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Abstract- Reliability issues stemming from device level
nonidealities of nonvolatile emerging technologies like fer-
roelectric field-effect transistors (FeFETs), especially at
scaled dimensions, cause substantial degradation in the
accuracy of in-memory crossbar-based Al systems. In this
work, we present a variation-aware design technique to
characterize the device level variations and to mitigate their
impact on hardware accuracy employing a Bayesian neural
network (BNN) approach. An effective conductance varia-
tion model is derived from the experimental measurements
of cycle-to-cycle (C2C) and device-to-device (D2D) varia-
tions performed on FeFET devices fabricated using 28 nm
high-k metal gate technology. The variations were found
to be a function of different conductance states within the
given programming range, which sharply contrasts earlier
efforts where a fixed variation dispersion was considered
for all conductance values. Such variation characteristics
formulated for three different device sizes at different read
voltages were provided as prior variation information to
the BNN to yield a more exact and reliable inference.
Near-ideal accuracy for shallow networks (MLPS and LeNet
models) on the MNIST dataset and limited accuracy decline
by ~3.8%-16.1% for deeper AlexNet models on CIFAR10
dataset under a wide range of variations corresponding
to different device sizes and read voltages, demonstrates
the efficacy of our proposed device-algorithm co-design
technique.

Index Terms-Bayesian Neural Network (BNN), device-
algorithm co-design, ferroelectric field-effect transistor
(FeFET) crossbar, in-memory computing, variation-aware
design.
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I. INTRODUCTION

MERGING nonvolatile memories capable of performing
Esimultaneous compute and storage functionaUties show
great promise for the hardware acceleration of deep neural
networks [1], [2]. The data-intensive and complex vector-
matrix multiplication operations required in neural networks
can be realized on-chip learning by harnessing the inherent
physical attributes of the memory devices arranged in an
array fashion-resulting in "in-memory computing." Among
different potential memory candidates such as resistive ran-
dom access memory (RRAM), phase-change memory (PCM),
and magnetic devices, hafnia-based ferroelectric field-effect
transistor (FeFET) has lately earned great interest due to
its CMOS compatibility, low energy operation, multilevel
programming capability with wider dynamic range, decou-
pled read-write operation, easy array-level integration, among
others [3], [4], [5], [6]. The voltage-driven partial polar-
ization switching in the ferroelectric (FE) layer of FeFET
promotes gradual tuning of channel conductivity, mimicking
analog synaptic weight update behavior. However, process
variation-induced stochastic variabilities stemming primarily
from the polycrystalline FE and their pronounced effect with
device scaling poses a serious challenge to accomplishing
reliable computing using FeFET crossbars. The device-level
nonidealities with read-write fluctuations cause the stored
weight (i.e., programed conductance) to deviate significantly
from the expected trained value, resulting in drastic accu-
racy degradation of the neural network at the hardware
level. Thus, addressing device-level reUability and proposing
practical solutions to combat their consequences are cru-
cial to designing variation-tolerant FeFET-based neuromorphic
computing.

Prior efforts in this direction mostly adopt either expensive
retraining or repeated evaluation-remapping methods demand-
ing nontrivial design overhead [7], [8], [9]. Some works
incorporate generalized noise models in the network weights at
the algorithm level and attempt to compensate for their effects
through iterative training but are unable to perform the learning
task jointly with robustness optimization [10], [11]. Bayesian
inference-based approach on memristor-crossbar-based sys-
tems considering device nonidealities and stuck-at-faults has
been proposed recently to achieve robust computing [12], [13].
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Fig. 1. (a) TEM cross-section and schematic representation of FeFET
fabricated on 28 nm HKMG node with doped HfO2 serving as the FE.
(b) Conductance-programming voltage characteristics of FeFET for
three different device dimensions at read voltage, VRead, of 1.2 V.

However, the proposal is formulated based on a parameterized
canonical form of variation derived from a more generalized
and hypothetical device model and therefore does not reflect
realistic interplay of variations with device dimensions and
operating voltage conditions. This work seeks to bridge this
critical gap by underscoring the strong need to consider such
hardware-software co-design effects in algorithm design sup-
ported by extensive experimental variation characterization on
industry-scale FeFETs and subsequent performance evaluation
on standard machine learning benchmark suites. An empirical
conductance variation model derived at the individual device
level is coupled to the probabilistic learning-based uncertainty
optimizer at the algorithm level to abate the effect of hardware
nonidealities on recognition performance. The work possesses
the following distinctive novelties.

1) Formulation of a realistic conductance variation model
capturing relationship of device nonidealities with scal-
ing and operating voltage conditions through direct
experimental characterization of scaled FeFET devices
fabricated on industry standard process technology.

2) Design of a practically feasible variation-aware frame-
work by incorporating device size-dependent unique
variation characteristics against various programming
voltages into the Bayesian neural network (BNN) train-
ing framework to deliver robust and stable inference.

The rest of the article is organized as follows: Section II
explains the scheme for experimentally characterizing the
channel conductance of FeFETs having different gate dimen-
sions. Section III presents design of the proposed Bayesian
training framework incorporating device level conductance
variation information. The section provides necessary back-
ground on the operation of BNN, explores the impact of device
scaling on channel conductance properties through simulations
and experiments, derives an effective device-specific nonide-
ality model, and formulates the prior for BNN. Section IV
evaluates performance of the proposed variation-aware frame-
work and discusses its efficacy to mitigate the impact of
device-level nonidealities on computing performance. Finally,
we outline the key conclusions of our work in Section V.

Il. EXPERIMENTAL CHARACTERIZATION OF FEFET
Experimental measurements have been performed on FeFET
fabricated using an industrial 28 nm high-k metal gate

tivity in response to polarization switching, each device was
subjected to a gate voltage with a pulsing scheme, as illustrated
in Fig. I(b). A reset pulse (VRST) of -4 V preceded every
programming pulse (VPRG) to switch all the domains to the
negative polarization state, thus resetting the device to the
initial lowest conductance state every time. A positive pro-
gramming pulse of progressively growing amplitude (2-4 V
with a step of 20 mV) was employed to access all possible
intermediate conductance states of the device. The read-out
of the programed state was accomplished immediately after
each write operation by applying a ramp gate voltage (VRead)-
The drain terminal was held at 0 V during the reset and
programming operations, and was switched to 50 mV during
the read operation.

lll. DESIGN OF VARIATION-ROBUST BAYESIAN
TRAINING FRAMEWORK

A. Preliminaries

The proposed algorithmic framework leverages the intrinsic
property of BNNs to produce accurate and robust inference
under weight fluctuations by incorporating the probability
distributions associated with variation data obtained through
extensive characterization of the FeFET devices considering
effects of device sizing, read noise, among others. The jth
weight, wj, of a network is assumed to be mapped to the
conductance state, gj, within the FeFET programming range
present at the jth cross-point, following the relationship [16]:

Wmx — Wmn

O

where 8mx, 8mn, and Wmx, Wmn are the maximum and min-
imum values of the conductance and corresponding weight,
respectively. As the programed conductance is variational,
it is highly appropriate to treat each network weight as a
distribution rather than having a specific value, which is
fortunately the inherent behavior of BNNs. For a given dataset,
D, the BNN accepts a priori, P(w), on variatfon character-
istics of noisy weights to find posterior weight distributions
following the Bayes rule: P(wiD) = P(w)P(DIw)/P(D).
As the true weight posterior, P(wID), is computationally
intractable, stochastic variational inference scheme is applied
to approximate P(w/D) with a distribution, g(wl/0), that
minimizes the Kullback-Leibler (KL) divergence with true
Bayesian posterior [17], [18]. The corresponding objective
function, 71(D, 0), for optimization becomes

71(D, 0) = -Eq(wllD)[log P(DIw)] + KL[q(W10)1 1P(w)).
2)
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The approximated posterior distribution of weights, q(w/0),
in BNNs is learned iteratively through the "Bayes by Back-
prop" method to enforce that the pos%enor follows the device
variation characteristics supplied as prior information, P(w),
to the framework [ 19]. Considering Gaussian distribution,
variational parameter, 0(u,q, ag), foreach weight posterior of
the BNN is updated by descending along the gradients of
the objective function. A reparameterization trick is useful
to obtain more efficient gradient estimation for O, enabling
training iteration to be compatible with standard backprop-
agation [19]. The data-dependent first component of (2)
represents likelihood cost, which is the standard loss function
averaged over multiple single network models derived by
sampling the posterior weight distribution. On the other hand,
the prior-dependent second component represents the KL
divergence loss, which computes the degree of dissimilarity
between the prior and posterior distributions and accounts
for ensuring robustness to the optimization problem. Hence,
the framework is capable of simultancously handling the goal
of maximizing accuracy and minimizing reliability induced
errors by driving the posterior to follow the prior through
the backpropagation method. Upon successful completion of
training, the mean values, u,q, of the optimized posterior
distributions are regarded as the fully trained weights (mapped
to the FeFET conductance at the hardware level) for inference
evaluation.

B. Conductance Characteristics of Scaled FeFET

We  started our analysis by  measuring the
conductance-programming voltage characteristics of FeFET
for three different gate areas, as presented in Fig. 1(b).
A more gradual transition of channel conductance with vrrG
was observed for the W/L = 1/1 um device. The gradual
switching with a continuum of states reflects a broader
distribution of coercive voltages across a large number of
domains (tiny switchable units) in the FE layer such that
polarization flipping is possible for a subset of domains at
almost every incremental verG- However, as the gate area
shrinks, the number of domains in the FE layer reduces
proportionally, and the nonhomogeneity and randomness to
the coercive field distribution becomes more pronounced.
This certainly introduces nonlinearity to the conductance
programming profile with reduction in number of states,
as evident from Fig. I(b) for the w / L = 0.50.24 u,m and
0.24/0.24 u,m device sizes.

The stochastic polarization switching of individual domains
in the FE layer and the process variations involved in
device fabrication introduce obvious cycle-to-cycle (C2C) and
device-to-device (D2D) variation effects on the conductance,
especially for scaled devices. Fig. 2(a) and (b) illustrates the
mean and standard deviation of experimentally measured C2C
and D2D variations as filled error plots at a VRead of 1.2 V.
The intradevice variations measured over 50 cycles indicates
that an appreciable amount of C2C variation is present for all
devices and is almost insensitive to the device size. On the
other hand, the interdevice deviations calculated over three
devices for each size implies that D2D variations increases

(a) (b)
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Fig. 2. Filled error plot showing mean (solid line) and associated
standard deviation (broadening) of conductance states for (a) C2C
variations measured over 50 consecutive programming cycles for each
amplitude of VPRG corresponding to a single device of each device size
and (b) D2D variations recorded over three devices of the same size by
running a singleprogramming pulse for each amplitude of VPRG at VRead
of 12 V.

drastically with device scaling and dominates over C2C vari-
ation for highly scaled devices. The observation agrees well
with earlier reports on scaled FeFETs [20], [21]. The higher
D2D variation in smaller devices is primarily attributed to
reduced domain number, increased in-homogeneity in the
domain distributions, more randomness in the distribution of
FE and dielectric phases in the FE layer, among others [5],
[22], [23], [24], [25]. Although the degree of D2D variations
may differ if the experimental characterization is performed
over larger number of devices, their dependency on device
scaling is expected to remain unchanged.

Furthermore, we substantiated our observation on D2D
variations computed over limited experimental data using a
well-established Monte Carlo based simulation model [26],
[27]. The model considers the poly-crystalline FE layer as
an ensemble of multiple uncorrelated domains randomly ini-
tialized to either of the two stable polarization states. The
switching between states for a domain at any time step, //z,
is associated with a finite probability, Psw,;, which under the
influence of temporally varying electric field, EFE(t), can be
expressed as

1- exp[hy(t)-6- h;(t+ 111)'8] 3)

where /J is the shape parameter of the probability distribution.
The history parameter, 4, (t), which is responsible for accumu-
lating instantaneous stimuli to the ith domain over time can
be computed as

Psw,; =

wo="T @

1, -Csw,;(EFE(t), Ea,i)

The domain switching time constant, rsw,;, can be formu-
lated following the nucleation limited switching model [26].
The parameter, h; (7, captures polarization accumulation
effects and increases over time until the domain reverses
its state. The polarization of the entire film at any time is
estimated as a summation over all the individual domains.
The time-dependent polarization dynamics of the film is
next coupled to the conventional charge-voltage equation of
the n-channel FET to solve for the channel conductance of
the FeFET self-consistently. The values of the parameters
used for the device simulation are the same as noted in

4)
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Fig. 3. (a) Simulation results showing D2D variations computed over
200 devices for different number of domains in the FElayer. (b) Standard
deviation plotted against mean of the D2D variations after normalizing
the conductance programming data to a maximum value of unity.

prior work [28], [29]. For the simulation of D2D variations,
an activation field value is sampled randomly over a normal
distribution of Ea for each of the domains in 200 identical
devices [21]. The activation field affects the switching prob-

ability, Psw,;, of the individual domains through the history
parameter, h;(z) [see (4)]. Since the distributions of Ea are

not identical across 200 devices containing the same number

of domains, the partial polarization switching dynamics of
the FE layer is expected to be different from one device to
another. The simulated D2D variation, as shown in Fig. 3(a),
demonstrates that the variation increases greatly with the
decrease in domain number (i.e., with the down-scaling of
the device area), thereby in agreement with our experimental
findings.

C. Device Variability Modeling

To quantify the amount of variation involved in the con-
ductance programming process and model its dependence on
device sizing, an effective variation parameter combining both
the spatial (02D) and temporal (C2C) effects was derived
based on experimental data. The mean, Jicom, and standard
deviation, pcom, of the combined variation effects was esti-
mated by averaging C2C variations over multiple devices.
Fig. 4(a) illustrates such a combined variation profile within
the entire programming range for different device sizes at
two read voltages of 0.6 and 1.2 V. The exponential rise of
Deom for initial smaller values of Jji,com is primarily due to the
greater degree of randomness associated with bias-dependent
domain polarization switching at relatively weaker vPrRG-
As the strength of vprG increases, domains switch more deter-
ministically causing asymptotic decay of variation for higher
Jcom- However, the presence of sharp kinks in the pcom profile
can be identified for scaled devices. These sharp transitions
correspond to the nonuniform coercive field distribution in
the FE film, causing abruptly varying gradient in conductance
switching, as can be understood from the simulation data
provided in Fig. 3(a) and (b). Though the magnitude of
variations reduces with increasing vRead. their nature remains
almost insensitive and is characteristic to the device structure
(i.e., dispersion of domains in the FE layer). Hence, proper
understanding and extraction of device-dependent variation
characteristics is extremely important for investigating the
impact of device nonidealities at the crossbar array level.
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Fig. 4. (a) Standard deviation, <7com, as a function of mean, pgom,

of the variation in FeFET programming combining both C2C and D2D
measurement data. (b) Severity of variations, <Tcomlucom, has been
plotted against different values of meanom., atRead of 0.6 and1.2V.

Next, we derive an empirical model equation that best
fits the variation characteristics shown in Fig. 4(a) employing
a higher order polynomial function. The generalized fitted
variation equation as a function of the mean programed
conductance state can be expressed as

n
D'com' — LC;p,::C,m'

=

()

where, Ji,com' and peom' are the fitted equivalent of Ji,com and

Deom, respectively. The coefficients in (5) can be derived to
minimize the approximation error. For instance, the parameters
for 1/1 y,m device at vRead of 1.2 V have been extracted
as: (o = 0.0258), ¢4 = 0.788 c2 = -0.0214, and
(3 = 2.1 x 10-*. Therelative variation (acorn/i.com) plotted
in Fig. 4(b) suggests that a significant fraction of the available
conductance states undergoes a remarkably high amount of
variation and severity increases at lower VRead-

D. Prior Formulation for BNN Training

Simple prior formulation based on a generic variation model
utilized in prior works cannot account for hardware-specific
dependencies of the variation effects on device scaling, read
noise, presence of sharp transitions in variation spectra of
scaled devices, among others. Hence, there is an obvious need
for reformulating the prior. Considering no correlation among
the variations of neighboring devices, we reformulate the prior,
P(w), employing a univariate Gaussian distribution. While the
mean of the prior, Jip, for each weight follows the mean of
the respective posterior, Jlg, at any iteration, the broadening
parameter, /Tp, is estimated from the relative variation [as
provided in (5)] experienced by the weight equivalent con-
ductance, pcom Such prior formulation approach enables us to
efficiently encode the exact variation structural characteristics
in the probability distribution of the network weights. This
sharply contrasts prior works on BNN, where a Gaussian
model with a fixed amount of variation was considered as
the prior for all the weights [12], [13].

IV. PERFORMANCE EVALUATION OF PROPOSED
FRAMEWORK
The performance of the proposed framework was eval-

uated for three different neural network architectures [30]:
five layered MLP5, LeNet, and AlexNet on MNIST [31]
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Fig. 5. Bar-chart comparison of inference accuracy for different network models under variations corresponding to different device sizes
[following (5)] at VRead of 0.6 V, employing (a) proposed Bayesian and (b) non-Bayesian frameworks. (c) Inference accuracy of network models
trained under Bayesian framework but all network weights are subjected to a fixed amount of variation, aF, irrespective of programed conductance
state. (d)-(f) Inference performance results for different network models evaluated at VRead of 1.2 V applying the same respective schemes as in
(a)-(c). The inference outputs in the Bayesian frameworks have been derived by injecting noises [see (5)] to the trained meanweights andaveraging

over five runs.

and CIFAR IO [32] datasets. The algorithm for Bayesian
learning was developed following the "Bayes by Back-
prop" method [19] and was implemented in PyTorch." The
local reparameterization trick has been employed to reduce
computational overhead by translating expensive sampling
operation over noisy distributions from high-dimensional
weight space to the lower dimensional activation level [33].
The layer-wise KL Joss between prior and posterior (P(w) =
N(u,p, O'p); q(w) ~"N(u,q,0'q)) has been calculated follow-
ing [34]: KL(Pw)jja(w)) = Jog(0'q/0p) + (O";/m;) +
(Lp - 1,9)2/207 - 1/2. 10% of KL Joss was added to
the standard likefjhood Joss to derive total Joss of the
network at every iteration. The network has been trained
using Adam optimizer with an efficient learning-rate sched-
uler and input batch size of 128. The ideal software-based
inference accuracies of MLP5-MNIST, LeNet-MNIST, and
AlexNet-CIFARIO (architecture-dataset format) without any
variations are 98%, 99.1%, and 85.4%, respectively. The
robustness of the Bayesian framework was assessed by com-
paring the inference performance of respective network models
with that of the standard non-Bayesian equivalent, where
networks are trained iteratively under variations injected into
the weights following the canonical weight variation model
[11]. Fig. 5(a), (b), (d), and (¢) demonstrates the comparative
inference results as bar chart representations for Bayesian and
non-Bayesian counterparts under variations corresponding to
different device sizes at VReact of 0.6 and 1.2 V, respectively.
The robustness was evaluated under larger variations observed

!Our implementation is based on a modified version of an open-source
codebase available at httpsJ/github.com/kumar-shridhar/PyTorch-
BayesianCNN.

at a lower VReact of 0.6 V, where non-Bayesian trained networks
suffer from substantial accuracy loss, which becomes more
severe as the deviation increases with device downscaling.
The more considerable accuracy degradation in AlexNet is
primarily due to its deeper and more complex network archi-
tecture where variation across weights in all the layers gets
accumulated to cause more ambiguity in the inference output.
The proposed Bayesian framework dramatically minimizes the
accuracy loss by retaining the near-ideal baseline accuracies
for two shallow networks (MLPS5 and LeNet) and exhibiting
minimal accuracy drop for AlexNet. The accuracy Joss for
AlexNet architecture on CIFARIO dataset has been observed
to be 6.1%, 3.8%, and 16.1% with respect to the ideal accuracy
value for 1/1 p,m, 0.5/0.24 pm, and 0.24/0.24 um sized
devices, respectively, at VReact of 0.6 V. To make our study
more meaningful, inference comparison results are also pro-
vided for a VReact of 1.2 V, as this voltage point is found to be
optimal with respect to accuracy, training convergence, energy
consumption, and conductance bit precision (as mentioned in
the subsequent discussion). As expected, the smaller conduc-
tance variations for all device sizes at higher read voltages
yield more improved accuracies. The result underscores the
usefulness of our framework to provide robust and efficient
inference under variations imposed even by highly scaled
devices at smaller read voltages.

The benefits of adopting device-specific entire variation
spectra as prior for the BNN (including interplay with device
size and read voltage) instead of employing a uniform and
fixed variation model for all network weights [12], [13] is
substantiated by the accuracy comparison results provided
in Fig. 5(a) and (c¢) and (d) and (f). The single varia-
tion value, O'F, used for each device size, as mentioned in
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Fig. 6. Training dynamics of the proposed approach under variations
corresponding to 0.24/0.24 um device at different read voltages.

Fig. S(c) and (t), was estimated by averaging conductance
variations over the entire operating range of the device
[see Fig. 4(b)]. Our proposed scheme has been found to
outperform the uniform variation-based method in terms of
accuracy for all three network architectures exposed to differ-
ent degree of weight fluctuations corresponding to different
device sizes. It offers a noteworthy improvement in accu-
racy by 46.6%, 54.1%, and 35.2% for AlexNet-CIFARIO,
LeNet-MNIST, and MLPS-MNIST, respectively, for the small-
est device size operating at the lowest VRead-thereby substan-
tiating the need for such hardware-software co-design efforts
from a scalability perspective on complex machine learning
tasks.

The impact of read voltage on the training dynamics of
the proposed approach was also investigated for variations
corresponding to the smallest device size. As revealed in
Fig. 6, the higher read voltage not only improves the accu-
racy by offering lower conductance fluctuations but also
accomplishes a stable training convergence at a relatively
smaller number of epochs. However, the higher read operation
causes more power consumption and limits the available
number of conductance states in the operating range. Thus,
a VRead of around 1.2 V could be an optimal solution to
provide a reasonable trade-off between accuracy and power
consumption.

V. CONCLUSION

In summary, we propose a novel device-algorithm code-
sign approach for reliable FE in-memory computing where
a comprehensive conductance variation model derived by
systematically characterizing FeFET devices is coupled to
Bayesian learning-based uncertainty optimizer to alleviate the
impact of device-level nonidealities. Incorporating dependen-
cies of variation properties with operating voltage conditions
and device size during the training process is shown to
play a significant role in minimizing accuracy loss for
complex datasets and deeper networks. The main advan-
tage of this approach against hardware-in-the-loop training
is that this will be a one-time training process without
costly iterative training. Other process-variation-related issues
like spatially correlated noise effects among neighboring
FeFET devices in the crossbar array can be considered
in future work to extend the efficacy of the proposed
framework.
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