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Abstract- Reliability issues stemming from device level 
nonidealities of nonvolatile emerging technologies like fer 
roelectric field-effect transistors (FeFETs), especially at 
scaled dimensions, cause substantial degradation in the 
accuracy of in-memory crossbar-based Al systems. In this 
work, we present a variation-aware design technique to 
characterize the device level variations and to mitigate their 
impact on hardware accuracy employing a Bayesian neural 
network (BNN) approach. An effective conductance varia 
tion model is derived from the experimental measurements 
of cycle-to-cycle (C2C) and device-to-device (D2D) varia 
tions performed on FeFET devices fabricated using 28 nm 
high-k metal gate technology. The variations were found 
to be a function of different conductance states within the 
given programming range, which sharply contrasts earlier 
efforts where a fixed variation dispersion was considered 
for all conductance values. Such variation characteristics 
formulated for three different device sizes at different read 
voltages were provided as prior variation information to 
the BNN to yield a more exact and reliable inference. 
Near-ideal accuracy for shallow networks (MLPS and LeNet 
models) on the MNIST dataset and limited accuracy decline 
by ~3.8%-16.1% for deeper AlexNet models on CIFAR10 
dataset under a wide range of variations corresponding 
to different device sizes and read voltages, demonstrates 
the efficacy of our proposed device-algorithm co-design 
technique. 

Index Terms-Bayesian Neural Network (BNN), device 
algorithm co-design, ferroelectric field-effect transistor 
(FeFET) crossbar, in-memory computing, variation-aware 
design. 
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I. INTRODUCTION 
 

MERGING nonvolatile memories capable of performing 
simultaneous compute and storage functionaUties show 

great promise for the hardware acceleration of deep neural 
networks [ l], [2]. The data-intensive and complex vector 

matrix multiplication operations required in neural networks 
can be realized on-chip learning by harnessing the inherent 

physical attributes of the memory devices arranged in an 
array fashion-resulting in "in-memory computing." Among 

different potential memory candidates such as resistive ran 
dom access memory (RRAM), phase-change memory (PCM), 
and magnetic devices, hafnia-based ferroelectric field-effect 

transistor (FeFET) has lately earned great interest due to 
its CMOS compatibility, low energy operation, multilevel 

programming capability with wider dynamic range, decou 
pled read-write operation, easy array-level integration, among 

others [3], [4], [5], [6]. The voltage-driven partial polar 
ization switching in the ferroelectric (FE) layer of FeFET 
promotes gradual tuning of channel conductivity, mimicking 
analog synaptic weight update behavior. However, process 

variation-induced stochastic variabilities stemming primarily 
from the polycrystalline FE and their pronounced effect with 
device scaling poses a serious challenge to accomplishing 

reliable computing using FeFET crossbars. The device-level 
nonidealities with read-write fluctuations cause the stored 

weight (i.e., programed conductance) to deviate significantly 
from the expected trained value, resulting in drastic accu 
racy degradation of the neural network at the hardware 

level. Thus, addressing device-level reUability and proposing 
practical solutions to combat their consequences are cru 

cial to designing variation-tolerant FeFET-based neuromorphic 
computing. 

Prior efforts in this direction mostly adopt either expensive 
retraining or repeated evaluation-remapping methods demand 
ing nontrivial design overhead [7], [8], [9]. Some works 
incorporate generalized noise models in the network weights at 
the algorithm level and attempt to compensate for their effects 
through iterative training but are unable to perform the learning 
task jointly with robustness optimization [10], [11]. Bayesian 
inference-based approach on memristor-crossbar-based sys 
tems considering device nonidealities and stuck-at-faults has 
been proposed recently to achieve robust computing [12], [13]. 
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(HKMG) technology node [14]. Three identical FeFET devices 
of different gate  sizes: W (width)/L(length)  =  l/1  µ,m, 
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ing cross-sectional TEM image are shown in Fig. !(a) [14], 
[15]. Each device comprises a vertical metal-FE-insulator silicon (MFIS) stack with 8 nm thick doped HfO2 and ~1 nm 
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thick high-quality SiO2 functioning as FE and insulator layers, 
respectively. To measure the modulation of channel conduc 

Fig. 1. (a) TEM cross-section and schematic representation of FeFET 
fabricated on 28 nm HKMG node with doped HfO2 serving as the FE. 
(b) Conductance-programming voltage characteristics of FeFET for 
three different device dimensions at read voltage, VRead, of 1.2 V. 

 
 

However, the proposal is formulated based on a parameterized 
canonical form of variation derived from a more generalized 
and hypothetical device model and therefore does not reflect 
realistic interplay of variations with device dimensions and 
operating voltage conditions. This work seeks to bridge this 
critical gap by underscoring the strong need to consider such 
hardware-software co-design effects in algorithm design sup 
ported by extensive experimental variation characterization on 
industry-scale FeFETs and subsequent performance evaluation 
on standard machine learning benchmark suites. An empirical 
conductance variation model derived at the individual device 
level is coupled to the probabilistic learning-based uncertainty 
optimizer at the algorithm level to abate the effect of hardware 
nonidealities on recognition performance. The work possesses 
the following distinctive novelties. 

l) Formulation of a realistic conductance variation model 
capturing relationship of device nonidealities with scal 
ing and operating voltage conditions through direct 
experimental characterization of scaled FeFET devices 
fabricated on industry standard process technology. 

2) Design of a practically feasible variation-aware frame 
work by incorporating device size-dependent unique 
variation characteristics against various programming 
voltages into the Bayesian neural network (BNN) train 
ing framework to deliver robust and stable inference. 

The rest of the article is organized as follows: Section II 
explains the scheme for experimentally characterizing the 
channel conductance of FeFETs having different gate dimen 
sions. Section III presents design of the proposed Bayesian 
training framework incorporating device level conductance 
variation information. The section provides necessary back 
ground on the operation of BNN, explores the impact of device 
scaling on channel conductance properties through simulations 
and experiments, derives an effective device-specific nonide 
ality model, and formulates the prior for BNN. Section IV 
evaluates performance of the proposed variation-aware frame 
work and discusses its efficacy to mitigate the impact of 
device-level nonidealities on computing performance. Finally, 
we outline the key conclusions of our work in Section V. 

 
II. EXPERIMENTAL CHARACTERIZATION OF FEFET 

Experimental measurements have been performed on FeFET 
fabricated using an industrial 28 nm high-k metal gate 

tivity in response to polarization switching, each device was 
subjected to a gate voltage with a pulsing scheme, as illustrated 
in Fig. l(b). A reset pulse (VRST) of -4 V preceded every 
programming pulse (VPRG) to switch all the domains to the 
negative polarization state, thus resetting the device to the 
initial lowest conductance state every time. A positive pro 
gramming pulse of progressively growing amplitude (2-4 V 
with a step of 20 mV) was employed to access all possible 
intermediate conductance states of the device. The read-out 
of the programed state was accomplished immediately after 
each write operation by applying a ramp gate voltage (VRead) 
The drain terminal was held at 0 V during the reset and 
programming operations, and was switched to 50 mV during 
the read operation. 

 
Ill. DESIGN OF VARIATION-ROBUST BAYESIAN 

TRAINING FRAMEWORK 

A. Preliminaries 
The proposed algorithmic framework leverages the intrinsic 

property of BNNs to produce accurate and robust inference 
under weight fluctuations by incorporating the probability 
distributions associated with variation data obtained through 
extensive characterization of the FeFET devices considering 
effects of device sizing, read noise, among others. The jth 
weight, Wj, of a network is assumed to be mapped to the 
conductance state, gj, within the FeFET programming range 
present at the jth cross-point, following the relationship [16]: 

    (I) 

where 8mx, 8mn, and Wmx, Wmn are the maximum and min 
imum values of the conductance and corresponding weight, 
respectively. As the programed conductance is variational, 
it is highly appropriate to treat each network weight as a 
distribution rather than having a specific value, which is 
fortunately the inherent behavior of BNNs. For a given dataset, 
D, the BNN accepts a priori, P(w), on variatfon character 
istics of noisy weights to find posterior weight distributions 

following the Bayes rule: P(wlD) = P(w)P(Dlw)/P(D). 
As the true weight posterior, P(wlD), is computationally 
intractable, stochastic variational inference scheme is applied 
to approximate P(wlD) with a distribution, q(wl0), that 
minimizes the Kullback-Leibler (KL) divergence with true 
Bayesian posterior [17], [18]. The corresponding objective 
function, 71(D, 0), for optimization becomes 

71(D, 0) = -Eq(wlll)[log P(Dlw)] + KL[q(wl0)11P(w)). 
(2) 
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The approximated posterior distribution of weights, q(wl0), 
in BNNs is learned iteratively through the "Bayes by Back 
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the BNN is updated by descending along the gradients of o --- ------.0 1o.......l'!!!!!!! -- ........ l 
the objective function. A reparameterization trick is useful 
to obtain more efficient gradient estimation for 0, enabling 
training iteration to be compatible with standard backprop 
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agation [19]. The data-dependent first component of (2) 
represents likelihood cost, which is the standard loss function 
averaged over multiple single network models derived by 
sampling the posterior weight distribution. On the other hand, 
the prior-dependent second component represents the KL 
divergence loss, which computes the degree of dissimilarity 
between the prior and posterior distributions and accounts 
for ensuring robustness to the optimization problem. Hence, 
the framework is capable of simultaneously handling the goal 
of maximizing accuracy and minimizing reliability induced 
errors by driving the posterior to follow the prior through 
the backpropagation method. Upon successful completion of 
training, the mean values, µ,q, of the optimized posterior 
distributions are regarded as the fully trained weights (mapped 
to the FeFET conductance at the hardware level) for inference 
evaluation. 

 

B. Conductance Characteristics of Scaled FeFET 

We started our analysis by measuring the 
conductance-programming voltage characteristics of FeFET 
for three different gate areas, as presented in Fig. l(b). 
A more gradual transition of channel conductance with VPRG 

was observed for the W /L  = 1/1 µ,m device. The gradual 
switching with a continuum of states reflects a broader 
distribution of coercive voltages across a large number of 
domains (tiny switchable units) in the FE layer such that 
polarization flipping is possible for a subset of domains at 
almost every incremental VPRG· However, as the gate area 
shrinks, the number of domains in the FE layer reduces 
proportionally, and the nonhomogeneity and randomness to 
the coercive field distribution becomes more pronounced. 
This certainly introduces nonlinearity to the conductance 

Fig. 2. Filled error plot showing mean (solid line) and associated 
standard deviation (broadening) of conductance states for (a) C2C 
variations measured over 50 consecutive programming cycles for each 
amplitude of VPRG corresponding to a single device of each device size 
and (b) D2D variations recorded over three devices of the same size by 
running a singleprogramming pulse for each amplitude of VPRG at VRead 
of 1.2 V. 

 
 

drastically with device scaling and dominates over C2C vari 
ation for highly scaled devices. The observation agrees well 
with earlier reports on scaled FeFETs [20], [21]. The higher 
D2D variation in smaller devices is primarily attributed to 
reduced domain number, increased in-homogeneity in the 
domain distributions, more randomness in the distribution of 
FE and dielectric phases in the FE layer, among others [5], 
[22], [23], [24], [25]. Although the degree of D2D variations 
may differ if the experimental characterization is performed 
over larger number of devices, their dependency on device 
scaling is expected to remain unchanged. 

Furthermore, we substantiated our observation on D2D 
variations computed over limited experimental data using a 
well-established Monte Carlo based simulation model [26], 
[27]. The model considers the poly-crystalline FE layer as 
an ensemble of multiple uncorrelated domains randomly ini 
tialized to either of the two stable polarization states. The 
switching between states for a domain at any time step, !1t, 
is associated with a finite probability, Psw,;, which under the 
influence of temporally varying electric field, EFE(t), can be 
expressed as 

Psw,; = 1 - exp[h;(t)-6- h;(t + 11t)'8] (3) 

where /J is the shape parameter of the probability distribution. 
The history parameter, h;(t), which is responsible for accumu 
lating instantaneous stimuli to the ith domain over time can 

programming profile with reduction in number of states, 
as evident from Fig. l(b) for the W / L = 0.50.24 µ,m and 
0.24/0.24 µ,m device sizes. 

be computed as 

h;(t) =1  
dt' 

 
 

 
 

(4) 
The stochastic polarization switching of individual domains 

in the FE layer and the process variations involved in 
device fabrication introduce obvious cycle-to-cycle (C2C) and 
device-to-device (D2D) variation effects on the conductance, 
especially for scaled devices. Fig. 2(a) and (b) illustrates the 
mean and standard deviation of experimentally measured C2C 
and D2D variations as filled error plots at a VRead of 1.2 V. 
The intradevice variations measured over 50 cycles indicates 
that an appreciable amount of C2C variation is present for all 
devices and is almost insensitive to the device size. On the 
other hand, the interdevice deviations calculated over three 
devices for each size implies that D2D variations increases 

10 -Csw,;(EFE(t), Ea,i) 
The domain switching time constant, rsw,;, can be formu 

lated following the nucleation limited switching model [26]. 
The parameter, h; (t), captures polarization accumulation 
effects and increases over time until the domain reverses 
its state. The polarization of the entire film at any time is 
estimated as a summation over all the individual domains. 
The time-dependent polarization dynamics of the film is 
next coupled to the conventional charge-voltage equation of 
the n-channel FET to solve for the channel conductance of 
the FeFET self-consistently. The values of the parameters 
used for the device simulation are the same as noted in 

(
 

, 
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Fig. 3. (a) Simulation results showing D2D variations computed over 
200 devices for different number of domains in the FElayer. (b) Standard 
deviation plotted against mean of the D2D variations after normalizing 
the conductance programming data to a maximum value of unity. 

 
 

prior work [28], [29]. For the simulation of D2D variations, 
an activation field value is sampled randomly over a normal 
distribution of Ea for each of the domains in 200 identical 
devices [2l]. The activation field affects the switching prob 
ability, Psw,;, of the individual domains through the history 
parameter, h;(t) [see (4)]. Since the distributions of Ea are 

Fig. 4. (a) Standard deviation, <Tcom, as a function of mean, µ00m, 
of the variation in FeFET programming combining both C2C and D2D 
measurement data. (b) Severity of variations, <Tcomlµcom, has been 
plotted against different values of mean,om, atVRead of 0.6 and1.2 V. 

 
 

Next, we derive an empirical model equation that best 
fits the variation characteristics shown in Fig. 4(a) employing 
a higher order polynomial function. The generalized fitted 
variation equation as a function of the mean programed 
conductance state can be expressed as 

n 

not identical across 200 devices containing the same number 
of domains, the partial polarization switching dynamics of 

D'com' = LC;µ,::C,m' 
j=(J 

(5) 

the FE layer is expected to be different from one device to 
another. The simulated D2D variation, as shown in Fig. 3(a), 
demonstrates that the variation increases greatly with the 
decrease in domain number (i.e., with the down-scaling of 
the device area), thereby in agreement with our experimental 
findings. 

 
C. Device Variability Modeling 

To quantify the amount of variation involved in the con 
ductance programming process and model its dependence on 
device sizing, an effective variation parameter combining both 
the spatial (02D) and temporal (C2C) effects was derived 
based on experimental data. The mean, Jl,com, and standard 
deviation, D'com, of the combined variation effects was esti 
mated by averaging C2C variations over multiple devices. 
Fig. 4(a) illustrates such a combined variation profile within 
the entire programming range for different device sizes at 
two read voltages of 0.6 and l.2 V. The exponential rise of 
D'com for initial smaller values of Jl,com is primarily due to the 
greater degree of randomness associated with bias-dependent 
domain polarization switching at relatively weaker VPRG· 

As the strength of VPRG increases, domains switch more deter 
ministically causing asymptotic decay of variation for higher 
Jl,com- However, the presence of sharp kinks in the D'com profile 
can be identified for scaled devices. These sharp transitions 
correspond to the nonuniform coercive field distribution in 
the FE film, causing abruptly varying gradient in conductance 
switching, as can be understood from the simulation data 
provided in Fig. 3(a) and (b). Though the magnitude of 
variations reduces with increasing VRead, their nature remains 
almost insensitive and is characteristic to the device structure 
(i.e., dispersion of domains in the FE layer). Hence, proper 
understanding and extraction of device-dependent variation 
characteristics is extremely important for investigating the 
impact of device nonidealities at the crossbar array level. 

where, Jl,com' and D'com' are the fitted equivalent of Jl,com and 
D'com, respectively. The coefficients in (5) can be derived to 
minimize the approximation error. For instance, the parameters 
for 1/1 µ,m device at VRead of 1.2 V have been extracted 
as: (Co  =  0.0258), C1  =  0.788 C2  =  -0.0214, and 
(C3 = 2.1 x 10-4). The relative variation (acorn/Jl,com) plotted 
in Fig. 4(b) suggests that a significant fraction of the available 
conductance states undergoes a remarkably high amount of 
variation and severity increases at lower VRead- 

 
D. Prior Formulation for BNN Training 

Simple prior formulation based on a generic variation model 
utilized in prior works cannot account for hardware-specific 
dependencies of the variation effects on device scaling, read 
noise, presence of sharp transitions in variation spectra of 
scaled devices, among others. Hence, there is an obvious need 
for reformulating the prior. Considering no correlation among 
the variations of neighboring devices, we reformulate the prior, 
P(w), employing a univariate Gaussian distribution. While the 
mean of the prior, Jl,p, for each weight follows the mean of 
the respective posterior, Jl,q, at any iteration, the broadening 
parameter, lTp, is estimated from the relative variation [as 
provided in (5)] experienced by the weight equivalent con 
ductance, D'com'· Such prior formulation approach enables us to 
efficiently encode the exact variation structural characteristics 
in the probability distribution of the network weights. This 
sharply contrasts prior works on BNN, where a Gaussian 
model with a fixed amount of variation was considered as 
the prior for all the weights [12], [13]. 

 
IV. PERFORMANCE EVALUATION OF PROPOSED 

FRAMEWORK 
The performance of the proposed framework was eval 

uated for three different neural network architectures [30]: 
five layered MLP5, LeNet, and AlexNet on MNIST [31] 

/...,,,. -6': 



2967 MANNA et al.: VARIATION-RESILIENT FeFET-BASED IN-MEMORY COMPUTING 

Authorized licensed use limited to: University of Illinois. Downloaded on March03,2025 at 21:10:49 UTC from IEEE Xplore. Restrictions apply. 

 

 

l 
>, 
(,) 

:E:,100 
(,) 

Bayesian 
Framework - 

MLPS-MNIST 
LeNet-MNIST 

-Ale>c.Nat-CIFAR10 
"' : Fixed vartallo 

69.2 
<JF = 1.082 

< 
Cl> 
(,) 
C: 
I!! 
&s 

(,) 

50 

Non-Bayesian 
Framework - 

D MLPS-MNIST 
LeNet-MNIST 

-AlexNet-CIFAR10 
87.2 ..100 :i 

< 50 
(,) 
(,) 

Cl> 
(,) 
C: 
I!! 
..&s 

1/1 0.5/0.24  0.24/0.2.4 0 1/1 0.5/0.24  0.24/0.24 

Bayesian LJMLPS-MNIST 
Framework - LeNet-MNIST 

-AlexNet-CIFAR10 

< 

.. 
< 

 
 

(a) (b) (c) 

l 
>, 
(,) 

5100 
(,) 
(,) 

 
Cl> 
(,) 
C: 
I!! 
..&s 

50 
 

0 

 

. 
0 

 
 
 
 

1/1 

 
 
 
 

0.5/0.24 

 
 
 
 

0.24/0,24 
Device Size (µm/µm) Device Size (µm/µm) Device Size (µm/µm) 

(d)   (e) (f) 
 
 

>, 
(,) 

:i 100 
(,) 
(,) 

 
Cl> (,) 

Bayesian (=i  MLP5-MNIST 
Framework  - LaNat-MNIST 

-AlexNet-CIFAR10 
l 
>, 
(,) 

:E:, 100 
(,) 
(,) 

 
Cl> 

l 
>, 
(,) 

E 
::, 
8100 
< Cl> 

C: 
I!! 
.& 
.E 0 

 
 
 
 

1/1 

 
 
 

0.5/0.24 

 
 
 

0.2410.24 

(,)  50 

eC: 
.& 
.E  0 

 
 
 
 0.24/0.24 

(,) 
C: 
I!! 
.& 
.E 0 

 
 
 
 

1/1 

 
 
 
 0,5/0,24 

 
 
 
 0,24/0.24 

Device Size (µmhim) 1/1 0.5/0.24 
Device Size (µm/µm) Device Size (µm/µm) 

 
Fig. 5. Bar-chart comparison of inference accuracy for different network models under variations corresponding to different device sizes 
[following (5)] at VRead of 0.6 V, employing (a) proposed Bayesian and (b) non-Bayesian frameworks. (c) Inference accuracy of network models 
trained under Bayesian framework but all network weights are subjected to a fixed amount of variation, aF, irrespective of programed conductance 
state. (d)-(f) Inference performance results for different network models evaluated at VRead of 1.2 V applying the same respective schemes as in 
(a)-(c). The inference outputs in the Bayesian frameworks have been derived by injecting noises [see (5)] to the trained meanweights andaveraging 
over five runs. 

 
 

and CIFAR IO [32] datasets. The algorithm for Bayesian 
learning was developed following the "Bayes by Back 
prop" method [19] and was implemented in PyTorch.1 The 
local reparameterization trick has been employed to reduce 
computational overhead by translating expensive sampling 
operation over noisy distributions from high-dimensional 
weight space to the lower dimensional activation level [33]. 
The layer-wise KL Joss between prior and posterior (P(w) ~ 
N(µ,p, O'p); q(w) ~N(µ,q,O'q)) has been calculated follow 
ing [34]: KL(P(w)jjq(w)) = Jog(O'q/O'p) + (O';/m;) + 
(µ,p - µ,q)2/20'J - 1/2. l0% of KL Joss was added to 
the standard likefjhood Joss to derive total Joss of the 
network at every iteration. The network has been trained 
using Adam optimizer with an efficient learning-rate sched 
uler and input batch size of 128. The ideal software-based 
inference accuracies of MLP5-MNIST, LeNet-MNIST, and 
AlexNet-CIFARlO (architecture-dataset format) without any 
variations are 98%, 99.1%, and 85.4%, respectively. The 
robustness of the Bayesian framework was assessed by com 
paring the inference performance of respective network models 
with that of the standard non-Bayesian equivalent, where 
networks are trained iteratively under variations injected into 
the weights following the canonical weight variation model 
[11]. Fig. 5(a), (b), (d), and (e) demonstrates the comparative 
inference results as bar chart representations for Bayesian and 
non-Bayesian counterparts under variations corresponding to 
different device sizes at VReact of 0.6 and 1.2 V, respectively. 
The robustness was evaluated under larger variations observed 

 
1Our implementation is based on a modified version of an open-source 

codebase available at httpsJ/github.com/kumar-shridhar/PyTorch- 
BayesianCNN. 

 
at a lower VReact of 0.6 V, where non-Bayesian trained networks 
suffer from substantial accuracy loss, which becomes more 
severe as the deviation increases with device downscaling. 
The more considerable accuracy degradation in AlexNet is 
primarily due to its deeper and more complex network archi 
tecture where variation across weights in all the layers gets 
accumulated to cause more ambiguity in the inference output. 
The proposed Bayesian framework dramatically minimizes the 
accuracy loss by retaining the near-ideal baseline accuracies 
for two shallow networks (MLP5 and LeNet) and exhibiting 
minimal accuracy drop for AlexNet. The accuracy Joss for 
AlexNet architecture on CIFARlO dataset has been observed 
to be 6.1%, 3.8%, and 16.I% with respect to the ideal accuracy 
value for 1/1 µ,m, 0.5/0.24 µ,m, and 0.24/0.24 µm sized 
devices, respectively, at VReact of 0.6 V. To make our study 
more meaningful, inference comparison results are also pro 
vided for a VReact of 1.2 V, as this voltage point is found to be 
optimal with respect to accuracy, training convergence, energy 
consumption, and conductance bit precision (as mentioned in 
the subsequent discussion). As expected, the smaller conduc 
tance variations for all device sizes at higher read voltages 
yield more improved accuracies. The result underscores the 
usefulness of our framework to provide robust and efficient 
inference under variations imposed even by highly scaled 
devices at smaller read voltages. 

The benefits of adopting device-specific entire variation 
spectra as prior for the BNN (including interplay with device 
size and read voltage) instead of employing a uniform and 
fixed variation model for all network weights [12], [13] is 
substantiated by the accuracy comparison results provided 
in Fig. 5(a) and (c) and (d) and (f). The single varia 
tion value, O'F, used for each device size, as mentioned in 
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