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Abstract — In the realm of machine-learning-based electronic 
design automation (EDA), several factors contribute to 
inefficiency, posing various challenges. Initially, the lack of 
flexibility in input structures hinders the sharing of information 
across different circuit topologies. Additionally, substantial costs 
are incurred in terms of simulation run-times during the data 
generation process due to the necessity of creating a large 
training dataset for each circuit topology. To this effect, in this 
article, we address the dual problem of how to (1) develop 
a general unified surrogate model that can handle a variety 
of circuit topologies, and (2) employ previously trained models 
and adapt them to new models. We provide a formulation for 
transforming 3D electromagnetic (EM) circuits into versatile 
circuit graphs, for a variety of topologies, imbued with structural 
information. The absence of such frameworks represents a gap 
in machine-learning-based electronic design automation which 
we fill by providing a set of building blocks to achieve significant 
improvements in modeling tasks. Lastly, we present a versatile 
forward modeling framework that allows one to quickly obtain 
the output response given a set of design parameters. We 
achieve the overarching goal of reducing the resources needed 
to create a machine-learning model library for signal integrity 
(SI) applications in microelectronics packaging. 

Keywords — transfer learning, surrogate modeling, 
electromagnetic modeling, high-speed channels, semiconductor 
packaging. 

 

I. INTRODUCTION 

While advances have been made in the realm of electronic 

design automation (EDA) with the deployment of tools, flows, 

and methodologies (TFM) for electromagnetic (EM) modeling 

across various products, some challenges persist. Particularly, 

traditional methods like full wave 3D EM solvers, despite 

being fundamental, are proving to be cost- and time-intensive 

for large and complex designs. Recently, machine learning 

(ML) methods have been employed to automate TFM in 

EDA. ML methods like neural networks (NNs) are able to 

learn to simulate the EM properties of a circuit and provide 

the output response quickly. NNs are quite attractive due to 

their capability to map complex and non-linear relationships 

between the design space and output response. They have been 

used for modeling high-speed channels and power delivery 

networks [1], [2]. 

In this work, the focus extends beyond achieving adequate 

fidelity, with respect to low numerical errors and obeying 

underlying physical laws in NN modeling of circuits [3], 

[4], to address a new challenge. Like most ML-based EDA 

models, the models introduced above in [1]–[4] are highly 

specific to the training data. If one wants to apply the same 

ML architecture to model a different electronic system, a 

new training set needs to be generated. As a result, the 

number of required training samples becomes very large when 

 

 
Fig. 1. Can we (1) train a backbone neural net on a single topology (e.g. 
Alpha), (2) capture the underlying electromagnetics (EM), (3) create a unified 
global structure and (4) adapt to new unseen topologies (e.g. Beta)? All length 
dimensions in mil. 

 
 

building a library of ML models. This poses a challenge due 

to limited resources and expensive EM simulation run-times 

when creating large datasets. 

In the realm of ML-based EDA, several factors contribute 

to inefficiency, posing various challenges. Initially, the lack of 

flexibility in input structures hinders the sharing of information 

across different circuit topologies. Additionally, substantial 

costs are incurred in terms of simulation run-times during the 

data generation process due to the necessity of creating a large 

training dataset for each circuit topology. These challenges beg 

the questions: 

1) Can we architect a unified model that can handle 

variable input structure? 

2) Can we seamlessly transfer domain knowledge to new 

topologies, eliminating the need to initiate the learning 

process anew? 

Fig. 1 provides an illustration for this dual inquiry. 

To tackle the variable input structure, we propose using 

a specialized graph neural network (GNN) architecture that 

can encode structural information into the data. Next, we 

consider the EM domain and model each circuit as a graph, 

the components in each circuit as nodes in a graph, and their 

EM coupling as edges between the nodes. Furthermore, we 

develop a pre-trained GNN backbone to serve as a unified 

model that can adapt across different circuit topologies. Lastly, 

we investigate few-shot learning, where a GNN backbone is 

adapted to evaluate new unseen topologies. 
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II. LEARNING REPRESENTATION FOR MULTI-PORT 

DEVICES: SIGNAL FLOW GRAPH (SFG) 

Signal flow graph (SFG) is a graphical representation 

from microwave theory for understanding the interactions 

and relationships between different components within a 

system using transmitted and reflected EM waves [5]. 

Nowadays, coupling coefficient matrix can be regarded as 

one of the approaches to describe EM interactions through 

graphical representation [6]. However, coupling coefficients 

only describe the adjacency and include limited information 

about components, yielding inaccuracy while synthesizing 

EM structures [7]. For instance, coupling coefficient method 

presents great usage for canonical filter synthesis with 

direct/cross couplings when resonators are identical to each 

other [8], but shows limitations on representing non-canonical 

filters [9] or coupled transmission lines. 

In contrast, our proposed method utilizes signal flow graph 
(SFG) that explicitly represents network device ports as nodes 

 

 

Fig. 3. Representation of a two-port network. (a) The signal flow graph [5]. 

(b) The circuit graph. (c) The adjacency matrix relaying the connectivity. 

 

Fig. 4. Compositions of message-passing and aggregation for each node in 
parallel at the tth GNN encoder layer. ht , ht are the edge and node processors 

e  ν 

and EM interactions between ports as edges. This approach 

offers a more grounded theoretical foundation compared 

to manually assigning EM interactions. The SFG topology, 

combined with the raw geometrical properties of the network 

device, builds structural information into the architecture of the 

graph neural network (GNN) model. For instance, the SFG for 

a two-port network is illustrated in Fig. 3. 

III. FORWARD MODELING WITH GRAPH NEURAL 

NETWORK (GNN) 

A. Definition (Circuit Graph) 

A circuit graph G  =  {V, Va, E , Ea, A, X}, where 

V, Va, E ⊆ V × V, Ea are the sets of nodes, node attributes, 

edges, edge attributes, respectively, and A, X are the adjacency 
and raw parameter matrices, respectively. 

B. Definition (Adjacency Matrix) 

An adjacency matrix, whose entries 

composed of multi-layer perceptrons (MLPs). 

 

 
For example, consider a two-port network device, the 

circuit graph G is shown in Fig. 3(b), and the adjacency matrix 

A is given in Fig. 3(c). 

The goal of the GNN forward model is to quickly obtain 

the output response given a set of design parameters. The 

model maps a given circuit to its output response or n-port 

network parameters. A high-level block diagram of the forward 

model is given in Fig. 2. 

IV. INSIDE THE GNN ENCODER 

Consider the GNN encoder block in the flow shown 
in Fig. 2. The GNN encoder is a k-layer neural net and 

takes as input the circuit graph G. Each layer in the GNN 

encoder is a composition of message-passing and aggregation 
operations for each node in parallel. This is illustrated in Fig. 

4. Message-passing is done when each node in a graph circuit 

Aij 

 

= δij = 
1  if there is an edge between nodes i and j 

,
 

0  otherwise 
(1) 

G sends EM coupling information about itself to its neighbors 

which also correspond their coupling information back. To 

illustrate this mathematically, consider node 0 in Fig. 4, each 

represents the connectivity between nodes in V, where δij is 

the Kronecker delta. 

edge coupling effect on node 0 is computed at the tth GNN 

 

 

 
 

 
 

Fig. 2. The GNN forward model uses the circuit graph G with the raw parameter input vector to learn the mapping from the circuit to its frequency response. 
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Algorithm 1: Transfer Learning 

Input: Initialization set of all GNN parameters 

θ(0) ∈ dom(g), GNN model g, raw parameter 

matrix X, number of ports n for the multi-port 

device, learning rate λ = 2 × 10−4 

Output: Backbone GNN parameters θα, fine-tuned 

GNN parameters θβ 
Map circuit data to graph structured data: 

{n, X} → G ∼ pα, pβ 
Pre-train and create the GNN backbone model: 

while θα do not converge do 

Sample a minibatch from {G(l)}N 
for k = 0, 1, 2, ..., N do 

yˆ(k) = g(G(k), θ
(k)

) 

∼ pα  
Fig. 5. (a) Alpha forward modeling predictions showing S21 with the 
pre-trained GNN backbone model (indicated with solid lines). (b) Beta forward 

1 Lm 
 

 

 

(k) (k) 
12

 
modeling predictions showing S21 with the fine-tuned GNN backbone model 

 

 
2     

ℑ(yˆ ) − ℑ(y ) 
real, imaginary and magnitude components of the frequency responses are 

Update: θ(k) ← θ(k) + λ · ∂J 
(k)

 

α α 
∂θ(k) 

Adapt pre-trained model: θβ ← θα 
Fine-tune GNN backbone on new unseen circuits: 

while θβ do not converge do 

 

 

encoder layer as 

E t = ht (νt−1, νt−1, et−1)  and  E t = ht (νt−1, νt−1, et−1), 

different layers [4]. The package vias and their design 

parameters are shown in Fig. 1, with Alpha having 6 stack-up 

layers while Beta has 12 stack-up layers. We pose the 

following question: Can we (1) train a backbone neural net 

on a single topology (e.g., Alpha), (2) capture the underlying 

EM, (3) create a unified global structure, and (4) adapt to new 

unseen topologies (e.g., Beta)? 

A. Data Generation and Model Setup 

To generate the training data for Alpha, we perform a 
parametric sweep of the design space with the frequency 

responses being swept from 0.02 − 20 GHz with steps of 

19.98 MHz for each combination of the design parameters. The 

frequency response of interest is the S21 response with 1001 

frequency points. Using Latin hypercube sampling (LHS), we 

determine 1858 samples to be analyzed and solved with Ansys 

HFSS [10], and we extract their S-parameters. The dataset is 

divided into 1700 training and 158 testing samples. Next, we 10 e 1 0 10 20 e 2 0 20 
(2) implement the transfer learning framework. The outline of the 

where νi ∈ Va, ei ∈ Ea, and ht is the edge processor, which 
is composed of a multi-layer perceptron (MLP). Aggregation 

is done when each node in G computes the total coupling 

information received. Mathematically, consider node 0 in Fig. 
4, the total coupling effect received by node 0 at the tth 

transfer learning framework is shown in Algorithm 1. 

VI.  EVALUATION METRIC 

We evaluate our resulting GNN forward models with two 

metrics, namely: (1) the cumulative accuracy and (2) the mean 

GNN encoder layer is computed as 
L
 

i ∈ neighbors E t . Lastly, absolute error (MAE), between the actual response y and the 

we perform the update for the new node features with encoded 
information about its understanding of its environment. For 

predicted response yˆ, taken over all the frequency points in 
the response, respectively defined as 

node 0, this is given as νt = ht (νt−1, 
L 

E t ), where  / / 

 

V. APPLICATION 

  
N M 

i=1 j=1 
|yi(ωj)| 

/ 

(3) 

To demonstrate the effectiveness of the proposed 

framework, we consider modeling plated through-hole (PTH) 
where 1(·) is the indicator function, δ is the specified 

tolerance, and 
vias-in-package which are drilled through layers of printed 

N  M
 

circuit board (PCB) and conformally plated with copper. 

They are arranged in ground-signal-signal-ground (GSSG) 

configuration, with the vias having different transitions 

between differential microstrip and differential striplines on 

∆ = 
1 1 

20 log 
N M 

i=1 j=1 

10 |yi(ωj)|−20 log 10 |ŷi(ωj )|/. (4) 

1 t 
ν h 

Sample a minibatch from {G(l)}N  ∼ pβ 
for k = 0, 1, 2, ..., N do 

l=1 

yˆ(k) = g(G(k), θ
(k)

) 
β 

J (yˆ ) = (k) 1 

  
m i=1 

L m 
  
ℜ(yˆ ) − ℜ(y ) + 

(k) (k) 
i i 

ℑ(yˆ ) − ℑ(y ) 
(k) (k) 

1 2 

i i 

Update: θ(k) ← θ(k) + λ · ∂J 
(k)

 β β 

1 2    

∂θ(k) 
β 

+ m J (yˆ(k)) = i=1 
(indicated with solid lines). They are compared with the EM simulation 
(indicated with dashed lines) for random design tuples in the test set. The 

shown in red, blue and cyan, respectively. 

N M 

is the node processor, which is composed of an MLP. 
Accuracy = 

|yi(ωj)| − |ŷi(ωj )| 
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(a) 

 

(b) 
Fig. 6. Fine-tuning capabilities of the pre-trained model to new unseen Beta 
topology. (a) Test accuracy of the fine-tuned GNN backbone model compared 
with training the GNN model from scratch. For the same test accuracy, the 

fine-tuned model achieves 10× improvement over the model trained from 

scratch by leveraging the transfer learning capabilities (δ = 0.1). (b) MAE 
of the fine-tuned GNN backbone model compared with training the GNN 

model from scratch. For the same MAE, the fine-tuned model achieves ∼ 5× 
improvement over the model trained from scratch by leveraging the transfer 
learning capabilities. For fine-tuning, 100% of the training dataset represents 
1000 samples. 

VII. DISCUSSION 

The pre-training was implemented on Alpha to obtain the 

GNN backbone model and Fig. 5(a) presents the results. Next, 

we adapt the same GNN backbone model to predict the new 

unseen topologies, Beta, by fine-tuning on a smaller dataset. 

Fig. 5(b) and Fig. 6 illustrates the results of the transfer 

learning. We find that the knowledge transferred provided 

a warm start when evaluating the fine-tuned models even 

with very small dataset sizes. Lastly, we find that there is 

a close correlation between the output responses from the 

GNN forward models and the EM simulator in the results 

given in Fig. 5. Even though the topological variations in 

the number of stack-up layers, transitions between different 

kinds of transmission lines, and the design parameters induce 

significant EM behavioral change, the model is able to 

learn the complex representation of the EM coupling during 

pre-training in order to generalize to new topologies. 

VIII. CONCLUSION 

The dual problem of how to (1) develop a general unified 

surrogate model that can handle a variety of topologies, 

and (2) employ previously trained models and adapt them 

to new models, is addressed. We provide a formulation 

for transforming EM circuits into versatile circuit graphs 

imbued with structural information. Furthermore, our transfer 

learning framework swiftly generates output responses from 

design parameters, reducing resources required for creating 

ML-model libraries in signal integrity applications. 
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