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Contamination Bias in Linear Regressions’

By PAUL GOLDSMITH-PINKHAM, PETER HULL, AND MICHAL KOLESAR*

We study regressions with multiple treatments and a set of controls
that is flexible enough to purge omitted variable bias. We show these
regressions generally fail to estimate convex averages of hetero-
geneous treatment effects—instead, estimates of each treatment’s
effect are contaminated by nonconvex averages of the effects of other
treatments. We discuss three estimation approaches that avoid such
contamination bias, including the targeting of easiest-to-estimate
weighted average effects. A reanalysis of nine empirical applications
finds economically and statistically meaningful contamination bias
in observational studies; contamination bias in experimental stud-
ies is more limited due to smaller variability in propensity scores.
(JEL C21, C31, C51, H75, 121, 128)

Consider a linear regression of an outcome Y; on a vector of treatments X; and a
vector of flexible controls W;. The treatments are assumed to be as good as randomly
assigned conditional on the controls. For example, X; may indicate the assignment of
individuals / to different interventions in a stratified randomized control trial (RCT),
with the randomization protocol varying across some experimental strata indicators in
W.. Or, in an education value-added model (VAM), X; might indicate the matching of
students i to different teachers or schools with W; including measures of student demo-
graphics and lagged achievement which yield a credible selection-on-observables
assumption. The regression might also be the first stage of an instrumental variables
(IV) regression leveraging the assignment of multiple decision-makers (e.g. bail
judges) indicated in X, which is as-good-as-random conditional on some controls W,.
These sorts of regressions are widely used across many fields in economics. '
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This paper shows that such multiple-treatment regressions generally fail to esti-
mate convex weighted averages of heterogeneous causal effects, and discusses solu-
tions to this problem. The problem may be surprising given an influential result in
Angrist (1998), showing that regressions on a single binary treatment D; and flexible
controls W; estimate a convex average of treatment effects whenever D, is condi-
tionally as good as randomly assigned. We show that this result does not generalize
to multiple treatments: regression estimates of each treatment’s effect are generally
contaminated by a nonconvex average of the effects of other treatments. Thus, the
regression coefficient for a given treatment arm incorporates the effects of all arms.

We first derive a general characterization of such contamination bias in
multiple-treatment regressions.” We show the core problem by focusing on the spe-
cial case of a set of mutually exclusive treatment indicators, though our characteri-
zation applies even when the treatments are not restricted to be binary or mutually
exclusive. To separate the problem from the typical challenge of omitted variables
bias (OVB), we assume a best-case scenario where the covariate parametrization is
flexible enough to include the treatment propensity scores (e.g., with a linear covari-
ate adjustment, we assume that the propensity scores are linear in the covariates).
This condition holds trivially if the only covariates are strata indicators. Under these
conditions, we show that the regression coefficient on each treatment identifies a
convex weighted average of its causal effects plus a contamination bias term given
by a linear combination of the causal effects of other treatments, with weights that
sum to zero. Thus, each treatment effect estimate will generally incorporate the
effects of other treatments, unless the effects are uncorrelated with the contamina-
tion weights. Since these weights sum to zero some are necessarily negative, further
complicating the interpretation of the coefficients.

Contamination bias arises because regression adjustment for the confounders in
W, is generally insufficient for making the other treatments ignorable when estimat-
ing a given treatment’s effect, even when this adjustment is flexible enough to avoid
OVB. To see this intuition clearly, suppose the only controls are strata indicators.
OVB is avoided when the treatments are as good as randomly assigned within strata.
But because the treatments enter the regression linearly, the Angrist (1998) result
implies that the causal interpretation of a given treatment’s coefficient is only guar-
anteed when its assignment depends linearly on both the strata indicators and the
other treatment indicators. With mutually exclusive treatments, this condition fails
because the dependence is inherently nonlinear. The probability of assignment to a
given treatment is zero if an individual is assigned to one of the other treatments,
regardless of their stratum, but strata indicators affect the treatment probability oth-
erwise. Such dependence generates contamination bias.

Contamination bias also arises under an alternative “model-based” identifying
assumption that, rather than making assumptions on the treatment’s “design” (i.e.
propensity scores), posits that the covariate specification spans the conditional
mean of the potential outcome under no treatment, Y,-(O). In a linear model with

20ur use of the term “contamination” follows Sun and Abraham (2021), and differs from its use in some analy-
ses of clinical trials (Keogh-Brown et al. 2007) to describe settings where members of one treatment group receive
the treatment of another group—what economists typically call “noncompliance.” Our “bias” terminology refers to
an implication of our result: if a given treatment has constant effects, but the other treatment effects are heteroge-
neous, the regression estimand is generally inconsistent for the given treatment effect.
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unit and time fixed effects, this reduces to the parallel trends restriction often used
in difference-in-differences (DiD) and event study regressions. It is common for
X, to include multiple indicators in such settings—for example, the leads and lags
relative to a treatment adoption date used to support the parallel trends assump-
tion or estimate treatment effect dynamics.> We show that replacing the restriction
on propensity scores in our characterization with an assumption on Y,-(O) generates
an additional issue: the own-treatment weights are negative whenever the implicit
propensity score model used by the regression to partial out the covariates and the
other treatments fits probabilities greater than one. This result shows that the neg-
ative weighting and contamination bias issues documented previously in the con-
text of two-way fixed effects regressions (e.g., Goodman-Bacon 2021; Sun and
Abraham 2021; de Chaisemartin and D’Haultfoeuille 2020; De Chaisemartin and
D’Haultfoeuille 2023; Callaway and Sant’ Anna 2021; Borusyak, Jaravel, and Spiess
2024; Wooldridge 2021; Hull 2018b) are more general, and conceptually distinct,
problems.* Negative weighting arises because regressions leveraging model-based
restrictions on Y;(0) may fit treatment probabilities exceeding one. Contamination
bias arises because additive covariate adjustments don’t account for the nonlinear
dependence of a given treatment on the other treatments and covariates. This gen-
erates a different form of propensity score misspecification: a nonzero fitted prob-
ability of a given treatment, even when one of the other treatments is known to be
nonzero.’

We then discuss three solutions to the contamination bias problem, and their
trade-offs. These solutions apply when the propensity scores are nondegenerate, such
as in an RCT or other “design-based” regression specification.® First, a conceptually
principled solution is to adapt approaches to estimating the average treatment effect
(ATE) of a conditionally ignorable binary treatment to the multiple treatment case
(e.g., Cattaneo 2010; Chernozhukov et al. 2018; Chernozhukov, Newey, and Singh
2022; de los Angeles Resa and Zubizarreta 2020; Graham and Campos de Xavier Pinto
2022). For example, one could run a regression that includes interactions between the
treatments and demeaned controls, or combine such regression with inverse propen-
sity score weighting for doubly robust estimation. Such ATE estimators work well
under strong overlap of the covariate distribution for units in each treatment arm. But
they may be imprecise under limited overlap or be outright infeasible with overlap
failures—common scenarios in observational studies (Crump et al. 2009).

This practical consideration motivates an alternative approach: estimating a
weighted average of treatment effects, as regression does in the binary treatment

3 Alternatively X; may indicate multiple contemporaneous treatments, as in certain “mover” regressions.

#QOur analysis also relates to issues with interpreting multiple-treatment IV estimates (Behaghel, Crépon, and
Gurgand 2013; Kirkeboen, Leuven, and Mogstad 2016; Kline and Walters 2016; Hull 2018a; Lee and Salanié 2018;
Bhuller and Sigstad 2024).

S'While our results are framed in the context of a causal model, we show how analogous results apply to descrip-
tive regressions which seek to estimate averages of conditional group contrasts without assuming a causal frame-
work: as in studies of outcome disparities across multiple racial or ethnic groups, studies of regional variation in
health care utilization or outcomes, or studies of industry wage gaps.

6Solving the contamination bias problem under model-based identification approaches requires either target-
ing subpopulations of the treated or applying substantive restrictions on the conditional means of potential out-
comes under treatment. We do not explore this case as it has already been studied extensively in the DiD context
(e.g., De Chaisemartin and D’Haultfoeuille 2023; Sun and Abraham 2021; Callaway and Sant’ Anna 2021; Borusyak
et al. 2024; Wooldridge 2021).
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case, while avoiding the contamination bias problem with multiple treatments. We
derive the weights that are easiest to estimate, in the sense of minimizing a semipara-
metric efficiency bound under homoskedasticity. This easiest-to-estimate weighting
(EW) scheme is always convex; it corresponds to weighting schemes previously
proposed in Crump et al. (2006); Li, Morgan, and Zaslavsky (2018); and Li and Li
(2019). The weights also coincide with the implicit linear regression weights when
the treatment is binary (i.e. the Angrist 1998 case). In the multiple treatment case,
the EW scheme that allows the weights to be treatment specific can be implemented
by a simple second solution: a linear regression which restricts estimation to the
individuals who are either in the control group or the treatment group of interest.
Since the weights are treatment-specific, these one-treatment-at-a-time regressions
make direct comparisons across treatment arms challenging. The third solution is to
impose common weights across treatments in the EW scheme; these weights can be
implemented using a weighted regression approach. We show how researchers can
gauge the extent of contamination bias in practice and implement these tools with a
new R and Stata package, multe.’

We study the empirical relevance of contamination bias in nine applications: six
RCTs with stratified randomization and three observational studies of racial dis-
parities. We find economically and statistically significant bias in two of the three
observational studies with no evidence for bias in any of the experimental studies.
In a detailed analysis of one experiment, the Project STAR trial, we show that the
lack of contamination bias is driven by small variation in the contamination weights
rather than limited effect heterogeneity. This analysis highlights the importance of
conducting contamination bias diagnostics—particularly in observational studies
where covariates are expected to generate high variability in propensity scores, and
thus likely in contamination weights.

We structure the rest of the paper as follows. Section I illustrates contamina-
tion bias in a simple stylized setting. Section II characterizes the general problem,
and discusses connections to previous analyses. Section III provides three solu-
tions, and gives guidance for measuring and avoiding contamination bias in prac-
tice. Section IV illustrates these tools in nine applications. Section V concludes.
Supplemental appendices collect all proofs and extensions, discuss the connection
between our contamination bias characterization and that in the DiD literature, and
provide details on the applications and additional exhibits.

I. Motivating Example

We build intuition for the contamination bias problem in two simple examples.
We first review how regressions on a single randomized binary treatment and binary
controls identify a convex average of heterogeneous treatment effects. We then
show how this result fails to generalize when we introduce an additional treatment
arm. We base these examples on a stylized version of the Project STAR experi-
ment, which we return to as an application in Section IVA. The simple structure
of these examples helps isolate the core mechanisms of contamination bias. Later

7The package is available at CRAN (R) and https://github.com/gphk-metrics/stata-multe (Stata).
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sections consider nonexperimental settings with richer control specifications, both
theoretically and empirically.

A. Convex Weights with One Randomized Treatment

Consider the regression of an outcome Y; on a single treatment indicator D; €
{0, 1}, a single binary control W; € {0, l}, and an intercept:

(1) Y, = a+ BD; + YW, + U

By definition, U; is a mean-zero regression residual that is uncorrelated with D; and
W,. For example, analyzing the Project STAR trial, Krueger (1999) primarily stud-
ied the effect of small class size D; on the test scores Y; of kindergartners indexed by
i. Project STAR randomized students to classes within schools, with the fraction of
students assigned to small classes varying by school due to the varying number of
total students in each school. To account for this, Krueger (1999) included school
fixed effects as controls. Such specifications are often found in stratified RCTs with
varying treatment assignment rates across a set of pretreatment strata. If we imagine
two such strata, demarcated by a binary indicator W;, then equation (1) corresponds
to a stylized two-school version of a Project STAR regression.

We wish to interpret the coefficient 5 in terms of the causal effects of D; on Y;.
For this we use potential outcome notation, letting ¥;(d) denote the test score of stu-
dent i when D; = d. Individual i’s treatment effect is then given by 71, = Y,-(l) —
Y,-(O), and we can write realized achievement as Y; = Y, i(O) + 7;D;. Since treat-
ment assignment is random within schools, D; is conditionally independent of
potential outcomes given W; : (¥,(0),Y,(1)) LD;| W,.

Angrist (1998) showed that regression coefficients like (3 identify a convexly
weighted average of within-strata ATEs. In our Project STAR example, this result
shows that

(2) B = ¢n(0) + (1 — ¢)n(1),
var[D;|W; = O|Pr(W; = 0)

h =
where Zvlv:ovar[D,-|W,» = w|Pr(W; = w)

€ [0,1]

gives a convex weighting scheme, and Tl(w) =F [Y,-(l) — Y,-(O) |W, = w] is
the ATE in school w € {0, 1}. Thus, in our example the coefficient 3 identifies a
weighted average of school-specific small classroom effects 7'1<W> across the two
schools.

Equation (2) can be derived by applying the Frisch-Waugh-Lovell (FWL)
Theorem. The multivariate regression coefficient 5 can be written as a univariate
regression coefficient from regressing Y; onto the population residual D; obtained by
regressing D; onto W; and a constant:

_ E[ﬁiYi] _ E[DiYi(O)] E[[)iDiTli]
o TS
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where we substitute the potential outcome model for ¥; in the second equality. Since
W, is binary, the propensity score E [Di \ Wi] is linear and the residual D; is mean inde-
pendent of W; (not just uncorrelated with it): E [D,»\ W,-] = 0. Therefore,

(4) E[DY(0)] = E|E[DY,(0)|W]| = E|E[D:|W]E[r,(0)|W]]| = o.

The first equality in equation (4) follows from the law of iterated expectations, the
second equality follows by the conditional random assignment of D; and the third
equality uses E [ﬁi] Wi] = 0. Hence, the first summand in equation (3) is zero.
Analogous arguments show that

E[EiDi Tli] = E[E [DiDi T1i | Wl]]
= E[E[DlDl ‘ Wi]E[Tli ’ Wl” = E[Var[Di ’ Wl] Tl<Wi)] ,
where Var[D,-] W,-] =E [ﬁﬂ W,-] gives the conditional variance of the small-class

treatment within schools. Since E [Var[Di| W,-” =FE [E [D,2| Wi” =FE [D,-z], it fol-
lows that we can write the second summand in equation (3) as

E[Var [Di | W,-] T (W[)] 0 | .
S]]~ 7O+ Al
proving the representation of /3 in equation (2).

The key fact underlying this derivation is that the residual D; from the auxiliary
regression of the treatment D; on the other regressors W; is mean-independent of
W,. By the FWL theorem, treatment coefficients like 3 can always be represented as
in equation (3) even without this property. We next show, however, that the remain-
ing steps in the derivation of equation (2) fail when an additional treatment arm is
included. This failure can be attributed to the fact that the auxiliary FWL regression
delivers a treatment residual that is uncorrelated with, but not mean-independent of,
the other regressors. The lack of mean independence leads to an additional term in
the expression for the regression coefficient.

B. Contamination Bias with Two Randomized Treatments

In reality, Project STAR randomized students to three mutually exclusive con-
ditions within schools: a control group with a regular class (D; = 0), a treatment
that reduced class size (D; = 1), and a treatment that introduced full-time teaching
aides (D; = 2). We incorporate this extension of our stylized example by consid-
ering a regression of student achievement Y; on a vector of two treatment indica-
tors, X; = (X,-I,Xl-z)’, where X, = l{Dl- = k} indicates assignment to treatment
k = 1,2. We continue to include a constant and the school indicator W; as controls,
yielding the regression

(5) Y; = a+ 61Xy + BhXp + W, + U,
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The observed outcome is now given by Y; = Yi(O) + 11 Xit + TnXp, with 74
= Y{(1) — ¥{(0) and 7, = Y,(2) — ¥,(0) denoting the potentially heterogeneous
effects of a class size reduction and introduction of a teaching aide, respectively.
As before, we analyze this regression by assuming X; is conditionally indepen-
dent of the potential achievement outcomes Y;(d) given the school indicator W; :
(¥:(0),Y,(1),Y,(2)) LX; | W..

To analyze the coefficient on X;;, we again use the FWL theorem to write

E[)N?il Yi] E[iil Yi(0>] E[)z(ilxil Til] E[)z(n Xin Tiz]

(6) b = =1 = ) + = + 71
| | | ]

E[X} E[X} E[X} E|X}

where X;, again denotes a population residual, but now from regressing X; on
W,, a constant, and X;;. Unlike before, this residual is uncorrelated with but not
mean-independent of the remaining regressors (Wl-,Xl-z) because the dependence
between X;; and X}, is nonlinear. When X;, = 1, X;; must be zero regardless of the
value of W; (because they are mutually exclusive) while if X;, = 0 the mean of X,
depends on W; unless the treatment assignment is completely random. Thus, in gen-
eral, X;, # X — EXi) | Wi, Xoo)-

Because X;, does not coincide with a conditionally de-meaned X;;, we can not
generally reduce equation (6) to an expression involving only the effects of the first

treatment arm, 7;;. It turns out that we nevertheless still have E [)z(il Y,-(O)] = 0, as
in equation (4), since the auxiliary regression residuals are still uncorrelated with
any individual characteristic like Y;(0).® The regression thus does not suffer from
OVB. However, we do not generally have E [)z(ilX,-z Tiz] = 0. Instead, simplifying
equation (6) by the same steps as before leads to the expression

(7) B = E[Ai(W) 1i(W)] + E[Ma(W;) 7o(W))]

as a generalization of equation (2). Here \; I(W,») =E [)N(,-IXH | W,-] /E [}N(lzl] can be
shown to be nonnegative and to average to one, similar to the ¢ weight in equation
(2). Thus, if not for the second term in equation (7), 3; would similarly identify a
convex average of the conditional ATEs 7,(W;) = E[Y,(1) — Y,(0)| W]. But pre-
cisely because X;, # X;; — E[X;| W, Xl-z], this second term is generally present:

)‘12<Wi) =F [)N(,-IX,2|W,-] /E [)N(,zl] is generally nonzero, complicating the inter-
pretation of 3; by including the conditional effects of the other treatment TZ(Wi)
= E[v,(2) — Y/(0)|W}].

The second contamination bias term in equation (7) arises because the resid-
ualized small class treatment X, is not conditionally independent of the second
full-time aide treatment X;, within schools, despite being uncorrelated with X;, by

construction. This can be seen by viewing X;; as the result of an equivalent two-step

8To see this, note that in the auxiliary regression X;; = 19 4+ 1. X + poW; + )z(“ we can partial out W; and the
constant from both sides to write X;; = 1,X;, + X;,. Thus, X;; = X;; — j1,X;, is a linear combination of residuals
which, per equation (4), are both uncorrelated with ¥;(0). It follows that E [X,I Y,-(O)] = 0.
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residualization. First, both X;; and X;, are de-meaned within schools: Xi =X, —
E[Xil‘W] = Xl —pi(W;) and X, = X — E[Xp| W] = X, — po(W;) where
p](W) X W] gives the propensity score for treatment j. Second, a bivariate

regression of X;; on X, is used to generate the residuals X,l When the propensity
scores vary across the schools (i.e. pj(0) # pj(1)), the relationship between these
residuals varies by school, and the line of best fit between X;; and X;, averages across
this relationship. As a result, the line of best fit does not is~olate the conditional (i.e.
within-school) variation in X;;: the remaining variation in X;; will tend to predict X,
within schools, making the contamination weight )\12( ) nonzero.

C. Illustration and Intuition

A simple numerical example helps make the contamination bias problem con-
crete. Suppose in the previous setting that school 0 (indicated by W; = 0) assigned
only 5 percent of the students to the small classroom treatment, with 45 percent
of the students assigned to the full-time aide treatment and the rest assigned to the
control group. In school 1 (indicated by W; = 1), there was a substantially larger
push for students to be placed into treatment groups with 45 percent of students
assigned to a small classroom, 45 percent assigned to a classroom with a full-time
aide, and only 10 percent assigned to the control group. Therefore, pl(O) = 0.05
and p,(0) = 0.45 while p;(1) = p,(1) = 0.45. Suppose that the schools have
the same number of students, so that Pr(W,- = 1) = 0.5. It then follows from the
above formulas that )\12(0) = 99/106 and )\12(1) = —99/106.

As reasoned above, the contamination weights are nonzero here because the
within-school correlation between the residualized treatments, X;; and X;;,, is het-
erogeneous: in school 0 it is about —0.2, so that the value of the demeaned class
aide treatment is only weakly predictive of the small classroom treatment, while in
school 1 it is highly predictive with correlation —0.8. Figure D.1 in online Appendix
D illustrates this graphically, showing that because the overall regression of X;;
on X, averages over these two correlations the regression residuals are predictive of
the value of the class aide treatment.

To illustrate the potential magnitude of bias in this example, suppose that class-
room reductions have no effect on student achievement (so 71(0) = (1) = 0),
but that the effect of a teaching aide varies across schools. In school 1 the aide is
highly effective, 7'2(1) = 1, (which may be the reason for the higher push in this
school to place students into treatment groups) but in school 0, the aide has no
effect, 7'2(0) = 0. By equation (7), the regression coefficient on the first treatment
identifies

Bi = E[Ai(W) - 0] + E[Ap(W) m2(W;)]

_ 99 _
=0+ (- 1O6><1+106><0)/2 0.47.
Thus, in this example, a researcher would conclude that small classrooms have a siz-
able negative effect on student achievement—equal in magnitude to around one-half
of the true teaching aide effect in school 1—despite the true small-classroom effect



VOL. 114 NO. 12 GOLDSMITH-PINKHAM ET AL.: CONTAMINATION BIAS IN LINEAR REGRESSIONS 4023

being zero for all students. This treatment effect coefficient can be engineered to
match an arbitrary magnitude and sign by varying the heterogeneity of the teaching
aide effects across schools.

To build further intuition for equation (7), it is useful to consider two cases
where the contamination bias term is zero. First, note that since regression resid-
uals are by construction uncorrelated with the included regressors, E [)‘IZ(Wi>]
= EI:X“ Xi2] /E[Xlzl] = 0. Therefore, E[AIZ(WI) T2(Wi)] = E[)\12<W1) T2(Wi>]
— E[Mao(W)|E[(W)] = cov|[Aia(W), ma(W;)|. If the average effects of the
teaching aide treatment are constant across the two schools, 75(1) = 7,(0), then
Tz(W,-) is constant, and this covariance is zero such that contamination bias dis-
appears. More generally, when the average teaching aide treatment effects across
schools TZ(W[) exhibit idiosyncratic variation, in the sense that they have a weak
covariance with the contamination weights across schools, the contamination bias
term will be small.

Second, consider the case where X;; and X}, are independent conditional on W;
such as when the small classroom and teacher aid interventions are independently
assigned within schools, in contrast to the previously assumed mutual exclusivity of
these treatments. In this case the conditional expectation E[X;; | W;, Xp| = E[X;; | W]
will be linear, since X;; and X, are unrelated given W;, and will thus be identified
by the auxiliary regression of X;; on W,, X;,, and a constant. Consequently, the X,
residuals will coincide with X;; — E[X;; | W;]. The coefficient on X;; in equation (5)
can therefore be shown to be equivalent to the previous equation (2), identifying the
same convex average of Tl(W>. This case highlights that dependence across treat-
ments is necessary for the contamination bias to arise.

II. General Problem

We now derive a general characterization of the contamination bias problem,
in regressions of an outcome Y; on a K-dimensional treatment vector X; and flex-
ible transformations of a control vector W;. We focus on the case of mutually
exclusive indicators X; = l{D,- = k} for values of an underlying treatment
D; € {0, ... ,K}(with the 1I{D;, = 0} indicator omitted). We extend the characteri-
zation to a general (i.e. potentially nonbinary) X; in online Appendix A.1.

We suppose the effects of X; on Y; are estimated by a partially linear model:

(8) Y, = X{B + ¢g(W) + U,
where (3 and g are defined as the minimizers of expected squared residuals E [U ,2] :
. 1A ~ 2
9) (B,g) = argmin E[(Yi - XiB - g(“’i)) ]
BeRX geg

for some linear space of functions G. This setup nests linear covariate adjustment by
setting G = {o + w'~ : [a,~']" € R™MW in which case equation (8) gives
a linear regression of Y; on X;, W,, and a constant. The setup also allows for more
flexible covariate adjustments—such as by specifying G to be a large class of “non-
parametric” functions (Robinson 1988).
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Two examples highlight the generality of this setup.

EXAMPLE 1 (Multi-armed RCT): W; is a vector of mutually exclusive indicators
for experimental strata, within which X; is randomly assigned to individuals i, and
g is linear.

EXAMPLE 2 (Two-way Fixed Effects): i = (j, t) indexes panel data, with a fixed
set of units j = 1,...,n observed over periods t = 1,...,T. W; = (Ji, Ti)
where J; = jand T; = tdenote the underlying unit and period, and g(Wi) = o+
(I{J,- = 2}, ce 1{],- = n}, I{T,- = 2}, ce I{T,- = T})“\{ includes unit and period
indicators. X; contains indicators for leads and lags relative to a deterministic treat-
ment adoption date, A(j) S {l, o1, oo} with at least one lead excluded to pre-
vent collinearity.

Example 1 nests the motivating RCT example in Section I, allowing for an
arbitrary number of experimental strata in W; and multiple treatment arms in X;.
Example 2 shows that our setup can also nest the kind of regressions considered in a
recent literature on DiD and related regression specifications (e.g., Goodman-Bacon
2021; Hull 2018b; Sun and Abraham 2021; de Chaisemartin and D’Haultfoeuille
2020; De Chaisemartin and D’Haultfoeuille 2023; Callaway and Sant’ Anna 2021;
Borusyak, Jaravel, and Spiess 2024; Wooldridge 2021). We elaborate on the connec-
tions to this literature in online Appendix B by considering general two-way fixed
effects (TWFE) specifications with nonrandom treatments. These include specifica-
tions with multiple static treatment indicators, as in “mover regressions” that lever-
age over-time transitions, as well as dynamic event study specifications.”

As a first step towards characterizing the treatment coefficient vector (3,
we solve the minimization problem in equation (9). Let X; denote the residuals

from projecting X; onto the control specification, with elements X; = X; —

argmingg E [(X,-k — g(w,-))z]. It follows from the projection theorem (van der
Vaart 1998, Theorem 11.1) that

(10) B = E[XX] 'E[Xv].

Applying the FWL theorem, each treatment coefficient can be written 0,
=F [)z(ikY,-] /E [)z(fk] where )z(,-k is the residual from regressing X; on f(,-,_k

= (Xis - X1 Xigerns - - ,XI-K),. Letting E*[X; | X; _4, W] denote the projection
of Xj; onto the space {X{,,ks + g(wi) 18 e RE g ¢ g}, we may write these
residuals as X;, = X; — E*[Xy| X; 1 W.

9 Some papers in this DiD literature study issues we do not consider, such as when researchers fail to include
indicators for all relevant treatment states; this will generally add bias terms to our decomposition of (3, below.
Similarly, we do not consider multicollinearity issues like in Borusyak et al. (2024) by assuming a unique solution
to equation (9). For event studies this means we assume some units are never treated, with A(j) = oo.
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A. Causal Interpretation

We now consider the interpretation of each treatment coefficient 3 in terms
of causal effects. Let Yl-(k) denote the potential outcome of unit i when D; = k.
Observed outcomes are given by Y, = Y,-(Di) = Y,»(O) + X;/T; where T; is a vec-
tor of treatment effects with elements 7, = Y,-(k) — Y,-(O). We denote the con-
ditional expectation of the vector of treatment effects given the controls by T(Wi)
= E[7;| W}, so that 7,(W,) is the conditional ATE for the kth treatment. We let p(W))
= E[Xi|W,~] denote the vector of propensity scores, sothatpk(Wi) = Pr(Di = k]Wi).
Our characterization of contamination bias doesn’t require the propensity scores
to be bounded away from O and 1 and in fact allows them to be degenerate, i.e.
pk(w) € {O, 1} for all w. This is the case in Example 2, since X; is a nonrandom func-
tion of W;. We return to practical questions of propensity score support in Section III.

We make two assumptions to interpret 0, in terms of the effects T;. First, we
assume mean-independence of the potential outcomes and treatment, conditional on
the controls:

ASSUMPTION 1: E[Y(k)| D, W,| = E[Y(k)|W,] for all k.

A sufficient condition for this assumption is that the treatment is randomly
assigned conditional on the controls, making it conditionally independent of the
potential outcomes:

(11) (¥/0), ....Y(K)) LD;|W,.

Such conditional random assignment appears in Example 1. In Example 2, where
treatment is a nonrandom function of the unit and time indices in W;, Assumption
1 holds trivially.

Second, we assume G is specified such that one of two conditions holds:

ASSUMPTION  2:  Let j(w) = E[Y/(0)|W; = w| and recall p(w)
= E[Xy|W; = w|. Either

(12) P €9
for all k, or
(13) po € G

The first condition requires the covariate adjustment to be flexible enough to capture
each treatment’s propensity score. For example, with a linear specification for g,
equation (12) requires the propensity scores to be linear in W; (compare with equa-
tion (30) in Angrist and Krueger 1999). This condition holds trivially in Example 1,
since W; is a vector of indicators for groups within which X is randomly assigned.
When this condition holds, the projection of the treatment onto the covariates coin-
cides with the vector of propensity scores, and the projection residuals coincide with
the conditionally demeaned treatment vector X; = X; — p(W,-).
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In Example 2, with X; being a deterministic function of unit and time indices
and g(Wi) including unit and time fixed effects, equation (12) fails because the pro-
pensity scores are binary. They cannot be captured by a linear combination of the
TWFEs. However, equation (13) is satisfied by a parallel trends assumption: that the
average untreated potential outcomes Y;(0) are linear in the unit and time effects. We
elaborate on this setup in online Appendix B.!°

Under either condition in Assumption 2, the specification of controls is flexible
enough to avoid OVB. To see this formally, suppose all treatment effects are con-
stant: 7, = 7 for all k. This restriction lets us write ¥; = Y;(0) 4+ X/, where T
is a vector collecting the constant effects. The only source of bias when regressing
Y; on X and controls is then the unobserved variation in the untreated potential out-
comes Y;(0). But it follows from the expression for 3 in equation (10) that there is
no such OVB when Assumption 2 holds:

8 = E[XX] (E[X%(0)] + E[X.X])

= E[Xif({]_lE[X,»E[Yi(O)\W,»” +T =T

=0

Here the first equality uses the fact that £ [X,-le] = FE [X,X{] because X; is a vector
of projection residuals, and the second equality uses the law of iterated expectations
and Assumption 1. Under equation (12), E [X,- | W,-] = 0, so that the term in braces
is zero by another application of the law of iterated expectations: E [X,E [Y[(O) ] W,”
=E [E [Xi ] W,]E [Yi(O) | W,]] = 0. It is likewise zero under equation (13) since
X; is by definition of projection orthogonal to any function in G such that
E[X,E[Y,(0)|W]] = E[Xiz1(W,;)] = 0. Hence, OVB is avoided in the
constant-effects case so long as either the propensity scores or the untreated potential
outcomes are spanned by the control specification. Versions of this double robust-
ness property have been previously observed in, for instance, Robins et al. (1992).

When treatment effects are heterogeneous but X, contains a single treatment indi-
cator, (3 identifies a weighted average of the conditional effects T(W[). Specifically,
since by the previous argument we still have E [5([ Y,-(O)] = 0, it follows from equa-
tion (10) that

- iNT| . B E[Xixi|wi]
(14) B = 7E[)~(% = E[Mi(W)T(W))], with X\;;(W,) = 715[5(,.)(,] ,

where the second equality uses iterated expectations and the identity E [5(12]
= E[X,-X,-]. Under equation (12), E[X,»Xl-|Wl-] = E[XﬂWl] = var[X;| W], so

var[X;| W] .
> (. This extends the

the weights further simplify to A;;(W,) = m >
var|X;| W;

197dentification based on equation (12) can be seen as “design-based” in that it only restricts the treatment
assignment process. Identification based on equation (13) can be seen as “model-based” in that it makes no assump-
tions on the treatment assignment process but specifies a model for the unobserved untreated potential outcomes.
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Angrist (1998) result to a general control specification; versions of this extension
appear in, for instance, Angrist and Krueger (1999); Angrist and Pischke (2009,
Chapter 3.3), and Aronow and Samii (2016).

This result provides a robustness rationale for estimating the effect of a single
as-good-as-randomly assigned treatment with a partially linear model (8): so long
as the specification of G is rich enough to make equation (12) hold, 3 will identify
a convex average of heterogeneous treatment effects. In Section III we will derive
another rationale for targeting (3 in this model, showing that the weights ), l(Wi>
minimize the semiparametric efficiency bound (conditional on the controls) for esti-
mating some weighted-average treatment effect.

Our first proposition shows that with multiple treatments, the interpretation of (3
becomes more complicated because of contamination bias:

PROPOSITION 1: Under Assumptions 1 and 2, the treatment coefficients in (8)
identify

(15) B = E[Aa(W) 7(W))] + ;{E e Wi) (W),

where, recalling that E*[X,-k|X,»,,k, W,-] gives the projection of X;, onto the space
{X; 8+ gW):8 € R g e G,

E[)Z(ikXik|Wi] pk(wi)(l — E*[Xy| X = 0, Wi])

Ma(Wy) = E[)z(?k] = E[f(gk] , and
o ERX W] p(W)E R X = 1LW]
R

with E[)\kk(Wi)] = 1 and E[)\kg(W,-)] = 0. Furthermore, if equation (12) holds,
(W) > 0.

Proposition 1 shows that the coefficient on X;; in equation (8) is a sum of two terms.
The first term is a weighted average of conditional ATEs Tk(W,-), with own treat-
ment weights )\kk(Wi) that average to one—generalizing the characterization of
the single-treatment case, equation (14). The expression for Ay implies that these
weights are convex if the implicit linear probability model used to compute Xy, fits
probabilities that lie below one, E*[X;|X; , = 0,W] < 1. The second term is a
weighted average of treatment effects for other treatments 7,(W,), with contamina-
tion weights )\kg(W,-) that average to zero. Because the contamination weights are
zero on average, they must be negative for some values of the controls unless they
are all identically zero.!! This is the case when the implicit linear probability model
correctly predicts that X;; = 0if X;, = 1.

"Proposition 1 complements an algebraic result in Chattopadhyay and Zubizarreta (2021, Section 7.1), which
shows that the regression estimator of [, can be written in terms of weighted sample averages of outcomes among
units in different treatment arms (regardless of whether Assumptions 1 and 2 hold). In contrast, our analysis inter-
prets regression estimands in terms of weighted averages of conditional ATEs under a broad class of identifying
assumptions. In a finite-population setting, Abadie et al. (2020) show that (3 identifies matrix-weighted averages of
individual treatment effect vectors 7;; however, they do not discuss the interpretation of the estimand.
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Hence, if the linear probability model is correctly specified, i.e., E [Xik | X o Wi]
= X/ o + gk(Wi) for some vector o and g, € G, the contamination weights
Mie(W;) are zero and the own treatment weights A\ (W,) are positive. This is the
analog of condition (12) if we interpret X; as a binary treatment of interest and
X/ jo+ gk(Wi) as a specification for the controls. In other words, the assignment
of treatment kK must be additively separable between X; _;, and W,. However, with
mutually exclusive treatments, this won’t be the case unless treatment assignment
is unconditionally random. In particular, since X; must equal zero if the unit is
assigned to one of the other treatments regardless of the value of W;, under correct
specification it must be the case that oy = — gk(W,») for all elements o, of «. This
in turn implies that the assignment of treatment k doesn’t depend on W,, which is
impossible unless the propensity score pk(Wl-) is constant.

Thus, misspecification in the linear probability model will generally yield non-
sensical fitted probabilities E*[Xl-k\Xm = I,Wi] # 0 that generate nonzero con-
tamination weights )\M(W,-). Furthermore, if the misspecification also yields fitted
probabilities E*[X;|X; , = 0,W] > 1, we will have negative own treatment
weights. The last part of Proposition 1 shows that such nonsensible predictions are
ruled out if equation (12) holds.

We make four further remarks on our general characterization of contamination
bias:

Remark 1: Since the contamination weights are mean zero, we may write the
contamination bias term as E [)\M(W,-) Tg(W,)] = COV[)\M(WZ-),T@(WI-)]. Thus, the
treatment coefficient 3, does not suffer from contamination bias if the contami-
nation weights A\.(W;) are uncorrelated with the conditional ATEs 7,(W,). This
is trivially true if the other treatments are homogeneous, i.e. when Tg(Wi) = T
More generally, contamination bias will be small if the contamination weight
exhibits weak covariance with the conditional ATEs. Since cov [)\k[(W,-),Tg(W,-)]
= COI’I'[)\M<WZ->,T€(WI-)]Std(Akg(Wi»Std(Tg(Wi)), this is the case when (i) the fac-
tors influencing treatment effect heterogeneity are largely unrelated to the factors
influencing the treatment assignment process in the sense that corr [ Ay (W;), 7,(W;)]
is close to zero, (ii) the contamination weights display limited variability, or (iii)
treatment effect heterogeneity in the other treatments ¢ # k is limited.

Remark 2: Since the weights in equation (15) are functions of the variances

E [)N( lzk] and covariances E [X,-kX ,-g] and E [)N(,-kX ,-k] , they are identified and can be used
to further characterize each (3, coefficient. For example, the contamination bias term
can be bounded by the identified contamination weights )\kf(Wi) and bounds on the
heterogeneity in conditional ATEs 7,(W,).

Remark 3: The results in Proposition 1 are stated for the case when X; are mutu-
ally exclusive treatment indicators. In online Appendix A.1 we relax this assumption
to allow for combinations of nonmutually exclusive treatments (either discrete or
continuous). In this case, the own-treatment weights )\kk(Wl-) may be negative even
if equation (12) holds.

Remark 4: While we derived Proposition 1 in the context of a causal model,
an analogous result follows for descriptive regressions that do not assume
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potential outcomes or impose Assumption 1. Consider, specifically, the goal of
estimating an average of conditional group contrasts E [Yi |D; = k,W,; = w] —
E [Y,- |D; = O,W; = W] with a partially linear model equation (8) and replace con-
dition (13) with an assumption that E[Y;|D; = 0,W; = w| € G. The steps that
lead to Proposition 1 then show that such regressions also generally suffer from con-
tamination bias: the coefficient on a given group indicator averages the conditional
contrasts across all other groups, with nonconvex weights. Furthermore, the weights
on own-group conditional contrasts are not necessarily positive. These sorts of con-
ditional contrast comparisons are therefore not generally robust to misspecification
of the conditional mean, E[Y;| D;, W/].

B. Implications

Proposition 1 shows that treatment effect heterogeneity can induce two concep-
tually distinct issues in flexible regression estimates of treatment effects. First, with
either single or multiple treatments, there is a negative weighting of a treatment’s
own effects when projecting the treatment indicator onto other treatment indicators
and covariates yields fitted values exceeding one, i.e. when E*[Xl-k|X,-,_k =0, W,-]
> 1. This issue is relevant in various DiD regressions and related approaches which
rely on a model of untreated potential outcomes that ensures equation (13) holds
(e.g. parallel trends assumptions) but which potentially misspecify the assignment
model in equation (12). Although the recent DiD literature focuses on TWFE regres-
sions, Proposition 1 shows such negative weighing can arise more generally—such
as when researchers allow for linear trends, interacted fixed effects, or other exten-
sions of the basic parallel trends model. None of these alternative specifications for
g are in general flexible enough to capture the degenerate propensity scores and
hence ensure that E*[X; | X; , = 0,W] < 1.

Second, in the multiple treatment case, there is a potential for contamination bias
from other treatment effects, regardless of which condition in Assumption 2 holds.
This form of bias is relevant whenever one uses an additive covariate adjustment, no
matter how flexibly the covariates are specified. Versions of this problem have been
noted in, for example, the Sun and Abraham (2021) analysis of DiD regressions
with treatment leads and lags or the Hull (2018b) analysis of mover regressions (see
online Appendix B).!? Proposition 1 shows such contamination bias arises much
more broadly, however.

The characterization in Proposition 1 also relates to concerns in interpreting
multiple-treatment IV estimates with heterogeneous effects (e.g., Behaghel, Crépon,
and Gurgand 2013; Kirkeboen, Leuven, and Mogstad 2016; Kline and Walters 2016;
Hull 2018a; Lee and Salani¢ 2018; Bhuller and Sigstad 2024). This connection
comes from viewing equation (8) as the second stage of an model estimated by a

12 The negative weights issue raised in de Chaisemartin and D’Haultfoeuille (2020) (when K = 1), and the
related issue that own-treatment weights may be negative in Sun and Abraham (2021) and De Chaisemartin and
D’Haultfoeuille (2023) (when K > 1), arise because the treatment probability is not linear in the unit and time
effects. If equation (12) holds with K = 1, Proposition 1 shows 3 estimates a convex combination of treatment
effects. This covers the setting considered in Theorem 1(iv) in Athey and Imbens (2022). In their Comment 2, Athey
and Imbens (2022) say that “the sum of the weights [used in Theorem 1(iv)] is one, although some of the weights
may be negative.” Proposition 1 shows these weights are, in fact, nonnegative.
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control function approach; in the linear case, for example, g(Wi) can be interpreted
as giving the residuals from a first-stage regression of X; on a vector of valid instru-
ments Z;. In the single-treatment case, the resulting (3 coefficient has an interpre-
tation of a weighted average of conditional local average treatment effects under
the appropriate first-stage monotonicity condition (Imbens and Angrist 1994). But
as in Proposition 1 this interpretation fails to generalize when X; includes multiple
mutually exclusive treatment indicators: each (3, combines the local effects of treat-
ment k£ with a nonconvex average of the effects of other treatments.

Finally, Proposition 1 has implications for single-treatment estimation with mul-
tiple instruments and flexible controls if the first stage has the form of equation (8),
where now Y, is interpreted as the treatment and X; gives the vector of instruments.
Proposition 1 shows that the first-stage coefficients on the instruments /3; will not
generally be convex weighted average of the true first-stage effects 7;,. Because of
this nonconvexity, the regression specification may fail to satisfy the effective mono-
tonicity condition even when 7y, is always positive: the cross-instrument contamina-
tion of causal effects may cause monotonicity violations, even when specifications
with individual instruments do not. This issue is distinct from previous concerns
over monotonicity failures in multiple-instrument designs (e.g., Mueller-Smith
2015; Frandsen, Lefgren, and Leslie 2023; Norris 2019; Mogstad, Torgovitsky,
and Walters 2021), which are generally also present in such just-identified specifi-
cations. It is also distinct from concerns about insufficient flexibility in the control
specification when monotonicity holds unconditionally (e.g., Blandhol et al. 2022).

This new monotonicity concern may be especially important in “exam-
iner” designs, which exploit the conditional random assignment to multiple
decision-makers. Many studies leverage such variation by computing average exam-
iner decision rates, often with a leave-one-out correction, and use this “leniency”
measure as a single instrument with linear controls. These estimators can be thought
of as implementing versions of a jackknife estimator (Angrist et al. 1999), based on
a first stage that uses examiner indicators as instruments, similar to equation (8).
Proposition 1 thus raises a new concern with these analyses when controls (such as
time fixed effects) are needed to ensure ignorable treatment assignment.

III. Solutions

We now discuss three solutions to the contamination bias problem raised by
Proposition 1, each targeting a distinct causal parameter. First, in Section IIIA, we
discuss estimation of unweighted ATEs. The other two solutions target weighted
averages of individual treatment effects using an easiest-to-estimate weighting (EW)
scheme in that the weights minimize the semiparametric efficiency bound for esti-
mating weighted ATEs under homoskedasticity. In the second solution, the weights
are allowed to vary across treatments, while in the third, they are constrained to be
common across treatments. In Section IIIB we characterize these estimation targets,
while in Section IIIC we discuss how to estimate them; we also outline our proposed
guidance to researchers in measuring contamination bias.

Implementing the first solution requires strong overlap (i.e. that treatment pro-
pensity scores are bounded away from zero and one) while the other two solutions
require nonempty overlap, ruling out fully degenerate propensity scores. Solutions
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allowing for degenerate propensity scores require either targeting subpopulations of
the treated or adding substantive restrictions on conditional means of treated poten-
tial outcomes (beyond equation (13), which only restricts untreated potential out-
comes). We refer readers to De Chaisemartin and D’Haultfoeuille (2023); Sun and
Abraham (2021); Callaway and Sant’ Anna (2021); Borusyak, Jaravel, and Spiess
(2024); and Wooldridge (2021) for such solutions in the context of DiD regressions.

A. Estimating Average Treatment Effects

Many estimators exist for the ATE of binary treatments—see Imbens and
Wooldridge (2009) and Abadie and Cattaneo (2018) for reviews. Several of these
approaches extend naturally to multiple treatments: including matching on covari-
ates or the propensity score, inverse propensity score weighting, balancing weights,
interacted regression, or doubly robust methods (see, among others, Cattaneo 2010;
de los Angeles Resa and Zubizarreta 2020; Chernozhukov, Newey, and Singh 2022;
and Graham and Campos de Xavier Pinto 2022). Here we summarize the last two
approaches.

For the interacted regression solution, we adapt the implementation for the binary
treatment case discussed in Imbens and Wooldridge (2009, Section 5.3) to multiple
treatments. Specifically, consider the specification:

(16) Y = XiB + qo(W;) + I;Xik(Qk<Wi> - E[Clk(wi)]) + U,

where ¢, € G,k = 0, ...,K and we continue to define 3 and the functions ¢, as
minimizers of E [Ulz] When G consists of linear functions, equation (16) specifies
a linear regression of Y; on X;, W;, a constant, and the interactions between each
treatment indicator X;; and the demeaned control vector W; — E [W,] Define uk(w)
= E[Yi(k) W, = w] for k =0,...,K, so that 7(w) = (W) — po(w).
If Assumption 1 holds and G is furthermore rich enough to ensure pu;, € G for
k =0,...,Kthen3 = T.Moreover, qk(w) = Tk(W> fork = 1, ...,K, suchthat
the regression identifies both the unconditional and conditional ATEs.

The added interactions in equation (16) ensure that each treatment coefficient J3;
is determined only by the outcomes in treatment arms with D; = 0 and D; = &,
avoiding the contamination bias in Proposition 1. Demeaning the ¢,(W;) in the
interactions ensures they are appropriately centered to interpret the coefficients on
the uninteracted X;; as ATEs.

Estimation of equation (16) is conceptually straightforward for parametric g;. In
particular, if G consists of linear functions, one simply estimates

K K
(17) Y = ag+ D Xami + Wiy + ZXik<Wi — W) vy + Us.
k=1 k=1

by ordinary least squares (OLS), where W = %Ziwi is the sample average of the
covariate vector. More generally, to increase the plausibility of the key assumption
that 1, € G, one may constrain G only by nonparametric smoothness assumptions.
Given a sequence of basis functions {b,(W,) }Joi P such as polynomials or splines, one
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then approximates g; with a linear combination of the first J terms, with J increasing
with the sample size, thus tailoring the model complexity to data availability. Given
a choice of J, estimation and inference can proceed as in the parametric case; the
only difference is that the baseline covariates W; in equation (17) are replaced by
the basis vector (bl(Wi), ...,b J(Wi)>’ and W is replaced by the sample average
of this expansion. This estimator has been studied in the binary treatment case by
Chen, Hong, and Tarozzi (2008) and Imbens, Newey, and Ridder (2007), with the
latter providing a detailed analysis of how to choose J and the former showing that
this sieve estimator achieves the semiparametric efficiency bound under strong over-
lap: it is impossible to construct another regular estimator of the ATE with smaller
asymptotic variance.

An attractive alternative approach combines the interacted regression with inverse
propensity score weighting. Instead of using OLS to estimate equation (16) one uses
weighted least squares, weighting observations by the inverse of some estimate pp,
(Wi) of the propensity score (e.g., Robins, Rotnitzky, and Zhao 1994; Wooldridge
2007; and Stoczynski and Wooldridge 2018). An advantage of this approach is
that it is doubly robust: the estimator is consistent so long as either the propen-
sity score estimator is consistent or the outcome model is correct (i.e., i, € G). A
recent literature shows how the double robustness property, when combined with
cross-fitting, reduces the sensitivity of the ATE estimate to over fitting or regulariza-
tion bias in estimating the nuisance functions p; and ;. Cross-fitting also allows for
using more flexible methods to approximate p; and (, including modern machine
learning methods (see, e.g. Chernozhukov et al. 2018; Chernozhukov et al. 2022;
Chernozhukov, Newey, and Singh 2022).

Either approach should work reliably in conventional stratified RCTs and other
settings with strong overlap. But under weak overlap, when propensity scores are
not bounded away from zero and one, all of these ATE estimators may be impre-
cise and have poor finite-sample behavior. This is not a shortcoming of the specific
estimator; indeed, Khan and Tamer (2010) show that under weak overlap, V/N-esti-
mation of the ATE is not possible. Furthermore, if some propensity scores attain
values of zero or one, the ATE is not even point-identified. These results formalize
the intuition that it is difficult or impossible to estimate the counterfactual outcomes
for units with extreme propensity scores.'® Such extreme propensity scores are
common in observational settings. The solutions we discuss next downweight these
difficult-to-estimate counterfactuals to address this practical challenge.

B. Easiest-to-Estimate Averages of Treatment Effects

Suppose in a sample of observations i = 1,...,N we wish to esti-
mate a weighted average of conditional potential outcome contrasts
AW ockim(W,) /2 AMW,), where (W) = E[Y(k) W], ¢ is a
(K+ 1)-dimensional contrast vector with elements ¢;, and A(W,) is some weighting

13 One approach to limited overlap is trimming: that is, dropping observations with extreme propensity scores
(Crump et al. 2006, 2009; Yang et al. 2016). As with the estimators we derive next, trimming estimators shift the
estimand from ATE to easier-to-estimate weighted averages of conditional ATEs.
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scheme.'* We focus on two specifications for the contrast vector, leading to two
alternatives the ATE target. First, for separately estimating the effect of each treat-
ment k, we set ¢, = 1, co = —1 and set the remaining entries of ¢ to 0. The con-
trast of interest then becomes )_Y | \(W;) 7(W,) />, A(W,), the weighted ATE of
treatment k. Second, we specify ¢ so as to allow us to simultaneously contrast the
effects of all K treatments; we discuss this further below. For each contract vector
¢, we characterize in this section the easiest-to-estimate weighting (EW) scheme
)\(Wi) that leads to the smallest possible standard errors under homoskedasticity. We
discuss estimation of the corresponding estimands in Section IIIC.

This optimization problem has four motivations. First, there is a robustness moti-
vation: a researcher would like to estimate a given contrast as precisely as possible,
at least under the benchmark of constant treatment effects, while being robust to
the possibility that the effects are heterogeneous. While the optimization problem
does not impose convexity, it turns out that the EW scheme is convex. Hence, the
resulting estimand identifies a convex average of conditional contrasts under het-
erogeneous treatment effects, and avoids any contamination bias. Such a robustness
property presumably underlies the popularity of regression as a tool for estimating
the effect of a binary treatment: the regression estimator is efficient under homoske-
dasticity and constant treatment effects while, by the Angrist (1998) result, retaining
a causal interpretation under heterogeneous effects.!>

Second, the EW scheme gives a bound on the information available in the data: if
the scheme yields overly large standard errors, inference on other treatment effects
(such as the unweighted ATE) must be at least as uninformative. Computing the
EW standard errors thus reveals whether informative conclusions for any treatment
effect estimand are only possible under additional assumptions or with the aid of
additional data. In fact, we show below that in the binary treatment case the EW
scheme is exactly the same as that used by regression. Recall that in the binary
treatment case, the regression treatment weights are proportional to the conditional
variance of treatment, Var[D,- | W,-] = pl(W,»)(l — pl(W,»)>. Because these weights
tend to zero as pl(Wl-) tends to zero or one, regression downweights observations
with extreme propensity scores where the estimation of counterfactual outcomes is
difficult, avoiding the poor finite-sample behavior of ATE estimators under weak
overlap and allowing for informative inference even when one cannot precisely esti-
mate the unweighted ATE.

Third, the EW scheme can be viewed as offering an intermediate point along a
particular robustness-precision “possibility frontier.” The ATE estimator based on
the interacted specification in equation (16) lies on one end of this frontier, being
the most robust to treatment effect heterogeneity (i.e. retaining a clear interpretation
regardless of the form of T(w) or how it relates to the propensity scores). But this
robustness comes at the cost of imprecision and nonstandard inference under weak

“In a slight abuse of notation relative to Section II, the weights )\ here are not required to average to one.
Instead, we scale the estimand by the sum of the weights, Y i} A(W,).

15There are several motivations for the interest in convex weights. First, /\(W,-) > 0 ensures the estimand
captures average effects for some well-defined (and characterizable) subpopulation. Second, it prevents what Small
et al. (2017) call a sign-reversal: if 7,(w) has the same sign for all w (+,0 or —), then the estimand will also have
this sign. Blandhol et al. (2022) call such estimands “weakly causal.” Finally, the estimand satisfies a population
version of what Robins et al. (2007) call boundedness: the estimand lies in the support of Tk(W).
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overlap. The regression estimator based on equation (8) lies on the other end of the
frontier: it is likely to be precise even when overlap is weak (and is efficient under
homoskedasticity if the partly linear model in equation (8) is correct, such that treat-
ment effects are constant). But this precision comes at the cost of contamination
bias under heterogeneous treatment effects. The EW scheme lies in between these
extremes, purging contamination bias and retaining good performance under weak
overlap by giving up explicit control over the treatment effect weighting, letting it
be data-determined.'®

Finally, while the derivation of the EW scheme is motivated by statistical pre-
cision concerns, the resulting estimand can be seen as identifying the impact of a
policy that manipulates the treatment via a particular incremental propensity score
intervention. We discuss this interpretation in Remark 6 below.

We derive the EW scheme in two steps. First, we establish a precision benchmark
(a semiparametric efficiency bound) for estimation of a given weighted average of
treatment effects under the idealized scenario that the propensity score is known.
Second, we determine which weights A minimize the bound.

The following proposition establishes the first step of our derivation:

PROPOSITION 2: Suppose equation (11) holds in an i.i.d. sample of size N, with
known nondegenerate propensity scores pk(W) Let ak(W) = Var[ ( ) ]W]
Consider the problem of estimating the weighted average of contrasts

K
Ore = ZA i)];)Ck:uk(W

1A l_l

where the weighting function \ and contrast vector ¢ are both known. Suppose the
weighting function satisfies E [)\ ] # 0, and that the second moments of \(W,)
and ,u(Wl) are bounded. Then, condmonal on the controls Wy, ..., Wy, the semi-
parametric efficiency bound is almost-surely given by

KXN(W)2ctof(W)
18 Ve = 1
" ST S e

As formalized in the online Appendix A.2 proof, V, . establishes the lower bound on
the asymptotic variance of any regular estimator of ¢, . under the idealized case of
known propensity scores.!’

6 There are other approaches to resolving the robustness-precision tradeoff, such as seeking precise estimates
subject to the weights A remaining “close” to one, or placing some restrictions on the form of effect heterogeneity,
in contrast to leaving it completely unrestricted as we do here (see Mogstad, Santos, Torgovitsky 2018 for an exam-
ple of this approach). We leave these alternatives to future research.

17 The efficiency bound for the population analog 63} . = E[)\(W,-)Z,’f:o ckuk(Wi)] /E[A(W,-)] has an additional

2
term, E[)\( )? (Zk ocr (W) — QM) ]/E [A(W,)] , reflecting the variability of the conditional average con-
trast. The variance-minimizing weights for 03 . thus depend on the nature of treatment effect heterogeneity. By

focusing on 6, ., we avoid this term, which allows us give the characterization in equation (19) without any assump-
tions about heterogeneity in treatment effects.
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To establish the second step, we minimize equation (18) over A. Simple algebra
shows that the EW scheme is (up to an arbitrary constant) given by

K 2 2 -1
(19) (W) = (ZC"""—M)> .
i=0 Pd(Wi)

Observe that this scheme delivers convex weights, A> > 0, even though convex-
ity was not imposed in the optimization. Hence, there is no cost in precision if we
restrict attention to convex weighted averages of conditional ATEs.

When the contrast vector is selected to estimate the weighted average effect of a
particular treatment k, a corollary to Proposition 2 is that regression weights are the
easiest-to-estimate:

COROLLARY 1: For some k > 1,let c* be avector with elements c = 1ifj = k,
] = —1ifj = 0,and c = 0 otherwise. Suppose that the condltlonal variance of
relevant potential outcomes is homoskedastic: U,%(Wi) = U%(W,-) = o7 Then the

variance-minimizing weighting scheme is given by \x = \, where

Po(Wi) pk<wi)
Po(Wy) + pi(Wy)

(20) )‘k<wi> -

Per equation (14), the weighting A coincides with the weighting of conditional
ATEs from the partially linear model (8) when it is fit only on observations with D; €
{O,k}, provided p;/ (pk + po) € G.'8 Corollary 1 thus gives a precision justification
for estimating the effect of any given treatment k by a partially linear regression
in the subsample with D; € {O,k} under a homoskedasticity benchmark, comple-
menting the robustness motivation discussed earlier.!® To estimate the effects of all
treatments one can run K such one-treatment-at-a-time regressions, one for each
treatment arm. Plugging equation (20) into equation (18) reveals that the asymptotic
variance is bounded so long as the overla between the covariate distribution in each
treatment arm is nonempty: that is, Pr{J W; pk ,- > 5} {Wl-.po W,- > 8})
> ¢ forsomee > 0.

For binary treatments, Crump et al. (2006, Corollary 5.2) and Li, Morgan, and
Zaslavsky (2018, Corollary 1) show that the weighting pl(W,-)<1 — pl(Wl-)) min-
imizes the asymptotic variance of a particular class of inverse propensity score
weighted estimators. Our Corollary 1 extends the property to all regular estimators,
and to multiple treatments.

Remark 5: The one-treatment-at-a-time regression can also be motivated as a
direct solution to contamination bias in the partially linear regression in equation
(8). In particular, as discussed in Section IIA, contamination bias arises because
the implicit linear probability model E *[X,-k | X; 1, W,| incorrectly imposes additive

18Th(is )follows since the propensity score in the subsample is given by Pr(D,- = k|W,D; € {O,k})
(Wi k . . . . .. .
= ——————— 5o that \"(W,) in equation (20) equals the conditional variance of the treatment indicator times
W) + W) (W) in equation (20) eq
the probability of being in the subsample.

19 As usual, homoskedasticity is a tractable baseline: the arguments in favor of OLS following Corollary 1 can

be extended to favor a (feasible) weighted least squares regression when JZ(W,) is consistently estimable.
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separability between X; _; and W,. To solve this issue, one can include interactions
between the controls and X; _;. This is similar to the interacted regression in equation
(16), except we exclude the interaction Xl-k(qk(W,») —E [qk(W,»)]). Simple algebra
shows that this regression is equivalent to the one-treatment-at-a-time regression.

Remark 6: The population analog of the estimand implied by the weighting in
Corollary /1, E [)\k(Wi) Tk<Wi)] JE [)\k(Wi)], also identifies the effect of a particu-
lar marginal policy intervention. Consider the effects of a class of policies indexed
by a scalar § that restrict treatments to {O,k} by increasing the propensity score
of treatment k to pj(W,) and setting pd(W;) = 1 — py(W;).2° Then the marginal
effect of the increasing the policy intensity ¢ per unit treated at § = 0 is given by
E [Op,‘z(W,-) /96 - T(Wi)] JE [8pi(Wi) / 85] (see Zhou and Opacic 2022 for derivation
and discussion). Thus, the weights \(W;) = po(W,) pi(W;)/ (pO(W,-) + pk(W,»))
identify the marginal policy effect when they correspond to the derivative Op,‘f(Wl-) /0.
For example, Zhou and Opacic (2022) show this holds for policies that increase
the log odds of a single binary treatment by a constant d, such as by increasing the
intercept in a logit model for treatment.

A shortcoming of the EW scheme in Corollary 1 is that it is treatment-specific,
making it difficult to compare the weighted-average effects across treatments.?!
This issue is especially salient when the control group is arbitrarily chosen, such
as in teacher VAM regressions which omit an arbitrary teacher from estimation and
seek causal comparisons across all teachers.

We thus turn to the question of how Proposition 2 can be used to select a weight-
ing scheme which allows for simultaneous comparisons across all treatment
arms. Suppose that the contrast of interest is drawn at random from a given mar-
ginal treatment distribution Pr(D; = k) = m, so that ¢; = 1 with probability
m(1 — m)/ (1 — YK on?)andc; = —1 with the same probability.?? Let F, denote
this distribution over the (now random) contrasts. If the researcher wishes to report
an accurate contrast estimate but needs to commit to a weighting scheme before
knowing the contrast of interest, it is optimal to minimize the expected variance

f () = 1 X - MW))22m(1 — m) or(W,)
¢ T —
EAW)] (1 — LK onf) =0 (W)
Minimizing this expression over A is equivalent to minimizing equation (18)

with ¢f = 2m(1 — m;), which yields equation (19) with this contrast speci-
fication as the optimal weighting. Thus, the optimal weights are proportional

29With multiple treatments, policy relevance of any contrast only involving two treatments will generally
require the policy to restrict the number of treatments to preclude flows in and out of multiple treatment states. For
instance, the ATE gives the effect of comparing two policies: one makes only treatment k available, while the other
makes only treatment 0 available.

2! Formally, for treatments 1 and 2, we estimate the weighted averages Y ;A'(W;)7(W,;)/> ;A (W,) and
YN (W) 2(W)) /2 A% (W,). Because the weights ' and A differ, the difference between these estimands cannot
generally be written as a convex combination of conditional treatment effects 7,(W;) — 7,(W,;). This critique also
applies to the own-treatment weights in Proposition 1. Thus even without contamination bias one may find the
implicit multiple-treatment regression weighting deficient.

22Formally, we draw two treatments at random from the given marginal distribution, discarding the draw if the
two treatments are equal.
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2]~
o [Dio nl pkzrvk\)/:)rk<Wl)

following result.

. Specializing to the homoskedastic case leads to the

COROLLARY 2: Let F, denote the distribution over possible contrast vectors such
that Pp (ck = 1) = Pr (ck = — 1) 7Tj<1 ) (1 - YK 07Tk) Suppose that
oﬁ(W ) = o for all k. Then the weighting scheme minimizing the average variance

bound | V)\,CdFﬂ( ) is given by
—1
)\CW lz ’ﬂ'k 1 — Tk l

The easiest-to-estimate common weighting (CW) scheme AV generalizes the

intuition behind the single binary treatment (Corollary 1), placing lower weight on
strata with extreme propensity scores. When the treatment is binary, K = 1, the 7;’s
do not matter and the CW scheme reduces to that in Corollary 1: )\CW(W,-)
= A l(W,-) = )\O(W,-) = pl(Wl-) pO(Wi). With multiple treatments, however, the
weights A" remain the same for every treatment, allowing for simultaneous com-
parisons across all treatment pairs (k, E).

There are two natural choices for the marginal treatment probabilities 7. First,
when equally interested in all contrasts, one can set 7, = 1/ (K + 1) This weight-
ing scheme was previously proposed by Li and Li (2019); our characterization of
it in terms of optimizing a semiparametric efficiency bound is, to our knowledge,
novel. Second, if more common treatments are of greater interest, we may set 7 to
the empirical treatment probabilities N~'Y_;X;,. This weighting targets precise esti-
mation of contrasts involving more common treatments at the expense of contrasts
involving less common treatments. We use this choice in our empirical applications
in Section IV. For either choice of weights, the resulting asymptotic variance in equa-
tion (18) remains bounded so long as the overlap between covariate distributions
in each treatment arm is not empty: Pr(ﬂkKZO{Wi : pk(Wl-) > 5}) > ¢ for some
e > 0. Nonempty overlap is a substantially weaker assumption than strong overlap,
needed for v/N-estimation of the unweighted ATE, which requires this probability
to equal one. For instance, in the nine empirical applications below, nonempty over-
lap always holds, but strong overlap fails in six applications.

C. Practical Guidance in Measuring and Avoiding Contamination Bias

A researcher interested in estimating the effects of multiple mutually exclusive
treatments with regression can use Proposition 1 to measure the extent of contam-
ination bias in their estimates. When the propensity score is not fully degenerate,
they can further estimate one of the alternative estimation targets discussed in the
previous subsections. Here we provide practical guidance on both procedures, which
we illustrate empirically in the next section.

For simplicity, we focus on the case where g is linear and equation (8) is esti-
mated by OLS. We suppose Assumption 1 and both conditions in Assumption 2
hold, such that all propensity scores p; and potential outcome conditional expec-
tation functions p, are linearly spanned by the controls W;. These conditions hold,
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for example, when W; contains a set of mutually exclusive group indicators. When
G is unrestricted, the recommendations in this section would require nonparametric
approximations for g analogous to those discussed in Section ITIA.

Under this setup, we can decompose the OLS estimator (3 from the uninteracted
regression

K
(21) Vi = a+ ZXikﬁk + W/~ + U,
=1

to obtain a sample analog of the decomposition in Proposition 1. To this end, note
that the own-treatment and contamination bias weights in Proposition 1 are identi-

fied by the linear regression of X; on the residuals X;. Specifically, Aie(W;) is given
by the (k,¢)th element of the K x K matrix A(W,) = E[X;X]| ' E[X;X}|W],

which can be estimated by its sample analog A = (X’X) X, X, where X is the
sample residual from an OLS regression of X; on W; and a constant and X is a
matrix collecting these sample residuals. The (k E)th element of A estimates the
weight that observation i puts on the /th treatment effect in the kth treatment coef-
ficient. For k = / this is an estimate of the own-treatment weight in Proposition 1;
for k # ( this is an estimate of a contamination weight.

Under linearity, the kth conditional ATE may be written as 7,(W;) = 7o, +
W ~w. Where v, and A{W  are coefficients in the interacted regression specification

(22) Yi = a9 + kZlek%k + Wiogy + kZIszWzWWk + U
Estimating equation (22) by OLS yields estimates 7(W;) = 4o, + W4y For
each observation i, we stack the set of conditional ATE estimates in a K x 1 vector
HW)).

Using the OLS normal equations, we then obtain a sample analog of the popula-
tion decomposition in Proposition 1:

(23) 3 = ﬁ:ldiag(A,.) ) + Z[ — diag(A;)]#(W)).

The first term estimates the own-treatment effect components, E [)\kk W) Tk(W-)],
while the second term estimates the contamination bias components,
ZE#E [)\kg ] If the contamination bias term is large for some ﬁk, it sug-
gests the estlmate of the kth treatment effect is substantially impacted by the effects
of other treatments. Researchers can also compare the first term of equation (23)
to other weighted averages of own-treatment effects, 1nclud1ng the ones discussed
next, to gauge the impact of the regression weighting dlag(A )

YW, = w}A, 2

Now, =

more light on the regression estimates in B For example, the contamlnatlon weights
for ¢ # k can be plotted against the treatment effect estimates Tg(W,) to visually
assess the sources of contamination bias. Low bias may arise from limited treatment

can shed

Further analysis of the estimated weights (W) =

23When the covariates are not saturated, it is possible that the estimated weighting function f&( )

= 11/ N II{W = W}A is not positive-definite for some or all w. In particular, the diagonal elements of A( )

need not all be positive. However, it is guaranteed that the diagonal of A( ) sums to one and the nondiagonal
weights sum to zero, since Y . ,A = I
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effect heterogeneity, small contamination weights, or a low correlation between the
two.

Estimation of the unweighted ATE and the EW and CW schemes is also straight-
forward under the linearity assumptions. First, estimating equation (17) by OLS
yields estimates of the unweighted ATEs 7, = E [Tk(Wl-)] . The estimates are numer-
ically equivalent to 7, = Hox + W A Where 4, and Ay, are OLS estimates of
equation (22).

Second, the EW scheme from Corollary 1 can be estimated using the uninteracted
one-treatment-at-a-time regression

(24) Y, = & + Xp B + Wi + Uy,

where we only use observations assigned either to treatment k or the control group.

The third solution is to estimate the CW scheme A" from Corollary 2. We use
inverse propensity score weighting in our applications below: we regress ¥; onto
X, and a constant, weighting each observation by )\CW(Wi) /Dp(W;) where pi(W,)
denotes estimated propensity scores from a multinomial logit model and

(25) AW = LéWl il

is an estimate of \". When the weights 7 are uniform, this estimator reduces to
the estimator studied in Li and Li (2019). The resulting estimator can be written as

N SCW
2 1 AT(W))
26 ACW, = = X[ Yi
( ) 5)\ k N /\CW(Wi)X. 1:21 ﬁk(wl) k
i=1 f’k(wi) ik
N A w
- C%V Z ~ ( 1) XiOYi
N AT WY i Po(W))
i=1 ﬁo(Wi> i0

When the treatment is binary and p;, is obtained via a linear regression, this weighted
regression estimator coincides with the usual (unweighted) regression estimator that
regresses Y; onto D; and W,.24 Proposition A.1 in online Appendix A shows that the
estimator B35cv is efficient in the sense that it achieves the semiparametric efficiency
bound for estimating B3 cv = Z,-)\CW(W,-)T(WI-) / Z,-)\CW(W,-).

Remark 7: The estimator G;CW is justified by a parametric model for the pro-
pensity score. In order to guard against misspecification of the propensity score,
mirroring the discussion in Section IIIA, it may be attractive to instead use a dou-
bly robust version of this estimator that combines propensity score weighting with
a regression adjustment using an estimate of y;. Another approach is a weighted

>*To  see this, note that in this case A(W,) = py(W)po(W), so that  fFxow,
X0 - AW)DY, XY (W) - D)y, XD h(W)Y ’ ‘

YL =pW))Di XLp(W)(1 - D) YD = (W)
squares normal equations Y_Y, X;; = >N, p(W)) and Y_; X, py(W)) = 2N, py (W2

where the second equality uses the least-
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version of the approach of De los Angeles Resa and Zubizarreta (2020), in which the
observations are weighted by P multiplied by balancing weights (instead of the
inverse estimated propensity score).?> We leave detailed study of these approaches
to future research.

Remark 8: Under homoskedasticity, the second and third solutions yield estimates
with smaller asymptotic variance than the estimator of the unweighted ATE. These
gains in precision are achieved by changing the estimand to a different convex average
of conditional treatment effects. In particular, covariate values w where the propen-
sity score py(w) is close to zero for some k will be effectively discarded. In practice,
explicitly plotting the treatment weights A€ and \* may help to identify the types
of individuals who are downweighted by these solutions, and to assess the variation
in these weights. Plotting them against treatment effect estimates 7 can help visu-
ally assess the extent to which differences in weighting schemes drive differences in
between estimates. In particular, the difference between the ATE and any weighted
ATE estimand of the effect of treatment k with weights )\(W,-), normalized such
that E[)\(W,)] = 1is given by E[)\(Wi) Tk(W[)] — E[Tk(Wi)] = E[)\(W[) Tk(Wi>]
- E [A(W,)]E [Tk(WI-)] = cov [)\(W,-),Tk(W,»)]. Thus, if the own treatment weights
A display only a weak covariance with own treatment effect, the weighting will have
little effect on the estimand. This is analogous to the observation in Remark 1 that
contamination bias reflects the covariance between the contamination weights and
treatment effects of the other treatments.

IV. Applications
A. Project STAR Application

We first illustrate our framework for analyzing and addressing contamination bias
with data from Project STAR (Achilles et al. 2008), as studied in Krueger (1999).%°
The Project STAR RCT randomized students in 79 public Tennessee elementary
schools to one of three types of classes: regular-sized (20-25 students), small (target
size 13—17 students), or regular-sized with a teaching aide. The proportion of stu-
dents randomized to the small class size and teaching aide treatment varied across
schools, due to school size and other constraints on classroom organization. Students
entering kindergarten in the 1985-1986 school year participated in the experiment
through the third grade. We focus on kindergarten effects, where differential attri-
tion and other complications with the experimental analysis are minimal.>’

Column 1 of panel A in Table 1 reports estimates of kindergarten treatment
effects in a sample of 5,868 students initially randomized to the small class size and

25 Under propensity score misspecification, AV would generally converge to a probability limit A" that may
be different from AV Both of these alternative approaches would estimate a weighted average of ATEs weighted
by AV in this case.

26Data and code for all empirical results are available at Goldsmith-Pinkham et al. (2024).

27Students in regular-sized classes were randomly reassigned between classrooms with and without a teaching
aide after kindergarten, complicating the interpretation of the aide effect in later grades. The randomization proba-
bilities for students entering a participating school in grades 1-3 were different due to uneven availability of slots
in small and regular-sized classes Krueger (1999).
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TABLE 1—PROJECT STAR CONTAMINATION BIAS AND TREATMENT EFFECT ESTIMATES

B Own ATE EW CW
(1 2 3) 4) (5)
Panel A. Treatment effect estimates
Small class size 5.311 5.156 5.515 5.248 5.529
(0.774) (0.773) (0.758) (0.771) (0.760)
[0.740] (0.739] [0.738]
Teaching aide 0.205 0.388 0.099 0.292 0.040
(0.716) (0.710) (0.705) (0.711) (0.708)
[0.691] (0.688] [0.691]
Number of controls 78
Sample size 5,902

Worst-case bias

Bias Negative Positive
(1) 2 3)
Panel B. Contamination bias estimates
Small class size 0.155 —1.643 1.659
(0.160) (0.184) (0.186)
Teaching aide —0.184 —1.521 1.522

(0.149) (0.175) (0.176)

Notes: Panel A gives estimates of small class and teaching aide treatment effects for the Project
STAR kindergarten analysis. Column 1 reports estimates from a partially linear model in equa-
tion (21), column 2 reports the own-treatment component of the decomposition in equation
(23), column 3 reports the interacted regression estimates based on equation (17), column 4
reports estimates based on the EW scheme using one-treatment-at-a-time regressions in equa-
tion (24), and column 5 uses the CW scheme based on equation (25). Panel B gives the con-
tamination bias component of the decomposition in equation (23) in column 1, while columns
2 and 3 reports the smallest (largest) possible contamination bias from reordering the condi-
tional ATES to be as negatively (positively) correlated with the cross-treatment weights as pos-
sible. Robust standard errors are reported in parentheses. Robust standard errors that assume
the propensity scores are known are reported in square brackets.

Sources: Achilles et al. (2008); authors’ calculations

teaching aide treatments. Specifically, we estimate the partially linear regression
(equation (21)) where Y; is student i’s test score achievement at the end of kinder-
garten, X; = (X”,Xl-z) are indicators for the initial experimental assignment to a
small kindergarten class and a regular-sized class with a teaching aide, respectively,
and W; is a vector of school fixed effects. We follow Krueger (1999) in computing
Y; as the average percentile of student i’s math, reading, and word recognition score
on the Stanford Achievement Test in the experimental sample. As in the original
analysis (Krueger 1999, column 6 of Table V, panel A), we obtain a small class size
effect of 5.31 with a heteroskedasticity-robust standard error of 0.77 and a teaching
aide effect of 0.21 (standard error: 0.72).%%

As discussed in Section I, treatment assignment probabilities vary across the
schools indicated by the fixed effects in W,. If treatment effects also vary across
schools in a way that covaries with the contamination weights )\kg(W,»), we expect

28Qur estimates are similar to, but not exactly the same as, those in Krueger (1999). The main text reports
estimates of an overlap sample that drops one school with no regular classrooms. Full sample estimates, reported
in, are nearly identical, but the decomposition in Proposition 1 is not identified in the full sample. We use
heteroskedasticity-robust (nonclustered) standard errors throughout this analysis, since the randomization of stu-
dents to classrooms is at the individual level.



4042 THE AMERICAN ECONOMIC REVIEW DECEMBER 2024

the estimated effect of small class sizes to be partly contaminated by the effect of
teaching aides (and vice versa). Panel B reports the contamination bias part of the
decomposition in equation (23), which appears minimal for both treatment arms.

It is useful to decompose the contamination bias further into the standard devia-
tion of the school-specific treatment effect Tg(wi), standard deviation of the contam-
ination weights, and their correlation, as discussed in Remark 1. Figure D.2 in online
Appendix D does this graphically, plotting estimates of the school-specific treat-
ment effects 7,(W,) against the contamination weights A (W;) for £ # k. As can
be seen from Figure D.2, the variability of school-specific treatment effects is sub-
stantial: Adjusting for estimation error, we estimate the standard deviation of 7,(W,)
to be 10.9 for the small class treatment and of 9.1 for the aide treatment.?® Both
standard deviations are an order of magnitude larger than the standard errors in
Table 1. On the other hand, the standard deviations for the contamination weights
for the small class and aide treatment are only moderate: 0.14 and 0.11, respectively.
Moreover, the correlation between the conditional treatment effects and the contam-
ination weights is weak: 0.10 for the small class effect estimate and —0.13 for the
aide effect estimate. The moderate variation in the contamination weights coupled
with weak correlation between the weights and the treatment effects explains why
the contamination bias is small, even though the treatment effects vary substantially
across schools.

Had the experimental design been such that the contamination weights strongly
correlate with the treatment effects, sizable contamination bias could have resulted.
To illustrate this, we compute worst-case (positive and negative) weighted averages
of the estimated T[(W,) by reordering them across the computed cross-treatment
weights )\M(Wi). This exercise highlights potential scenarios in which the random-
ization strata happened to have been highly correlated with the effect heterogeneity.
Columns 2 and 3 in panel B of Table 1 show that both bounds on possible contam-
ination bias are an order of magnitude larger than the actual contamination bias:
[—1.65, 1.67] for the small class size treatment and [— 1.53, 1.53] for the teaching
aide treatment.>° Overall, for both treatments, the underlying heterogeneity in this
setting makes substantial contamination bias possible even though actual contami-
nation bias turns out to be relatively small.

Columns 2-5 of panel A report four treatment effect estimates that are free of
contamination bias. Column 2 gives the own-treatment effect component of the
decomposition in equation (23), netting out the contamination bias estimate from
column 1. This nearly doubles the teaching aide effect estimate, from 0.21 to 0.39,
but the estimate remains statistically insignificant; the small classroom estimate
moves very little. The remaining columns report the three solutions to contamina-
tion bias discussed in Section III. Column 3 estimates the unweighted ATEs of the
small class size and teaching aide treatment, by estimating the interacted regres-
sion specification in equation (17). Column 4 estimates the one-treatment-at-a-time

29We adjust for estimation error by subtracting the average squared standard error from the empirical variance
of the treatment effect estimates and taking the square root.

39The point estimates and standard errors in columns 4 and 5 in Table 1 do not account for the fact that the
reordering is based on estimates of 7;,(W;) rather than the true treatment effects. This biases the reported estimates
away from zero, so that they give an upper bound for the worst-case contamination bias.
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regressions in equation (24) for k = 1,2. Finally, column 5 runs a weighted regres-
sion of ¥; onto X using the CW scheme in equation (25).

There turns out to be little difference between these alternative estimates. The
small class size effect varies between 5.2 and 5.5, which is close to the original esti-
mate. The teaching aide effect varies between 0.01 and 0.29. To understand this lack
of variation, recall from Remark 8 that the difference between the unweighted ATE
and an estimand that uses weights A\(W,) is given by the covariance between A\(W))
and the conditional ATEs Tk(Wi). Given the sizable variability in the treatment effect
estimates, the covariance will be small only if the correlation between the weights
and the treatment effects is small and if the weights display limited variability.
This turns out to be the case here, as depicted graphically in Figure D.3 in online
Appendix D. The figure shows that the correlations fall below 0.25 in absolute value
for all weighting schemes, and that the weights only vary between 0.7 and 1.2.

As a consequence of strong overlap, the standard errors are similar across the
columns. Indeed, the efficiency gain of the EW scheme relative to the ATE based on
an efficiency bound comparison using equation (18) with A = \¥ versus A = 1
is less than 1.6 percent for both treatments under homoskedasticity; the gain is
even smaller under the CW scheme. The reported standard errors, which allow
for heteroskedasticity and don’t assume known propensity scores, align with this
prediction.®! As discussed in Remark A.1 in online Appendix A.3, these standard
errors are affected by the assumption of known propensity scores, used to derive
the weighting schemes underlying the estimates in columns 2 and 3. To gauge the
impact of this assumption, we also report a version of the standard errors computed
under the assumption that the sample treatment probabilities in each school match
the true propensity scores. This changes the standard errors little, showing that there
is minimal cost to estimating the weights.

B. Further Applications

We next study the broader relevance of contamination bias using data from eight
additional studies with multiple-treatment regressions. These studies were identi-
fied by a systematic search of papers in the AEA Data and Code Repository from
2013-2022 (see online Appendix C.1 for details). Five studies are experiments like
Project STAR; the remaining three use observational regressions to estimate racial
disparities across multiple race groups (which we interpret as descriptive, following
Remark 4).3> We replicate a single representative specification for each paper, cor-
responding to the first relevant regression discussed in the paper’s introduction.®?
Table 2 lists the papers and specifications.

31 The standard errors reported in parentheses in panel B are valid for the population analogs (3, and 3, cv, that is,
E[A"(Wi) Tk(Wi)]/E[/\k(W,)] and Er/\CW(W,-) Tk(W,-)] /E[/\CW(W,)]. Since these standard errors are potentially
conservative when viewed as standard errors for 5 and 3,cw, the standard error comparison gives an upper bound
on the cost to estimating the weights.

32We focus on observational studies of racial disparities as they often include regressions on multiple minority
race “treatments,” use publicly available data, and are easily identifiable by a keyword search.

33«Relevant” here means a multiple-treatment regression specification with controls, where at least one treat-
ment coefficient was statistically significant. The introduction in Cole et al. (2013) did not discuss any relevant
specifications; we instead pick the first specification with variation in treatment probabilities across strata where
our results would be most relevant.
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TABLE 2—FURTHER APPLICATIONS

Sample size
Journal Type Spec. Original Overlap std(p(W))

Paper (1) 2 ®3) 4 ) (6)

Benhassine et al. (2015) AEIL:AE Exp. 5(1) 11,074 6,996 0.14
Cole et al. (2013) AEJ:AE Exp. 7(6) 132 73 0.10
de Mel et al. (2013) AEJ:AE Exp. 2(2) 520 520 0.02
Drexler et al. (2014) AEJ:AE Exp. 2(2) 796 796 0.05
Duflo et al. (2015) AER Exp. 2A(1) 9,116 8,664 0.11
Fryer and Levitt (2013) AER Obs. 3(4) 8,806 6,623 0.31
Rim et al. (2020a) AER:P&P Obs. 2(3) 4,037 620 0.24
Weisburst (2019a) AER:P&P Obs. 2A 7,488 7,488 0.31

Notes: This table summarizes the five experimental studies and three observational studies of racial disparities col-
lected from a search of the AEA Data and Code Repository from 2013-2022 (See online Appendix C.1 for details
of this search). Column 3 reports the table and panel of the replicated specification with the column or row of the
specification in parentheses. Column 6 gives the standard deviation of the estimated propensity score i)k(Wi) for
the treatment arm k displaying the greatest propensity score variation; estimates are computed using a multinomial
logit model. See online Appendix C.2 for details on the overlap sample and tests for propensity score variation.

Sources: Benhassine et al. (2024); Cole et al. (2019); de Mel, McKenzie, and Woodruff (2019); Drexler, Fischer,
and Schoar (2019); Duflo, Dupas, and Kremer (2019); Fryer and Levitt (2019), Rim, Ba, and Rivera (2020b);
Weisburst (2019b); authors’ calculations

We conduct two preliminary analyses of each study before assessing contamina-
tion bias and comparing alternative estimators. First, we ensure that the estimation
sample satisfies overlap, since otherwise the decomposition in Proposition 1 is typi-
cally not identified. If strong overlap fails, we identify a large subset of each analysis
sample where it is satisfied. Columns 4 and 5 of Table 2 list the number of observa-
tions in the full and overlap samples (the sample sizes are equal if the original esti-
mation sample satisfies overlap). Second, we check for propensity score variation
in each of the studies. In principle, protocol descriptions can reveal whether some
regression controls are necessary (and hence generate propensity score variation) or
whether the controls are just added to improve precision. In practice, however, this is
not always clear from paper descriptions.>* Column 6 of Table 2 gives a quantitative
sense of the variability in the propensity scores by reporting the standard deviation
of the estimated propensity score, showing that its variability in the observational
studies is substantially higher; the dagger symbol indicates that a hypothesis test for
nonzero variation in the population propensity scores was statistically significant.
online Appendix C.2 details the overlap sample construction and these tests. We
replicate the analyses from Table 1 for each of the eight papers in online Appendix
C.3; we summarize the takeaways here.

Figure 1 summarizes the statistical and practical significance of contamination
bias in the estimated effect of each treatment for each specification (as estimated in
the overlap sample). Column A shows the absolute value of the contamination bias ¢
-statistics for each regression coefficient, obtained from the decomposition in equa-
tion (23). In both columns, we sort treatments within papers by this absolute z-statistic

34 Moreover, some regression specifications are run on a nonrandom subsample of the full experimental pop-
ulation (due to, e.g., attrition, or in a subsample analysis). This could generate propensity score variation even in
simple experimental protocols.
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FIGURE 1. CONTAMINATION BIAS ACROSS ALL APPLICATIONS

Notes: This figure summarizes the analysis of contamination bias in the STAR application and the additional appli-
cations in Table 2. The six experimental studies are shown in blue; the three observational studies of racial dispari-
ties are shown in orange. Column A shows the absolute value of contamination bias #-statistics for each regression
coefficient, given by equation (23). Column B shows a normalized version of this decomposition that divides each
term by the standard error of the regression coefficient. The darker bar shows the own-treatment effect component,
while the lighter bar shows the contamination bias component.

Sources: Achilles et al. (2008); Benhassine et al. (2024); Cole et al. (2019); de Mel, McKenzie, and Woodruff
(2019); Drexler, Fischer, and Schoar (2019); Duflo, Dupas, and Kremer (2019); Fryer and Levitt (2019); Rim, Ba,
and Rivera (2020b); Weisburst (2019b); authors’ calculations
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and sort papers by the maximum absolute #-statistic across treatments. Column B
shows a normalized version of the decomposition that divides each term by the
standard error of the regression coefficient. The darker bar shows the own-treatment
effect component of the decomposition, while the lighter bar denotes the contami-
nation bias component (which can be of the same or opposite sign).

The figure shows economically and statistically meaningful contamination bias
in two of the three observational studies while showing no evidence for bias in any
of the experimental studies. This aligns with the intuition that the large propen-
sity score variability in observational studies generates much larger variability in
the contamination weights. Specifications from both the de Mel, McKenzie, and
Woodruff (2013) and Drexler, Fischer, and Schoar (2014) experiments have some
of the smallest contamination bias and also smallest propensity score variation,
consistent with the theoretical results that contamination bias requires variation
in the contamination weights which in turn requires variation in the propensity
scores. On the other hand, the two studies with statistically significant contami-
nation bias (Fryer and Levitt 2013 and Weisburst 2019a) also display the greatest
variation in propensity scores. These results highlight the importance of testing
for contamination bias, especially in observational settings where the included
covariates are likely to drive sizable variation in propensity scores and hence con-
tamination weights.

Figure 2 plots estimates of the treatment effects for each estimator from Table
1, again normalizing by the standard error of the regression coefficient. We include
a line between the estimates from OLS regression and from the CW estimator we
propose. Among observational studies, we see substantial variation across the dif-
ferent estimates and a much larger difference between the OLS estimator and the
CW estimator. In the experimental papers, the difference is much smaller.>> This is
consistent with the larger propensity score variability in observational studies mag-
nifying the impact of the choice of weighting scheme.

V. Conclusion

Regressions with multiple treatments and flexible controls are common across a
wide range of empirical settings in economics. We show that such regressions gen-
erally fail to estimate a convex weighted average of treatment effects: coefficients
on each treatment are generally contaminated by the effects of other treatments. We
provide intuition for why the influential result of Angrist (1998) fails to generalize
to multiple treatments, and show how the contamination bias problem connects to a
recent literature studying DiD regressions. We then discuss three alternative estima-
tors that are free of this bias.

Our analysis of nine empirical applications finds economically and statistically
meaningful contamination bias in observational studies. Contamination bias in
experimental studies is more limited, even in papers that display statistically sig-
nificant variation in the propensity scores. We also find that the choice among
alternative estimators that are free of contamination bias matters more in the

35The same pattern arises when comparing the estimates in the full sample; see online Appendix C.3.
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FIGURE 2. TREATMENT EFFECT ESTIMATES WITH USING DIFFERENT ESTIMATORS

Notes: This figure plots estimates of treatment effects for each estimator from of Table 1, applied to the STAR applica-
tion and additional applications in Table 2. We normalize each estimate by dividing by the standard error of the regres-
sion coefficient. The six experimental studies are shown in blue; the three observational studies of racial disparities are
shown in orange. Each specification includes a line connecting the estimate from the regression coefficient and the eas-
iest-to-estimate CW estimator. EW stands for the easiest-to-estimate weighting. For the Rim et al. application the ATE
estimate for the “Asian” coefficient equals —8.4, and it is not displayed as it falls outside the axis limits.

Sources: Achilles et al. (2008); Benhassine et al. (2024); Cole et al. (2019); de Mel, McKenzie, and Woodruff
(2019); Drexler et al. (2019), Duflo, Dupas, and Kremer (2019); Fryer and Levitt (2019); Rim, Ba, and Rivera.
(2020b); Weisburst (2019b); authors’ calculations

observational studies. Overall, our analysis highlights the importance of testing
the empirical relevance of theoretical concerns with how regression combines het-
erogeneous effects, particularly in observational studies.
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