony Optimization (ACO): ACO, inspired by real ants,
models parameter optimization as a graph. With m parameters,
the graph has m+1 nodes, each representing a parameter. Edges
between nodes, associated with pheromone levels, denote possible
configurations for each parameter. Paths from the first to the last
node correspond to parameter configurations. After evaluating
performance, pheromone levels on the chosen path are updated
based on QoR. This iterative process continues until convergence.

Hao-Hsiang Hsiao, Pruek Vanna-lampikul, Yi-Chen Lu, and Sung Kyu Lim

Algorithm 1: Our Parameter Selection Flow.

Input:
1: Py i {p1...,pn}: alist of unselected parameters
Output: Parameters Pg.j..; C P,y with high importance

L Pselect = {}
2: for each netlist N do

3. Run Pseudo-3D to collect a dataset O with randomly

sampled of P;
4: for each optimization objective do
5: Train an XGBoost model T with 9 that minimizes
cross-validation RMSE score

6: end for

7. for each p; € Py do

8: Calulate SHAP value S; for p; with T and D
9: if S; > threshold then
10: Psetect = Psetect Y {pi}
11: end if
122 end for
13: end for

Recommendation-Based: [5] utilized matrix factorization
(MF) for parameter suggestion. In our case, each netlist (p;) and
parameter configuration (g;) have their latent features € RK. The
predicted QoR (rj;) for performing 3D P&R is given by p; - ;. Latent
features are trainable by minimizing 3}; ; |rij —ri;| for all completed
netlist-parameter pairs. After training, these features predict unex-
plored pairs, suggesting configurations with high predicted QoR.
However, [5] lacks leverage of domain knowledge, and may face
challenges in high-dimensional or continuous design spaces.

Feature-Importance Sampling and Tree-Based (FIST): [6]
proposed an efficient sampling strategy. They leverage the inherent
characteristics of Tree-Based models, which recursively divide the
dataset into subsets based on parameter importance. FIST employs a
sampling methodology that selects parameter configurations within
clusters after the dataset is split, facilitating an efficient exploration
of various configurations.

Reinforcement Learning Based (RL): [7] proposed a RL-
based tuning framework that iteratively adjusts a configuration
proposed by a human expert, to optimize cumulative PPA rewards.
However, the method starts from a preset configuration, introduc-
ing potential arbitrariness and uncertainty of reachability from a
suboptimal starting point within a limited episode length. Since it
doesn’t predict the optimal parameter directly, this method aligns
more closely with the parameter "fine-tuning."

3 OUR PARAMETER SELECTION
3.1 Challenges of Parameter Selection

Model-based selection algorithms are a preferable choice due to the
interactions among parameters in P&R tools, involving a trade-off
between performance and power. However, different methods and
models with varying hyperparameters can yield diverse importance
results that pose a significant challenge in identifying parameter im-
portance. To address these issues, we propose a strategy to achieve
consistent and reliable importance measurements.

ML-based Physical Design Parameter Optimization for 3D ICs: From Parameter Selection to Optimization

3.2 Selection Methodology

Tree-based methods often suffer from inconsistency issues due to
a lack of model performance evaluation, resulting in potentially
biased assessments in cases of overfitting or biased datasets. To
mitigate this, we incorporate cross-validation with Bayesian Op-
timization to train a reliable model structure for importance mea-
surement. XGBoost stands out as an optimal selection due to its
effectiveness and lightweight nature. With fewer hyperparameters,
it produces more consistent results and a reduced search time.

We leverage SHAP (SHapley Additive exPlanations), which is
a powerful tool for explaining the output of Machine Learning
models, for importance measurement. SHAP excels in providing
consistent and interpretable explanations, offering valuable insights
into the influence of each parameter on the model’s predictions.

Let f : X — R be a model that maps input instances x from
the parameter space X to predictions. The SHAP value ¢;(x) for a
specific parameter i in a given instance x is defined as follows:

ISI'(p — 18] = 1)!

$i(x) = o

[f (xs U{i}) - f(xs)]
1)
where S is a subset of parameters excluding i, xg represents the
instance with only parameters in S, and p is the total number of
parameters. The equation calculates the contribution of parameter
i to the model prediction by considering all possible subsets of
parameters. The term f(xs U {i}) — f(xs) represents the change
in the model prediction when parameter i is included.
The SHAP values satisfy the following desirable properties:

Sc{t,...p}\{i}

e Local Accuracy: f(x) = }; ¢i(x) for all instances x.

e Consistency: If x; < x] Vi, then ¢;(x) < ¢;(x") Vi.

e Symmetry: If f(x) = f(x) for all instances x and x” that
only differ in features i and j, then ¢;(x) = ¢;(x”) and
$ji(x) = ¢ (x').

These properties ensure that SHAP values provide accurate and
consistent measures of parameter importance, making them a pow-
erful tool for parameter selection. Our overall selection mechanism
is described in Algorithm 1.

3.3 Our Selected Parameters

Table 1 lists our selected parameters with Figure 1 visualizing the
five most critical ones. Each subplot in the figure provides a sum-
mary of SHAP values for a parameter, where each dot represents a
data point. The color of the dot corresponds to the parameter value.
Absolute SHAP values indicate the impact on the model’s output,
with the sign representing positive or negative impact.

For example, Param. 11 significantly affects power consumption
in both Rocket and AES designs by controlling the net length from
the clock source to the sink, where a lower value increases power
consumption. On the other hand, Param. 16, which governs the
area unbalance for bin-based Tier-partitioning (TP), has the most
significant influence on the WNS metric for Rocket. From Figure
1, within the specific range, higher values can enhance cut size,
thereby avoiding the snaking of 3D nets.

The trade-off between timing and power often involves consid-
ering the PDP metric. In the case of AES, reducing Parameter 11

DAC ’24, June 23-27, 2024, San Francisco, CA, USA

>
T

11 fo— —-——- — {1 Smempt—cp— | O

5 17 1= 10 +— T
16 §— 16 4 c
a10 + 12 4 S
1 13 o 8

L

H
0 16 B e a L T g
B, 14 10 = odpe S
| § 11 ——— 16 —+ £
° 2 A —— 17 —+ e
10 —t 1 -+ S

L

H
11 ’.._ R T L e | i) %
o 10 4= - EE
ST — 16 e c
16 44— 17 - s
1 4- 14 = g

SHAP value SHAP value L

rocket aes

Y

netlist

Figure 1: The important parameters of objective vs. netlist

decreases PDP, whereas for Rocket, a reduction in Parameter 11
results in a higher PDP. This highlights that the optimization efforts
during the P&R stage vary across different designs. As a result, 3D
IC parameters should be specifically optimized for different designs
to achieve the desired design goal.

4 OUR PARAMETER OPTIMIZATION
4.1 Motivation

Our first goal is to build a transferable framework that enables
leveraging design features, which [7] successfully leveraged design
features by training NN agent with RL. Our second goal is to reduce
the runtime of online tuning. The advantage of online tuning is
that it doesn’t necessitate a large prebuilt dataset. However, the
challenge is the slow turnaround time to obtain the PPA, which
is the bottleneck of optimization. [5] utilizes offline supervised
learning to predict the QoR for each design-parameter pair, enabling
fast parameter suggestions without iteratively running P&R.
Therefore, we propose a novel tuning strategy that uses NN
trained with RL to facilitate the utilization of design features. To
shorten the long tuning process, we train an additional reward
estimator to predict the QoR for each design-parameter pair.

4.2 Overall Optimization Flow

Figure 2 offers a high-level overview of our 3DTuner. We introduce
a hybrid tuning framework that integrates both online and offline
techniques. The tuning flow comprises the following phases:

(1) Offline Supervised Learning: We trained a reward estimator
as a substitute for 3D P&R using supervised learning with
a dataset O containing diverse netlist-configuration pairs,
and their corresponding ground truth QoR. The training is
to minimize the Mean Squared Error (MSE) loss between
predicted and actual PPA values.

DAC 24, June 23-27, 2024, San Francisco, CA, USA

(action-T)
-7 param-T

& [

netlistj

Estimate RL update
tate-1
.

action-1) (action-2)

(
j param-1-- param-2-
| S B

Generative Transformer Tuner

v

Hao-Hsiang Hsiao, Pruek Vanna-lampikul, Yi-Chen Lu, and Sung Kyu Lim

FM min-cut
partitioning

legalization
global routing

|

post-CTS
optimization

(state-2) (state-T) : _ _
s t=2 . t=T T global routing detail routing
o Hiieey 2 1) : ,,,,,,,,,,,, initiaII detail routing opct)ii:-irzc;l:itsn
tanh N sample — P
one hot ' ; é post-route
1 : Linear (16, 8) | fine optimi v
: numerical | ‘ = poer
; : supervised update
Linear (46, 1618 Data |~ delay
(b) offline learning | Buffer PPA metrics

Figure 2: The 3DTuner sequentially optimizes parameters online to maximize the reward predicted by an offline pre-trained
reward estimator. The estimator can undergo further refinement using online data by executing Pseudo-3D with the most

promising configuration predicted by the 3DTuner.

Transformer Tuner

’—>
graph embedding v 0 v
4 param layer 1 JEl param layer T
GNN transform 3 I
%@% sampling ¥ | sampling ¥
param-1-------! param-T
netlist graph (discrete) (continuos)

Figure 3: Our 3Dtuner includes: GNN, Transformer, and cus-
tomized Parameter Layers

(2) Online tuning: the 3DTuner employs netlist embeddings and
self-attention mechanism for autoregressive parameter tun-
ing. It samples parameter actions at each time step, calculates
rewards using the reward estimator, and updates its parame-
ters with the PPO algorithm until the reward stabilizes.
Online Refinement: To further improve our 3DTuner and
reward estimator, after optimizing the estimated reward, the
3DTuner selects the most promising configuration to run
through the real 3D P&R flow. The completed data is added
to the dataset to refine the reward estimator.

3

~

4.3

We frame parameter optimization as a sequential decision-making
process, where parameters p1, pa, ..., pr are tuned one after the
other. This approach has two primary benefits. Firstly, it enables au-
toregressive tuning, where the tuning of each parameter is informed
by the values for those before it. Secondly, it scales efficiently with
the number of parameters, as it adds a decision step for each param-
eter rather than expanding the model’s dimensionality. We chose
the Transformer language model as our tuner due to its proficiency
in handling sequential decisions. The self-attention mechanism in
the Transformer automatically assesses the importance of previ-
ous outputs for making the current prediction. To account for the

Sequential Tuning with Transformer Tuner

Table 2: Initial features of each node in our netlist graph.

features descriptions

worst slack of cell

maximum transition of output pin
maximum transition of input pin
switching power of driving net
cell internal power

cell leakage power

wst slack

wst output slew
wst input slew
drv net power
int power
leakage

diverse range of parameters, we have introduced a dedicated pa-
rameter layer for each parameter following the shared Transformer
layer. For discrete parameters, this layer is a softmax layer that
calculates the probability distribution across possible options. For
continuous parameters, the layer predicts the mean and standard
deviation of a normal distribution, as depicted in Figure 3.

4.4 Netlist Encoding with GNN

We utilize GNN to train a transferable tuner, capturing both netlist
connectivity and cell attributes. Node-level embedding begins with
handcrafted features from cell metadata, as shown in Table 2. An
aggregation function combines neighboring nodes’ embeddings
iteratively. Graph attention pooling retains high-attention nodes,
creating a condensed graph embedding. A global mean aggrega-
tion consolidates node-level embeddings, forming a holistic graph
representation. Our GNN framework has three graph convolution
layers and a final fully-connected layer, all with a shared hidden
dimension of 32, resulting in 16-dimensional graph embeddings.

4.5 Reinforcement Learning Formulation

To train with RL algorithm, we formulate the tuning process as a
MDP. To allow direct prediction of parameters, our MDP settings
differ from [7]. Below are our RL formulations:

e Trajectory (7): A trajectory 7 is the complete sequence of
parameter selections from pp to pr.

e States (s): Attime step ¢, a state s; includes the configuration
of parameters tuned from time steps 1 through ¢ —1, using the

ML-based Physical Design Parameter Optimization for 3D ICs: From Parameter Selection to Optimization

Transformer’s self-attention mechanism. It also integrates
design characteristics encoded by GNN.

e Actions (a): An action a; represents all potential configura-
tions for the parameter to be tuned at time step t.

e Reward (r): our rewards are set to zero for intermediate
actions aj, a, . . ., ar—1, except for the last action, ar, corre-
sponding to the estimated PPA obtained after the 3D flow.

Each PPA estimator accepts input in the form of concatenated
parameter embeddings and graph-extracted features, resulting in a
total of 46 dimensions. This input is then processed through two
hidden layers with 16 and 8 outputs, respectively. During training,
the model is updated using the mean squared error (MSE) loss,
calculated between the ground truth and the predicted PPA value.

3DTuner’s learning depends heavily on the reward estimator,
and relying on a single estimator is risky. To mitigate this, we incor-
porate estimation uncertainty by approximating Bayesian learning.
By assuming uncertainty is parameterized by 6, the posterior dis-
tribution of 0 is learned from data, and the expected reward is
calculated as E[R] = fR(H)p(QlZ))dH x ﬁ >.; R(0;). We approxi-
mate uncertainty by training an ensemble of 5 models.

4.6 Training Methodology

The overall process is illustrated in Algorithm 2. We update our
3DTuner to optimize the expected reward with the SOTA Proximal
Policy Optimization (PPO) algorithm. The PPO clipped surrogate
objective that we aim to maximize is as follows:

L(0)=E [mm (p(e)A, clip(p(0),1—e,1+ e)A)] @)

PPO promotes actions with positive advantage (outperforming
expectations) and discourages actions with negative advantage (un-
derperforming expectations). The advantage function A represents
the difference between observed rewards R and expected returns.

p(6) quantifies the likelihood of taking a current action under
the new policy versus the old policy, governing policy updates. In
clipped PPO, a key constraint using min and clip functions restricts
policy updates to a specified range, typically [1 —¢€,1+ €] with e
conventionally set to 0.2. These constraints prevent overly large
policy updates that could destabilize training.

5 EXPERIMENTAL RESULTS

We conduct experiments on six industrial benchmarks, as listed in
Table 3, to assess the optimization capabilities of SOTA algorithms
across three different objectives: WNS, total power, and PDP. We
employ Cadence Innovus for Cascade-2D + Pin-3D using face-to-
face hybrid bonding with 1pm pitch under 28nm technology nodes
with parameter selection and optimization implemented in Python.

5.1 Experiment Setup

To evaluate the effectiveness of the existing optimization algorithms,
we implemented the following:

(1) BO: Similar setting as in [9]. We implement an asynchronous
setting with shared data. Matern Kernel is used and different
acquisitions (EI, UCB, POI) are used for different workers.
Offline data is used as prior for the same design.

DAC ’24, June 23-27, 2024, San Francisco, CA, USA

Algorithm 2: Our Parameter Optimization Flow.

Input:
1: Psetect : {p1-..,pn}: all parameters to be tuned
2: GNN for gate-level netlists
3: Dataset D = {(P1,G1, y1), - .. (PN, GN, yn)} which contains
parameter-netlist pairs and their ground truth PPAs
Output: parameters P* : {p] ...p;,} that optimize PPA
1: Initialize the Reward_Estimator with weight O,
2: Initialize the 3DTuner with weights 01y ner

3: repeat
4 repeat
5 y’ < Reward_Estimator(P,G)
6: Update Ogs; to minimize MSE loss: J(0) « ﬁ lly -y ||§
7: until Ogg; converged
8 repeat
9: g — GNN(G)
10: p; ~ 3DTuner(p;|p}.....Pi_1,9)
11 Compute reward: r < Reward_Estimator(p},...,py.9)
12: Update 01yner by maximizing Eq. 2 using gradient ascent

13: until reward saturated

14: Query most promising P* ~ 3DTuner

15 Run Pseudo-3D with P*, obtained ground truth y
16 D=DU{(P"G,y)}

17: until objective is optimized

(2) ACO: Similar settings as [8]. Three ACO engines are em-
ployed for different groups of parameters, and continuous
parameters are discretized.

(3) Recommender: Similar as [5], we implement MF algorithm
with offline data, and continuous parameters are discretized.

(4) FIST: We implement a similar approach based on [6] using
XGBoost. Offline data is used for model construction.

(5) RL-based: We implement the similar MDP setting as in [7]
using StableBaseline and OpenAl Gym APIL The episode
length is set to 16 as described in [7].

We begin by sampling 1500 data points with randomly generated
configurations across six tuning designs, forming an offline dataset
that serves as prior knowledge for ACO, BO, and FIST. It also acts
as training data for our reward estimators and the latent features of
the Recommender. Notably, BO is restricted to data from the same
netlist, and RL[7] lacks a direct method to leverage offline data.
Within our framework, we conduct experiments to assess results
with and without online refinement. In the case of online refinement,
we allocate a tool run budget of 20 for each design. This process
not only optimizes the reward estimated by the reward estimator
but also involves running Pseudo-3D with promising parameters to
refine the reward estimator based on the newly acquired experience.

5.2 Optimization Result

The results in Table 3 indicate our framework consistently surpasses
SOTA methods. It utilizes offline data for transfer, outperforming
those with limited transferability. Our online refinement further
enhances performance but at the cost of online tool runs.

Despite the Recommender using neural networks for transfer-
ability, its reliance on collaborative filtering, overlooking known
features, and restricting parameter solution granularity, leads to
suboptimal results compared to SOTA. RL[7] emerges as a promis-
ing approach; however, it exhibits sensitivity to the starting point.

DAC 24, June 23-27, 2024, San Francisco, CA, USA Hao-Hsiang Hsiao, Pruek Vanna-lampikul, Yi-Chen Lu, and Sung Kyu Lim

Table 3: Comparison of tuning results between ours and SOTA [4 — 8] methods in optimizing 3 different objectives. Power,
worst negative slack (WNS), and power-delay product (PDP) are reported in mW, ps, and p]J, respectively. "Tool’ represents the
automatic setting of the commercial tool and the tier-partitioner. The values in parentheses denote the percentage change
compared to the ’tool’ setting.

l Metrics tool ACO[8] BO[9] Recommend|[5] FIST[6] RL[7] (bad start) RL[7] Ours Ours (refine)]

AES (#cells: 112K, #nets: 112K, #10: 390)

power 433.44 423.62 (-2.26%) 423.54 (-2.28%) 426.33 (-1.64%) 422.18 (-2.59%) 44522 (+2.72%) 416.4 (-3.93%) 420.23 (-3.05%) 416.35 (-3.94%)
wns -50 -25(-50.00%) -27 (-46.00%) -33(-34.00%) -28 (-44.00%) -67 (34.00%) -20(-60.00%) -24 (-52.00%) -22 (-56.00%)
pdp 11532 10833 (-6.06%) 106.1 (-8.00%) 107.53 (-6.76%) 105.61 (-8.42%) 124.07 (7.59%) 104.45 (-9.43%) 106.24 (-7.87%) 103.53 (-10.22%)

Rocket Core (#cells: 120K, #nets: 120K, #10: 379)

power 177 172.64 (-2.46%) 172.62 (-2.47%) 173.45 (-2.01%) 172.26 (-2.68%) 181.27 (2.41%) 171.88 (-2.89%) 172.21 (-2.71%) 171.02 (-3.38%)
wns =32 -12(-62.50%) -6 (-81.25%) -14 (-56.25%) -9 (-71.88%) -35 (9.38%) -5 (-84.38%) -4 (-87.50%) -2 (-93.75%)
pdp 182.66 176.76 (-3.23%) 175.72 (-3.80%) 176.98 (-3.11%) 176.17 (-3.55%) 180.94 (-0.94%) 172.04 (-5.81%) 174.54 (-4.45%) 171.46 (-6.13%)

ECG (#cells: 83K, #nets: 84K, #I0: 1.7K) \
power 534.63 518.02 (-3.11%) 514.67 (-3.73%) 522.6 (-2.25%) 517.04 (-3.29%) 548.75 (2.64%) 513.05 (-4.04%) 515.22 (-3.63%) 512.98 (-4.05%)
wns 84 -57(-32.14%) -58 (-30.95%) -67 (-20.24%) -52(-38.10%) -101(20.24%) -53 (-36.90%) -52 (-38.10%) -49 (-41.67%)
pdp 161.24 154.57 (-4.14%) 150.5 (-6.66%) 155.4 (-3.62%) 153.28 (-4.94%) 180.54 (11.97%) 146.27 (-9.28%) 148.8 (-7.72%) 142.92 (-11.36%)

DMA (#cells: 13K, #nets: 14K, #10: 961)

power 66.52 63.02 (-5.26%) 63.48 (-457%) 63.77 (-4.13%) 63.81 (-4.07%) 66.7 (+0.27%) 61.49 (-7.56%) 63.55 (-4.46%) 62.28 (-6.37%)
wns -120 -91(-24.17%) -94(-21.67%) -101(-15.83%) -92(-23.33%) -121(0.83%) -91(-24.17%) -95 (-20.83%) -88 (-26.67%)
pdp 2309 2197 (-4.85%) 21.95(-4.94%) 21.94 (-4.98%) 20.76 (-10.09%) 23.89 (3.46%) 20.81(-9.87%) 21.86 (-5.33%) 20.06 (-13.12%)

VGA (#cells: 52K, #nets: 52K, #10: 184) \
power 240.6 23599 (-1.92%) 235.62 (-2.07%) 235.4 (-2.16%) 233.78 (-2.83%) 244.03 (1.43%) 232.43 (-3.40%) 2343 (-2.62%) 232.33 (-3.44%)
wns 2125 -51(-59.20%) -47 (-62.40%) -46 (-63.20%) -50 (-60.00%) -142 (13.60%) -40 (-68.00%) -45 (-64.00%) -43 (-65.60%)
pdp 113.78 99.58 (-12.48%) 99.31 (-12.72%) 102.35 (-10.05%) 98.53 (-13.40%) 118.83 (4.44%) 94.35 (-17.08%) 99.02 (-12.97%) 93.16 (-18.12%)

LDPC (#cells: 39K, #nets: 41K, #IO: 4.1K) ‘
power 203.12 199.59 (-1.74%) 199.3 (-1.88%) 200.58 (-1.25%) 198.68 (-2.19%) 207.96 (2.38%) 196.44 (-3.29%) 198.56 (-2.24%) 195.88 (-3.56%)
wns (ps) -29 -5(-82.76%) -7 (-75.86%) -5 (-82.76%) -8 (-72.41%) -30 (3.45%) -2(-93.10%) -5 (-82.76%) -3 (-89.66%)
pdp 107.45 100.07 (-6.87%) 102.69 (-4.43%) 99.94 (-6.99%) 102.48 (-4.63%) 108.68 (1.14%) 99.01 (-7.85%) 101.32 (-5.70%) 99.35 (-7.54%)

Total number of tool runs for each objective (6 designs)

#run 6 300 300 6 240 120 120 6 120
In addition to the normal setting, we adversarially sample an ex- REFERENCES
tremely poor starting point based on offline data. We observed that [1] Heechun Park et al. Pseudo-3d physical design flow for monolithic 3d ics: Com-
the agent struggled to rectify when the starting point was too unfa- parisons and enhancements. ACM Trans. Des. Autom. Electron. Syst., 26(5), jun
. . . . 2021.
vorable. Yet, when provided with an oracle of a good starting point, [2] Bon Woong Ku et al. Compact-2D: A Physical Design Methodology to Build
this method proves effective as a practical fine-tuning framework. Two-Tier Gate-Level 3-D ICs. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 39(6):1151-1164, 2020.
[3] Sai Surya Kiran Pentapati et al. Pin-3D: A Physical Synthesis and Post-Layout
Optimization Flow for Heterogeneous Monolithic 3D ICs. In 2020 IEEE/ACM

International Conference On Computer Aided Design (ICCAD), pages 1-9, 2020.

6 CONCLUSION [4] Gauthaman Murali et al. ART-3D: Analytical 3D Placement with Reinforced

We conducted the first comparative study on parameter optimiza- Parametler Tuning for' Monoh.thlc 3D IC’s. In Proceedings of the 2022 International

. . . Symposium on Physical Design, ISPD *22, page 97-104, New York, NY, USA, 2022.
tion for 3D ICs, introducing an end-to-end framework that spans Association for Computing Machinery.

from parameter selection to optimization, thereby eliminating the [5] Jihye Kwon, Matthew M. Ziegler, and Luca P. Carloni. A Learning-Based Rec-

ommender System for Autotuning Design Flows of Industrial High-Performance

Processors. In Proceedings of the 56th Annual Design Automation Conference

our framework, leveraging transfer learning via GNN, achieves 2019, DAC '19, New York, NY, USA, 2019. Association for Computing Machinery.

high transferability across diverse designs. Our methods outper- [6] Zhiyao Xie, Guan-Qi Fang, Yu-Hung Huang, Haoxing Ren, Yanqing Zhang, Brucek

crls Khailany, Shao-Yun Fang, Jiang Hu, Yiran Chen, and Erick Carvajal Barboza. FIST:

form state-of-the-art approaches within seconds and are capable of A Feature-Importance Sampling and Tree-Based Method for Automatic Design

further refinement online to achieve even more optimal results. Flow Parameter Tuning. In 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 19-25, 2020.

[7] Anthony Agnesina et al. VLSI Placement Parameter Optimization using Deep Rein-

forcement Learning. In 2020 IEEE/ACM International Conference On Computer

need for human intervention. Extensive experiments show that

Aided Design (ICCAD), pages 1-9, 2020.
ACKNOWLEDGMENTS [8] Rongjian Liang et al. FlowTuner: A Multi-Stage EDA Flow Tuner Exploiting
This work was Supported by the National Science Foundation and Parameter Knowledge Transfer. In 2021 IEEE/ACM International Conference On

. Computer Aided Design (ICCAD), page 1-9. IEEE Press, 2021.
the industr y members of the CAEML I/UCRC and Samsung Ad- [9] Yuzhe Ma et al. CAD Tool Design Space Exploration via Bayesian Optimization.

vanced Institute of Technology (SAIT) under the Al for Semicon- In 2019 ACM/IEEE 1st Workshop on Machine Learning for CAD (MLCAD), pages
ductors Program. 1-6, 2019.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Parameter Selection
	2.2 Parameter Optimization

	3 Our Parameter Selection
	3.1 Challenges of Parameter Selection
	3.2 Selection Methodology
	3.3 Our Selected Parameters

	4 OUR PARAMETER OPTIMIZATION
	4.1 Motivation
	4.2 Overall Optimization Flow
	4.3 Sequential Tuning with Transformer Tuner
	4.4 Netlist Encoding with GNN
	4.5 Reinforcement Learning Formulation
	4.6 Training Methodology

	5 EXPERIMENTAL RESULTS
	5.1 Experiment Setup
	5.2 Optimization Result

	6 Conclusion
	Acknowledgments
	References

