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Abstract — In the realm of machine-learning-based electronic
design automation (EDA), several factors contribute to
inefficiency, posing various challenges. Initially, the lack of
flexibility in input structures hinders the sharing of information
across different circuit topologies. Additionally, substantial costs
are incurred in terms of simulation run-times during the data
generation process due to the necessity of creating a large
training dataset for each circuit topology. To this effect, in this
article, we address the dual problem of how to (1) develop
a general unified surrogate model that can handle a variety
of circuit topologies, and (2) employ previously trained models
and adapt them to new models. We provide a formulation for
transforming 3D electromagnetic (EM) circuits into versatile
circuit graphs, for a variety of topologies, imbued with structural
information. The absence of such frameworks represents a gap
in machine-learning-based electronic design automation which
we fill by providing a set of building blocks to achieve significant
improvements in modeling tasks. Lastly, we present a versatile
forward modeling framework that allows one to quickly obtain
the output response given a set of design parameters. We
achieve the overarching goal of reducing the resources needed
to create a machine-learning model library for signal integrity
(SI) applications in microelectronics packaging.

Keywords — transfer learning, surrogate modeling,
electromagnetic modeling, high-speed channels, semiconductor
packaging.

1. INTRODUCTION

While advances have been made in the realm of electronic
design automation (EDA) with the deployment of tools, flows,
and methodologies (TFM) for electromagnetic (EM) modeling
across various products, some challenges persist. Particularly,
traditional methods like full wave 3D EM solvers, despite
being fundamental, are proving to be cost- and time-intensive
for large and complex designs. Recently, machine learning
(ML) methods have been employed to automate TFM in
EDA. ML methods like neural networks (NNs) are able to
learn to simulate the EM properties of a circuit and provide
the output response quickly. NNs are quite attractive due to
their capability to map complex and non-linear relationships
between the design space and output response. They have been
used for modeling high-speed channels and power delivery
networks [1], [2].

In this work, the focus extends beyond achieving adequate
fidelity, with respect to low numerical errors and obeying
underlying physical laws in NN modeling of circuits [3],
[4], to address a new challenge. Like most ML-based EDA
models, the models introduced above in [1]-[4] are highly
specific to the training data. If one wants to apply the same
ML architecture to model a different electronic system, a
new training set needs to be generated. As a result, the
number of required training samples becomes very large when
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Fig. 1. Can we (1) train a backbone neural net on a single topology (e.g.
Alpha), (2) capture the underlying electromagnetics (EM), (3) create a unified
global structure and (4) adapt to new unseen topologies (e.g. Beta)? All length
dimensions in mil.

building a library of ML models. This poses a challenge due
to limited resources and expensive EM simulation run-times
when creating large datasets.

In the realm of ML-based EDA, several factors contribute
to inefficiency, posing various challenges. Initially, the lack of
flexibility in input structures hinders the sharing of information
across different circuit topologies. Additionally, substantial
costs are incurred in terms of simulation run-times during the
data generation process due to the necessity of creating a large
training dataset for each circuit topology. These challenges beg
the questions:

1) Can we architect a unified model that can handle

variable input structure?

2) Can we seamlessly transfer domain knowledge to new
topologies, eliminating the need to initiate the learning
process anew?

Fig. 1 provides an illustration for this dual inquiry.

To tackle the variable input structure, we propose using
a specialized graph neural network (GNN) architecture that
can encode structural information into the data. Next, we
consider the EM domain and model each circuit as a graph,
the components in each circuit as nodes in a graph, and their
EM coupling as edges between the nodes. Furthermore, we
develop a pre-trained GNN backbone to serve as a unified
model that can adapt across different circuit topologies. Lastly,
we investigate few-shot learning, where a GNN backbone is
adapted to evaluate new unseen topologies.
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II. LEARNING REPRESENTATION FOR MULTI-PORT
DEVICES: SIGNAL FLOw GRAPH (SFG)

Signal flow graph (SFG) is a graphical representation
from microwave theory for understanding the interactions
and relationships between different components within a
system using transmitted and reflected EM waves [5].
Nowadays, coupling coefficient matrix can be regarded as
one of the approaches to describe EM interactions through
graphical representation [6]. However, coupling coefficients
only describe the adjacency and include limited information
about components, yielding inaccuracy while synthesizing
EM structures [7]. For instance, coupling coefficient method
presents great usage for canonical filter synthesis with
direct/cross couplings when resonators are identical to each
other [8], but shows limitations on representing non-canonical
filters [9] or coupled transmission lines.

In contrast, our proposed method utilizes signal flow graph
(SFQ) that explicitly represents network device ports as nodes
and EM interactions between ports as edges. This approach
offers a more grounded theoretical foundation compared
to manually assigning EM interactions. The SFG topology,
combined with the raw geometrical properties of the network
device, builds structural information into the architecture of the
graph neural network (GNN) model. For instance, the SFG for
a two-port network is illustrated in Fig. 3.

III. FORWARD MODELING WITH GRAPH NEURAL
NETWORK (GNN)
A. Definition (Circuit Graph)
A circuit graph G = {V, Vg E, Eq, A, X}, where
V, Vo, E € V XV, Eq are the sets of nodes, node attributes,

edges, edge attributes, respectively, and A, X are the adjacency
and raw parameter matrices, respectively.

B. Definition (Adjacency Matrix)

An adjacency matrix, whose entries

A — 6 = 1 if there is an edge between nodes iand j
v v 0 otherwise ’
¢y

represents the connectivity between nodes in V, where 6y is
the Kronecker delta.
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Fig. 3. Representation of a two-port network. (a) The signal flow graph [5].
(b) The circuit graph. (c) The adjacency matrix relaying the connectivity.
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Fig. 4. Compositions of message-passing and aggregation for each node in
parallel at the ¢ GNN encoder layer. ht, ht are the edge and node processors

composed of multi-layer perceptrons (MLPs).

For example, consider a two-port network device, the
circuit graph G is shown in Fig. 3(b), and the adjacency matrix
A is given in Fig. 3(c).

The goal of the GNN forward model is to quickly obtain
the output response given a set of design parameters. The
model maps a given circuit to its output response or n-port
network parameters. A high-level block diagram of the forward
model is given in Fig. 2.

IV. INSIDE THE GNN ENCODER

Consider the GNN encoder block in the flow shown
in Fig. 2. The GNN encoder is a k-layer neural net and
takes as input the circuit graph G. Each layer in the GNN
encoder is a composition of message-passing and aggregation
operations for each node in parallel. This is illustrated in Fig.
4. Message-passing is done when each node in a graph circuit
G sends EM coupling information about itself to its neighbors
which also correspond their coupling information back. To
illustrate this mathematically, consider node 0 in Fig. 4, each
edge coupling effect on node 0 is computed at the t" GNN
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Fig. 2. The GNN forward model uses the circuit graph G with the raw parameter input vector to learn the mapping from the circuit to its frequency response.
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Algorithm 1: Transfer Learning
Input: Initialization set of all GNN parameters
6 € dom(g), GNN model g, raw parameter
matrix X, number of ports n for the multi-port
device, learning rate A =2 X 10~*
Output: Backbone GNN parameters 8a, fine-tuned
GNN parameters 6
Map circuit data to graph structured data:
{n,X} - G~ pa,ps
Pre-train and create the GNN backbone model:
while 6. do not converge do
Sample a minibatch from {GOW._; ~ p,
for k=0,1,2,..., N (}o
y"(k) = g(G(k)’ Q(k)
1 Lcrln k) 1
JW® =5 o R -R@)

&) ()
I )~ Iy )
Update: 8(K) — ok + 4. 0%

2

+

A?iapt pre-trained model: 65 «— 6q
Fine-tune GNN backbone on new unseen circuits:
while 63 do not converge do

Sample a minibatch from {GO}_; ~ pg
for k=0,1,2,..., N do

¥ =g, 6f°) '
J =41, 1%@5‘“)) - R+
2
W) - 3w
Update: g — gk + A - aJe((:j
B

encoder layer as

Et = ht(vt-1, vt et-1) and Et = ht(vt-1, vl et
10 e 1 0 10 20 e 2 0 20
)

where vi € Vo, € € Eq, and At is the edge processor, which
is composed of a multi-layer perceptron (MLP). Aggregation
is done when each node in G computes the total coupling
information received. Mathematically, consider node 0 in Fig.
4, the total coupling effect receivéd by node 0 at the

. L e Et. Lastl
GNN %ncod r la Sr is corﬁguted as lenelghbors. o
W% 0per orm 'ﬁlg 1{}! ate for the new node_features, Wltl’Pencoged
information about its understanding oLf its environment. For
nodg 0, this is given as @ = h,ﬁ (1')6*1, i neighbors EH)> Where
h! is the node processor, which is composed of an MLP.

V. APPLICATION

To demonstrate the effectiveness of the proposed
framework, we consider modeling plated through-hole (PTH)
vias-in-package which are drilled through layers of printed
circuit board (PCB) and conformally plated with copper.
They are arranged in ground-signal-signal-ground (GSSG)
configuration, with the vias having different transitions
between differential microstrip and differential striplines on
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Fig. 5. (a) Alpha forward modeling predictions showing Sx1 with the
pre-trained GNN backbone model (indicated with solid lines). (b) Beta forward
modeling predictions showing S21 with the fine-tuned GNN backbone model
(indicated with solid lines). They are compared with the EM simulation
(indicated with dashed lines) for random design tuples in the test set. The
real, imaginary and magnitude components of the frequency responses are
shown in red, blue and cyan, respectively.

different layers [4]. The package vias and their design
parameters are shown in Fig. 1, with Alpha having 6 stack-up
layers while Beta has 12 stack-up layers. We pose the
following question: Can we (1) train a backbone neural net
on a single topology (e.g., Alpha), (2) capture the underlying
EM, (3) create a unified global structure, and (4) adapt to new
unseen topologies (e.g., Beta)?

A. Data Generation and Model Setup

To generate the training data for Alpha, we perform a
parametric sweep of the design space with the frequency
responses being swept from 0.02 — 20 GHz with steps of
19.98 MHz for each combination of the design parameters. The
frequency response of interest is the S21 response with 1001
frequency points. Using Latin hypercube sampling (LHS), we
determine 1858 samples to be analyzed and solved with Ansys
HFSS [10], and we extract their S-parameters. The dataset is
divided into 1700 training and 158 testing samples. Next, we
implement the transfer learning framework. The outline of the

transfer learning framework is shown in Algorithm 1.

VI. EVALUATION METRIC

We evaluate our resulting GNN forward models with two
metrics, namely: (1) the cumulative accuracy and (2) the mean
absolute error (MAE), between the actual response y and the

BRSSO My fary 1 he frequeney points in

N M

/ /
1 ly@)l = 9@l _
i=1,=1 |yl(6)j)‘ (3)
where 1() is the indicator function, & is the specified
tolerance, and
N M
11
NM 12010814 [yi(@]-20 log1o 1gi(an|/. (4)
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Fig. 6. Fine-tuning capabilities of the pre-trained model to new unseen Beta
topology. (a) Test accuracy of the fine-tuned GNN backbone model compared
with training the GNN model from scratch. For the same test accuracy, the
fine-tuned model achieves 10X improvement over the model trained from
scratch by leveraging the transfer learning capabilities (6 = 0.1). (b) MAE
of the fine-tuned GNN backbone model compared with training the GNN
model from scratch. For the same MAE, the fine-tuned model achieves ~ 5X
improvement over the model trained from scratch by leveraging the transfer
learning capabilities. For fine-tuning, 100% of the training dataset represents
1000 samples.

100

VII. DISCUSSION

The pre-training was implemented on Alpha to obtain the
GNN backbone model and Fig. 5(a) presents the results. Next,
we adapt the same GNN backbone model to predict the new
unseen topologies, Beta, by fine-tuning on a smaller dataset.
Fig. 5(b) and Fig. 6 illustrates the results of the transfer
learning. We find that the knowledge transferred provided
a warm start when evaluating the fine-tuned models even
with very small dataset sizes. Lastly, we find that there is
a close correlation between the output responses from the
GNN forward models and the EM simulator in the results
given in Fig. 5. Even though the topological variations in
the number of stack-up layers, transitions between different
kinds of transmission lines, and the design parameters induce
significant EM behavioral change, the model is able to
learn the complex representation of the EM coupling during
pre-training in order to generalize to new topologies.

VIIL.

The dual problem of how to (1) develop a general unified
surrogate model that can handle a variety of topologies,
and (2) employ previously trained models and adapt them
to new models, is addressed. We provide a formulation
for transforming EM circuits into versatile circuit graphs
imbued with structural information. Furthermore, our transfer
learning framework swiftly generates output responses from
design parameters, reducing resources required for creating
ML-model libraries in signal integrity applications.

CONCLUSION
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