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Abstract-In this work, we present empirical results regarding 
the feasibility of using offline I arge I anguage models ( LLMs) in 
the context of electronic design automation (EDA). The goal is 
to investigate and evaluate a contemporary language model's 
(Llama-2-78) ability to function as a microelectronic Q&A 
expert as well as its reasoning, and generation capabilities in 
solving microelectronic-related problems. Llama-2-78 was tested 
across a variety of adaptation methods, including introducing 
a novel low-rank knowledge distillation (LoRA-KD) scheme. 
Our experiments produce both qualitative and quantitative 
results. Furthermore, we release our evaluation benchmark 
along with the code necessary to replicate our experiments at 
github.com/FinAminToastCrunch. 

Index Terms-LLMs for EDA education, LLM fine-tuning, 

knowledge-distillation, RAG, Low-Rank adaptation 

 
I. INTRODUCTION AND MOTIVATION 

The emergence of Large Language Models (LLM) has 

revolutionized the field o f n atural I anguage p rocessing. At 

present, LLMs are garnering significant r esearch interests 

for domain-specific tasks. I n the fi eld of el ectronic design 

automation (EDA) in particular, applications of LLMs are still 

at the nascent stage. However, it is very apparent that the 

effective use of LLMs in EDA can improve manufacturing 

yields by streamlining the design flow when it comes to IC 

design. Recently published works showed the successful use 

of LLMs in chip design [2], [3], [13]. Additionally, LLMs 

have also shown significant p roficiency in th e an alysis of 

designed systems [8] and even in reviewing and analysis 

of design specifications of V LSI s ystems [ 11]. Development 

of open-source benchmarks such as VerilogEval [14] is also 

facilitating future research in this field.Similarly, LLMs can 

be useful in enhancing productivity. Internal studies carried 

out at Nvidia have shown that checklist related tasks can 

take up to 60% of an engineer's time and thus bottleneck 

productivity [13]. An LLM-based engineering assistant can 

certainly reduce this bottleneck by helping with engineering 

knowledge dissemination. 

However, several key challenges must be addressed for more 

effective and efficient application of L LMs i n EDA.0 ne big 

concern is the unintentional data retention of DNNs from 

training sets [9]. There are two aspects of this issue. Firstly, 

classified IP designs can be leaked if the API stores user input. 

 
'These authors contributed equally to this work. 
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Fig. I. LoRA-KD works by first fine-tuning the teacher model using LoRA. 
Afterward, the teacher is frozen and its outputs are used for equation 4. Note 
that only the low-rank A and B parameters of the student are updated. 

 

 

Secondly, when trying to complete a user request, the LLM 

can inadvertently use copy-righted IP designs without attribut­ 

ing references to them-potentially causing downstream legal 

trouble. Another major challenge is the heavy computational 

resource requirement of LLMs. For example, Meta's Llama2- 

70B requires 130 GB memory to load [17]. 

Choosing the appropriate LLM for EDA applications is 

also a big challenge and here, the proprietary vs open-source 

debate must be addressed. While proprietary models, such as 

ChatGPT-4 [I] are powerful, they have limited accessibility, 

store user data/designs, and are pay-to-use. Additionally, the 

inability to fine-tune them hinders their capabilities in domain­ 

specific EDA tasks. On the other hand, open-source LLMs 

offering better accessibility are restricted by limited scale and 

resources compared to their proprietary counterparts resulting 

in lower performance [21]. ln this work, we explore the 

feasibility of adapting the open-source Llama-2-7B for use in 

EDA education. We focus on this model in particular because 

it can be used on consumer hardware. Our contributions are 

as follows: 

I) A quantitative and qualitative analysis of Llama-2-7B 

adapted in various ways for EDA usage. This investiga­ 

tion allows us to understand the impact of fine-tuning, 

distillation, and retrieval augmentation on the model's 

performance in the context of EDA knowledge. 

2) We introduce and evaluate a novel fine-tuning method, 

Low-Rank Knowledge Distillation (LoRA-KD). 

3) The release of a benchmark, RAQ, designed for evalu­ 

ating LLMs on EDA knowledge, aimed at facilitating 

future research and development in the field. 
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Fig. 2. These charts show histograms of which configurations were ranked in the top half and declared the worst according to third-year microelectronics 

students. Survey participants had to order the outputs of each configuration on IS questions. A total of SI rankings were considered after filtering for quality. 

 

II. PRIOR WORK ON LLMS FOR EDA 

 
In the burgeoning field of EDA, early explorations into 

the applications of LLMs have already returned promising 

results, particularly in the nuanced areas of chip design, 

debugging, and script generation. Recently developed LLM­ 

powered ChatEDA is capable of streamlining the IC design 

flow from RTL to GDSII [3]. ChatEDA integrates Automage, 

a fine-tuned LLM based on Llama-2-70B architecture, with an 

EDA tool. Automage serves as an interface that accepts human 

requests and manipulates the EDA tool through API for task 

completion. ChatEDA was tested on performance evaluation, 

parameter grid search, parameter tuning, customized optimiza­ 

III. ADAPTATION TECHNIQUES FOR LLMS 

A. Low-Rank Adaptation 

Low-rank adaptation (LoRA) addresses many issues associ­ 

ated with adapting LLMs for domain-specific usage [6]. This 

method bypasses the expensive backpropagation of gradients 

across all parameters by keeping the backbone model frozen. 

This is done by assuming that the update to the model's 

weights have low-rank. In other words, instead of updating 

the backbone, we learn parameters A and B which learn 

the required changes to the output of the backbone. More 

explicitly, if we write the parameter update equation, LoRA 

makes the following approximation: 

tion and clock period minimization. 

On the other hand, Nvidia took a slightly different approach 

with their ChatNeMo, a Llama-2 based LLM for chip design 
which contributes greatly to improving productivity as an engi­ 

8t+l =8t - 7]v'e.C(8t) 

eo-aBA 

i.e. 77v8' .C(8t) aBA 

(1) 

(2) 

(3) 

neering chatbot assistant. It is also capable of generating EDA 

scripts and, bug summarization and analysis [13]. ChatNeMo 

outperforms GPT-4 at engineering assistant chatbot and EDA 

script generation tasks while showing comparable performance 

at bug summarization and analysis whereas ChatEDA has 

shown comparable or better performance than GPT-4 in all 

its evaluated cases. 

Another work [2] explores the possibility of LLM applica­ 

tions in conversational hardware design by having a hardware 

engineer co-architect a microprocessor architecture with GPT- 

4 and this design was sent to tapeout. ln addition to these, the 

possibility of LLM applications in generating VLSI design 

specifications has also been explored. SpecLLM has shown 

significant proficiency in assisting engineers in generating and 

reviewing architecture specifications [11]. 

Hardware security assessment is one more field which has 

studied the feasibility of language models. The authors of [8] 

present an automated flow to identify suitable modules in large 

HDL databases for hardware trojan insertion using a general­ 

purpose LLM. The model's ability to pinpoint candidate 

modules for the attack can be indicative of its significant 

comprehension of RTL codes and system design. 

Where e E JRdXk,B  E ]Rdxr, and A E ]RrXk_ Note that 

d x k represents the size of the backbone model's (very 

large) parameter shapes. By selecting r << min(d, k), LoRA 

provides a resource-efficient update to the backbone. 

B. Knowledge Distillation 

Knowledge Distillation (KD) [5] is a knowledge-transfer 

technique where a larger (teacher) network produces soft 

targets for a smaller (student) model. This can play a piv­ 

otal role in reducing the performance gap between larger 

and smaller models. Fine-tuning a smaller (student) model 

through KD can show improved performance compared to a 

normally fine-tuned small model. As an example, the authors 

of DistilBERT show that they can retain 97% of the original 

BERT's performance despite a significantly smaller parameter 

count [15]. This indicates that a smaller model that can be 

deployed on weaker hardware, e.g. personal computer, can 

maintain feasibility in handling complex tasks related to EDA. 

Written explicitly, the loss used for KD is: 

 

.CKD = (1- a).Cy(student(x),y) 

+a.Cmst(student(x), teacher(x)) (4) 
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TABLE I 
CONFIGURATIONS' PERFORMANCE ON REASONING AND ACCURACY QUESTIONS 

 

RAQ: Reasoning Ground Truth 70B Baseline 70B LoRA 7B Baseline 7B LoRA 7B LoRA-KD 7B RAG 

la Increase Increase Increase Increase Increase Increase Decrease 
lb 3 µm 3µm 3µm 3µm 3 µm 3 µm 330nm 
2a 0.775 mA 5.58 mA 5.58 mA 1.28 A 1.395 A 0.06 A X 

2b 
3a 

1.55 V 
2V 

11.16 V 
2V 

8.6 V 
2V 

0.83 V 

sv 
0.647 V 
0.625 V 

0.7 V 

sv 
X 

6V 
3b 3 kn 8 k!1 4 kn to k!1 13 kn 4 k!1 X 

4 2 2 2 2 2 2 2 
Sa 0.66 k!1 666.67 !1 2/3 kn 0.5 k!1 3 kn 0.5 kn X 

Sb 0.667 kn 666.67 !1 0.5 k!1 0.25 kn I kn 1.6 kn X 

RAQ: T/F Accuracy 84% 84% 72% 76% 76% 80% 

Evaluated on the reasoning and T/F questions from the RAQ benchmark. Note that some of the reasoning questi?ns required mu ti-st p thinking, eg. tased 
on your answer to part a, what is part b? The x symbol denotes that the model refused to answer the quesbon due to fallacious ethical reasons. 

 

Where .Cy is the typical loss incurred between the student 

predictions and the target. .CDist is the loss between what the 

student predicted and the teacher predicted on an input. More 

elaborate distillation techniques exist, for example, patient KD 

aims at having the student mimic the teacher's intermediate 

layers in addition to the teacher's outputs [16). We refer 

readers to [21) for further exploration. 

C. Low-Rank Knowledge Distillation (LoRA-KD) 

Although not entirely unprecedented, the combination of 

low-rank approximations and knowledge distillation is far less 

explored in the context of LLM fine-tuning. The authors 

of LoSparse [12) introduce a new compression scheme for 

transformers [18) based on a truncated singular value decom­ 

position. In their experiments, they find that combining this 

parameter compression scheme with knowledge distillation 

further improves performance. 

In our work, we reformulate this concept in accordance with 

figure I. We begin by fine-tuning the teacher (Llama-2-70B) 

using LoRA. Afterwards, we fine-tune the student (Llama- 

2-7B) via LoRA using .CKD· We hypothesize that, if the 

updates to the teacher can be done in a low-rank fashion, 

then the underlying knowledge being learned is also low-rank; 

therefore, the knowledge to be distilled to the student is also 

low-rank. 

There are several advantages to doing this: 

• As with ordinary RAG, a pre-trained model can be 

repurposed via hot-swapping the adaptation layer. For 

example, EDA educators can use LoRA-KD to learn 

separate (small) adaptation layers for English and Spanish 

in the context of a bilingual classroom. 

• KO has been used to enhance domain-adaptation tasks. 

We hypothesize that the dark knowledge distilled from the 

teacher to the student will facilitate enhanced reasoning 

capabilities [20). 

• The training process remains fast. In our experiments, 

fine-tuning the student via LoRA-KD did not take much 

more time than ordinary LoRA. 

D. Retrieval Augmented Generation (RAG) 

RAG [10) operates by integrating a neural retriever with a 

sequence-to-sequence (seq2seq) generator. The retriever pro- 

duces a distribution, Pr(zlx) from a dense vector index the 

fine-tuning dataset based on the input query. These documents 

then serve as additional context for the seq2seq generator, 

enabling it to produce outputs that are informed by the 

retrieved information, z, in addition to the user's input, x. 

RAG's seq2seq probability distribution is defined ast: 

 

 

This method combines the strengths of pre-trained paramet­ 

ric models with non-parametric external knowledge sources. 

For our work, we use the pre-trained MiniLM model [19) as 

the retriever and the pre-trained Llama-2-7B as the generator. 

 
IV. FINE-TUNING DATASET AND THE RAQ BENCHMARK 

 

Our fine-tuning dataset consists of several well-known text­ 

books on microelectronics, VLSI circuit design, and fabri­ 

cation technologies. In addition to these, we also included 

some recently published works related to DDR5 design and 

its corresponding JEDEC standard. After filtering the data, the 

number of tokens was calculated using Llama-2 tokenizer. The 

dataset contains 3, l68,414 tokens and 12,988 unique tokens. 

Due to copyright reasons, we cannot release the fine-tuning 

dataset. However, we list all the components of the dataset 

within the appendix so that readers can assemble it themselves. 

We created a benchmark to evaluate the performance of the 

different models which includes 70 carefully-curated domain­ 

specific questions. Among them, there are 40 qualitative 

questions and 25 true/false questions. The 65 aforementioned 

questions are meant to evaluate the accuracy and quality of 

the LLM's responses on domain knowledge. Furthermore, 5 

questions are designed to evaluate the models' capabilities to 

reason upon circuit design decisions based on given specifi­ 

cations. Hence, we name it the Reasoning-Accuracy-Quality 

(RAQ) benchmark. 

 
1Readers should note that our equation for p(ylx) differs from [to]. We 

omit the multiplication across all document sources because we concatenate 
all of the fine-tuning texts into a single file. Therefore, in this scenario RAG 
sequence and RAG token are the same. 
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TABLE II 

COMPARISON OF MODEL/ADAPTATION COMBINATIONS EVALUATED BY HUMAN EXPERT AND GPT-4.5 TURBO VlA LIKERT SCALE. 
 

Human Expert GPT-4.5 Turbo Pearson Correlatfon 

 Configuration Accuracy Quality Accuracy Quality Accuracy Quality  

708 Baseline 4.2±1.96 3.975±1.96 4.625±2.00 4.2±1.95 0.51 0.43  

708 LoRA 4.35±1.n 4.275±1.84 5.7 ±1.65 5.475±1.67 0.47 0.51  

78 Baseline 3.4±1.92 3.275±1.87 4.15±1.90 3.9±1.93 0.53 0.57  

78 LoRA 3.5±1.82 3.3±1.73 4.2±1.93 3.95±1.90 0.66 0.73  

78 LoRA-KD 3.525±1.99 3.3±1.83 4.475±1.70 4.ITT5±t.60 0.60 0.59  

 78 RAG 4.2±1.87 3.7±1.76 4.55±1.96 4.15±1.94 0.12 0.13  

Each response to the 40 qualitative questions was evaluated on a 7-point Likert scale by a human expert and GPT-4.5 Turbo. 7 denotes "strongly agreed 

with" and 1 denotes "strongly disagreed with." The subcolumns correspond to how much the evaluator agreed/disagreed with the accuracy/quality of the 

response. The standard deviations across the questions are written in sub-scripts. The correlation quantifies the consistency between the human expert and 

GPT-4.5 Turbo. 

 

V. SETUP AND EXPERIMENTS 

To assess the suitability of various adaptation methods, we 

performed four experiments using the RAQ Benchmark: 

1) Student Survey. We selected 15 questions which would 

be most relevant for a third-year undergraduate micro­ 

electronics classroom. We recorded the responses from 

each configuration and asked students to provide the 

ordinal rankings in terms of what they preferred. To 

ensure quality, we kept the configurations anonymous 

and asked students to explain why they ranked the 

best/worst models as they did. After pruning low-quality 

submissions, we had 51 rankings. 

2) True/False Q&A. We prompted each configuration to 

answer true or false to determine accuracy. This portion 

was taken from the T/F section. 

3) Likert Test. Each configuration was asked to answer all 

40 qualitative questions. Using a 7-point Likert scale, 

the responses were scrutinized in terms of accuracy and 

subjective quality. We2 (human expert) and ChatGPT-4.5 

Turbo were the evaluators. 

4) Reasoning Test. We tested each configuration with 5 

reasoning questions. These questions have unambiguous 

or numerical answers. Generated responses were com­ 

pared against ground truth values. 

For  all  experiments, we  use LoRA_Rank = 4, the 

Adam(77 = 10-4
) optimizer  [7],  a  sequence length  of 

128 and a batch size of 16. All the models underwent 

fine-tuning with LoRA for a total of 20 epochs. Regarding 

the selection of checkpoints for the models: the 16th epoch 

checkpoint was chosen for the 7B LoRA model, the 17th 

epoch checkpoint was utilized for the 70B LoRA (teacher) 

model, and the 14th epoch checkpoint was selected for the 

7B LoRA-KD (student) model. These checkpoints were all 

selected via early stopping. We set a= 0.80 and temperature 

= 2.0 for KD. 

VI. RESULTS AND CONCLUSION 

In this work, we try to explore the feasibility of using 

language models in EDA education. Table I investigates the 

2We recognize there could be bias if we, the authors, evaluate these models. 

To promote transparency, we release the model responses on our GitHub 

configurations' capabilities to reason based on the given 

information and optimize a given design. A few interesting 

observations were made while evaluating the models on rea­ 

soning/optimization questions. 

I) All the models had difficulty with numerical calculations 

and assigning proper units to a calculated value. 

2) In our experiments, the models performed better when 

they were asked the different sections of the questions 

one by one in separate prompts, rather than putting all 

the questions in a single prompt 

3) RAG tended to refuse answering due to dubious ethical 

reasons regarding the "danger of transistors." 

An analysis of the data presented in tables I and II gives 

insights into the strengths and weaknesses of the configura­ 

tions. For the Likert test and true/false accuracy, 7B RAG 

performs strongly but for reasoning/optimization, it exhibits a 

sharp decline in performance. This indicates that RAG alone 

cannot improve performance across all areas. On the contrary, 

the various fine-tuned versions manage to perform well on 

the reasoning portion while remaining within half a standard 

deviation from RAG on the Likert test. 

The responses collected from the students underscore each 

configuration's communication skills and human expectations 

which can serve as an important guideline when fine-tuning 

an LLM. An improvement of LoRA-KD over LoRA can be 

observed in figure 2 where the responses generated by 7B 

LoRA-KD were far less likely to be ranked last Another 

interesting facet is the agreement between the students with 

respect to the question (i.e. the entropy). For example, for Q14, 

there was high agreement that the 70B Baseline did the worst 

On the other hand, for Ql5, the students seemed split between 

whether 7B RAG, 7B LoRA, or 70B LoRA was the worst. 

While the existing works are significant milestones of the 

application of LLMs in EDA, its potential in this field has yet 

to be fully realized. Development of specialized large language 

models capable of understanding the intricacies of domain­ 

specific EDA tasks is crucial for its continued applications in 

EDA [4]. This study highlights some strengths and weaknesses 

of different open-source offline LLM configurations. 
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VII. APPENDIX 

A. Fine-tuning Sources 

The following sources were used in fine-tuning. An enumerated list is also available on our github: 

1) Fundamentals of Microelectronics - 2nd Edition - Behzad Razavi 

2) Electronic Devices and Circuit Theory - 11th Edition - Robert L. BoyleStad and Louis Nashelsky 

3) CMOS VLSI Design - 4th Edition - Neil H. E. Weste and David M. Harris 

4) Fundamentals of Semiconductor Manufacturing and Process Control - Gary S. May and Costas J. Spanos 

5) Fabrication Engineering at the Micro and Nanoscale - 3rd Edition - Stephen A. Campbell 

6) JEDEC Standard - Graphjcs Double Data Rate (GDDR5) SGRAM Standard 

7) JEDEC Standard - Compression Attached Memory Module (CAMM2) Common Standard 

8) JEDEC Standard - DDR5 Clocked Small Outline Dual Inline Memory Module (CSODIMM) Common Standard 

9) DDR5 Clocked Unbuffered Dual Inline Memory Module (CUDIMM) Common Specification 

10) JEDEC Standard - DDR5 262 Pin SODIMM Connector Performance Standard 

11) JEDEC Standard - DDR5 Unbuffered Dual Inline Memory Module (UDIMM) Common Standard 

12) JEDEC Standard - DDR5 288 Pin U/R/LR DIMM Connector Performance Standard 

13) JEDEC Standard - DDR5 Load Reduced (LRDIMM) and Registered Dual Inline Memory Module (RDIMM) Common 

Specification 

14) JEDEC Standard - DDR5 Clock Driver Definition (DDR5CKD0I) 

15) JEDEC Standard - DDR5 Small Outline Dual lnLine Memory Module (SODIMM) Common Standard 

16) JEDEC Standard - DDR5 Registering Clock Driver Definition (DDR5RCD03) 

17) JEDEC Standard - DDR5 DIMM Labels 
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