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Electron-phonon coupling in ferromagnetic Fe-Co alloys from first principles
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The measured magnetization dynamics of ferromagnetic iron-cobalt Fe1−xCox alloys show a strong de-
pendence on the alloy composition, especially near x = 0.25. Here, we calculate from first principles the
electron-phonon coupling strength in Fe1−xCox alloys for compositions ranging from x = 0 to 0.75. We find
a strong, spin-dependent variation of the electron-phonon coupling strength with alloy composition, with a
minimum near x = 0.25. We analyze the variation of the electron-phonon interaction with composition, as a
function of electron spin, density of states, electron-phonon matrix elements, character of electron wave function
at the Fermi level, orbital-resolved strength of the phonon perturbing potential, and phonon frequencies. We
calculate the electron-phonon energy transfer coefficients, and we find that they are in qualitative agreement
with the phenomenological electron-phonon energy transfer coefficient deduced from magnetization dynamics
experiments. Our findings show that variations in the composition of ferromagnetic alloys can significantly alter
the magnetization dynamics and transport properties.
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I. INTRODUCTION

Electron-phonon coupling plays a key role in our un-
derstanding of the dynamic properties of ferromagnets.
Properties such as Gilbert damping [1], ultrafast demagne-
tization [2], and all-optical switching [3] are governed by
the electronic bands at the Fermi level and the strength of
coupling between the total electron population with phonons.
Other properties, such as the spin-dependent Peltier effect [4],
the giant magnetothermal effect [5–7], and the spin-dependent
Seebeck effect [8] are due to differences in majority-spin
and minority-spin electronic bands at the Fermi level as well
as the different strengths of coupling of majority-spin and
minority-spin electron populations with phonons. Engineer-
ing these magnetic properties requires an understanding of
the material parameters, such as electron density of states,
electron-phonon matrix elements, and their spin-resolved
counterparts, that affect the strength of coupling between
electrons and phonons. Previous work on modeling these
spin-dependent properties, such as demagnetization studied in
Refs. [9–11], relied on using heuristic values of the electron-
phonon energy transfer coefficients. Clearly, there is a need
to compute these parameters from first principles in order to
obtain a quantitative prediction of the dynamic properties of
ferromagnets.

Previous first-principles studies of the electron-phonon
coupling strength in magnets have focused on only a small
subset of ferromagnetic materials, namely elemental ferro-
magnets Ni, Fe, and Co. However, many ferromagnets are
alloys of transition metals. One such example is the Fe-
Co alloy. Magnetic damping in the Fe-Co alloy was only
recently measured [12]. Interestingly, Ref. [12] reports sig-
nificant changes in damping as a function of the Fe-Co alloy
composition. In particular, the lowest damping was measured
in the Fe0.75Co0.25 alloy, the same alloy composition in which

the density of states is lowest. Measurements of minimal
damping in this composition have been reported by others
[13,14]. More recent experiments showed that the demagne-
tization response is maximized in this composition due to a
minimum in the electron-phonon energy transfer coefficient
[15], a quantity that depends not only on the density of states
but also the electron-phonon matrix elements.

Our goal in this work is to understand the composition
dependence of the electron-phonon coupling strength in the
ferromagnetic Fe-Co alloy. As we detail in Sec. II, sur-
prisingly few computational first-principles studies of the
electron-phonon coupling strength in ferromagnetic alloys
exist, aside from the study of the electron-phonon energy
transfer coefficient in Ni-based alloys [16]. Although λ has
been reported for pure Fe and Co [17], no results have been
reported for λ in Fe-Co alloys. On the other hand, similar
studies exist for many nonmagnetic alloys as a function of
their composition. The electron-phonon coupling strength in
some alloys, such as V-Cr, varies linearly with composition
[18], as one might expect from a rule of mixtures. But in other
cases, such as Nb-Mo, there is a nonlinear dependence of the
electron-phonon coupling strength on the composition [19].

In this work, we use first-principles density functional
theory to compute the electron-phonon coupling strength
λ in Fe-Co alloys. We find that λ varies strongly, and
nonmonotonically, with alloy composition, reaching a min-
imum near the aforementioned Fe0.75Co0.25 composition.
We perform a spin decomposition of λ and find that the
majority-spin contribution to λ monotonically decreases
with the alloy composition, while the opposite is true for
minority-spin. We further analyze the quantities driving the
composition dependence of λ and find that while the den-
sity of states plays a dominant role, the magnitude of the
electron-phonon matrix elements also varies strongly with the
alloy composition. We compare our theoretical results with
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FIG. 1. Dependence of the electron-phonon coupling strength (λ) on composition (x). Experimental results are from Refs. [18,19,27,28].
Theoretical results are from Refs. [22–26].

experimental estimates of the electron-phonon energy transfer
coefficient in Fe-Co alloys across a range of compositions
[15], and we find that our results are qualitatively in agreement
with the experiment.

The structure of this paper is as follows. In Sec. II,
we discuss previous experimental and theoretical values of
the electron-phonon coupling strength in metallic alloys. In
Sec. III, we detail how we decompose the electron-phonon in-
teraction strength into their spin components. Then in Sec. IV,
we show the results of the first-principles density functional
theory for the electron-phonon coupling strength in ferromag-
netic Fe-Co alloys. We analyze separately the strengths of
majority- and minority-spin components in order to reveal the
origin of the nonmonotonicity. We also compare our results
with the experiments.

II. ELECTRON PHONON COUPLING IN ALLOYS

The dependence of λ on alloy composition has been stud-
ied for various nonmagnetic alloy systems. These include
empirical values of λ, estimated from the ratio of the Debye
temperature and the superconducting transition temperature,
in ordered and disordered alloys [18,20], as well as first
principles calculated λ in virtual crystal approximated alloys
[21–23], ordered alloys [24], and disordered alloys [25,26].
Naively, one might think that λ in an alloy A1−xBx with com-
position x could be calculated by linear interpolation from the

electron-phonon coupling strength of metal A (λA) to that of
metal B (λB). To evaluate how well the linear model approxi-
mates λ, we computed

λlinear = (1 − x)λA + xλB (1)

for the various alloys in the literature. For many of the alloys,
the literature contains values for λ for only part of the range of
compositions. For these, we linearly interpolate from λ at the
lowest available composition xmin to λ at the highest available
composition xmax using a simple generalization of Eq. (1),

λlinear = xmax − x

xmax − xmin
λxmin + x − xmin

xmax − xmin
λxmax . (2)

However, as expected, this naive linear approximation is valid
only for a few alloys. The deviations from the linear behavior
are quite commonly reported in the literature [18–20,22–28],
as summarized in Fig. 1. The vertical axis in Fig. 1 shows λ

and the horizontal scale of the figure shows the composition
ranging from xmin to xmax for each alloy based on available
data.

We further quantify the deviation from the naive linear
model by computing λ−λlinear

λlinear for each alloy, as shown in Fig. 2.
As can be seen from Fig. 2, the V1−xCrx alloy in the range

of x = 0.1 to 0.5 has a reported relative deviation from the
naive linear estimation of only–1%. On the other hand, in Ti-V
and Mo-Re alloys, the deviation from linear dependence is
up to 20%, while in the Pb-Tl, VN-NbN, Nb-Mo, and Ta-W
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FIG. 2. Same as Fig. 1 but now instead of λ we show deviation of λ from the linear model given by Eq. (2).

alloys it is even greater, around ±40%. The largest deviation
from the linear regime, about 80%, was found for the ordered
Cu3/4Au1/4 alloy. We note that the linear dependence of λ

on composition in some alloy systems (Zr-Rh, Ag-Zn, Pb-Bi,
and Ag-Al) is due to a relatively narrow reported range of
composition (x).

Our results on the ferromagnetic Fe-Co alloy are shown in
the bottom left panels of Figs. 1 and 2 in black. We find that
λ of Fe0.25Co0.75 is about 70% smaller than that predicted by
the naive linear model, λlinear.

We now turn our attention to the definitions of key quanti-
ties that we will use to study the electron-phonon coupling in
Fe-Co alloys.

III. METHODS

The strength of electron-phonon coupling is often mea-
sured by a single dimensionless number, λ [18,29]. The
coupling constant λ is defined as a double sum over the Fermi
surface,

λ = 1

NF

1

NkNq

∑
qν

1

h̄ωqν

∑
mn,k

|gmnν (k, q)|2

× δ(εnk − εF)δ(εmk+q − εF). (3)

We denote the total density of states at the Fermi level, for
both spin channels, as NF, the number of sampled k-points
in the electron Brillouin zone as Nk , and number of sampled
q-points in the phonon Brillouin zone as Nq. The phonon
frequency is ωqν . The first sum in Eq. (3) goes over phonon

q points and branches ν, while the second sum goes over k
points and electronic bands m and n. For now, spin indices are
incorporated into the band indices. The energy conservation
is maintained by the two δ functions. The electron-phonon
matrix element gmnν (k, q) from Eq. (3) is defined as

gmnν (k, q) =
√

h̄

2mωqν
〈ψmk+q|∂qνv|ψnk〉. (4)

Here, ∂qνv is the periodic modulation of the crystal potential v
due to phonon (q, ν) that allows an electron in the state (n, k)
to scatter to state (m, k + q).

A. Spin-resolved measures of electron-phonon interaction

For materials with a small spin-orbit interaction, the elec-
tronic states have a well-defined spin. Therefore, from now on
we use σ = ↑ or σ = ↓ to index the Bloch state ψσ

nk with a
specific spin state. In the small spin-orbit limit, the dominant
scattering is between states of equal spin,

gσ
mnν (k, q) =

√
h̄

2mωqν

〈
ψσ

mk+q

∣∣∂qνv∣∣ψσ
nk

〉
. (5)

Under this assumption, the sums over m and n in Eq. (3)
trivially decompose into two separate sums, one where both
bra and ket states have σ = ↑ and another where both states
have a σ = ↓ component.
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With this separation, λ from Eq. (3) decomposes into two
terms, one for each spin channel σ ,

λ = λ↑ + λ↓. (6)

The spin-dependent quantity λσ is defined as

λσ = 1

N↑
F + N↓

F

1

NkNq

∑
qν

1

h̄ωqν

∑
mnk

|gσ
mnν (k, q)|2

× δ
(
εσ
nk − εF

)
δ
(
εσ
mk+q − εF

)
. (7)

The only difference between total λ from Eq. (3) and spin-
resolved λσ from Eq. (7) is that the former involves a sum
over all states, while the latter sums over states with fixed
spin σ . Importantly, in Eq. (7) of the spin-resolved quantity
λσ we still have the total density of states NF = N↑

F + N↓
F in

the denominator.
In what follows, it will be convenient to work with the

Eliashberg spectral function, α2F (ω), as it keeps track of
the phonon frequencies ω which connect the electron states
with wave vector k to a state with the wave vector k + q,
both of which are at or near the Fermi surface [18,30]. We
denote the wave vector of a phonon with q. In analogy to the
decomposition of λ into two spin components, we decompose
the Eliashberg spectral function into contributions from each
spin channel, α2F σ (ω). We define this spin-resolved quantity
so that integrating over dω/ω gives back our additive spin-
resolved λσ ,

λσ = 2
∫ ∞

0

dω

ω
α2F σ (ω). (8)

Therefore, clearly, in analogy to Eq. (6) we have

α2F (ω) = α2F↑(ω) + α2F↓(ω), (9)

where α2F (ω) is the conventional Eliashberg spectral func-
tion used, for example, in the study of superconductivity and
elsewhere.

1. Alternative definition: Nonadditive λ

Previous work on electron-phonon coupling in ferromag-
netic metals, Ref. [17], introduced a different measure of
spin-resolved electron-phonon coupling strength. Instead of
dividing by the total density of states, as in Eq. (7), one divides
by a spin-resolved density of states. This leads to a quantity
λσ
nadd which is related to λσ simply as

λσ
nadd = N↑

F + N↓
F

Nσ
F

λσ . (10)

Clearly, such λσ
nadd is no longer additive over spins. Instead,

using Eqs. (6) and (10) we have the following relation:

λ = N↑
F λ

↑
nadd + N↓

F λ
↓
nadd

N↑
F + N↓

F

. (11)

While definition of λσ
nadd somewhat complicates its relation to

the total λ, a common measure of electron-phonon interaction
in the literature, the quantity λσ

nadd has another convenient
property. If we neglect for a moment some of the details of the
electronic band structure and assume that the electron-phonon
matrix elements on the Fermi surface are independent of band

indices m and n, then the matrix element can be taken out of
the double sum, and the sum over the two δ functions gives
us (Nσ

F )
2, which partially cancels Nσ

F from the denominator.
Therefore, the relationship between nonadditive λσ

nadd and the
average electron-phonon matrix element 〈g2σ 〉 for a given spin-
channel is particularly straightforward,

λσ
nadd = Nσ

F

〈
g2σ

〉
. (12)

On the other hand, if one wanted to relate our additive λσ

to the average matrix element, combining Eqs. (10) and (12)
would lead to a less intuitive relationship with the average
matrix element strength,

λσ =
(
Nσ
F

)2
N↑
F + N↓

F

〈
g2σ

〉
. (13)

B. Relationship to electron-phonon energy transfer coefficient G

Now we relate our λ and λσ to the electron-phonon energy
transfer coefficient G. This coefficient describes the rate of
energy transfer between electrons and phonons per unit vol-
ume and per temperature difference of electrons and phonons.
Within the two-temperature model of electrons and phonons
for a nonmagnetic system [31], G is proportional to the total
density of states NF = N↑

F + N↓
F and λ. This model implicitly

assumes that majority and minority spins are thermalized with
each other at all times. With this assumption, the effective G
for a spin-polarized system is given as

G = πkBh̄

Vc
[(N↑

F + N↓
F )(λ

↑ + λ↓)]〈ω2〉 (14)

using additive λσ , or equivalently

G = πkBh̄

Vc
(N↑

F λ
↑
nadd + N↓

F λ
↓
nadd )〈ω2〉 (15)

using the nonadditive variant. Here Vc is the unit cell volume
(per atom), and 〈ω2〉 is a weighted average of the square of the
phonon frequency, defined as [18]

〈ω2〉 = 2

λ↑ + λ↓

∫ ∞

0
dω ω[α2F↑(ω) + α2F↓(ω)], (16)

with units of meV2. Equations (14) and (15) give a numeri-
cally equal energy transfer coefficient G. Therefore, additive
λσ or nonadditive λσ

nadd can be used to compute G. The only
difference between the two equations is that they implicitly as-
sume a different thermodynamic description of the electronic
system. In the case of Eq. (14) one considers the electronic
system in a ferromagnet as one unified thermal reservoir. The
effective electron-phonon coupling strength for this system
is then the sum of λ↑ and λ↓. In contrast, in the case of
Eq. (15), one imagines the electronic system as consisting
of two reservoirs, one for each spin, and each subsystem has
its density of states and effective electron-phonon coupling
strength.

As with λ, we can separate G into its majority-spin part G↑
and minority-spin part G↓,

G = G↑ + G↓, (17)
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where the electron-phonon energy transfer coefficient for spin
channel σ is defined as

Gσ = πkBh̄

Vc
(N↑

F + N↓
F ) 2

∫ ∞

0
dω ωα2F σ (ω). (18)

C. Details of density functional theory calculation

In this work, we use the QUANTUM ESPRESSO computer
package [32,33] for density functional theory calculations. We
use the GGA-PBE exchange-correlation functional [34]. We
do not include HubbardU correction, as it leads to an overesti-
mation of both the lattice parameter and the magnetic moment
of Fe [35]. We choose the nonrelativistic ONCV pseudopo-
tentials [36] for Fe and Co. We use a 90 Ry kinetic-energy
cutoff and 183 k points on a uniform grid to converge wave
functions. We use the density functional perturbation theory
to calculate the phonons on a coarse grid of 43 q points. We
use Wannier90 [37–39] to construct Wannier functions with
sp3d2-like and t2g-like characters. We set the frozen window
to range from 30 eV below to 5 eV above the Fermi level.

We compute the electron-phonon matrix elements with
EPW [40,41]. The convergence of λσ requires a small smear-
ing parameter and a large number of k-points and q-points. We
vary these parameters until convergence in the limit of zero
smearing and infinitely many k and q points. We determine
that a smearing of 0.01 eV, 723 k points, and 243 q points are
sufficient to converge λσ . To converge the density of states
at the Fermi energy, we use 1923 k points. We modified the
native EPW package to support spin-polarized calculations.
All of our calculations are done without including the spin-
orbit interaction, as it is relatively weak in 3d metals such as
Fe and Co.

D. Virtual-crystal approximation

In this work, we focus on Fe1−xCox alloys in the range
of concentrations x from 0 to 0.75. Pure iron (x = 0) at
room temperature adopts a body-centered-cubic structure
(bcc, space group Im3̄m). When Co is added to Fe, the struc-
ture remains bcc, but Fe and Co atoms are randomly arranged
on a bcc lattice. At a higher concentration of Co (x = 0.5)
there is an ordering of Fe and Co atoms (B2 phase, space group
Pm3̄m) [42,43]. At an even higher concentration of Co (above
around x = 0.75), the bcc phase is no longer favored, and the
preferred phase is hexagonal close-packed (hcp).

We model Fe1−xCox alloys within the virtual crystal ap-
proximation (VCA) [44,45]. Briefly, we use two elemental
pseudopotentials and combine them with the desired fraction
of each element to create an effective pseudopotential of the
alloy. Then we place the pseudopotential of the alloy in the
primitive cell of the bcc lattice (2a site of space group Im3̄m)
to generate the bcc alloy. The VCA approach offers a compu-
tational advantage, because we can use a single atom basis to
represent arbitrary alloy compositions x, eliminating the need
for computationally expensive supercell calculations. Never-
theless, we computed λ at x = 0.5 using both approaches. To
construct the supercell, we place Fe in the 1a site and Co in
the 1b site of the space group Pm3̄m, resulting in an ordered
(B2) Fe1/2Co1/2 alloy.

On converging both calculations, we find that in the or-
dered Fe1/2Co1/2 alloy, λ is 0.496 while in the VCA approach
λ is surprisingly similar, 0.491. We find a similar agreement
in λ↑ and λ↓. To further compare these calculations, we first

recall that by Eq. (13) our λσ is the product of (Nσ
F )

2

N↑
F +N↓

F

and

the average matrix element 〈g2σ 〉. Comparing the values ob-
tained from both methods, we find that the VCA overestimates
(N↑

F )
2

N↑
F +N↓

F

by 20%, and underestimates 〈g2↑〉 by 10%. The oppo-

site is true for the minority spins: underestimation of (N↓
F )

2

N↑
F +N↓

F

and overestimation of 〈g2↓〉. Therefore, the remarkably close
agreement in λσ and λ obtained from VCA and the supercell
is partly due to accidental partial cancellation of errors in
the densities of states and electron-phonon matrix elements.
To further analyze our results, we compare the spin-resolved
Eliashberg spectral functions (shown in Fig. 3) and we find
that the supercell approach gives a spectral function that has
more features, especially at low frequencies. Furthermore, we
find some weight redistribution among the peaks at the higher
part of the phonon spectrum. We assign these differences to
the folding of the band structure in the supercell approach that
is absent in the VCA. Given the large number of k and q points
needed to converge these calculations, computing λ for other
values of x with supercells, or taking into account disorder
with special quasirandom structures [46], quickly becomes
computationally prohibitive.

IV. RESULTS AND DISCUSSION

Now we discuss the results of our calculations of λ in
Fe1−xCox for x between 0 and 0.75 in steps of 0.125. In the
case of pure Fe (x = 0), we find λ to be 0.23. As we increase
the Co concentration x, we find that λ first decreases for small
x and then increases substantially for larger x, as shown by
the black line in Fig. 4. The numerical values of λ are also
shown in Table I. Between concentrations x = 0 and 0.125, λ
decreases by a factor of 1.5. As the concentration increases
further, we find that λ increases by a factor of 5 between
x = 0.25 and 0.75. Table I also contains numerical values of
the electron-phonon energy transfer coefficient G calculated
using Eqs. (14) and (16).

A. Resolving λ into electron spin

To understand the origin of the initial decrease followed
by a sudden increase in λ as a function of x, we use our
decomposition of λ into the majority-spin part λ↑ and the
minority-spin part λ↓, as defined in Sec. III. We show in
Fig. 4 the λ↑ (red line) and λ↓ (blue line) as a function of
the alloy composition x. We also show the numerical values
in Table I. The majority spin λ↑ is dominant over the minority
spin λ↓ in pure Fe (x = 0). However, the previously dominant
λ↑ drastically reduces in magnitude between x = 0 and 0.25,
and remains small (around 0.02) until x = 0.75. The minority
λ↓ has the opposite behavior. Although λ↓ was small in Fe
(x = 0) it increases about 12-fold as the concentration x of Co
increases from x = 0 to 0.75. The crossover from λ↑ > λ↓ to
λ↑ < λ↓ occurs already around x = 0.125.
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FIG. 3. α2F σ and α2F σ /ω for FeCo alloy at x = 0.5 calculated for an ordered supercell (solid lines) and within the VCA (dashed lines)
for majority spins (left column) and minority spins (right column).

Therefore, the dependence of λ on x in Fe1−xCox is due to
the different behavior of the majority-spin and minority-spin
channels. This behavior is in clear contrast to the nonmag-
netic alloys discussed in Sec. II, where by definition λ↑ = λ↓.
Therefore, trivially, any nonlinearity in λ(x) for a nonmag-
netic alloy cannot come from the different dependence of
λ↑(x) compared to λ↓(x).

B. Resolving λ into electronic density of states
and electron-phonon matrix elements

Next, we discuss the origin of the composition dependence
of λ↑ and λ↓. We use Eq. (13) to decompose λσ into a

product of (Nσ
F )

2

N↑
F +N↓

F

and 〈g2σ 〉. We begin with an analysis of the

composition dependence of the spin-resolved quantity (Nσ
F )

2

N↑
F +N↓

F

,

as shown in the top panel of Fig. 5 (for Nσ
F and N↑

F + N↓
F ,

see Table I). We observe that (Nσ
F )

2

N↑
F +N↓

F

qualitatively tracks the

dependence of λσ on composition (x). That is, at small x

the (N↑
F )

2

N↑
F +N↓

F

is larger than (N↓
F )

2

N↑
F +N↓

F

but with increasing x they

switch. Clearly, a large part of the dependence of λσ on the
composition (x) comes from the density of states. However,
the matrix elements also play a role in the dependence of λ↑
on x. The bottom panel of Fig. 5 shows the majority 〈g2↑〉
(red line) and the minority 〈g2↓〉 (blue line) as a function of
x. The same data are also included in Table I. As can be
seen in the figure and the table, the average electron-phonon
matrix elements depend on the Co concentration, x. We find
that 〈g2↑〉 increases by nearly a factor of 3 from x = 0 to 0.75.

Despite the increase in 〈g2↑〉, the 25-fold decrease in (N↑
F )

2

N↑
F +N↓

F

from x = 0 to 0.75 drives the reduction in λ↑ with x. On the

other hand, the minority spin 〈g2↓〉 is roughly constant with
x, and the difference between the largest and smallest 〈g2↓〉 is
around 20%. We also note that for all x the minority spin 〈g2↓〉
is larger than the majority spin 〈g2↑〉.

C. Origin of composition dependence
of electron-phonon matrix element

Now we focus on understanding what drives the composi-
tion dependence of average electron-phonon matrix elements
〈g2↑〉 and 〈g2↓〉. The electron-phonon matrix element, as de-
fined in Eq. (5), is calculated from the electron wave function
ψσ

nk and the change in the effective electron potential due to
phonon displacement ∂qνv. Clearly, both ψσ

nk and ∂qνv depend
on the Co concentration, x.

First, to analyze the nature of the electron wave function
ψσ

nk as a function of x, we decomposed the electron state ψσ
nk

into a basis of localized Wannier functions W σ
i with a well-

defined orbital (i) and spin (σ ) character,

∣∣〈ψσ
nk

∣∣W σ
i

〉∣∣2.
Importantly, the orbital character of states W σ

i is nearly in-
dependent of x, and therefore serves as a reference orbital
against which we compare Bloch states ψσ

nk for all x. Given
|〈ψσ

nk|W σ
i 〉|2, we compute the projected density of states as

shown in Fig. 6.
Second, to analyze the nature of the electron potential per-

turbation ∂qνv, we also transform it into the basis of Wannier
functions, as described in Ref. [53]. The transformed matrix
element has the following form:

g2σ i jα = ∣∣〈W σ
i

∣∣∂αv
∣∣W σ

j

〉∣∣2.
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FIG. 4. Electron-phonon coupling strength λ (black line) is a
nonmonotonic function of the alloy composition x. The majority-spin
λ↑ (red line) decreases with composition as the minority-spin λ↓

(blue line) increases. The top panel has a linear vertical scale, and
the bottom panel has a logarithmic vertical scale. The results shown
here are from VCA.

In this doubly localized representation, both the electron
orbitals and the perturbing potential are now exponentially
localized in space. In particular, the change in the electron
potential ∂αv is now resulting from a displacement of a single
atom, in a single (home) unit cell, in a Cartesian direction
α. For simplicity of our following analysis, we will sum the
quantity g2σ i jα over all directions α.

1. Minority spin

Focusing first on the minority spin, we find that for all x the
dominant minority electron state character at the Fermi level
is t2g. This can be seen from the projected density of states
plot shown in Fig. 6.

Analyzing the strength of the perturbing potential ∂v, we
find that it is nearly independent of x. The maximum change
with x of our measure of perturbation potential strength,∑

α g
2
σ i jα , is at most 15%. Therefore, in short, both the elec-

tron state and the perturbing potential are independent of x for
the minority spin. This is consistent with our earlier observa-
tion that the average electron-phonon matrix element 〈g2↓〉 is
nearly independent of x, as shown in Fig. 5.

2. Majority spin

The situation with the majority-spin channel is somewhat
more complex than with the minority-spin channel. The dom-
inant majority-spin orbital character is t2g for x below 0.25.
Above 0.25 the dominant orbital character is sp-like. The or-
bital decomposition of the electronic states is shown in Fig. 6.

Furthermore, the strength of the perturbing potential ∂v

is strongly dependent on x for the majority-spin channel.
As expected from the exponential localization of g2σ i jα , the
dominant matrix element corresponds to cases in which the i
and j orbitals are in the home unit cell. While the sp3d2-like
scattering is significantly stronger than the t2g-like scattering,
we find that the sp3d2-like scattering is less sensitive to Co
concentration, x. For example, going from x = 0.25 to 0.75
we find a nearly fourfold increase in

∑
α g

2
σ i jα when i and j

correspond to the t2g-like orbitals, and a 30% increase when
i and j correspond to the sp3d2-like orbitals. When i or j are
not in the home cell, g2σ i jα is significantly smaller and even
less dependent on x (at most ±10%).

In short, we assign a strong increase in 〈g2↑〉 as a function
of x both to the change in the orbital character of the electron
state at the Fermi level, as well as to the increase in the
strength of the perturbing potential ∂αv.

3. Previous work

The importance of the orbital character of electronic
states for the electron-phonon interaction strength has been
discussed previously in the literature. For example, measure-
ments reported in Ref. [54] show that the matrix elements for
the scattering involving sp states have a larger magnitude than
those involving d states in Ag. Interestingly, the opposite was
reported in Ref. [55] for Cu, Ag, and Au, while Ref. [56]
found a weak relationship between the magnitude of the ma-
trix element and the orbital character.

D. Resolving λ by phonon frequency

After resolving λ into various electronic contributions, we
now focus on resolving λ by phonon frequencies. First, we
analyze the phonon density of states F (ω), shown in the top
row of Fig. 7, and the phonon dispersion (see the Supple-
mental Material [57]). We see that both the phonon density
of states and the phonon dispersion are roughly unchanging
with composition.

To analyze which phonons contribute to λ, we computed
the Eliashberg spectral function α2F (ω), as defined in Eq. (8).
The α2F (ω) keeps track of the phonon frequencies ω with
a dominant contribution to λ. We show α2F (ω) for different
alloy compositions, x, in Fig. 7.

In general, we find, as expected, that α2F strongly varies
with x, mirroring the strong variation discussed earlier for the
integrated quantity, λ. Focusing on pure Fe (x = 0) we see
that α2F (ω) has two peaks, one near 22 meV and another
around 37 meV. A third peak, around 30 meV, appears for
x above 0.375. The relative strength of the peaks changes as
a function of x. For example, at x = 0 the dominant peak is
the low-frequency one, while above x = 0.375 the midfre-
quency peak dominates, signaling a different electron-phonon
scattering channel for x above 0.375. Figure 7 also shows
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TABLE I. Quantities related to the electron-phonon coupling in the Fe1−xCox alloys. Nσ
F , NF in units of eV−1atom−1, 〈g2σ 〉 in units of eV,

G in units of 1017 Wm−3 K−1, magnetic moment μ in units of μB/atom, and cell volume (per atom) Vc in units of Å3. The theoretical results
from Refs. [17,47–51] and the experimental result from Ref. [52] are included for comparison.

Fe (x = 0) x = 0.125 x = 0.25 x = 0.375 x = 0.5 x = 0.75

Ordered VCA VCA VCA VCA Ordered VCA

N↑
F This work 0.693 0.366 0.147 0.151 0.148 0.145 0.147

Ref. [17] 0.519
Ref. [49] 0.76 0.12 0.12
Ref. [50] 0.70

N↓
F This work 0.239 0.242 0.228 0.284 0.574 0.634 0.918

Ref. [17] 0.312
Ref. [49] 0.24 0.28 0.58
Ref. [50] 0.27

NF This work 0.932 0.608 0.375 0.435 0.722 0.779 1.065
Ref. [17] 0.831
Ref. [49] 1.00 0.40 0.70
Ref. [50] 0.970

〈g2↑〉 This work 0.320 0.306 0.503 0.543 0.797 0.966 0.912
Ref. [17] 0.131a

〈g2↓〉 This work 0.987 0.860 0.868 0.852 1.024 0.912 0.959
Ref. [17] 0.561a

λ
↑
nadd This work 0.222 0.112 0.074 0.082 0.118 0.140 0.134

Ref. [17] 0.068

λ
↓
nadd This work 0.236 0.208 0.198 0.242 0.588 0.578 0.88

Ref. [17] 0.175

λ↑ This work 0.165 0.067 0.029 0.028 0.024 0.026 0.018
Ref. [17] 0.042b

λ↓ This work 0.061 0.083 0.120 0.158 0.467 0.470 0.759
Ref. [17] 0.066b

λ This work 0.226 0.150 0.149 0.186 0.491 0.496 0.777
Ref. [17] 0.108c

G↑ This work 4.76 1.69 0.499 0.551 0.792 0.637 0.641
G↓ This work 2.49 2.34 2.19 3.46 15.1 14.8 27.2
G This work 7.25 4.03 2.68 4.01 15.9 15.5 27.9

Ref. [51] 7.00
Ref. [47] 20.8
Ref. [48] 10.5
Ref. [52] 8.80d

Ref. [52] 9.40e

μ This work 2.25 2.37 2.34 2.35 2.23 2.28 2.01
Vc This work 11.50 11.57 11.53 11.49 11.42 23.16 11.27

aCalculated by inserting λσ
nadd and Nσ

F from Ref. [17] into our Eq. (12).
bCalculated by inserting λσ

nadd and N
σ
F from Ref. [17] into our Eq. (10).

cCalculated by inserting λσ
nadd and Nσ

F from Ref. [17] into our Eq. (11).
dDirect heating of the sample, as discussed in Ref. [52].
eIndirect heating of the sample, as discussed in Ref. [52].

the decomposition of α2F into majority spin α2F↑ (shown in
red) and minority spin α2F↓ (shown in blue). From the spin-
decomposition, we see that the origin of the low-frequency
peak around 22 meV in pure Fe is from the majority-spin
channel. On the other hand, the appearance of the midfre-
quency contribution above x = 0.375 is mainly due to the
minority-spin channel.

E. Comparison with previous works

We now compare our results with the literature results. λ

in bcc iron was empirically estimated [58] to be 0.9. Later
calculations within the rigid muffin-tin approximation found
λ ranging around 0.5–0.9 [59,60].

The more recent Ref. [17] reports density functional the-
ory calculations of the electron-phonon coupling strength in
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FIG. 5. Compositional dependence of
(Nσ

F )2

N↑
F +N↓

F

(top panel, log

scale) and average electron-phonon matrix element 〈g2σ 〉 (bottom

panel, linear scale). With increasing x the majority spin
(N↑

F )2

N↑
F +N↓

F

de-

creases while the minority spin
(N↓

F )2

N↑
F +N↓

F

increases. The average matrix

element of the majority spins 〈g2↑〉 increases with x while the minority
spin 〈g2↓〉 is constant.

pure Fe. The definition of electron-phonon coupling strength
from Ref. [17] is equivalent to our nonadditive λσ

nadd from
Eq. (10). The reported values of the nonadditive λσ

nadd are
0.068 for majority spins and 0.175 for minority spins. Our
calculation of the same quantity (λσ

nadd) gives 0.222 for major-
ity spins and 0.236 for minority spins. Therefore, our λ

↑
nadd

is larger by about a factor of 3 while our λ
↓
nadd is larger

by a factor of 1.3 than those reported in Ref. [17]. Now
we briefly analyze possible sources of the disagreement be-
tween our results and those reported in Ref. [17]. First, we
recall that λσ

nadd is the product of Nσ
F and 〈g2σ 〉. Therefore,

we can investigate whether the difference with respect to
Ref. [17] originates from the spin-resolved density of states
Nσ
F or from the average spin-resolved matrix element, 〈g2σ 〉.

These quantities are given in Table I. Comparing the values
of the spin-resolved density of states, we find that our N↑

F

is 30% larger, while N↓
F is 25% smaller, than that reported

in Ref. [17]. The differences for the average matrix elements
〈g2σ 〉 are much larger. Our 〈g2↑〉 is nearly 2.5 times larger while

〈g2↓〉 is about two times smaller. Reference [17] reported sam-
pling the Brillouin zone with 123 k points and 123 q points,
compared to 723 k points and 243 q points that we needed to
converge λ. We suspect that this difference in convergence is
the main reason why the results of Ref. [17] differ from our
results.

As we described previously in Sec. III B, the electron-
phonon energy transfer coefficient G is a physically mea-
surable quantity closely related to λ. Several values have
been reported in the literature for the electron-phonon energy
transfer coefficient. A semi-empirical [47] model was used
to estimate the electron-phonon energy transfer coefficient in
pure Fe to be 20.8 × 1017 Wm−3 K−1, while a parameter-free
model was used to obtain a value of 10.5 × 1017 W m−3 K−1

[48].
The first-principles density functional theory was used in

Ref. [51] to calculate the energy transfer coefficient as a func-
tion of the electron temperature. Extrapolation of their results
to zero temperature results in an energy transfer coefficient
of 7.00 × 1017 W m−3 K−1. Using Eq. (14) we get a very
similar result (7.25 × 1017 W m−3 K−1) for pure Fe (x = 0).
Reference [51] does not report G for Fe alloyed with Co. We
calculate G as a function of alloy composition x, and we show
the results in Table I.

We can also compare our results for G with the energy
transfer coefficients obtained from the experiment. Ultrafast
demagnetization measurements were used to estimate G in Fe
[52] (shown in Table I) and Fe-Co alloys [15]. Reference [15]
reports a G for Fe (x = 0) of 33 × 1017 W m−3 K−1 that
reaches a minimum at x = 0.25 (11 × 1017 W m−3 K−1) and
then increases to 53 × 1017 Wm−3 K−1 at x = 0.75. Although
there is a quantitative disagreement between our results and G
reported in Ref. [15], there is good qualitative agreement in
the composition dependence of G. From x = 0 to 0.25, we
find a 2.7-fold decrease in G, similar to the 3.1-fold reduction
found in the experiment, and from x = 0.25 to 0.75, we find
a 10-fold increase in G, compared to the less dramatic 5-fold
increase found in the experiment.

V. CONCLUSIONS

The iron-cobalt alloy (Fe1−xCox) shows a strong depen-
dence of magnetization dynamics on composition, as reported
in Refs. [12,15]. We investigated from first principles the
spin-dependent strength of the electron-phonon interaction
in these alloys as a function of composition (x). We find a
rich dependence of the electron-phonon interaction strength
λ on composition. Analyzing separately the contributions of
the majority and minority spins to λ, we find that both have
strong, and opposing, variation with composition. Interest-
ingly, the majority component λ↑ decreases with x while
the minority spin increases with x. We show that these
compositional variations are driven by changes in both the
density of states Nσ

F and the average electron-phonon matrix
element 〈g2σ 〉.

Understanding the electron-phonon interaction strength in
a ferromagnetic alloy, such as Fe1−xCox, opens doors to a
better understanding of magnetic phenomena such as Gilbert
damping [1], ultrafast demagnetization [2], all-optical switch-
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FIG. 6. Composition (x) dependence of majority (red lines) and minority (blue lines) density of states shows rigid shifts in bands. Band
structures at each x are given in the Supplemental Material [57]. Projections of band onto sp-like (dotted lines), t2g-like (dashed-dot lines), and
eg-like (dashed lines) character are shown in the left panel. Relative fraction of each orbital character at the Fermi energy is shown in the right
panels.

ing [3], and spin-dependent transport [4–6,8]. Our work
quantifies the extent to which adjusting the composition of
ferromagnetic alloys, such as Fe-Co, can tune the aforemen-
tioned dynamic magnetic properties.
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FIG. 7. Composition (x) dependence of the phonon density of states F in the upper row and the Eliashberg spectral function for total α2F
(black), majority α2F↑ (red), and minority α2F↓ (blue) in the middle row. We show in the bottom row the α2F results on a logarithmic vertical
scale.
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