
American Economic Review 2024, 114(12): 4015–4051 
https://doi.org/10.1257/aer.20221116

4015

Contamination Bias in Linear Regressions†

By Paul  Goldsmith-Pinkham, Peter Hull, and Michal Kolesár*

We study regressions with multiple treatments and a set of controls 
that is �exible enough to purge omitted variable bias. We show these 
regressions generally fail to estimate convex averages of hetero-
geneous treatment effects—instead, estimates of each treatment’s 
effect are contaminated by  nonconvex averages of the effects of other 
treatments. We discuss three estimation approaches that avoid such 
contamination bias, including the targeting of  easiest-to-estimate 
weighted average effects. A  reanalysis of nine empirical applications 
�nds economically and statistically meaningful contamination bias 
in observational studies; contamination bias in experimental stud-
ies is more limited due to smaller variability in propensity scores. 
(JEL C21, C31, C51, H75, I21, I28)

Consider a linear regression of an outcome   Y i    on a vector of treatments   X i    and a 

vector of �exible controls   W i   . The treatments are assumed to be as good as randomly 

assigned conditional on the controls. For example,   X i    may indicate the assignment of 

individuals  i  to different interventions in a strati�ed randomized control trial (RCT), 
with the randomization protocol varying across some experimental strata indicators in   
W i   . Or, in an education  value-added model (VAM),   X i    might indicate the matching of 

students  i  to different teachers or schools with   W i    including measures of student demo-

graphics and lagged achievement which yield a credible  selection-on-observables 

assumption. The regression might also be the �rst stage of an instrumental variables 

(IV) regression leveraging the assignment of multiple  decision-makers (e.g. bail 

judges) indicated in   X i   , which is  as-good-as-random conditional on some controls   W i   . 
These sorts of regressions are widely used across many �elds in economics.1

1 Prominent RCTs where randomization probabilities vary across strata include Project STAR (Krueger 
1999) and the RAND Health Insurance Experiment (Manning et al. 1987). Prominent VAM examples include 
studies of teachers (Kane and Staiger 2008; Chetty, Friedman, and Rockoff 2014), schools (Angrist et al. 2017;  
Angrist et al. 2024; Mountjoy and Hickman 2021), and health care institutions (Abaluck et al. 2021; Geruso, 
Layton, and Wallace 2020). Prominent “judge IV” examples include Kling (2006); Meestas, Mullen, and Strand 
(2013); and Dobbie and Song (2015).
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This paper shows that such  multiple-treatment regressions generally fail to esti-

mate convex weighted averages of heterogeneous causal effects, and discusses solu-

tions to this problem. The problem may be surprising given an in�uential result in 

Angrist (1998), showing that regressions on a single binary treatment   D i    and �exible 

controls   W i    estimate a convex average of treatment effects whenever   D i    is condi-

tionally as good as randomly assigned. We show that this result does not generalize 

to multiple treatments: regression estimates of each treatment’s effect are generally 

contaminated by a  nonconvex average of the effects of other treatments. Thus, the 

regression coef�cient for a given treatment arm incorporates the effects of all arms.

We �rst derive a general characterization of such contamination bias in 

 multiple-treatment regressions.2 We show the core problem by focusing on the spe-

cial case of a set of mutually exclusive treatment indicators, though our characteri-

zation applies even when the treatments are not restricted to be binary or mutually 

exclusive. To separate the problem from the typical challenge of omitted variables 

bias (OVB), we assume a  best-case scenario where the covariate parametrization is 

�exible enough to include the treatment propensity scores (e.g., with a linear covari-

ate adjustment, we assume that the propensity scores are linear in the covariates). 
This condition holds trivially if the only covariates are strata indicators. Under these 

conditions, we show that the regression coef�cient on each treatment identi�es a 

convex weighted average of its causal effects plus a contamination bias term given 

by a linear combination of the causal effects of other treatments, with weights that 

sum to zero. Thus, each treatment effect estimate will generally incorporate the 

effects of other treatments, unless the effects are uncorrelated with the contamina-

tion weights. Since these weights sum to zero some are necessarily negative, further 

complicating the interpretation of the coef�cients.

Contamination bias arises because regression adjustment for the confounders in   
W i    is generally insuf�cient for making the other treatments ignorable when estimat-

ing a given treatment’s effect, even when this adjustment is �exible enough to avoid 

OVB. To see this intuition clearly, suppose the only controls are strata indicators. 

OVB is avoided when the treatments are as good as randomly assigned within strata. 

But because the treatments enter the regression linearly, the Angrist (1998) result 

implies that the causal interpretation of a given treatment’s coef�cient is only guar-

anteed when its assignment depends linearly on both the strata indicators and the 

other treatment indicators. With mutually exclusive treatments, this condition fails 

because the dependence is inherently nonlinear. The probability of assignment to a 

given treatment is zero if an individual is assigned to one of the other treatments, 

regardless of their stratum, but strata indicators affect the treatment probability oth-

erwise. Such dependence generates contamination bias.

Contamination bias also arises under an alternative “ model-based” identifying 

assumption that, rather than making assumptions on the treatment’s “design” (i.e. 

propensity scores), posits that the covariate speci�cation spans the conditional 

mean of the potential outcome under no treatment,   Y i   (0)  . In a linear model with 

2 Our use of the term “contamination” follows Sun and Abraham (2021), and differs from its use in some analy-
ses of clinical trials ( Keogh-Brown et al. 2007) to describe settings where members of one treatment group receive 
the treatment of another group—what economists typically call “ noncompliance.” Our “bias” terminology refers to 
an implication of our result: if a given treatment has constant effects, but the other treatment effects are heteroge-
neous, the regression estimand is generally inconsistent for the given treatment effect.
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unit and time �xed effects, this reduces to the parallel trends restriction often used 

in  difference-in-differences (DiD) and event study regressions. It is common for   
X i    to include multiple indicators in such settings—for example, the leads and lags 

relative to a treatment adoption date used to support the parallel trends assump-

tion or estimate treatment effect dynamics.3 We show that replacing the restriction 

on propensity scores in our characterization with an assumption on   Y i   (0)   generates 

an additional issue: the  own-treatment weights are negative whenever the implicit 

propensity score model used by the regression to partial out the covariates and the 

other treatments �ts probabilities greater than one. This result shows that the neg-

ative weighting and contamination bias issues documented previously in the con-

text of  two-way �xed effects regressions ( e.g., Goodman-Bacon 2021; Sun and 

Abraham 2021; de Chaisemartin and D’Haultfoeuille 2020; De Chaisemartin and 

D’Haultfoeuille 2023; Callaway and Sant’Anna 2021; Borusyak, Jaravel, and Spiess 

2024; Wooldridge 2021; Hull 2018b) are more general, and conceptually distinct, 

problems.4 Negative weighting arises because regressions leveraging  model-based 

restrictions on   Y i   (0)   may �t treatment probabilities exceeding one. Contamination 

bias arises because additive covariate adjustments don’t account for the  nonlinear 

dependence of a given treatment on the other treatments and covariates. This gen-

erates a different form of propensity score misspeci�cation: a  nonzero �tted prob-

ability of a given treatment, even when one of the other treatments is known to be 

 nonzero.5

We then discuss three solutions to the contamination bias problem, and their 

 trade-offs. These solutions apply when the propensity scores are  nondegenerate, such 

as in an RCT or other “ design-based” regression speci�cation.6 First, a conceptually 

principled solution is to adapt approaches to estimating the average treatment effect 

(ATE) of a conditionally ignorable binary treatment to the multiple treatment case 

(e.g., Cattaneo 2010; Chernozhukov et al. 2018; Chernozhukov, Newey, and Singh 

2022; de los Angeles Resa and Zubizarreta 2020; Graham and Campos de Xavier Pinto 

2022). For example, one could run a regression that includes interactions between the 

treatments and demeaned controls, or combine such regression with inverse propen-

sity score weighting for  doubly robust estimation. Such ATE estimators work well 

under strong overlap of the covariate distribution for units in each treatment arm. But 

they may be imprecise under limited overlap or be outright infeasible with overlap 

failures—common scenarios in observational studies (Crump et al. 2009).
This practical consideration motivates an alternative approach: estimating a 

weighted average of treatment effects, as regression does in the binary treatment 

3 Alternatively   X i    may indicate multiple contemporaneous treatments, as in certain “mover” regressions.
4 Our analysis also relates to issues with interpreting  multiple-treatment IV estimates (Behaghel, Crépon, and 

Gurgand 2013; Kirkeboen, Leuven, and Mogstad 2016; Kline and Walters 2016; Hull 2018a; Lee and Salanié 2018; 
Bhuller and Sigstad 2024).

5 While our results are framed in the context of a causal model, we show how analogous results apply to descrip-
tive regressions which seek to estimate averages of conditional group contrasts without assuming a causal frame-
work: as in studies of outcome disparities across multiple racial or ethnic groups, studies of regional variation in 
health care utilization or outcomes, or studies of industry wage gaps.

6 Solving the contamination bias problem under  model-based identi�cation approaches requires either target-
ing subpopulations of the treated or applying substantive restrictions on the conditional means of potential out-
comes under treatment. We do not explore this case as it has already been studied extensively in the DiD context  
(e.g., De Chaisemartin and D’Haultfoeuille 2023; Sun and Abraham 2021; Callaway and Sant’Anna 2021; Borusyak  
et al. 2024; Wooldridge 2021).
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case, while avoiding the contamination bias problem with  multiple treatments. We 

derive the weights that are easiest to estimate, in the sense of minimizing a semipara-

metric ef�ciency bound under homoskedasticity. This  easiest-to-estimate weighting 

(EW) scheme is always convex; it corresponds to weighting schemes previously 

proposed in Crump et al. (2006); Li, Morgan, and Zaslavsky (2018); and Li and Li 

(2019). The weights also coincide with the implicit linear regression weights when 

the treatment is binary (i.e. the Angrist 1998 case). In the multiple treatment case, 

the EW scheme that allows the weights to be treatment speci�c can be implemented 

by a simple second solution: a linear regression which restricts estimation to the 

individuals who are either in the control group or the treatment group of interest. 

Since the weights are  treatment-speci�c, these  one-treatment-at-a-time regressions 

make direct comparisons across treatment arms challenging. The third solution is to 

impose common weights across treatments in the EW scheme; these weights can be 

implemented using a weighted regression approach. We show how researchers can 

gauge the extent of contamination bias in practice and implement these tools with a 

new R and Stata package, multe.7

We study the empirical relevance of contamination bias in nine applications: six 

RCTs with strati�ed randomization and three observational studies of racial dis-

parities. We �nd economically and statistically signi�cant bias in two of the three 

observational studies with no evidence for bias in any of the experimental studies. 

In a detailed analysis of one experiment, the Project STAR trial, we show that the 

lack of contamination bias is driven by small variation in the contamination weights 

rather than limited effect heterogeneity. This analysis highlights the importance of 

conducting contamination bias diagnostics—particularly in observational studies 

where covariates are expected to generate high variability in propensity scores, and 

thus likely in contamination weights.

We structure the rest of the paper as follows. Section I illustrates contamina-

tion bias in a simple stylized setting. Section II characterizes the general problem, 

and discusses connections to previous analyses. Section III provides three solu-

tions, and gives guidance for measuring and avoiding contamination bias in prac-

tice. Section IV illustrates these tools in nine applications. Section V concludes. 

Supplemental appendices collect all proofs and extensions, discuss the connection 

between our contamination bias characterization and that in the DiD literature, and 

provide details on the applications and additional exhibits.

I. Motivating Example

We build intuition for the contamination bias problem in two simple examples. 

We �rst review how regressions on a single randomized binary treatment and binary 

controls identify a convex average of heterogeneous treatment effects. We then 

show how this result fails to generalize when we introduce an additional treatment 

arm. We base these examples on a stylized version of the Project STAR experi-

ment, which we return to as an application in Section IVA. The simple structure 

of these examples helps isolate the core mechanisms of contamination bias. Later 

7 The package is available at CRAN (R) and https://github.com/gphk-metrics/stata-multe (Stata).
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sections consider  nonexperimental settings with richer control speci�cations, both 

theoretically and empirically.

A. Convex Weights with One Randomized Treatment

Consider the regression of an outcome   Y i    on a single treatment indicator   D i   ∈  
{0, 1}  , a single binary control   W i   ∈  {0, 1}  , and an intercept:

(1)   Y i   = α + β  D i   + γ  W i   +  U i  . 

By de�nition,   U i    is a  mean-zero regression residual that is uncorrelated with   D i    and   
W i   . For example, analyzing the Project STAR trial, Krueger (1999) primarily stud-

ied the effect of small class size   D i    on the test scores   Y i    of kindergartners indexed by  

i . Project STAR randomized students to classes within schools, with the fraction of 

students assigned to small classes varying by school due to the varying number of 

total students in each school. To account for this, Krueger (1999) included school 

�xed effects as controls. Such speci�cations are often found in strati�ed RCTs with 

varying treatment assignment rates across a set of  pretreatment strata. If we imagine 

two such strata, demarcated by a binary indicator   W i   , then equation (1) corresponds 

to a stylized  two-school version of a Project STAR regression.

We wish to interpret the coef�cient  β  in terms of the causal effects of   D i    on   Y i   . 
For this we use potential outcome notation, letting   Y i   (d)   denote the test score of stu-

dent  i  when   D i   = d . Individual  i ’s treatment effect is then given by   τ 1i   =  Y i   (1)  −  
 Y i   (0)  , and we can write realized achievement as   Y i   =  Y i   (0)  +  τ 1i    D i   . Since treat-

ment assignment is random within schools,   D i    is conditionally independent of 

potential outcomes given   W i    :   ( Y i   (0) ,  Y i   (1) )  ⟂  D i   ∣  W i   .
Angrist (1998) showed that regression coef�cients like  β  identify a  convexly 

weighted average of  within-strata ATEs. In our Project STAR example, this result 

shows that

(2)  β = ϕ  τ 1   (0)  +  (1 − ϕ)   τ 1   (1) , 

where ϕ =   
var [ D i   ∣  W i   = 0] Pr ( W i   = 0) 

   _________________________    
 ∑ w=0  

1   var [ D i   ∣  W i   = w] Pr ( W i   = w) 
   ∈  [0, 1]  

gives a convex weighting scheme, and   τ 1   (w)  = E [ Y i   (1)  −  Y i   (0)  ∣  W i   = w]   is 

the ATE in school  w ∈  {0, 1}  . Thus, in our example the coef�cient  β  identi�es a 

weighted average of  school-speci�c small classroom effects   τ 1   (w)   across the two 

schools.

Equation (2) can be derived by applying the  Frisch-Waugh-Lovell (FWL) 
Theorem. The multivariate regression coef�cient  β  can be written as a univariate 

regression coef�cient from regressing   Y i    onto the population residual    D ̃   i    obtained by 

regressing   D i    onto   W i    and a constant:

(3)  β =   
E [  D ̃   i    Y i  ]  _ 
E [  D ̃    i  

2 ] 
   =   

E [  D ̃   i    Y i   (0) ]  _ 
E [  D ̃    i  

2 ] 
   +   

E [  D ̃   i    D i    τ 1i  ]  _ 
E [  D ̃    i  

2 ] 
  , 
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where we substitute the potential outcome model for   Y i    in the second equality. Since   
W i    is binary, the propensity score  E [ D i   ∣  W i  ]   is linear and the residual    D i   ̃    is mean inde-

pendent of   W i    (not just uncorrelated with it):  E [  D i   ̃   ∣  W i  ]  = 0 . Therefore,

(4)  E [  D ̃   i    Y i   (0) ]  = E [E [  D ̃   i    Y i   (0)  ∣  W i  ] ]  = E [E [  D ̃   i   ∣  W i  ] E [ Y i   (0)  ∣  W i  ] ]  = 0. 

The �rst equality in equation (4) follows from the law of iterated expectations, the 

second equality follows by the conditional random assignment of   D i    and the third 

equality uses  E [  D i   ̃   ∣  W i  ]  = 0 . Hence, the �rst summand in equation (3) is zero. 

Analogous arguments show that

  E [  D ̃   i    D i    τ 1i  ]  = E [E [  D ̃   i    D i    τ 1i   ∣  W i  ] ]  

 = E [E [  D ̃   i    D i   ∣  W i  ] E [ τ 1i   ∣  W i  ] ]  = E [var [ D i   ∣  W i  ]   τ 1   ( W i  ) ] , 

where  var [ D i   ∣  W i  ]  = E [  D ̃    i  
2  ∣  W i  ]   gives the conditional variance of the  small-class 

treatment within schools. Since  E [var [ D i   ∣  W i  ] ]  = E [E [  D ̃    i  
2  ∣  W i  ] ]  = E [  D ̃    i  

2 ]  , it fol-

lows that we can write the second summand in equation (3) as

  β =   
E [var [ D i   ∣  W i  ]   τ 1   ( W i  ) ] 

  _______________  
E [var [ D i   ∣  W i  ] ] 

   = ϕ  τ 1   (0)  +  (1 − ϕ)   τ 1   (1) , 

proving the representation of  β  in equation (2).
The key fact underlying this derivation is that the residual    D ̃   i    from the auxiliary 

regression of the treatment   D i    on the other regressors   W i    is  mean-independent of  

  W i   . By the FWL theorem, treatment coef�cients like  β  can always be represented as 

in equation (3) even without this property. We next show, however, that the remain-

ing steps in the derivation of equation (2) fail when an additional treatment arm is 

included. This failure can be attributed to the fact that the auxiliary FWL regression 

delivers a treatment residual that is uncorrelated with, but not  mean-independent of, 

the other regressors. The lack of mean independence leads to an additional term in 

the expression for the regression coef�cient.

B. Contamination Bias with Two Randomized Treatments

In reality, Project STAR randomized students to three mutually exclusive con-

ditions within schools: a control group with a regular class (  D i   = 0 ), a treatment 

that reduced class size (  D i   = 1 ), and a treatment that introduced  full-time teaching 

aides (  D i   = 2 ). We incorporate this extension of our stylized example by consid-

ering a regression of student achievement   Y i    on a vector of two treatment indica-

tors,   X i   =   ( X i1  ,  X i2  )  ′   , where   X ik   = 1 { D i   = k}   indicates assignment to treatment  

k = 1, 2 . We continue to include a constant and the school indicator   W i    as controls, 

yielding the regression

(5)   Y i   = α +  β 1    X i1   +  β 2    X i2   + γ  W i   +  U i  . 
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The observed outcome is now given by   Y i   =  Y i   (0)  +  τ i1    X i1   +  τ i2    X i2   , with   τ i1    
=  Y i   (1)  −  Y i   (0)   and   τ i2   =  Y i   (2)  −  Y i   (0)   denoting the potentially heterogeneous 

effects of a class size reduction and introduction of a teaching aide, respectively. 

As before, we analyze this regression by assuming   X i    is conditionally indepen-

dent of the potential achievement outcomes   Y i   (d)   given the school indicator   W i    :   
 ( Y i   (0) ,  Y i   (1) ,  Y i   (2) )  ⟂  X i   ∣  W i   .

To analyze the coef�cient on   X i1   , we again use the FWL theorem to write

(6)   β 1   =   
E [  X 

≈
   i1    Y i  ] 
 _______ 

E [  X 
≈

    i1  
2
  ] 

   =   
E [  X 

≈
   i1    Y i   (0) ] 

  _________ 
E [  X 

≈
    i1  
2
  ] 

   +   
E [  X 

≈
   i1    X i1    τ i1  ] 

  _________ 
E [  X 

≈
    i1  
2
  ] 

   +   
E [  X 

≈
   i1    X i2    τ i2  ] 

  _________ 
E [  X 

≈
    i1  
2
  ] 

  , 

where    X 
≈

   i1    again denotes a population residual, but now from regressing   X i1    on   
W i   , a constant, and   X i2   . Unlike before, this residual is uncorrelated with but not 

 mean-independent of the remaining regressors   ( W i  ,  X i2  )   because the dependence 

between   X i1    and   X i2    is  nonlinear. When   X i2   = 1 ,   X i1    must be zero regardless of the 

value of   W i    (because they are mutually exclusive) while if   X i2   = 0  the mean of   X i1    
depends on   W i    unless the treatment assignment is completely random. Thus, in gen-

eral,    X 
≈

   i1   ≠  X i1   − E [ X i1   ∣  W i  ,  X i2  ]  .
Because    X 

≈
   i1    does not coincide with a conditionally  de-meaned   X i1   , we can not 

generally reduce equation (6) to an expression involving only the effects of the �rst 

treatment arm,   τ i1   . It turns out that we nevertheless still have  E [  X 
≈

   i1    Y i   (0) ]  = 0 , as 

in equation (4), since the auxiliary regression residuals are still uncorrelated with 

any individual characteristic like   Y i   (0)  .8 The regression thus does not suffer from 

OVB. However, we do not generally have  E [  X 
≈

   i1    X i2    τ i2  ]  = 0 . Instead, simplifying 

equation (6) by the same steps as before leads to the expression

(7)   β 1   = E [ λ 11   ( W i  )   τ 1   ( W i  ) ]  + E [ λ 12   ( W i  )   τ 2   ( W i  ) ]  

as a generalization of equation (2). Here   λ 11   ( W i  )  = E [  X 
≈

   i1    X i1   ∣  W i  ]  / E [  X 
≈

    i1  
2
  ]   can be 

shown to be  nonnegative and to average to one, similar to the  ϕ  weight in equation 

(2). Thus, if not for the second term in equation (7),   β 1    would similarly identify a 

convex average of the conditional ATEs   τ 1   ( W i  )  = E [ Y i   (1)  −  Y i   (0)  ∣  W i  ]  . But pre-

cisely because    X 
≈

   i1   ≠  X i1   − E [ X i1   ∣  W i  ,  X i2  ]  , this second term is generally present:   

λ 12   ( W i  )  = E [  X 
≈

   i1    X i2   ∣  W i  ]  / E [  X 
≈

    i1  
2
  ]   is generally  nonzero, complicating the inter-

pretation of   β 1    by including the conditional effects of the other treatment   τ 2   ( W i  )   
= E [ Y i   (2)  −  Y i   (0)  ∣  W i  ]  .

The second contamination bias term in equation (7) arises because the resid-

ualized small class treatment    X 
≈

   i1    is not conditionally independent of the second  

 full-time aide treatment   X i2    within schools, despite being uncorrelated with   X i2    by 

construction. This can be seen by viewing    X 
≈

   i1    as the result of an equivalent  two-step 

8 To see this, note that in the auxiliary regression   X i1   =  μ 0   +  μ 1   X i2   +  μ 2   W i   +   X 
≈

   i1    we can partial out   W i    and the 

constant from both sides to write    X ̃   i1   =  μ 1    X ̃   i2   +   X 
≈

   i1   . Thus,    X 
≈

   i1   =   X ̃   i1   −  μ 1    X ̃   i2    is a linear combination of residuals 

which, per equation (4), are both uncorrelated with   Y i   (0)  . It follows that  E [  X 
≈

   i1   Y i   (0) ]  = 0 .
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residualization. First, both   X i1    and   X i2    are  de-meaned within schools:    X ̃   i1   =  X i1   −  
E [ X i1   ∣  W i  ]  =  X i1   −  p 1   ( W i  )   and    X ̃   i2   =  X i2   − E [ X i2   ∣  W i  ]  =  X i2   −  p 2   ( W i  )   where   
p j   ( W i  )  = E [ X ij   ∣  W i  ]   gives the propensity score for treatment  j . Second, a bivariate 

regression of    X ̃   i1    on    X ̃   i2    is used to generate the residuals    X 
≈

   i1   . When the propensity 

scores vary across the schools (i.e.   p j   (0)  ≠  p j   (1)  ), the relationship between these 

residuals varies by school, and the line of best �t between    X ̃   i1    and    X ̃   i2    averages across 

this relationship. As a result, the line of best �t does not isolate the conditional (i.e. 

 within-school) variation in   X i1   : the remaining variation in    X 
≈

   i1    will tend to predict   X i2    
within schools, making the contamination weight   λ 12   ( W i  )    nonzero.

C. Illustration and Intuition

A simple numerical example helps make the contamination bias problem con-

crete. Suppose in the previous setting that school  0  (indicated by   W i   = 0 ) assigned 

only 5 percent of the students to the small classroom treatment, with 45 percent 

of the students assigned to the  full-time aide treatment and the rest assigned to the 

control group. In school  1  (indicated by   W i   = 1 ), there was a substantially larger 

push for students to be placed into treatment groups with 45 percent of students 

assigned to a small classroom, 45 percent assigned to a classroom with a  full-time 

aide, and only 10 percent assigned to the control group. Therefore,   p 1   (0)  = 0.05  

and   p 2   (0)  = 0.45  while   p 1   (1)  =  p 2   (1)  = 0.45 . Suppose that the schools have 

the same number of students, so that  Pr ( W i   = 1)  = 0.5 . It then follows from the 

above formulas that   λ 12   (0)  = 99/106  and   λ 12   (1)  = − 99/106 .

As reasoned above, the contamination weights are  nonzero here because the 

 within-school correlation between the residualized treatments,    X ̃   i1    and    X ̃   i12   , is het-

erogeneous: in school  0  it is about  − 0.2 , so that the value of the demeaned class 

aide treatment is only weakly predictive of the small classroom treatment, while in 

school  1  it is highly predictive with correlation  − 0.8 . Figure D.1 in online Appendix 

D illustrates this graphically, showing that because the overall regression of    X ̃   i1    
on    X ̃   i2    averages over these two correlations the regression residuals are predictive of 

the value of the class aide treatment.

To illustrate the potential magnitude of bias in this example, suppose that class-

room reductions have no effect on student achievement (so   τ 1   (0)  =  τ 1   (1)  = 0 ), 
but that the effect of a teaching aide varies across schools. In school  1  the aide is 

highly effective,   τ 2   (1)  = 1 , (which may be the reason for the higher push in this 

school to place students into treatment groups) but in school  0 , the aide has no 

effect,   τ 2   (0)  = 0 . By equation (7), the regression coef�cient on the �rst treatment 

identi�es

       β 1   = E [ λ 11   ( W i  )  ⋅ 0]  + E [ λ 12   ( W i  )   τ 2   ( W i  ) ] 

       = 0 +  (−   99 ___ 
106

   × 1 +   99 ___ 
106

   × 0)  /2 ≈ − 0.47. 

Thus, in this example, a researcher would conclude that small classrooms have a siz-

able negative effect on student achievement—equal in magnitude to around one-half 

of the true teaching aide effect in school  1 —despite the true  small-classroom effect 
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being zero for all students. This treatment effect coef�cient can be engineered to 

match an arbitrary magnitude and sign by varying the heterogeneity of the teaching 

aide effects across schools.

To build further intuition for equation (7), it is useful to consider two cases 

where the contamination bias term is zero. First, note that since regression resid-

uals are by construction uncorrelated with the included regressors,  E [ λ 12   ( W i  ) ]   
= E [  X 

≈
   i1    X i2  ]  / E [  X 

≈
    i1  
2
  ]  = 0 . Therefore,  E [ λ 12   ( W i  )   τ 2   ( W i  ) ]  = E [ λ 12   ( W i  )   τ 2   ( W i  ) ]   

− E [ λ 12   ( W i  ) ] E [ τ 2   ( W i  ) ]  = cov [ λ 12   ( W i  ) ,  τ 2   ( W i  ) ]  . If the average effects of the 

teaching aide treatment are constant across the two schools,   τ 2   (1)  =  τ 2   (0)  , then  

  τ 2   ( W i  )   is constant, and this covariance is zero such that contamination bias dis-

appears. More generally, when the average teaching aide treatment effects across 

schools   τ 2   ( W i  )   exhibit idiosyncratic variation, in the sense that they have a weak 

covariance with the contamination weights across schools, the contamination bias 

term will be small.

Second, consider the case where   X i1    and   X i2    are independent conditional on   W i   
such as when the small classroom and teacher aid interventions are independently 

assigned within schools, in contrast to the previously assumed mutual exclusivity of 

these treatments. In this case the conditional expectation  E [ X i1   ∣  W i  ,  X i2  ]  = E [ X i1   ∣  W i  ]    
will be linear, since   X i1    and   X i2    are unrelated given   W i   , and will thus be identi�ed 

by the auxiliary regression of   X i1    on   W i   ,   X i2   , and a constant. Consequently, the    X 
≈

   i1    
residuals will coincide with   X i1   − E [ X i1   ∣  W i  ]  . The coef�cient on   X i1    in equation (5) 
can therefore be shown to be equivalent to the previous equation (2), identifying the 

same convex average of   τ 1   (w)  . This case highlights that dependence across treat-

ments is necessary for the contamination bias to arise.

II. General Problem

We now derive a general characterization of the contamination bias problem, 

in regressions of an outcome   Y i    on a  K -dimensional treatment vector   X i    and �ex-

ible transformations of a control vector   W i   . We focus on the case of mutually 

exclusive indicators   X ik   = 1 { D i   = k}   for values of an underlying treatment  

  D i   ∈  {0,  … , K}   (with the  1 { D i   = 0}   indicator omitted). We extend the characteri-

zation to a general (i.e. potentially  nonbinary)   X i    in online Appendix A.1.

We suppose the effects of   X i    on   Y i    are estimated by a partially linear model:

(8)   Y i   =  X  i  ′  β + g ( W i  )  +  U i  , 

where  β  and  g  are de�ned as the minimizers of expected squared residuals  E [ U  i  
2 ]  :

(9)   (β, g)  =   arg min  
 β ̃  ∈ ℝ   K , g ̃  ∈

   E [  ( Y i   −  X  i  ′    β ̃   −  g ̃   ( W i  ) )    
2
 ]  

for some linear space of functions . This setup nests linear covariate adjustment by 

setting   = {α + w′ γ : [α, γ′ ]′ ∈  ℝ   1+dim( W i  ) } , in which case equation (8) gives 

a linear regression of   Y i    on   X i   ,   W i   , and a constant. The setup also allows for more 

�exible covariate adjustments—such as by specifying    to be a large class of “non-

parametric” functions (Robinson 1988).
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Two examples highlight the generality of this setup.

EXAMPLE 1 ( Multi-armed RCT):   W i    is a vector of  mutually exclusive indicators 

for experimental strata, within which   X i    is randomly assigned to individuals  i , and  

g  is linear.

EXAMPLE 2 ( Two-way Fixed Effects):  i =  (j, t)   indexes panel data, with a �xed 

set of units  j = 1,  … , n  observed over periods  t = 1,  … , T .   W i   =  ( J i  ,  T i  )    
where   J i   = j  and   T i   = t  denote the underlying unit and period, and  g ( W i  )  = α +   
(1 { J i   = 2} ,  … , 1 { J i   = n} , 1 { T i   = 2} ,  … , 1 { T i   = T} )  ′  γ  includes unit and period 

indicators.   X i    contains indicators for leads and lags relative to a deterministic treat-

ment adoption date,  A ( j)  ∈  {1,  … , T, ∞}   with at least one lead excluded to pre-

vent collinearity.

Example 1 nests the motivating RCT example in Section I, allowing for an 

arbitrary number of experimental strata in   W i    and multiple treatment arms in   X i   . 
Example 2 shows that our setup can also nest the kind of regressions considered in a 

recent literature on DiD and related regression speci�cations ( e.g., Goodman-Bacon 

2021; Hull 2018b; Sun and Abraham 2021; de Chaisemartin and D’Haultfoeuille 

2020; De Chaisemartin and D’Haultfoeuille 2023; Callaway and Sant’Anna 2021; 

Borusyak, Jaravel, and Spiess 2024; Wooldridge 2021). We elaborate on the connec-

tions to this literature in online Appendix B by considering general  two-way �xed 

effects (TWFE) speci�cations with  nonrandom treatments. These include speci�ca-

tions with multiple static treatment indicators, as in “mover regressions” that lever-

age  over-time transitions, as well as dynamic event study speci�cations.9

As a �rst step towards characterizing the treatment coef�cient vector  β ,  
we solve the minimization problem in equation (9). Let    X ̃   i    denote the residuals 

from projecting   X i    onto the control speci�cation, with elements    X ̃   ik   =  X ik   −   

arg min  g ̃  ∈   E [  ( X ik   −  g ̃   ( W i  ) )    
2
 ]  . It follows from the projection theorem (van der 

Vaart 1998, Theorem 11.1) that

(10)  β = E  [  X ̃   i     X ̃    i  ′  ]    
−1

 E [  X ̃   i    Y i  ] . 

Applying the FWL theorem, each treatment coef�cient can be written   β k    

= E [  X 
≈

   ik   Y i  ]  / E [  X 
≈

    ik  
2
  ]   where    X 

≈
   ik    is the residual from regressing    X ̃   ik    on    X ̃   i,−k    

=   (  X ̃   i1  ,  … ,   X ̃   i,k−1  ,   X ̃   i,k+1  ,  … ,   X ̃   iK  )  ′   . Letting   E   ∗  [ X ik   ∣  X i,−k  ,  W i  ]   denote the projection 

of   X ik    onto the space   { X  i,−k  ′   δ ̃   +  g ̃   ( W i  )  :  δ ̃   ∈  ℝ   K−1 ,  g ̃   ∈ }  , we may write these 

residuals as    X 
≈

   ik   =  X ik   −  E   ∗  [ X ik   ∣  X i,−k  ,  W i  ]  .

9 Some papers in this DiD literature study issues we do not consider, such as when researchers fail to include 
indicators for all relevant treatment states; this will generally add bias terms to our decomposition of  β , below. 
Similarly, we do not consider multicollinearity issues like in Borusyak et al. (2024) by assuming a unique solution 
to equation (9). For event studies this means we assume some units are never treated, with  A (j)  = ∞ .
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A. Causal Interpretation

We now consider the interpretation of each treatment coef�cient   β k    in terms 

of causal effects. Let   Y i   (k)   denote the potential outcome of unit  i  when   D i   = k . 

Observed outcomes are given by   Y i   =  Y i   ( D i  )  =  Y i   (0)  +  X  i  ′    τ i    where   τ i    is a vec-

tor of treatment effects with elements   τ ik   =  Y i   (k)  −  Y i   (0)  . We denote the con-

ditional expectation of the vector of treatment effects given the controls by  τ ( W i  )   
= E [ τ i   ∣  W i  ]  , so that   τ k   ( W i  )   is the conditional ATE for the  k th treatment. We let  p ( W i  )   
= E [ X i   ∣  W i  ]   denote the vector of propensity scores, so that   p k   ( W i  )  = Pr ( D i   = k ∣  W i  )  .  
Our characterization of contamination bias doesn’t require the propensity scores 

to be bounded away from  0  and  1  and in fact allows them to be degenerate, i.e.  

  p k   (w)  ∈  {0, 1}   for all  w . This is the case in Example 2, since   X i    is a  nonrandom func-

tion of   W i   . We return to practical questions of propensity score support in Section III.

We make two assumptions to interpret   β k    in terms of the effects   τ i   . First, we 

assume  mean-independence of the potential outcomes and treatment, conditional on 

the controls:

ASSUMPTION 1:  E [ Y i   (k)  ∣  D i  ,  W i  ]  = E [ Y i   (k)  ∣  W i  ]   for all  k .

A suf�cient condition for this assumption is that the treatment is randomly 

assigned conditional on the controls, making it conditionally independent of the 

potential outcomes:

(11)   ( Y i   (0) ,  … ,  Y i   (K) )  ⟂  D i   ∣  W i  . 

Such conditional random assignment appears in Example 1. In Example 2, where 

treatment is a  nonrandom function of the unit and time indices in   W i   , Assumption 

1 holds trivially.

Second, we assume    is speci�ed such that one of two conditions holds:

ASSUMPTION 2: Let   μ 0   (w)  = E [ Y i   (0)  ∣  W i   = w]   and recall   p k   (w)   
= E [ X ik   ∣  W i   = w]  . Either

(12)   p k   ∈  

for all  k , or

(13)   μ 0   ∈ . 

The �rst condition requires the covariate adjustment to be �exible enough to capture 

each treatment’s propensity score. For example, with a linear speci�cation for  g ,  

equation (12) requires the propensity scores to be linear in   W i    (compare with  equa-

tion (30) in Angrist and Krueger 1999). This condition holds trivially in Example 1, 

since   W i    is a vector of indicators for groups within which   X i    is randomly assigned. 

When this condition holds, the projection of the treatment onto the covariates coin-

cides with the vector of propensity scores, and the projection residuals coincide with 

the conditionally demeaned treatment vector    X ̃   i   =  X i   − p ( W i  )  .
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In Example 2, with   X i    being a deterministic function of unit and time indices 

and  g ( W i  )   including unit and time �xed effects, equation (12) fails because the pro-

pensity scores are binary. They cannot be captured by a linear combination of the 

TWFEs . However, equation (13) is satis�ed by a parallel trends assumption: that the 

average untreated potential outcomes   Y i   (0)   are linear in the unit and time effects. We 

elaborate on this setup in online Appendix B.10

Under either condition in Assumption 2, the speci�cation of controls is �exible 

enough to avoid OVB. To see this formally, suppose all treatment effects are con-

stant:   τ ik   =  τ k    for all  k . This restriction lets us write   Y i   =  Y i   (0)  +  X  i  ′  τ , where  τ  
is a vector collecting the constant effects. The only source of bias when regressing   
Y i    on   X i    and controls is then the unobserved variation in the untreated potential out-

comes   Y i   (0)  . But it follows from the expression for  β  in equation (10) that there is 

no such OVB when Assumption 2 holds:

        β = E   [  X ̃   i     X ̃    i  ′  ]    
−1

  (E [  X ̃   i    Y i   (0) ]  + E [  X ̃   i     X ̃    i  ′  ] τ)  

        = E   [  X ̃   i     X ̃    i  ′  ]    
−1

     E [  X ̃   i   E [ Y i   (0)  ∣  W i  ] ]   


    

=0

    + τ = τ. 

Here the �rst equality uses the fact that  E [  X ̃   i    X  i  ′  ]  = E [  X ̃   i     X ̃    i  ′  ]   because    X ̃   i    is a vector 

of projection residuals, and the second equality uses the law of iterated expectations 

and Assumption 1. Under equation (12),  E [  X ̃   i   ∣  W i  ]  = 0 , so that the term in braces 

is zero by another application of the law of iterated expectations:  E [  X ̃   i   E [ Y i   (0)  ∣  W i  ] ]   
= E [E [  X ̃   i   ∣  W i  ] E [ Y i   (0)  ∣  W i  ] ]  = 0 . It is likewise zero under equation (13) since  

   X ̃   i    is by de�nition of projection orthogonal to any function in    such that  

 E [  X ̃   i   E [ Y i   (0)  ∣  W i  ] ]  = E [  X ̃   i    μ 0   ( W i  ) ]  = 0 . Hence, OVB is avoided in the 

 constant-effects case so long as either the propensity scores or the untreated potential 

outcomes are spanned by the control speci�cation. Versions of this double robust-

ness property have been previously observed in, for instance, Robins et al. (1992).
When treatment effects are heterogeneous but   X i    contains a single treatment indi-

cator,  β  identi�es a weighted average of the conditional effects  τ ( W i  )  . Speci�cally, 

since by the previous argument we still have  E [  X ̃   i    Y i   (0) ]  = 0 , it follows from equa-

tion (10) that

(14)  β =   
E [  X ̃   i    X i    τ i  ]  _ 

E [  X ̃    i  
2 ] 

   = E [ λ 11   ( W i  ) τ ( W i  ) ] , with  λ 11   ( W i  )  =   
E [  X ̃   i    X i   ∣  W i  ]   _ 

E [  X ̃   i    X i  ] 
  , 

where the second equality uses iterated expectations and the identity  E [  X ̃    i  
2 ]   

= E [  X ̃   i    X i  ]  . Under equation (12),  E [  X ̃   i    X i   ∣  W i  ]  = E [  X ̃    i  
2  ∣  W i  ]  = var [ X i   ∣  W i  ]  , so 

the weights further simplify to   λ 11   ( W i  )  =   
var [ X i   ∣  W i  ]  ________  

E [var [ X i   ∣  W i  ] ] 
   ≥ 0 . This extends the 

10 Identi�cation based on equation (12) can be seen as “ design-based” in that it only restricts the treatment 
assignment process. Identi�cation based on equation (13) can be seen as “ model-based” in that it makes no assump-
tions on the treatment assignment process but speci�es a model for the unobserved untreated potential outcomes.
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Angrist (1998) result to a general control speci�cation; versions of this extension 

appear in, for instance, Angrist and Krueger (1999); Angrist and Pischke (2009, 

Chapter 3.3), and Aronow and Samii (2016).
This result provides a robustness rationale for estimating the effect of a single 

 as-good-as-randomly assigned treatment with a partially linear model (8): so long 

as the speci�cation of    is rich enough to make equation (12) hold,  β  will identify 

a convex average of heterogeneous treatment effects. In Section III we will derive 

another rationale for targeting  β  in this model, showing that the weights   λ 11   ( W i  )    
minimize the semiparametric ef�ciency bound (conditional on the controls) for esti-

mating some  weighted-average treatment effect.

Our �rst proposition shows that with multiple treatments, the interpretation of  β  
becomes more complicated because of contamination bias:

PROPOSITION 1: Under Assumptions 1 and  2, the treatment coef�cients in (8) 
identify

(15)   β k   = E [ λ kk   ( W i  )   τ k   ( W i  ) ]  +   ∑ 
ℓ≠k

  
 

   E [ λ kℓ   ( W i  )   τ ℓ   ( W i  ) ] , 

where, recalling that   E   ∗  [ X ik   ∣  X i,−k  ,  W i  ]   gives the projection of   X ik    onto the space  

  { X  i,−k  ′   δ ̃   +  g ̃   ( W i  )  :  δ ̃   ∈  핉   K−1 ,  g ̃   ∈ }  ,

     λ kk   ( W i  )  =   
E [  X 

≈
   ik    X ik   ∣  W i  ] 

  __________ 
E [  X 

≈
    ik  
2
  ] 

   =   
 p k   ( W i  )  (1 −  E   ∗  [ X ik   ∣  X i,−k   = 0,  W i  ] ) 

    _________________________  
E [  X 

≈
    ik  
2
  ] 

  , ��� 

     λ kℓ   ( W i  )  =   
E [  X 

≈
   ik    X iℓ   ∣  W i  ] 

  __________ 
E [  X 

≈
    ik  
2
  ] 

   = −   
 p ℓ   ( W i  )   E   ∗  [ X ik   ∣  X iℓ   = 1,  W i  ]    ___________________  

E [  X 
≈

    ik  
2
  ] 

   

with  E [ λ kk   ( W i  ) ]  = 1  and  E [ λ kℓ   ( W i  ) ]  = 0 . Furthermore, if equation (12) holds,  

  λ kk   ( W i  )  ≥ 0 .

Proposition 1 shows that the coef�cient on   X ik    in equation (8) is a sum of two terms. 

The �rst term is a weighted average of conditional ATEs   τ k   ( W i  )  , with own treat-

ment weights   λ kk   ( W i  )   that average to one—generalizing the characterization of 

the  single-treatment case, equation (14). The expression for   λ kk    implies that these 

weights are convex if the implicit linear probability model used to compute    X 
≈

   ik    �ts 

probabilities that lie below one,   E   ∗  [ X ik   ∣  X i,−k   = 0,  W i  ]  ≤ 1 . The second term is a 

weighted average of treatment effects for other treatments   τ ℓ   ( W i  )  , with contamina-

tion weights   λ kℓ   ( W i  )   that average to zero. Because the contamination weights are 

zero on average, they must be negative for some values of the controls unless they 

are all identically zero.11 This is the case when the implicit linear probability model 

correctly predicts that   X ik   = 0  if   X iℓ   = 1 .

11 Proposition 1 complements an algebraic result in Chattopadhyay and Zubizarreta (2021, Section 7.1), which 
shows that the regression estimator of   β k    can be written in terms of weighted sample averages of outcomes among 
units in different treatment arms (regardless of whether Assumptions 1 and 2 hold). In contrast, our analysis inter-
prets regression estimands in terms of weighted averages of conditional ATEs under a broad class of identifying 
assumptions. In a  �nite-population setting, Abadie et al. (2020) show that  β  identi�es  matrix-weighted averages of 
individual treatment effect vectors   τ i   ; however, they do not discuss the interpretation of the estimand.
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Hence, if the linear probability model is correctly speci�ed, i.e.,  E [ X ik   ∣  X i,−k  ,  W i  ]   
=  X  i,−k  ′   α +  g k   ( W i  )   for some vector  α  and   g k   ∈  , the contamination weights  

  λ kℓ   ( W i  )   are zero and the own treatment weights   λ kk   ( W i  )   are positive. This is the 

analog of condition  (12) if we interpret   X ik    as a binary treatment of interest and   
X  i,−k  ′   α +  g k   ( W i  )   as a speci�cation for the controls. In other words, the assignment 

of treatment  k  must be additively separable between   X i,−k    and   W i   . However, with 

mutually exclusive treatments, this won’t be the case unless treatment assignment 

is unconditionally random. In particular, since   X ik    must equal zero if the unit is 

assigned to one of the other treatments regardless of the value of   W i   , under correct 

speci�cation it must be the case that   α ℓ   = −  g k   ( W i  )   for all elements   α ℓ    of  α . This 

in turn implies that the assignment of treatment  k  doesn’t depend on   W i   , which is 

impossible unless the propensity score   p k   ( W i  )   is constant.

Thus, misspeci�cation in the linear probability model will generally yield non-

sensical �tted probabilities   E   ∗  [ X ik   ∣  X iℓ   = 1,  W i  ]  ≠ 0  that generate  nonzero con-

tamination weights   λ kℓ   ( W i  )  . Furthermore, if the misspeci�cation also yields �tted 

probabilities   E   ∗  [ X ik   ∣  X i,−k   = 0,  W i  ]  > 1 , we will have negative own treatment 

weights. The last part of Proposition 1 shows that such nonsensible predictions are 

ruled out if equation (12) holds.

We make four further remarks on our general characterization of contamination 

bias:

Remark 1: Since the contamination weights are mean zero, we may write the 

contamination bias term as  E [ λ kℓ   ( W i  )   τ ℓ   ( W i  ) ]  = cov [ λ kℓ   ( W i  ) ,  τ ℓ   ( W i  ) ]  . Thus, the 

treatment coef�cient   β k    does not suffer from contamination bias if the contami-

nation weights   λ kℓ   ( W i  )   are uncorrelated with the conditional ATEs   τ ℓ   ( W i  )  . This 

is trivially true if the other treatments are homogeneous, i.e. when   τ ℓ   ( W i  )  =  τ ℓ   .  
More generally, contamination bias will be small if the contamination weight 

exhibits weak covariance with the conditional ATEs. Since  cov [ λ kℓ   ( W i  ) ,  τ ℓ   ( W i  ) ]   
= corr [ λ kℓ   ( W i  ) ,  τ ℓ   ( W i  ) ] std ( λ kℓ   ( W i  ) ) std ( τ ℓ   ( W i  ) )  , this is the case when (i) the fac-

tors in�uencing treatment effect heterogeneity are largely unrelated to the factors 

in�uencing the treatment assignment process in the sense that  corr [ λ kℓ   ( W i  ) ,  τ ℓ   ( W i  ) ]    
is close to zero, (ii) the contamination weights display limited variability, or (iii) 
treatment effect heterogeneity in the other treatments  ℓ ≠ k  is limited.

Remark 2: Since the weights in equation (15) are functions of the variances  

 E [  X 
≈

    ik  
2
  ]   and covariances  E [  X 

≈
   ik    X iℓ  ]   and  E [  X 

≈
   ik    X ik  ]  , they are identi�ed and can be used 

to further characterize each   β k    coef�cient. For example, the contamination bias term 

can be bounded by the identi�ed contamination weights   λ kℓ   ( W i  )   and bounds on the 

heterogeneity in conditional ATEs   τ ℓ   ( W i  )  .

Remark 3: The results in Proposition 1 are stated for the case when   X i    are mutu-

ally exclusive treatment indicators. In online Appendix A.1 we relax this assumption 

to allow for combinations of  nonmutually exclusive treatments (either discrete or 

continuous). In this case, the  own-treatment weights   λ kk   ( W i  )   may be negative even 

if equation (12) holds.

Remark 4: While we derived Proposition 1 in the context of a causal model, 

an analogous result follows for descriptive regressions that do not assume 
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potential outcomes or impose Assumption 1. Consider, speci�cally, the goal of 

estimating an average of conditional group contrasts  E [ Y i   ∣  D i   = k,  W i   = w]  −  
E [ Y i   ∣  D i   = 0,  W i   = w]   with a partially linear model equation (8) and replace con-

dition (13) with an assumption that  E [ Y i   ∣  D i   = 0,  W i   = w]  ∈  . The steps that 

lead to Proposition 1 then show that such regressions also generally suffer from con-

tamination bias: the coef�cient on a given group indicator averages the conditional 

contrasts across all other groups, with  nonconvex weights. Furthermore, the weights 

on  own-group conditional contrasts are not necessarily positive. These sorts of con-

ditional contrast comparisons are therefore not generally robust to misspeci�cation 

of the conditional mean,  E [ Y i   ∣  D i  ,  W i  ]  .

B. Implications

Proposition 1 shows that treatment effect heterogeneity can induce two concep-

tually distinct issues in �exible regression estimates of treatment effects. First, with 

either single or multiple treatments, there is a negative weighting of a treatment’s 

own effects when projecting the treatment indicator onto other treatment indicators 

and covariates yields �tted values exceeding one, i.e. when   E   ∗  [ X ik   ∣  X i,−k   = 0,  W i  ]   
> 1 . This issue is relevant in various DiD regressions and related approaches which 

rely on a model of untreated potential outcomes that ensures equation (13) holds 

(e.g. parallel trends assumptions) but which potentially misspecify the assignment 

model in equation (12). Although the recent DiD literature focuses on TWFE regres-

sions, Proposition 1 shows such negative weighing can arise more generally—such 

as when researchers allow for linear trends, interacted �xed effects, or other exten-

sions of the basic parallel trends model. None of these alternative speci�cations for  

g  are in general �exible enough to capture the degenerate propensity scores and 

hence ensure that   E   ∗  [ X ik   ∣  X i,−k   = 0,  W i  ]  ≤ 1 .

Second, in the multiple treatment case, there is a potential for contamination bias 

from other treatment effects, regardless of which condition in Assumption 2 holds. 

This form of bias is relevant whenever one uses an additive covariate adjustment, no 

matter how �exibly the covariates are speci�ed. Versions of this problem have been 

noted in, for example, the Sun and Abraham (2021) analysis of DiD regressions 

with treatment leads and lags or the Hull (2018b) analysis of mover regressions (see 

online Appendix B).12 Proposition 1 shows such contamination bias arises much 

more broadly, however.

The characterization in Proposition 1 also relates to concerns in interpreting 

 multiple-treatment IV estimates with heterogeneous effects (e.g., Behaghel, Crépon, 

and Gurgand 2013; Kirkeboen, Leuven, and Mogstad 2016; Kline and Walters 2016; 

Hull 2018a; Lee and Salanié 2018; Bhuller and Sigstad 2024). This connection 

comes from viewing equation (8) as the second stage of an model estimated by a 

12 The negative weights issue raised in de Chaisemartin and D’Haultfoeuille (2020) (when  K = 1 ), and the 
related issue that  own-treatment weights may be negative in Sun and Abraham (2021) and De Chaisemartin and 
D’Haultfoeuille (2023) (when  K > 1 ), arise because the treatment probability is not linear in the unit and time 
effects. If equation (12) holds with  K = 1 , Proposition 1 shows  β  estimates a convex combination of treatment 
effects. This covers the setting considered in Theorem 1(iv) in Athey and Imbens (2022). In their Comment 2, Athey 
and Imbens (2022) say that “the sum of the weights [used in Theorem 1(iv)] is one, although some of the weights 
may be negative.” Proposition 1 shows these weights are, in fact,  nonnegative.
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control function approach; in the linear case, for example,  g ( W i  )   can be interpreted 

as giving the residuals from a  �rst-stage regression of   X i    on a vector of valid instru-

ments   Z i   . In the  single-treatment case, the resulting  β  coef�cient has an interpre-

tation of a weighted average of conditional local average treatment effects under 

the appropriate  �rst-stage monotonicity condition (Imbens and Angrist 1994). But 

as in Proposition 1 this interpretation fails to generalize when   X i    includes multiple 

 mutually exclusive treatment indicators: each   β k    combines the local effects of treat-

ment  k  with a  nonconvex average of the effects of other treatments.

Finally, Proposition 1 has implications for  single-treatment estimation with mul-

tiple instruments and �exible controls if the �rst stage has the form of equation (8), 
where now   Y i    is interpreted as the treatment and   X i    gives the vector of instruments. 

Proposition 1 shows that the  �rst-stage coef�cients on the instruments   β k    will not 

generally be convex weighted average of the true  �rst-stage effects   τ ik   . Because of 

this  nonconvexity, the regression speci�cation may fail to satisfy the effective mono-

tonicity condition even when   τ ik    is always positive: the  cross-instrument contamina-

tion of causal effects may cause monotonicity violations, even when speci�cations 

with individual instruments do not. This issue is distinct from previous concerns 

over monotonicity failures in  multiple-instrument designs (e.g.,  Mueller-Smith 

2015; Frandsen, Lefgren, and  Leslie 2023; Norris 2019; Mogstad, Torgovitsky, 

and Walters 2021), which are generally also present in such  just-identi�ed speci�-

cations. It is also distinct from concerns about insuf�cient �exibility in the control 

speci�cation when monotonicity holds unconditionally (e.g., Blandhol et al. 2022).
This new monotonicity concern may be especially important in “exam-

iner” designs, which exploit the conditional random assignment to multiple 

 decision-makers. Many studies leverage such variation by computing average exam-

iner decision rates, often with a  leave-one-out correction, and use this “leniency” 

measure as a single instrument with linear controls. These estimators can be thought 

of as implementing versions of a jackknife estimator (Angrist et al. 1999), based on 

a �rst stage that uses examiner indicators as instruments, similar to equation (8). 
Proposition 1 thus raises a new concern with these analyses when controls (such as 

time �xed effects) are needed to ensure ignorable treatment assignment.

III. Solutions

We now discuss three solutions to the contamination bias problem raised by 

Proposition 1, each targeting a distinct causal parameter. First, in Section IIIA, we 

discuss estimation of unweighted ATEs. The other two solutions target weighted 

averages of individual treatment effects using an  easiest-to-estimate weighting (EW) 
scheme in that the weights minimize the semiparametric ef�ciency bound for esti-

mating weighted ATEs under homoskedasticity. In the second solution, the weights 

are allowed to vary across treatments, while in the third, they are constrained to be 

common across treatments. In Section IIIB we characterize these estimation targets, 

while in Section IIIC we discuss how to estimate them; we also outline our proposed 

guidance to researchers in measuring contamination bias.

Implementing the �rst solution requires strong overlap (i.e. that treatment pro-

pensity scores are bounded away from zero and one) while the other two solutions 

require nonempty overlap, ruling out fully degenerate propensity scores. Solutions 
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allowing for degenerate propensity scores require either targeting subpopulations of 

the treated or adding substantive restrictions on conditional means of treated poten-

tial outcomes (beyond equation (13), which only restricts untreated potential out-

comes). We refer readers to De Chaisemartin and D’Haultfoeuille (2023); Sun and 

Abraham (2021); Callaway and Sant’Anna (2021); Borusyak, Jaravel, and Spiess 

(2024); and Wooldridge (2021) for such solutions in the context of DiD regressions.

A. Estimating Average Treatment Effects

Many estimators exist for the ATE of binary treatments—see Imbens and 

Wooldridge (2009) and Abadie and Cattaneo (2018) for reviews. Several of these 

approaches extend naturally to multiple treatments: including matching on covari-

ates or the propensity score, inverse propensity score weighting, balancing weights, 

interacted regression, or  doubly robust methods (see, among others, Cattaneo 2010; 

de los Angeles Resa and Zubizarreta 2020; Chernozhukov, Newey, and Singh 2022; 

and Graham and Campos de Xavier Pinto 2022). Here we summarize the last two 

approaches.

For the interacted regression solution, we adapt the implementation for the binary 

treatment case discussed in Imbens and Wooldridge (2009, Section 5.3) to multiple 

treatments. Speci�cally, consider the speci�cation:

(16)   Y i   =  X  i  ′   β +  q 0   ( W i  )  +   ∑ 
k=1

  
K

    X ik   ( q k   ( W i  )  − E [ q k   ( W i  ) ] )  +   U ˙   i  , 

where   q k   ∈  ,  k = 0,  … , K  and we continue to de�ne  β  and the functions   q k    as 

minimizers of  E [  U ˙    i  
2 ]  . When    consists of linear functions, equation (16) speci�es 

a linear regression of   Y i    on   X i   ,   W i   , a constant, and the interactions between each 

treatment indicator   X ik    and the demeaned control vector   W i   − E [ W i  ]  . De�ne   μ k   (w)   
= E [ Y i   (k)  ∣  W i   = w]   for  k = 0,  … , K , so that   τ k   (w)  =  μ k   (w)  −  μ 0   (w)  .  
If Assumption 1 holds and    is furthermore rich enough to ensure   μ k   ∈   for  

k = 0,  … , K  then  β = τ . Moreover,   q k   (w)  =  τ k   (w)   for  k = 1,  … , K , such that 

the regression identi�es both the unconditional and conditional ATEs.

The added interactions in equation (16) ensure that each treatment coef�cient   β k    
is determined only by the outcomes in treatment arms with   D i   = 0  and   D i   = k ,  

avoiding the contamination bias in Proposition 1. Demeaning the   q k   ( W i  )   in the 

interactions ensures they are appropriately centered to interpret the coef�cients on 

the uninteracted   X ik    as ATEs.

Estimation of equation (16) is conceptually straightforward for parametric   q k   . In 

particular, if    consists of linear functions, one simply estimates

(17)   Y i   =  α 0   +   ∑ 
k=1

  
K

    X ik    τ k   +  W  i  ′    α W,0   +   ∑ 
k=1

  
K

    X ik    ( W i   −  W 
–
  )  ′    γ W,k   +   U ˙   i  . 

by ordinary least squares (OLS), where   W 
–
   =   1 _ 

N
    ∑ i  

     W i    is the sample average of the 

covariate vector. More generally, to increase the plausibility of the key assumption 

that   μ k   ∈  , one may constrain  only by nonparametric smoothness assumptions. 

Given a sequence of basis functions    { b j   ( W i  ) }   
j=1

  
∞

   , such as polynomials or splines, one 
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then approximates   q k    with a linear combination of the �rst  J  terms, with  J  increasing 

with the sample size, thus tailoring the model complexity to data availability. Given 

a choice of  J , estimation and inference can proceed as in the parametric case; the 

only difference is that the baseline covariates   W i    in equation (17) are replaced by 

the basis vector    ( b 1   ( W i  ) ,  … ,  b J   ( W i  ) )  ′    and   W 
–
    is replaced by the sample average 

of this expansion. This estimator has been studied in the binary treatment case by 

Chen, Hong, and Tarozzi (2008) and Imbens, Newey, and Ridder (2007), with the 

latter providing a detailed analysis of how to choose  J  and the former showing that 

this sieve estimator achieves the semiparametric ef�ciency bound under strong over-

lap: it is impossible to construct another regular estimator of the ATE with smaller 

asymptotic variance.

An attractive alternative approach combines the interacted regression with inverse 

propensity score weighting. Instead of using OLS to estimate equation (16) one uses 

weighted least squares, weighting observations by the inverse of some estimate    p ˆ    D i     
( W i  )   of the propensity score (e.g., Robins, Rotnitzky, and Zhao 1994; Wooldridge 

2007; and Słoczyński and Wooldridge 2018). An advantage of this approach is 

that it is  doubly robust: the estimator is consistent so long as either the propen-

sity score estimator is consistent or the outcome model is correct (i.e.,   μ k   ∈  ). A 

recent literature shows how the double robustness property, when combined with 

 cross-�tting, reduces the sensitivity of the ATE estimate to over �tting or regulariza-

tion bias in estimating the nuisance functions   p k    and   μ k   .  Cross-�tting also allows for 

using more �exible methods to approximate   p k    and   μ k   , including modern machine 

learning methods (see, e.g. Chernozhukov et al. 2018; Chernozhukov et al. 2022; 

Chernozhukov, Newey, and Singh 2022).
Either approach should work reliably in conventional strati�ed RCTs and other 

settings with strong overlap. But under weak overlap, when propensity scores are 

not bounded away from zero and one, all of these ATE estimators may be impre-

cise and have poor  �nite-sample behavior. This is not a shortcoming of the speci�c 

estimator; indeed, Khan and Tamer (2010) show that under weak overlap,   √ 
_

 N   -esti-

mation of the ATE is not possible. Furthermore, if some propensity scores attain 

values of zero or one, the ATE is not even  point-identi�ed. These results formalize 

the intuition that it is dif�cult or impossible to estimate the counterfactual outcomes 

for units with extreme propensity scores.13 Such extreme propensity scores are 

common in observational settings. The solutions we discuss next downweight these 

 dif�cult-to-estimate counterfactuals to address this practical challenge.

B.  Easiest-to-Estimate Averages of Treatment Effects

Suppose in a sample of observations  i = 1,  … , N  we wish to esti-

mate a weighted average of conditional potential outcome contrasts  

  ∑ i=1  
N   λ ( W i  )  ∑ k=0  

K    c k    μ k   ( W i  )  /  ∑ i=1  
N   λ ( W i  )  , where   μ k   ( W i  )  = E [ Y i   (k)  ∣  W i  ]  ,  c  is a  

  (K + 1)  -dimensional contrast vector with elements   c k   , and  λ ( W i  )   is some weighting 

13 One approach to limited overlap is trimming: that is, dropping observations with extreme propensity scores 
(Crump et al. 2006, 2009; Yang et al. 2016). As with the estimators we derive next, trimming estimators shift the 
estimand from ATE to  easier-to-estimate weighted averages of conditional ATEs.
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scheme.14 We focus on two speci�cations for the contrast vector, leading to two 

alternatives the ATE target. First, for separately estimating the effect of each treat-

ment  k , we set   c k   = 1 ,   c 0   = − 1  and set the remaining entries of  c  to  0 . The con-

trast of interest then becomes   ∑ i=1  
N
   λ ( W i  )   τ k   ( W i  )  /  ∑ i=1  

N
   λ ( W i  )  , the weighted ATE of 

treatment  k . Second, we specify  c  so as to allow us to simultaneously contrast the 

effects of all  K  treatments;  we discuss this further below. For each contract vector  

c , we characterize in this section the  easiest-to-estimate weighting (EW) scheme  

 λ ( W i  )   that leads to the smallest possible standard errors under homoskedasticity. We 

discuss estimation of the corresponding estimands in Section IIIC.

This optimization problem has four motivations. First, there is a robustness moti-

vation: a researcher would like to estimate a given contrast as precisely as possible, 

at least under the benchmark of constant treatment effects, while being robust to 

the possibility that the effects are heterogeneous. While the optimization problem 

does not impose convexity, it turns out that the EW scheme is convex. Hence, the 

resulting estimand identi�es a convex average of conditional contrasts under het-

erogeneous treatment effects, and avoids any contamination bias. Such a robustness 

property presumably underlies the popularity of regression as a tool for estimating 

the effect of a binary treatment: the regression estimator is ef�cient under homoske-

dasticity and constant treatment effects while, by the Angrist (1998) result, retaining 

a causal interpretation under heterogeneous effects.15

Second, the EW scheme gives a bound on the information available in the data: if 

the scheme yields overly large standard errors, inference on other treatment effects 

(such as the unweighted ATE) must be at least as uninformative. Computing the 

EW standard errors thus reveals whether informative conclusions for any treatment 

effect estimand are only possible under additional assumptions or with the aid of 

additional data. In fact, we show below that in the binary treatment case the EW 

scheme is exactly the same as that used by regression. Recall that in the binary 

treatment case, the regression treatment weights are proportional to the conditional 

variance of treatment,  var [ D i   ∣  W i  ]  =  p 1   ( W i  )  (1 −  p 1   ( W i  ) )  . Because these weights 

tend to zero as   p 1   ( W i  )   tends to zero or one, regression downweights observations 

with extreme propensity scores where the estimation of counterfactual outcomes is 

dif�cult, avoiding the poor  �nite-sample behavior of ATE estimators under weak 

overlap and allowing for informative inference even when one cannot precisely esti-

mate the unweighted ATE.

Third, the EW scheme can be viewed as offering an intermediate point along a 

particular  robustness-precision “possibility frontier.” The ATE estimator based on 

the interacted speci�cation in equation (16) lies on one end of this frontier, being 

the most robust to treatment effect heterogeneity (i.e. retaining a clear interpretation 

regardless of the form of  τ (w)   or how it relates to the propensity scores). But this 

robustness comes at the cost of imprecision and  nonstandard inference under weak 

14 In a slight abuse of notation relative to Section II, the weights  λ  here are not required to average to one. 
Instead, we scale the estimand by the sum of the weights,   ∑ i=1  

N
   λ ( W i  )  .

15 There are several motivations for the interest in convex weights. First,  λ ( W i  )  ≥ 0  ensures the estimand 
captures average effects for some  well-de�ned (and characterizable) subpopulation. Second, it prevents what Small 
et al. (2017) call a  sign-reversal: if   τ k   (w)   has the same sign for all  w  ( + , 0  or  − ), then the estimand will also have 
this sign. Blandhol et al. (2022) call such estimands “weakly causal.” Finally, the estimand satis�es a population 
version of what Robins et al. (2007) call boundedness: the estimand lies in the support of   τ k   (w)  .
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overlap. The regression estimator based on equation (8) lies on the other end of the 

frontier: it is likely to be precise even when overlap is weak (and is ef�cient under 

homoskedasticity if the partly linear model in equation (8) is correct, such that treat-

ment effects are constant). But this precision comes at the cost of contamination 

bias under heterogeneous treatment effects. The EW scheme lies in between these 

extremes, purging contamination bias and retaining good performance under weak 

overlap by giving up explicit control over the treatment effect weighting, letting it 

be  data-determined.16

Finally, while the derivation of the EW scheme is motivated by statistical pre-

cision concerns, the resulting estimand can be seen as identifying the impact of a 

policy that manipulates the treatment via a particular incremental propensity score 

intervention. We discuss this interpretation in Remark 6 below.

We derive the EW scheme in two steps. First, we establish a precision benchmark 

(a semiparametric ef�ciency bound) for estimation of a given weighted average of 

treatment effects under the idealized scenario that the propensity score is known. 

Second, we determine which weights  λ  minimize the bound.

The following proposition establishes the �rst step of our derivation:

PROPOSITION 2: Suppose equation (11) holds in an i.i.d. sample of size  N , with 

known  nondegenerate propensity scores   p k   ( W i  )  . Let   σ  k  
2  ( W i  )  = var [ Y i   (k)  ∣  W i  ]  . 

Consider the problem of estimating the weighted average of contrasts

   θ λ,c   =   1 ________ 
 ∑ i=1  

N   λ ( W i  ) 
     ∑ 
i=1

  
N

   λ ( W i  )   ∑ 
k=0

  
K

    c k    μ k   ( W i  ) , 

where the weighting function  λ  and contrast vector  c  are both known. Suppose the 

weighting function satis�es  E [λ ( W i  ) ]  ≠ 0 , and that the second moments of  λ ( W i  )    
and  μ ( W i  )   are bounded. Then, conditional on the controls   W 1  ,  … ,  W N   , the semi-

parametric ef�ciency bound is  almost-surely given by

(18)    λ,c   =   1 _ 
E   [λ ( W i  ) ]    

2
 
   E [  ∑ 

k=0

  
K

     
λ   ( W i  )    2   c  k  2   σ  k  

2  ( W i  )   ____________  
 p k   ( W i  ) 

  ] . 

As formalized in the online Appendix A.2 proof,    λ,c    establishes the lower bound on 

the asymptotic variance of any regular estimator of   θ λ,c    under the idealized case of 

known propensity scores.17

16 There are other approaches to resolving the  robustness-precision tradeoff, such as seeking precise estimates 
subject to the weights  λ  remaining “close” to one, or placing some restrictions on the form of effect heterogeneity, 
in contrast to leaving it completely unrestricted as we do here (see Mogstad, Santos, Torgovitsky 2018 for an exam-
ple of this approach). We leave these alternatives to future research.

17 The ef�ciency bound for the population analog   θ  λ,c  
∗   = E [λ ( W i  )  ∑ k=0  

K     c k    μ k   ( W i  ) ] /E [λ ( W i  ) ]   has an additional  

term,  E [λ   ( W i  )    2    ( ∑ k=0  
K     c k    μ k   ( W i  )  −  θ  λ,c  

∗  )    
2 ]  / E   [λ ( W i  ) ]    

2
  , re�ecting the variability of the conditional average con-

trast. The  variance-minimizing weights for   θ  λ,c  
∗    thus depend on the nature of treatment effect heterogeneity. By 

focusing on   θ λ,c   , we avoid this term, which allows us give the characterization in equation (19) without any assump-
tions about heterogeneity in treatment effects.
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To establish the second step, we minimize equation (18) over  λ . Simple algebra 

shows that the EW scheme is (up to an arbitrary constant) given by

(19)   λ  c  
∗  ( W i  )  =   (  ∑ 

k=0

  
K

     
 c  k  

2   σ  k  
2  ( W i  )  _ 

 p k   ( W i  ) 
  )    

−1

 . 

Observe that this scheme delivers convex weights,   λ  c  
∗  ≥ 0 , even though convex-

ity was not imposed in the optimization. Hence, there is no cost in precision if we 

restrict attention to convex weighted averages of conditional ATEs.

When the contrast vector is selected to estimate the weighted average effect of a 

particular treatment  k , a corollary to Proposition 2 is that regression weights are the 

 easiest-to-estimate:

COROLLARY 1: For some  k ≥ 1 , let   c   k   be a vector with elements   c  j  
k  = 1  if  j = k ,  

  c  j  
k  = − 1  if  j = 0 , and   c  j  

k  = 0  otherwise. Suppose that the conditional variance of 

relevant potential outcomes is homoskedastic:   σ  k  
2  ( W i  )  =  σ  0  

2  ( W i  )  =  σ   2  . Then the 

 variance-minimizing weighting scheme is given by   λ   c   k   
∗   =  λ   k  , where

(20)   λ   k  ( W i  )  =   
 p 0   ( W i  )   p k   ( W i  )   ____________  

 p 0   ( W i  )  +  p k   ( W i  ) 
  . 

Per equation (14), the weighting   λ   k   coincides with the weighting of conditional 

ATEs from the partially linear model (8) when it is �t only on observations with   D i   ∈  
{0, k}  , provided   p k   /  ( p k   +  p 0  )  ∈  .18 Corollary 1 thus gives a precision justi�cation 

for estimating the effect of any given treatment  k  by a partially linear regression 

in the subsample with   D i   ∈  {0, k}   under a homoskedasticity benchmark, comple-

menting the robustness motivation discussed earlier.19 To estimate the effects of all 

treatments one can run  K  such  one-treatment-at-a-time regressions, one for each 

treatment arm. Plugging equation (20) into equation (18) reveals that the asymptotic 

variance is bounded so long as the overlap between the covariate distribution in each 

treatment arm is nonempty: that is,  Pr ( { W i   :  p k   ( W i  )  > ε}  ∩  { W i   :  p 0   ( W i  )  > ε} )   
> ε  for some  ε > 0 .

For binary treatments, Crump et al. (2006, Corollary 5.2) and Li, Morgan, and 

Zaslavsky (2018, Corollary 1) show that the weighting   p 1   ( W i  )  (1 −  p 1   ( W i  ) )   min-

imizes the asymptotic variance of a particular class of inverse propensity score 

weighted estimators. Our Corollary 1 extends the property to all regular estimators, 

and to multiple treatments.

Remark 5: The  one-treatment-at-a-time regression can also be motivated as a 

direct solution to contamination bias in the partially linear regression in equation 

(8). In particular, as discussed in Section IIA, contamination bias arises because 

the implicit linear probability model   E   ∗  [ X ik   ∣  X i,−k  ,  W i  ]   incorrectly imposes additive 

18 This follows since the propensity score in the subsample is given by  Pr ( D i   = k ∣  W i  ,  D i   ∈  {0, k} )   
=   

 p k   ( W i  )  _  
 p 0   ( W i  )  +  p k   ( W i  ) 

   , so that   λ   k  ( W i  )   in equation (20) equals the conditional variance of the treatment indicator times 

the probability of being in the subsample.
19 As usual, homoskedasticity is a tractable baseline: the arguments in favor of OLS following Corollary 1 can 

be extended to favor a (feasible) weighted least squares regression when   σ   2  ( W i  )   is consistently estimable.
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separability between   X i,−k    and   W i   . To solve this issue, one can include interactions 

between the controls and   X i,−k   . This is similar to the interacted regression in equation 

(16), except we exclude the interaction   X ik   ( q k   ( W i  )  − E [ q k   ( W i  ) ] )  . Simple algebra 

shows that this regression is equivalent to the  one-treatment-at-a-time regression.

Remark 6: The population analog of the estimand implied by the weighting in 

Corollary 1,  E [ λ k   ( W i  )   τ k   ( W i  ) ]  / E [ λ k   ( W i  ) ]  , also identi�es the effect of a particu-

lar marginal policy intervention. Consider the effects of a class of policies indexed 

by a scalar  δ  that restrict treatments to   {0, k}   by increasing the propensity score 

of treatment  k  to   p  k  
δ  ( W i  )   and setting   p  0  

δ   ( W i  )  = 1 −  p  k  
δ  ( W i  )  .20 Then the marginal 

effect of the increasing the policy intensity  δ  per unit treated at  δ = 0  is given by  

 E [∂  p  k  
δ  ( W i  )  / ∂ δ · τ ( W i  ) ]  / E [∂  p  k  

δ  ( W i  )  / ∂ δ]  (see Zhou and Opacic 2022 for derivation 

and discussion). Thus, the weights   λ k   ( W i  )  =  p 0   ( W i  )   p k   ( W i  ) / ( p 0   ( W i  )  +  p k   ( W i  ) )   
identify the marginal policy effect when they correspond to the derivative  ∂  p  k  

δ  ( W i  )  / ∂ δ .  

For example, Zhou and Opacic (2022) show this holds for policies that increase 

the log odds of a single binary treatment by a constant  δ , such as by increasing the 

intercept in a logit model for treatment.

A shortcoming of the EW scheme in Corollary 1 is that it is  treatment-speci�c, 

making it dif�cult to compare the  weighted-average effects across treatments.21 

This issue is especially salient when the control group is arbitrarily chosen, such 

as in teacher VAM regressions which omit an arbitrary teacher from estimation and 

seek causal comparisons across all teachers.

We thus turn to the question of how Proposition 2 can be used to select a weight-

ing scheme which allows for simultaneous comparisons across all treatment 

arms. Suppose that the contrast of interest is drawn at random from a given mar-

ginal treatment distribution  Pr ( D i   = k)  =  π k   , so that   c j   = 1  with probability  

  π j   (1 −  π j  )  /  (1 −  ∑ k=0  
K    π  k  

2 )   and   c j   = − 1  with the same probability.22 Let   F π    denote 

this distribution over the (now random) contrasts. If the researcher wishes to report 

an accurate contrast estimate but needs to commit to a weighting scheme before 

knowing the contrast of interest, it is optimal to minimize the expected variance

   ∫ 
 
  
 

     λ,c   � F π   (c)  =   1  __________________   
E   [λ ( W i  ) ]    

2
  (1 −  ∑ k=0  

K
    π  k  

2 ) 
     ∑ 
k=0

  
K

   E [  
λ   ( W i  )    2  2 π k   (1 −  π k  )   σ  k  

2  ( W i  )    ___________________  
 p k   ( W i  ) 

  ] . 

Minimizing this expression over  λ  is equivalent to minimizing equation (18) 
with   c  k  

2  = 2 π k   (1 −  π k  )  , which yields equation (19) with this contrast speci-

�cation as the optimal weighting. Thus, the optimal weights are proportional 

20 With multiple treatments, policy relevance of any contrast only involving two treatments will generally 
require the policy to restrict the number of treatments to preclude �ows in and out of multiple treatment states. For 
instance, the ATE gives the effect of comparing two policies: one makes only treatment  k  available, while the other 
makes only treatment  0  available.

21 Formally, for treatments  1  and  2 , we estimate the weighted averages   ∑ i  
     λ   1  ( W i  )   τ 1   ( W i  )  /  ∑ i  

     λ   1  ( W i  )   and  
  ∑ i  

     λ   2  ( W i  )   τ 2   ( W i  )  /  ∑ i  
     λ   2  ( W i  )  . Because the weights   λ   1   and   λ   2   differ, the difference between these estimands cannot 

generally be written as a convex combination of conditional treatment effects   τ 1   ( W i  )  −  τ 2   ( W i  )  . This critique also 
applies to the  own-treatment weights in Proposition 1. Thus even without contamination bias one may �nd the 
implicit  multiple-treatment regression weighting de�cient.

22 Formally, we draw two treatments at random from the given marginal distribution, discarding the draw if the 
two treatments are equal.
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to    [ ∑ k=0  K      
 π k   (1 −  π k  )   σ  k  

2  ( W i  )   ___________ 
 p k   ( W i  ) 

  ]    
−1

  . Specializing to the homoskedastic case leads to the 

following result.

COROLLARY 2: Let   F π    denote the distribution over possible contrast vectors such 

that   P  F π     ( c k   = 1)  =  P  F π     ( c k   = − 1)  =  π j   (1 −  π j  )  /  (1 −  ∑ k=0  
K     π  k  

2 )  . Suppose that   
σ  k  

2  ( W i  )  =  σ   2   for all  k . Then the weighting scheme minimizing the average variance 

bound  ∫    λ,c   d F π   (c)   is given by

   λ   CW  ( W i  )  =   [  ∑ 
k=0

  
K

      
 π k   (1 −  π k  )  _ 

 p k   ( W i  ) 
  ]    

−1

 . 

The  easiest-to-estimate common weighting (CW) scheme   λ   CW   generalizes the 

intuition behind the single binary treatment (Corollary 1), placing lower weight on 

strata with extreme propensity scores. When the treatment is binary,  K = 1 , the   π k   ’s  

do not matter and the CW scheme reduces to that in Corollary 1:   λ   CW  ( W i  )   
=  λ   1  ( W i  )  =  λ   0  ( W i  )  =  p 1   ( W i  )   p 0   ( W i  )  . With multiple treatments, however, the 

weights   λ   CW   remain the same for every treatment, allowing for simultaneous com-

parisons across all treatment pairs   (k, ℓ)  .
There are two natural choices for the marginal treatment probabilities  π . First, 

when equally interested in all contrasts, one can set   π k   = 1/ (K + 1)  . This weight-

ing scheme was previously proposed by Li and Li (2019); our characterization of 

it in terms of optimizing a semiparametric ef�ciency bound is, to our knowledge, 

novel. Second, if more common treatments are of greater interest, we may set   π k    to 

the empirical treatment probabilities   N   −1   ∑ i  
     X ik   . This weighting targets precise esti-

mation of contrasts involving more common treatments at the expense of contrasts 

involving less common treatments. We use this choice in our empirical applications 

in Section IV. For either choice of weights, the resulting asymptotic variance in equa-

tion (18) remains bounded so long as the overlap between covariate distributions 

in each treatment arm is not empty:  Pr ( ∩  k=0  
K   { W i   :  p k   ( W i  )  > ε} )  > ε  for some  

ε > 0 .  Nonempty overlap is a substantially weaker assumption than strong overlap, 

needed for   √ 
_

 N   -estimation of the unweighted ATE, which requires this probability 

to equal one. For instance, in the nine empirical applications below,  nonempty over-

lap always holds, but strong overlap fails in six applications.

C. Practical Guidance in Measuring and Avoiding Contamination Bias

A researcher interested in estimating the effects of multiple mutually exclusive 

treatments with regression can use Proposition 1 to measure the extent of contam-

ination bias in their estimates. When the propensity score is not fully degenerate, 

they can further estimate one of the alternative estimation targets discussed in the 

previous subsections. Here we provide practical guidance on both procedures, which 

we illustrate empirically in the next section.

For simplicity, we focus on the case where  g  is linear and equation (8) is esti-

mated by OLS. We suppose Assumption 1 and both conditions in Assumption 2 

hold, such that all propensity scores   p k    and potential outcome conditional expec-

tation functions   μ k    are linearly spanned by the controls   W i   . These conditions hold, 
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for example, when   W i    contains a set of mutually exclusive group indicators. When 

 is unrestricted, the recommendations in this section would require  nonparametric 

approximations for  g  analogous to those discussed in Section IIIA.

Under this setup, we can decompose the OLS estimator   β ˆ    from the uninteracted 

regression

(21)   Y i   = α +   ∑ 
k=1

  
K

    X ik    β k   +  W  i  ′  γ +  U i  , 

to obtain a sample analog of the decomposition in Proposition 1. To this end, note 

that the  own-treatment and contamination bias weights in Proposition 1 are identi-

�ed by the linear regression of   X i    on the residuals    X ̃   i   . Speci�cally,   λ kℓ   ( W i  )   is given 

by the   (k, ℓ)  th element of the  K × K  matrix  Λ ( W i  )  = E  [  X ̃   i     X ̃    i  ′  ]    
−1

  E [  X ̃   i    X  i  ′   ∣  W i  ]  ,  
which can be estimated by its sample analog    Λ ˆ   i   =   (  X ˙   ′    X ˙  )    −1

    X ˙   i    X  i  ′   , where    X ˙   i    is the 

sample residual from an OLS regression of   X i    on   W i    and a constant and   X ˙    is a 

matrix collecting these sample residuals. The   (k, ℓ)  th element of    Λ ˆ   i    estimates the 

weight that observation  i  puts on the  ℓ th treatment effect in the  k th treatment coef-

�cient. For  k = ℓ  this is an estimate of the  own-treatment weight in Proposition 1; 

for  k ≠ ℓ  this is an estimate of a contamination weight.

Under linearity, the  k th conditional ATE may be written as   τ k   ( W i  )  =  γ 0,k   +  
 W  i  ′    γ W,k   , where   γ 0,k    and   γ W,k    are coef�cients in the interacted regression speci�cation

(22)   Y i   =  α 0   +   ∑ 
k=1

  
K

    X ik    γ 0,k   +  W  i  ′    α W,0   +   ∑ 
k=1

  
K

    X ik    W  i  ′    γ W,k   +   U ˙   i  . 

Estimating equation (22) by OLS yields estimates    τ ˆ   k   ( W i  )  =   γ ˆ   0,k   +  W  i  ′     γ ˆ   W,k   . For 

each observation  i , we stack the set of conditional ATE estimates in a  K × 1  vector   
τ ˆ   ( W i  )  .

Using the OLS normal equations, we then obtain a sample analog of the popula-

tion decomposition in Proposition 1:

(23)   β ˆ   =   ∑ 
i=1

  
N

    diag (  Λ ˆ   i  )  τ ˆ   ( W i  )  +   ∑ 
i=1

  
N

    [  Λ ˆ   i   − diag (  Λ ˆ   i  ) ]  τ ˆ   ( W i  ) . 

The �rst term estimates the  own-treatment effect components,  E [ λ kk   ( W i  )   τ k   ( W i  ) ]  ,  
while the second term estimates the contamination bias components,  

  ∑ ℓ≠k  
 
   E [ λ kℓ   ( W i  )   τ ℓ   ( W i  ) ]  . If the contamination bias term is large for some    β ˆ   k   , it sug-

gests the estimate of the  k th treatment effect is substantially impacted by the effects 

of other treatments. Researchers can also compare the �rst term of equation (23) 
to other weighted averages of  own-treatment effects, including the ones discussed 

next, to gauge the impact of the regression weighting  diag (  Λ ˆ   i  )  .23

Further analysis of the estimated weights    λ ˆ   kℓ   (w)  =   
 ∑ i=1  

N   1 { W i   = w}    Λ ˆ   i,kℓ    ____________  
 ∑ i=1  

N   1 { W i   = w} 
    can shed 

more light on the regression estimates in   β ˆ   . For example, the contamination weights 

for  ℓ ≠ k  can be plotted against the treatment effect estimates    τ ˆ   ℓ   ( W i  )   to visually 

assess the sources of contamination bias. Low bias may arise from limited treatment 

23 When the covariates are not saturated, it is possible that the estimated weighting function   Λ ˆ   (w)   
=   1 _ 

N
    ∑ i=1  

N   1 { W i   = w}    Λ ˆ   i    is not  positive-de�nite for some or all  w . In particular, the diagonal elements of   Λ ˆ   (w)   
need not all be positive. However, it is guaranteed that the diagonal of   Λ ˆ   (w)   sums to one and the  nondiagonal 
weights sum to zero, since   ∑ i=1  N     Λ ˆ   i   =  I k   .
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effect heterogeneity, small contamination weights, or a low correlation between the 

two.

Estimation of the unweighted ATE and the EW and CW schemes is also straight-

forward under the linearity assumptions. First, estimating equation (17) by OLS 

yields estimates of the unweighted ATEs   τ k   = E [ τ k   ( W i  ) ]  . The estimates are numer-

ically equivalent to    τ ˆ   k   =   γ ˆ   0,k   +   W 
–
   ′     γ ˆ   W,k   , where    γ ˆ   0,k    and    γ ˆ   W,k    are OLS estimates of 

equation (22).
Second, the EW scheme from Corollary 1 can be estimated using the uninteracted 

 one-treatment-at-a-time regression

(24)   Y i   =   α ¨   k   +  X ik     β ¨   k   +  W  i  ′     γ ¨   k   +   U ¨   ik  , 

where we only use observations assigned either to treatment  k  or the control group.

The third solution is to estimate the CW scheme   λ   CW   from Corollary 2. We use 

inverse propensity score weighting in our applications below: we regress   Y i    onto   
X i    and a constant, weighting each observation by    λ ˆ     CW

  ( W i  )  /   p ˆ    D i     ( W i  )   where    p ˆ   k   ( W i  )   
denotes estimated propensity scores from a multinomial logit model and

(25)    λ ˆ     CW
  ( W i  )  =   [  ∑ 

k=0

  
K

      
 π k   (1 −  π k  )  _ 

  p ˆ   k   ( W i  ) 
  ]    

−1

  

is an estimate of   λ   CW  . When the weights  π  are uniform, this estimator reduces to 

the estimator studied in Li and Li (2019). The resulting estimator can be written as

(26)    β ˆ     λ ˆ     CW
 ,k   =   1 ____________  

 ∑ i=1  
N      

   λ ˆ     CW
  ( W i  )  _____ 

  p ˆ   k   ( W i  ) 
    X ik  

     ∑ 
i=1

  
N

      
  λ ˆ     CW

  ( W i  )  _______ 
  p ˆ   k   ( W i  ) 

    X ik    Y i   

            −   1 ____________  
 ∑ i=1  

N      
  λ ˆ     CW

  ( W i  )  _____ 
  p ˆ   0   ( W i  ) 

    X i0  
     ∑ 

i=1

  
N

      
  λ ˆ     CW

  ( W i  )  _______ 
  p ˆ   0   ( W i  ) 

    X i0   Y i  . 

When the treatment is binary and    p ˆ   k    is obtained via a linear regression, this weighted 

regression estimator coincides with the usual (unweighted) regression estimator that 

regresses   Y i    onto   D i    and   W i   .24 Proposition A.1 in online Appendix A shows that the 

estimator    β ˆ     λ ˆ     CW
     is ef�cient in the sense that it achieves the semiparametric ef�ciency 

bound for estimating   β  λ   CW    =  ∑ i  
     λ   CW  ( W i  ) τ ( W i  )  /  ∑ i  

     λ   CW  ( W i  )  .

Remark 7: The estimator    β ˆ     λ ˆ     CW
     is justi�ed by a parametric model for the pro-

pensity score. In order to guard against misspeci�cation of the propensity score, 

mirroring the discussion in Section IIIA, it may be attractive to instead use a dou-

bly robust version of this estimator that combines propensity score weighting with 

a regression adjustment using an estimate of   μ k   . Another approach is a weighted 

24 To see this, note that in this case   λ ˆ   ( W i  )  =   p ˆ   1   ( W i  )    p ˆ   0   ( W i  )  , so that    β ˆ     λ ˆ     CW
 ,1    

=   
 ∑ i=1  

N    (1 −   p ˆ   1   ( W i  ) )   D i    Y i    _____________  
 ∑ i=1  

N    (1 −   p ˆ   1   ( W i  ) )   D i  
   −   

 ∑ i=1  
N      p ˆ   1   ( W i  )  (1 −  D i  )   Y i    _____________  

 ∑ i=1  
N      p ˆ   1   ( W i  )  (1 −  D i  ) 

   =   
 ∑ i=1  

N    ( D i   −   p ˆ   1   ( W i  ) )   Y i  
  _____________  

 ∑ i=1  
N      ( D i   −   p ˆ   1   ( W i  ) )    2 

   , where the second equality uses the least- 

squares normal equations   ∑ i=1  N    X i1   =  ∑ i=1  
N      p ˆ   1   ( W i  )   and   ∑ i  

      X i1     p ˆ   1   ( W i  )  =  ∑ i=1  
N      p ˆ   1     ( W i  )    2  .
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version of the approach of De los Angeles Resa and Zubizarreta (2020), in which the 

observations are weighted by    λ ˆ     CW
   multiplied by balancing weights (instead of the 

inverse estimated propensity score).25 We leave detailed study of these approaches 

to future research.

Remark 8: Under homoskedasticity, the second and third solutions yield estimates 

with smaller asymptotic variance than the estimator of the unweighted ATE. These 

gains in precision are achieved by changing the estimand to a different convex average 

of conditional treatment effects. In particular, covariate values  w  where the propen-

sity score   p k   (w)   is close to zero for some  k  will be effectively discarded. In practice, 

explicitly plotting the treatment weights   λ   CW   and   λ   k   may help to identify the types 

of individuals who are downweighted by these solutions, and to assess the variation 

in these weights. Plotting them against treatment effect estimates    τ ˆ   k    can help visu-

ally assess the extent to which differences in weighting schemes drive differences in 

between estimates. In particular, the difference between the ATE and any weighted 

ATE estimand of the effect of treatment  k  with weights  λ ( W i  )  , normalized such 

that  E [λ ( W i  ) ]  = 1  is given by  E [λ ( W i  )   τ k   ( W i  ) ]  − E [ τ k   ( W i  ) ]  = E [λ ( W i  )   τ k   ( W i  ) ]   
− E [λ ( W i  ) ] E [ τ k   ( W i  ) ]  = cov [λ ( W i  ) ,  τ k   ( W i  ) ]  . Thus, if the own treatment weights  
λ  display only a weak covariance with own treatment effect, the weighting will have 

little effect on the estimand. This is analogous to the observation in Remark 1 that 

contamination bias re�ects the covariance between the contamination weights and 

treatment effects of the other treatments.

IV. Applications

A. Project STAR Application

We �rst illustrate our framework for analyzing and addressing contamination bias 

with data from Project STAR (Achilles et al. 2008), as studied in Krueger (1999).26 

The Project STAR RCT randomized students in 79 public Tennessee elementary 

schools to one of three types of classes:  regular-sized (20–25 students), small (target 

size 13–17 students), or  regular-sized with a teaching aide. The proportion of stu-

dents randomized to the small class size and teaching aide treatment varied across 

schools, due to school size and other constraints on classroom organization. Students 

entering kindergarten in the 1985–1986 school year participated in the experiment 

through the third grade. We focus on kindergarten effects, where differential attri-

tion and other complications with the experimental analysis are minimal.27

Column 1 of panel A in Table  1 reports estimates of kindergarten treatment 

effects in a sample of 5,868 students initially randomized to the small class size and 

25 Under propensity score misspeci�cation,    λ ˆ     CW
   would generally converge to a probability limit    λ ̃     CW   that may 

be different from   λ   CW  . Both of these alternative approaches would estimate a weighted average of ATEs weighted 
by    λ ̃     CW   in this case.

26 Data and code for all empirical results are available at  Goldsmith-Pinkham et al. (2024).
27 Students in  regular-sized classes were randomly reassigned between classrooms with and without a teaching 

aide after kindergarten, complicating the interpretation of the aide effect in later grades. The randomization proba-
bilities for students entering a participating school in grades 1–3 were different due to uneven availability of slots 
in small and  regular-sized classes Krueger (1999).
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teaching aide treatments. Speci�cally, we estimate the partially linear regression 

(equation (21)) where   Y i    is student  i ’s test score achievement at the end of kinder-

garten,   X i   =  ( X i1  ,  X i2  )   are indicators for the initial experimental assignment to a 

small kindergarten class and a  regular-sized class with a teaching aide, respectively, 

and   W i    is a vector of school �xed effects. We follow Krueger (1999) in computing   
Y i    as the average percentile of student  i ’s math, reading, and word recognition score 

on the Stanford Achievement Test in the experimental sample. As in the original 

analysis (Krueger 1999, column 6 of Table V, panel A), we obtain a small class size 

effect of 5.31 with a  heteroskedasticity-robust standard error of 0.77 and a teaching 

aide effect of 0.21 (standard error: 0.72).28

As discussed in Section I, treatment assignment probabilities vary across the 

schools indicated by the �xed effects in   W i   . If treatment effects also vary across 

schools in a way that covaries with the contamination weights   λ kℓ   ( W i  )  , we expect 

28 Our estimates are similar to, but not exactly the same as, those in Krueger (1999). The main text reports 
estimates of an overlap sample that drops one school with no regular classrooms. Full sample estimates, reported 
in , are nearly identical, but the decomposition in Proposition 1 is not identi�ed in the full sample. We use 
 heteroskedasticity-robust ( nonclustered) standard errors throughout this analysis, since the randomization of stu-
dents to classrooms is at the individual level.

Table 1—Project STAR Contamination Bias and Treatment Effect Estimates

  β ˆ   Own ATE EW CW

(1) (2) (3) (4) (5)

Panel A. Treatment effect estimates
Small class size 5.311 5.156 5.515 5.248 5.529

(0.774) (0.773) (0.758) (0.771) (0.760)
[0.740] [0.739] [0.738]

Teaching aide 0.205 0.388 0.099 0.292 0.040

(0.716) (0.710) (0.705) (0.711) (0.708)
[0.691] [0.688] [0.691]

Number of controls 78
Sample size 5,902

 Worst-case bias

Bias Negative Positive

(1) (2) (3)

Panel B. Contamination bias estimates

Small class size 0.155 −1.643 1.659

(0.160) (0.184) (0.186)
Teaching aide −0.184 −1.521 1.522

(0.149) (0.175) (0.176) 

Notes: Panel A gives estimates of small class and teaching aide treatment effects for the Project 
STAR kindergarten analysis. Column 1 reports estimates from a partially linear model in equa-
tion (21), column 2 reports the  own-treatment component of the decomposition in equation 
(23), column 3 reports the interacted regression estimates based on equation (17), column 4 
reports estimates based on the EW scheme using  one-treatment-at-a-time regressions in equa-
tion (24), and column 5 uses the CW scheme based on equation (25). Panel B gives the con-
tamination bias component of the decomposition in equation (23) in column 1, while columns 
2 and 3 reports the smallest (largest) possible contamination bias from reordering the condi-
tional ATEs to be as negatively (positively) correlated with the  cross-treatment weights as pos-
sible. Robust standard errors are reported in parentheses. Robust standard errors that assume 
the propensity scores are known are reported in square brackets.

Sources: Achilles et al. (2008); authors’ calculations
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the estimated effect of small class sizes to be partly contaminated by the effect of 

teaching aides (and vice versa). Panel B reports the contamination bias part of the 

decomposition in equation (23), which appears minimal for both treatment arms.

It is useful to decompose the contamination bias further into the standard devia-

tion of the  school-speci�c treatment effect   τ ℓ   ( W i  )  , standard deviation of the contam-

ination weights, and their correlation, as discussed in Remark 1. Figure D.2 in online 

Appendix D does this graphically, plotting estimates of the  school-speci�c treat-

ment effects   τ ℓ   ( W i  )   against the contamination weights   λ kℓ   ( W i  )   for  ℓ ≠ k . As can 

be seen from Figure D.2, the variability of  school-speci�c treatment effects is sub-

stantial: Adjusting for estimation error, we estimate the standard deviation of   τ k   ( W i  )    
to be 10.9 for the small class treatment and of 9.1 for the aide treatment.29 Both 

standard deviations are an order of magnitude larger than the standard errors in 

Table 1. On the other hand, the standard deviations for the contamination weights 

for the small class and aide treatment are only moderate:  0.14  and  0.11 , respectively. 

Moreover, the correlation between the conditional treatment effects and the contam-

ination weights is weak:  0.10  for the small class effect estimate and  − 0.13  for the 

aide effect estimate. The moderate variation in the contamination weights coupled 

with weak correlation between the weights and the treatment effects explains why 

the contamination bias is small, even though the treatment effects vary substantially 

across schools.

Had the experimental design been such that the contamination weights strongly 

correlate with the treatment effects, sizable contamination bias could have resulted. 

To illustrate this, we compute  worst-case (positive and negative) weighted averages 

of the estimated   τ ℓ   ( W i  )   by  reordering them across the computed  cross-treatment 

weights   λ kℓ   ( W i  )  . This exercise highlights potential scenarios in which the random-

ization strata happened to have been highly correlated with the effect heterogeneity. 

Columns 2 and 3 in panel B of Table 1 show that both bounds on possible contam-

ination bias are an order of magnitude larger than the actual contamination bias:   
[− 1.65, 1.67]   for the small class size treatment and   [− 1.53, 1.53]   for the teaching 

aide treatment.30 Overall, for both treatments, the underlying heterogeneity in this 

setting makes substantial contamination bias possible even though actual contami-

nation bias turns out to be relatively small.

Columns 2–5 of panel A report four treatment effect estimates that are free of 

contamination bias. Column 2 gives the  own-treatment effect component of the 

decomposition in equation (23), netting out the contamination bias estimate from 

column 1. This nearly doubles the teaching aide effect estimate, from 0.21 to 0.39, 

but the estimate remains statistically insigni�cant; the small classroom estimate 

moves very little. The remaining columns report the three solutions to contamina-

tion bias discussed in Section III. Column 3 estimates the unweighted ATEs of the 

small class size and teaching aide treatment, by estimating the interacted regres-

sion speci�cation in equation (17). Column 4 estimates the  one-treatment-at-a-time 

29 We adjust for estimation error by subtracting the average squared standard error from the empirical variance 
of the treatment effect estimates and taking the square root.

30 The point estimates and standard errors in columns 4 and 5 in Table 1 do not account for the fact that the 
 reordering is based on estimates of   τ k   ( W i  )   rather than the true treatment effects. This biases the reported estimates 
away from zero, so that they give an upper bound for the  worst-case contamination bias.
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regressions in equation (24) for  k = 1, 2 . Finally, column 5 runs a weighted regres-

sion of   Y i    onto   X i    using the CW scheme in equation (25).
There turns out to be little difference between these alternative estimates. The 

small class size effect varies between 5.2 and 5.5, which is close to the original esti-

mate. The teaching aide effect varies between 0.01 and 0.29. To understand this lack 

of variation, recall from Remark 8 that the difference between the unweighted ATE 

and an estimand that uses weights  λ ( W i  )   is given by the covariance between  λ ( W i  )    
and the conditional ATEs   τ k   ( W i  )  . Given the sizable variability in the treatment effect 

estimates, the covariance will be small only if the correlation between the weights 

and the treatment effects is small and if the weights display limited variability. 

This turns out to be the case here, as depicted graphically in Figure D.3 in online 

Appendix D. The �gure shows that the correlations fall below  0.25  in absolute value 

for all weighting schemes, and that the weights only vary between 0.7 and 1.2.

As a consequence of strong overlap, the standard errors are similar across the 

columns. Indeed, the ef�ciency gain of the EW scheme relative to the ATE based on 

an ef�ciency bound comparison using equation (18) with  λ =  λ   k   versus  λ = 1  

is less than 1.6 percent for both treatments under homoskedasticity; the gain is 

even smaller under the CW scheme. The reported standard errors, which allow 

for heteroskedasticity and don’t assume known propensity scores, align with this 

prediction.31 As discussed in Remark A.1 in online Appendix A.3, these standard 

errors are affected by the assumption of known propensity scores, used to derive 

the weighting schemes underlying the estimates in columns 2 and 3. To gauge the 

impact of this assumption, we also report a version of the standard errors computed 

under the assumption that the sample treatment probabilities in each school match 

the true propensity scores. This changes the standard errors little, showing that there 

is minimal cost to estimating the weights.

B. Further Applications

We next study the broader relevance of contamination bias using data from eight 

additional studies with  multiple-treatment regressions. These studies were identi-

�ed by a systematic search of papers in the AEA Data and Code Repository from 

2013–2022 (see online Appendix C.1 for details). Five studies are experiments like 

Project STAR; the remaining three use observational regressions to estimate racial 

disparities across multiple race groups (which we interpret as descriptive, following 

Remark 4).32 We replicate a single representative speci�cation for each paper, cor-

responding to the �rst relevant regression discussed in the paper’s introduction.33 

Table 2 lists the papers and speci�cations.

31 The standard errors reported in parentheses in panel B are valid for the population analogs   β k    and   β  λ   CW    , that is,   
E [ λ   k  ( W i  )   τ k   ( W i  ) ]  / E [ λ   k  ( W i  ) ]   and  E [ λ   CW  ( W i  )   τ k   ( W i  ) ]  / E [ λ   CW  ( W i  ) ]  . Since these standard errors are potentially 
conservative when viewed as standard errors for   β k    and   β  λ   CW    , the standard error comparison gives an upper bound 
on the cost to estimating the weights.

32 We focus on observational studies of racial disparities as they often include regressions on multiple minority 
race “treatments,” use publicly available data, and are easily identi�able by a keyword search.

33 “Relevant” here means a  multiple-treatment regression speci�cation with controls, where at least one treat-
ment coef�cient was statistically signi�cant. The introduction in Cole et al. (2013) did not discuss any relevant 
speci�cations; we instead pick the �rst speci�cation with variation in treatment probabilities across strata where 
our results would be most relevant.
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We conduct two preliminary analyses of each study before assessing contamina-

tion bias and comparing alternative estimators. First, we ensure that the estimation 

sample satis�es overlap, since otherwise the decomposition in Proposition 1 is typi-

cally not identi�ed. If strong overlap fails, we identify a large subset of each analysis 

sample where it is satis�ed. Columns 4 and 5 of Table 2 list the number of observa-

tions in the full and overlap samples (the sample sizes are equal if the original esti-

mation sample satis�es overlap). Second, we check for propensity score variation 

in each of the studies. In principle, protocol descriptions can reveal whether some 

regression controls are necessary (and hence generate propensity score variation) or 

whether the controls are just added to improve precision. In practice, however, this is 

not always clear from paper descriptions.34 Column 6 of Table 2 gives a quantitative 

sense of the variability in the propensity scores by reporting the standard deviation 

of the estimated propensity score, showing that its variability in the observational 

studies is substantially higher; the dagger symbol indicates that a hypothesis test for 

 nonzero variation in the population propensity scores was statistically signi�cant. 

online Appendix C.2 details the overlap sample construction and these tests. We 

replicate the analyses from Table 1 for each of the eight papers in online Appendix 

C.3; we summarize the takeaways here.

Figure 1 summarizes the statistical and practical signi�cance of contamination 

bias in the estimated effect of each treatment for each speci�cation (as estimated in 

the overlap sample). Column A shows the absolute value of the contamination bias  t 

-statistics for each regression coef�cient, obtained from the decomposition in equa-

tion (23). In both columns, we sort treatments within papers by this absolute  t -statistic 

34 Moreover, some regression speci�cations are run on a  nonrandom subsample of the full experimental pop-
ulation (due to, e.g., attrition, or in a subsample analysis). This could generate propensity score variation even in 
simple experimental protocols.

Table 2—Further Applications

Sample size

Journal Type Spec. Original Overlap std(   p ˆ   (W))
Paper (1) (2) (3) (4) (5) (6)

Benhassine et al. (2015) AEJ:AE Exp. 5(1) 11,074 6,996 0.14

Cole et al. (2013) AEJ:AE Exp. 7(6) 132 73 0.10

de Mel et al. (2013) AEJ:AE Exp. 2(2) 520 520 0.02

Drexler et al. (2014) AEJ:AE Exp. 2(2) 796 796 0.05

Du�o et al. (2015) AER Exp. 2A(1) 9,116 8,664 0.11

Fryer and Levitt (2013) AER Obs. 3(4) 8,806 6,623 0.31

Rim et al. (2020a) AER:P&P Obs. 2(3) 4,037 620 0.24

Weisburst (2019a) AER:P&P Obs. 2A 7,488 7,488 0.31

Notes: This table summarizes the �ve experimental studies and three observational studies of racial disparities col-
lected from a search of the AEA Data and Code Repository from 2013–2022 (See online Appendix C.1 for details 
of this search). Column 3 reports the table and panel of the replicated speci�cation with the column or row of the 
speci�cation in parentheses. Column 6 gives the standard deviation of the estimated propensity score    p ˆ   k   ( W i  )   for 
the treatment arm  k  displaying the greatest propensity score variation; estimates are computed using a multinomial 
logit model. See online Appendix C.2 for details on the overlap sample and tests for propensity score variation.

Sources: Benhassine et al. (2024); Cole et al. (2019); de Mel, McKenzie, and Woodruff (2019); Drexler, Fischer, 
and Schoar (2019); Du�o, Dupas, and Kremer (2019); Fryer and Levitt (2019), Rim,  Ba, and Rivera (2020b); 
Weisburst (2019b); authors’ calculations
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Figure 1. Contamination Bias across All Applications

Notes: This �gure summarizes the analysis of contamination bias in the STAR application and the additional appli-
cations in Table 2. The six experimental studies are shown in blue; the three observational studies of racial dispari-
ties are shown in orange. Column A shows the absolute value of contamination bias  t-statistics for each regression 
coef�cient, given by equation (23). Column B shows a normalized version of this decomposition that divides each 
term by the standard error of the regression coef�cient. The darker bar shows the  own-treatment effect component, 
while the lighter bar shows the contamination bias component.

Sources: Achilles et al. (2008); Benhassine et al. (2024); Cole et al. (2019); de Mel, McKenzie, and Woodruff 
(2019); Drexler, Fischer, and Schoar (2019); Du�o, Dupas, and Kremer (2019); Fryer and Levitt (2019); Rim,  Ba, 
and Rivera (2020b); Weisburst (2019b); authors’ calculations
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and sort papers by the maximum absolute  t -statistic across treatments. Column B 

shows a normalized version of the decomposition that divides each term by the 

standard error of the regression coef�cient. The darker bar shows the  own-treatment 

effect component of the decomposition, while the lighter bar denotes the contami-

nation bias component (which can be of the same or opposite sign).
The �gure shows economically and statistically meaningful contamination bias 

in two of the three observational studies while showing no evidence for bias in any 

of the experimental studies. This aligns with the intuition that the large propen-

sity score variability in observational studies generates much larger variability in 

the contamination weights. Speci�cations from both the de Mel, McKenzie, and 

Woodruff (2013) and Drexler, Fischer, and Schoar (2014) experiments have some 

of the smallest contamination bias and also smallest propensity score variation, 

consistent with the theoretical results that contamination bias requires variation 

in the contamination weights which in turn requires variation in the propensity 

scores. On the other hand, the two studies with statistically signi�cant contami-

nation bias (Fryer and Levitt 2013 and Weisburst 2019a) also display the greatest 

variation in propensity scores. These results highlight the importance of testing 

for contamination bias, especially in observational settings where the included 

covariates are likely to drive sizable variation in propensity scores and hence con-

tamination weights.

Figure 2 plots estimates of the treatment effects for each estimator from Table 

1, again normalizing by the standard error of the regression coef�cient. We include 

a line between the estimates from OLS regression and from the CW estimator we 

propose. Among observational studies, we see substantial variation across the dif-

ferent estimates and a much larger difference between the OLS estimator and the 

CW estimator. In the experimental papers, the difference is much smaller.35 This is 

consistent with the larger propensity score variability in observational studies mag-

nifying the impact of the choice of weighting scheme.

V. Conclusion

Regressions with multiple treatments and �exible controls are common across a 

wide range of empirical settings in economics. We show that such regressions gen-

erally fail to estimate a convex weighted average of treatment effects: coef�cients 

on each treatment are generally contaminated by the effects of other treatments. We 

provide intuition for why the in�uential result of Angrist (1998) fails to generalize 

to multiple treatments, and show how the contamination bias problem connects to a 

recent literature studying DiD regressions. We then discuss three alternative estima-

tors that are free of this bias.

Our analysis of nine empirical applications �nds economically and statistically 

meaningful contamination bias in observational studies. Contamination bias in 

experimental studies is more limited, even in papers that display statistically sig-

ni�cant variation in the propensity scores. We also �nd that the choice among 

alternative estimators that are free of contamination bias matters more in the 

35 The same pattern arises when comparing the estimates in the full sample; see online Appendix C.3.
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observational studies. Overall, our analysis highlights the importance of testing 

the empirical relevance of theoretical concerns with how regression combines het-

erogeneous effects, particularly in observational studies.

Figure 2. Treatment Effect Estimates with Using Different Estimators

Notes: This �gure plots estimates of treatment effects for each estimator from of Table 1, applied to the STAR applica-
tion and additional applications in Table 2. We normalize each estimate by dividing by the standard error of the regres-
sion coef�cient. The six experimental studies are shown in blue; the three observational studies of racial disparities are 
shown in orange. Each speci�cation includes a line connecting the estimate from the regression coef�cient and the eas-
iest-to-estimate CW estimator. EW stands for the  easiest-to-estimate weighting. For the Rim et al. application the ATE 
estimate for the “Asian” coef�cient equals  − 8.4 , and it is not displayed as it falls outside the axis limits.

Sources: Achilles et al. (2008); Benhassine et al. (2024); Cole et al. (2019); de Mel, McKenzie, and Woodruff 
(2019); Drexler et al. (2019), Du�o, Dupas, and Kremer (2019); Fryer and Levitt (2019); Rim,  Ba, and Rivera. 
(2020b); Weisburst (2019b); authors’ calculations
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