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ABSTRACT

Cyber-physical systems (CPS) are subject to environmental uncer-
tainties such as adverse operating conditions, malicious attacks,
and hardware degradation. These uncertainties may lead to failures
that put the system in a sub-optimal or unsafe state. Systems that
are resilient to such uncertainties rely on two types of operations:
(1) graceful degradation, for ensuring that the system maintains an
acceptable level of safety during unexpected environmental condi-
tions and (2) recovery, to facilitate the resumption of normal system
functions. Typically, mechanisms for degradation and recovery are
developed independently from each other, and later integrated into
a system, requiring the designer to develop an additional, ad-hoc
logic for activating and coordinating between the two operations.
In this paper, we propose a self-adaptation approach for improv-
ing system resiliency through automated triggering and coordina-
tion of graceful degradation and recovery. The key idea behind our
approach is to treat degradation and recovery as requirement-driven
adaptation tasks: Degradation can be thought of as temporarily
weakening original (i.e., ideal) system requirements to be achieved
by the system, and recovery as strengthening the weakened require-
ments when the environment returns within an expected operating
boundary. Furthermore, by treating weakening and strengthen-
ing as dual operations, we argue that a single requirement-based
adaptation method is sufficient to enable coordination between
degradation and recovery. Given system requirements specified
in signal temporal logic (STL), we propose a run-time adaptation
framework that performs degradation and recovery in response to
environmental changes. We describe a prototype implementation
of our framework and demonstrate the feasibility of the proposed
approach using a case study in unmanned underwater vehicles.
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1 INTRODUCTION

Cyber-physical systems (CPS) encompasses systems with both phys-
ical and software components, such as autonomous vehicles, un-
manned aerial vehicles (UAVs), smart grids, and robots. These sys-
tems are subject to environmental uncertainties such as adverse
operating conditions (e.g., severe weather for vehicles), malicious
attacks, and hardware faults (e.g., damaged or flaky sensors). Due
to these uncertainties, CPS may encounter failures during their op-
eration lifecycle. For example, an autonomous vehicle may deviate
from the lane boundaries due to a distracted driver or bad road
conditions, drones may enter unsafe airspace due to unexpected tur-
bulences, and a city may encounter blackouts due to unexpectedly
high demands on the electricity grid.

Achieving resiliency against such failures typically involves two
types of operation [15]: (1) graceful degradation, for ensuring that
the system maintains its most critical safety functions during un-
expected environmental scenarios and (2) recovery, to enable the
resumption of normal functions as the environment returns to its
expected state. Typically, mechanisms for degradation and recov-
ery are developed independently and later integrated into a single
system. For instance, a designer of an automotive safety architec-
ture may combine a degradation mechanism that uses secondary
sensors (e.g., cameras) when primary ones fail (e.g., Lidar under
inclement weather) and another mechanism for re-activating an
optimal system function (e.g., self-driving mode) when the envi-
ronmental conditions improve (e.g., Lidar providing accurate data
again). There are two challenges with this approach: (i) The designer
is responsible for developing and validating an application-specific
logic that decides when degradation or recovery should be activated
and (ii) as system requirements evolve over time, this logic may
also need to be changed.

In this paper, we propose a self-adaptation approach for improv-
ing system resiliency through automated coordination of graceful
degradation and recovery. The key idea behind our approach is to
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treat degradation and recovery as requirement-driven adaptation
tasks: Degradation can be thought of as temporarily weakening an
original system requirement to be achieved by the system, and re-
covery as strengthening a previously weakened requirement when
the environmental conditions improve. Furthermore, weakening
and strengthening can be regarded as dual operations: The former
relaxes the set of system behaviors that are deemed acceptable,
and the latter restricts it. Based on this idea, we propose a single,
unified requirement-driven adaptation framework that is capable of
automatically switching between degradation and recovery, depend-
ing on the changes that arise in the environment. Our proposed
approach overcomes the above two challenges, by (i) removing
the need to develop an application-specific logic for coordinating
degradation and recovery, and (ii) allowing the designer to plug in
a different requirement without modifying the underlying logic.

To concretize this approach, we propose a self-adaptation frame-
work that takes system requirements specified in signal temporal
logic (STL) [19], a type of temporal logic that is particularly well-
suited for specifying time-varying behaviors of CPS (e.g., “The
vehicle must never deviate outside the lane for more than 2 sec-
onds”). We show how the weakening and strengthening operations
can be formulated formally as the problem of relaxing and strength-
ening a given STL specification, respectively. In addition, it would
be desirable to reduce the impact of degradation (i.e., apply mini-
mal weakening necessary) and maximize the rate of recovery (i.e.,
strengthen the requirement as much as possible). To support such
optimal degradation and recovery, we also describe how the prob-
lem of generating minimal weakening and maximal strengthening
can be encoded and solved as an instance of mixed-integer linear
programming (MILP).

We have developed a prototype implementation of our proposed
adaptation framework. To demonstrate its feasibility, we have ap-
plied the framework to a case study involving an unmanned under-
water vehicle (UUV), where the system may encounter environmen-
tal uncertainties such as low water visibility and thruster failures
while on a mission to inspect an underwater pipeline [29]. We com-
pare our approach against the state-of-the-art adaptation frame-
work called TOMASys [5]. Our experimental results are promising,
showing that our approach can achieve a higher level of require-
ment satisfaction throughout the adaptation process while incur-
ring a reasonable amount of overhead.

In summary, our main contributions are as follows:

(1) A theoretical framework that combines graceful degradation
and recovery using incremental weakening and strengthen-
ing of STL-based requirements.

(2) Aruntime architecture that performs weakening and strength-
ening to support system adaptation given changing environ-
mental conditions.

(3) Anapproach for enabling optimal system behavior by finding
a minimal weakening or maximum strengthening through
MILP.

(4) An implementation of the proposed adaptation framework
and a case study involving UUVs.
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Figure 1: Illustration of UUV inspecting underwater pipeline

2 MOTIVATING EXAMPLE

Consider an UUV (illustrated in Figure 1) that is on a mission to
inspect underwater pipelines, inspired by the SUAVE exemplar sys-
tem [29]. The mission involves the UUV simultaneously following
and inspecting a pipeline. There are two mission objectives that
the system aims to achieve. First, it must maintain a clear line of
sight with the underwater pipeline; if the visual contact is lost, the
UUV must regain the contact within the next few seconds. Second,
the thruster in the UUV must continually provide enough thrust to
allow the vehicle to complete the mission within given time T.

During the mission, the UUV is subject to two sources of uncer-
tainties: (U;) change in water visibility and (Uz) thruster failures.
These uncertainties may result in the system failing to meet the
mission objectives stated above. For example, U; may result in the
UUV losing visual contact with the pipeline and unable to regain
the visual contact in time. U, may result in the engine being un-
able to provide enough thrust to complete the mission in time. In
either scenario, the violation of the mission objectives may result
in hardware damage and loss of the mission entirely.

Existing Approach. To safely degrade the functionality of the
UUV during an adverse environmental condition, the developer
may first construct a monitor that raises a warning when water
visibility falls below a certain threshold (e.g., 5 meters) and triggers
a certain degradation action (e.g., reduce the speed of the system or
remain stationary to prevent collision with surrounding obstacles).
Separately, to support recovery, another monitor may be created to
look for when the water visibility improves and perform appropriate
recovery actions (e.g., dive deeper to regain its visual contact).

This approach, however, has some drawbacks. First, the devel-
oper is responsible for designing triggering conditions and response
actions, and validating that these actions maintain a desirable level
of system utility (e.g., safety); this requires considerable domain
knowledge and manual effort on the developer’s part. Second, when
system requirements evolve, these conditions and response actions
may also need to be changed. For example, suppose that the UUV
is required to float back up to the surface instead of diving deeper
when the visibility falls below a certain safe threshold. Supporting
this new requirement would involve designing a new controller
(specific to this requirement) that triggers degradation and recovery
based on the changes in the environmental condition.

Proposed Approach. To overcome these drawbacks, we take a
requirements-driven adaptation approach. Given a user-specified
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requirement, our approach automatically switches between degra-
dation and recovery by weakening and strengthening the require-
ment, respectively, and adjusting the system behavior to adapt to
the modified requirement. In addition, our approach can determine
an optimal amount of weakening or strengthening that is needed to
degrade the system safely or bring it back to a normal operational
state.

For example, suppose that the user-specified requirements for
the wvisibility and thruster features are as follows:

Ryisibility: Every time the visual contact with the sub-
marine is lost, regain the contact within the next 5 sec-
onds by diving deeper toward the pipeline.
Rinruster: The thruster should provide 100 N of thrust
to allow it to complete the mission on time.

During an adverse environmental event, each of the require-
ments can be weakened to adapt to the changing environment. For
example, the visibility requirement may be weakened by changing
the time to regain contact from within the next 5 second to within
the next 15 seconds in the case of severely low water visibility, as
follows:

R’. . ... : Every time the visual contact with the sub-
visibility

marine is lost, regain the contact within the next 15

seconds by diving deeper toward the pipeline.

;isibili ty
to either delay the action to regain visual contact or descend towards
the pipeline at a slower rate to ensure the safety of the vehicle. The
weakening of the requirement can, in turn, increase the range of
control actions the system can select from, shown in Figure 1 (action
space increases from ag;,, to a;h.ve after weakening). Then, once
the visibility has improved significantly, the vehicle may want to
resume normal operation by reducing the time it takes to regain
contact, by strengthening R;isibility back to Ryjsipitity-

Similarly, in the case of an engine failure, the thruster require-
ment can be weakened by changing the required thrust from 100 N
to some value less than 100 N, under the premise that it still pro-
vides an acceptable level of utility. One such possible weakening is
as follows:

R : The thruster should provide 50 N of thrust to

thruster
allow it to complete the mission on time.

This weakened requirement R allows the visibility monitor

This weakened requirement R’
thruster

be turned off. Once the engine recovers (through a repair), the
framework again identifies the best possible requirement for the
thruster feature, ensuring that the UUV completes the mission in
the most timely manner—by strengthening R;hms +er @nd allowing
the system to turn thrusters back on.

allows certain thrusters to

Challenges. Generally, given a requirement like Ry;;pijir > there
are numerous ways of weakening or strengthening this requirement
(e.g., adjusting the time to regain visibility by different amounts).
Weakening a requirement involves temporarily sacrificing a certain
utility while strengthening leads to a regain of that utility. One chal-
lenge is how to systematically weaken the requirement no more
than needed while strengthening the requirement to the maximum
extent possible. Another challenge is given a weakened or strength-
ened requirement, how to reconfigure or adjust the behavior of
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the system to best fulfill the adjusted requirement. To tackle these
challenges, we will describe (1) how requirement weakening and
strengthening can be formalized using parametric signal tempo-
ral logic (PSTL)[3] and (2) how to perform optimal requirement
adaptation by encoding it as a MILP problem.

3 PRELIMINARIES

Signals. In our approach, the behavior of CPS is modeled by
real-valued continuous-time signals. Formally, a signal is a function
s : T — D mapping from a time domain, T C Rx, to a tuple of
k real numbers, D C R¥. The value of a signal s(t) = (v1,...,0%)
represents different state variables of the system at time ¢ (e.g., v;
might represent the altitude of a drone).

Signal temporal logic (STL). STL extends linear temporal logic
(LTL) [23] for specifying the time-varying behavior of a system
in terms of signals. The basic unit of a formula in STL is a signal
predicate in the form of f(s(t)) > 0, where f is a function from D
to R; i.e., the predicate is true if and only if f(s(¢)) is greater than
zero. The syntax of an STL formula ¢ is defined as:

@ =f(s(t)) > 0] -¢| o1 Apz2 | p1Uap)02

where a,b € R and a < b. The until operator ¢1U| 4|2 means
that ¢; must hold until ¢, becomes true within a time interval
[a, b]. The until operator can be used to define two other impor-
tant temporal operators: eventually (O[4p)¢ = True Ujqp)¢) and

always (Q[qp1¢ = = Q4] 7).

Robustness. Typically, the semantics of temporal logic such as
LTL is based on a binary notion of satisfaction (i.e., formula ¢
is either satisfied or violated by the system). Thanks to its signal-
based nature, STL also supports a quantitative notion of satisfaction,
which allows reasoning about how “close” or “far” the system is
from satisfying or violating a property. This quantitative measure
is called the robustness of satisfaction [13].

Informally, the robustness of signal s with respect to formula ¢
at time ¢, denoted by p(¢, s, t), represents the smallest difference
between the actual signal value and the threshold at which the
system violates ¢. For example, if the property ¢ says that “the drone
should maintain an altitude of at least 5.0 meters,' then p(g,s, t)
represents how close to 5.0 meters the drone maintains its altitude.
Formally, robustness is defined over STL formulas as follows:

p(f(s(2)) > 0,s,t) = f(s(1))
p(=p,s,t) = —p(p,s.t)
p(@1 A @2,5,t) = min{p(p1,s,1), p(@2,5,1)}

p(Orap1:8,t) = sup  p(@,s,t1)
t1€[t+a,t+b]
P(D[a,b]‘l’s s, t) = inf plo,s,t1)

t1€[t+a,t+b]

where infyex f(x) is the greatest lower bound of some function
f + X — R (and sup the least upper bound). The robustness of
satisfying predicate f(s(t)) > 0 captures how close signal s at time
t is above zero.
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Parametric signal temporal logic (PSTL). PSTL [3] is a logic ob-
tained by replacing the constants in an STL formula with parame-
ters. The syntax of PSTL is as follows:

e =fs@)>al-p | ory | oUY

Note that the syntax is similar to that of STL except both a and the
time interval I can either be a parameter or a constant. In addition,
there are two types of parameters in PSTL formulas: a represents the
value parameter for the atomic proposition f(s(t)) > a, whereas
I represents the time parameters 71, 72| (where 7; < 73). A PSTL
formula is denoted as ¢(p), where p = (p1, ..., pm) € P is the tuple
of parameters appearing in the PSTL formula.

To instantiate a PSTL formula into an STL formula, a valuation
function v is needed to map parameters to their corresponding
concrete values. For example, it maps value parameters to the signal
domain D, and time parameters to the time domain T. A PSTL
formula combined with a valuation function v for p defines an STL
formula ¢(v(p)). We say that a PSTL formula ¢ is satisfiable with
respect to signal trace s if there exists an instantiated STL formula
@(v(p)) such that it is satisfiable. It is formally denoted as follows:

(s,t) F o & Fo(v(p) o (s,1) F o(v(p)) 1

For example, consider PSTL formula ¢4, ,,1(f(s(t)) > a). Instan-
tiating it with the valuation function v = {r; = 0,72 > 5,a > 30}
results in the STL formula ¢(v(p)) = O 51(f(s(t) > 30). Given
signal s(t) = (20,30, 40...), PSTL formula ¢ is satisfiable with re-
spect to signal s because the instantiation ¢(v(p)) is satisfiable
with respect to s.

Validity Domain. The validity domain of a PSTL formula is the set
of all the parameter values that yield satisfaction for an arbitrary
signal s. We will be extending this concept in Section 5 for our
adaptation framework.

4 RUNTIME ADAPTATION ARCHITECTURE

Adaptation Architecture

Managing system ‘ Managed system

Current req. ‘

Current ‘ Weakening —> Degradation
state planner
\ Requirement Achievable ‘ )
™ Actions
Event | Evaluator req. 5
detector t Swenghening -+ FOCOVery

Environment
Model

Sensors I

} Environment ‘4—“ Actuator

Figure 2: Proposed adaptation framework

We present an overview of our proposed runtime adaptation
architecture in Figure 2. The adaptation framework periodically
observes the state of the environment, determines whether adap-
tation is needed, and generates actions based on requirements to
affect the system and environmental states.

There are three major components in the proposed adaptation ar-
chitecture. First, the event detector looks for degradation or restora-
tion events in the environment. Second, the requirement evaluator
determines the achievable requirement based on the current envi-
ronmental conditions. Third, the degradation and recovery planner
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plan future system actions based on the changing requirements.
For example, if visibility decreases below a certain threshold and
the weakened requirement states that "regain contact within the
next 5 seconds", the degradation planner may institute a wait action
instead of diving directly or diving with a lower speed.

When activated by the event detector, the requirement evaluator
takes various inputs: (1) an environmental event, (2) the current
system requirement, (3) the current state of the system, and (4) the
environmental model, which captures how the state of the environ-
ment changes based on system actions. Using a model-predictive
control (MPC) approach [24], the evaluator finds an optimal require-
ment either via strengthening or weakening of the current require-
ment and produces the corresponding control actions through the
planner.

In the following, we describe (A) the environmental model in
more detail, (B) how degradation or adaptation is triggered, and (C)
building on these, a precise formulation of the requirements-driven
adaptation problem.

4.1 Environment Model

Given the current requirement @y, the goal of the evaluator is to
search for an alternative requirement ¢; that is satisfiable. Eval-
uating the satisfiability of an STL formula requires knowledge of
certain future steps s, and the environmental model enables the
generation of the predictive signals for these particular evaluations.

Formally, the environment model is represented as transition
system T = (Q, A, 8, Q;), where:

e Q C R is the set of environment states. Each state is a
combination of values for signal variables, represented as a
k-dimensional tuple; g = (v1, ...0x) € Q.

e A is the set of all actions, A = Asys U Aeny, where Asys
is the set of actuator actions and Aepy is the set of envi-
ronmental actions. Note that Asys and Aepy are disjoint,
meaning that Asys N Aeny = 0.

e §:Q x A — Q is the transition function that captures how
the system moves from one state to another by performing
an action.

e Q; is the set of initial states.

For example, the environment model for the pipeline inspec-
tion case study captures the current location and the velocity of
the vehicle, the relative location for the pipeline, the thrust of the
engine, and how the engine configuration affects the thrust. The
location of the vehicle changes during each transition depending
on the current velocity, which, in turn, may be modified by a sys-
tem action that accelerates or decelerates the vehicle (represented
by a velocity vector). Suppose the state q is represented as a tuple
(vely, vely, vel). The next state can be computed using the previous
state g, action a, and transition function 8, such that ¢’ = §(gq, a)
The example below captures the environmental model for setting
the velocity of the vehicle based on the acceleration provided by
the engine thrust:

q’ vel = (q.oely + g.accy, q.vely + g.accy, q.vel; + g.acc)

Then, given a sequence of actions ay, a, ..., a, and current state
g, the environment model can be executed over these actions to
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generate a corresponding state sequence, qo, q1, ...qn, which is then
formed into predictive signal s.

We do not impose restrictions on one particular notation for spec-
ifying an environment model, as long as it can be used to generate
signals in the format illustrated above. With a more powerful back-
end like Gurobi [26], one can encode more complex environmental
models like non-linear dynamics. For our implementation, we use
the MiniZinc modeling language [21], which provides declarative
constraints for specifying relationships between different variables
of a system.

4.2 Adaptation Trigger

A key decision in our adaptation process is determining when
degradation or recovery should be triggered. Degradation takes
place when the system is no longer capable of satisfying the given
requirement ¢ in the current environment. We state this condition
more formally as follows:

Jaeny : Seq(Aeny) Vasys : SeQ(ﬂsys)'
Vs:Ses=05"(qo,aen0 ® asys) = (s,0) @

where S is the set of all signals, qg is the current state of the system,
@ is an interleaving of two sequences of actions. In other words,
the above statement says that the environment can behave in a
certain way (through some sequence of actions, apy) such that no
matter how the system responds, it is unable to satisfy the property
¢. The idea is then to carry out degradation to find and satisfy a
weaker version of ¢.

Similarly, the triggering condition for recovery is stated as fol-
lows:

Yaeny : Seq(Aeny) ® Jasys : Seq(Asys)e
Vs:Ses=05"(qoaeny ® asys) A (s,0) F o

In other words, in the current environment, the system can guaran-
tee the satisfaction of ¢, no matter how the environment behaves.
Since the environment is in such an agreeable condition, the system
may then attempt to improve its utility by satisfying a stronger
version of ¢.

Evaluating the above conditions involves generating a predic-
tive signal (s) that describes how the environment evolves given a
sequence of system actions. However, carrying this out frequently
may incur significant runtime overhead and possibly interfere with
the system operations. Thus, instead of evaluating these conditions,
our event detector looks for designated degradation and restoration
events (Agegrade @nd Arestore) and uses these as proxy triggers
for degradation and recovery, respectively. Degradation events are
abnormal events that occur due to an unexpected change in the
environment, such as a thruster failure or unusually low water
visibility. On the other hand, a restoration event indicates the envi-
ronment returning to its previous state, such as an improvement in
visibility or recovery of an engine thruster.

4.3 Adaptation Problems

We provide a precise statement of our requirements-driven adapta-
tion problems:

ProBLEM 4.1. Graceful Degradation Problem. Given degrada-
tion event ag € Agegrade and current requirement Qcurr, find Olurr
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and action sequence a such that

Vs:Se(s0) E peurr = (5,0) F @ryry A ()
Ispred : S+ (Scurr Aspred’ 0) F @urr A ®)
Spred = 8"(qo, {a0) ~ @) (4)

where qq is the current state of the system (encoded in s¢y,rr) and
" is the concatenation operator that is used to link two sequences
together (i.e., (s1,52) " (53, $4) results in (s, 2, 53, $4)). Degradation
actions Agegrade is a subset of all environmental actions Aeny (ie.,
Adegrade € Aenv) defined in Section 4. 5,4 represents the future
signal generated by the sequence of actions a, and s¢,,r represents
the signal that encompasses the current state, which is monitored
by the sensor. Note also that the new requirement needs to be
weaker than the current requirement to achieve degradation, using
the definition in Eq. (2), which will be formally defined in Section 5.

Informally, this problem involves given a degradation event, how
to find control actions that can satisfy an alternative requirement
such that it still provides an acceptable level of system utility.

PROBLEM 4.2. Recovery Problem. Given restoration event ay €
Arestore and current requirement Qcyrr, find gL, and a such that

Vs:Se(s,0) F ¢crr = (50) F geurr A (5)
EIspreal 8- (scurr r\spred) 0) F qﬂé;ﬂ‘r A (6)
Spred = 5" (qO: (ap) " a) (7)

Note that in the case of recovery, the new requirement needs to
be stronger than the current requirement to achieve recovery, as
defined in Eq. (5). The formalism for strengthening will be formally
defined in Section 5. Informally, the recovery problem is framed as
given a restoration event, how to find control actions that can satisfy
an alternative requirement such that it can provide an improved
level of system utility.

5 REQUIREMENT WEAKENING AND
STRENGTHENING

In this section, we present an extension to PSTL to (1) incorporate
the concept of requirement weakening and strengthening, and (2)
restrict the search space of alternative requirements by providing
upper and lower bounds for the validity domain of PSTL formulas.
We also propose metrics to compare multiple PSTL instantiations.
These metrics are then used by the MILP solver to find an optimal
requirement; i.e., a minimally weakened or maximally strengthened
version of the current requirement.

5.1 Minimal, Optimal and Current

requirements

To enable requirement adaptation, we introduce three new concepts
that guide and restrict the range of the requirement space. The min-
imal requirement, Qmin, represents the lower bound of the PSTL
requirement, allowing for the loosening of constraints when neces-
sary for system adaptability. Conversely, the optimal requirement,
@opt, signifies the upper bound of the PSTL requirement, enabling
the strengthening of the reference requirement. We assume that
any requirements that are stronger than the optimal requirement
do not provide additional utility for the system, and on the contrary,
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any requirement weaker than the minimal requirement will result
in behavior that is deemed unacceptable to stakeholders.

The current requirement, denoted as ¢g, represents the require-
ment that the system is trying to achieve. Note that the current
requirement should always be weaker than (or equal to) the optimal
requirement, while always being stronger than (or equal to) the
minimal requirement.

Recall the visibility requirement for the UUV example in Section
2. The optimal requirement, in this case, is @op;: Every time the
visual contact with the submarine is lost, regain the visual contact
within the next 5 seconds, formally denoted as visibility < 20 =
Oo5](distance_to_pipe < 10), assuming that visibility of 20
meters is the threshold that determines whether visual contact is
maintained.

Suppose that the UUV designer is willing to accept a weakening
of the time interval to regain visual contact to 15 seconds; any time
above that threshold would be considered unacceptable. Thus, the
requirement visibility < 20 = &g 5)(distance_to_pipe <
10) is designated as a minimal requirement, and any time in between
can be set as the current requirement (for example, regaining visual
contact within 7 seconds).

5.2 Extension to PSTL

Strengthening and weakening. Suppose ¢1 and ¢ are two distinct
instantiations of the PSTL formula ¢, such that ¢1 = ¢(v1(p)),
o2 = ¢(v2(p)), and @1 # @2. We say that ¢; is weaker than ¢
if and only if Eq. 9 is true, denoted as ¢1 < ¢2; conversely, ¢; is
stronger than ¢ if and only if Eq. 8 holds, denoted as ¢1 > ¢3.

VseT — D-(s,0) E @ = (5,0) F @2
Vse€T — D-(s,0) E @2 = (s,0) F o1

®
©

Suppose we are given a PSTL formula ¢, its reference require-
ment ¢g, minimal requirement @i, and optimal requirement o ;.
We define strong valuation as a set of valuation functions v, such
that g9 < ¢(vs(p)) < @opr; and weak valuation as a set of valua-
tion functions v,,, such that ¢min < (v (p)) < @o. The set of all
instantiated STL formulas as a result of a strong valuation ¢(vs(p))
are referred to as strengthened formulas; and all instantiated STL
formulas as a result of a weak valuation ¢(v,,(p)) are referred to
as weakened formulas.

Bounded Validity Domain. The validity domain of a PSTL for-
mula [3], evaluated with respect to signal trace s, is the set of all the
parameter values that yield satisfaction for the trace s. We extend
the validity domain concept so that it is bounded by minimal and
optimal requirements that we defined above in Section 5.1.

We first define the < operator: v < v’ if and only if Vj e v; < v}.
The @ operator in this context is used for time interval concatena-
tion (i.e., t & [t1, f2] is equivalent to [t + t1, t + £2]). Additionally,
Vmin and Vop correspond to the valuations that instantiate the min-
imal and optimal requirements ¢min and @op;, respectively. Then,
the validity domain of PSTL formula ¢ with respect to a signal s,
bounded by vinin and vop, is denoted as d(s, ¢) and defined in the
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following way:
d(s, f(s(t)) >a)  ={(t,v): f(s(2)) <ay A

(Vmin SV =2 Vopt)}

d(s, e N Y) =d(s, ) Nd(s,¥)
d(s,—¢) =d(s, ¢)
d(s,o Ur ) ={(t,v): A et (t',v) €d(s, )

AV e [t (1", v) € d(s, )
A (Vmin 2V = Vapt)}

Note that ay and Iy here either represent constants or the concrete
value assignment of the parameter a and I using valuation tuple
v. The resulting set, d(s, ¢), is a set of all 2-element tuples of form

(2, v(p)), where (s, ) | ¢(v(p))-

Degree of Weakening and Strengthening. To quantitatively mea-
sure and compare the relative restrictiveness between two instan-
tiated formulas (i.e., ¢(v1(p)) and ¢(v2(p)), which will be abbre-
viated to ¢; and ¢z below), we introduce two metrics: degree of
weakening (Eq. 10), and its inverse metric, degree of strengthen-
ing (Eq. 11). These metrics are defined based on the robustness of
satisfaction, as follows:

(10)
(11)

Note that for degree of weakening to be a positive number, ¢ must
be weaker than ¢y, and vice versa for degree of strengthening. We
will present an example below to illustrate how these metrics are
used.

Avveak (91, 02.8.1) = p(@2,8,1) — p(¢1,8,1)
Astrong((ﬂl, 02,8, 1) = p(@1,8,t) — p(@2,s,t)

Example. Recall the example in Section 2, with the requirement
for the thruster feature: The thruster should provide 100N of thrust
within the next second. The parameter 100N is subject to change.
This requirement can be formalized in PSTLas ¢ = Op¢ ;) (thrust >

p1)- The original requirement is @origin = @(p1 > 100) = Ogq}(thrust >

100), while one possible weakened version is @, eqr =
70) = D[O,IJ(thrust > 70).

Suppose the system evolves to generate signal s with a thrust of
110 and 80, at time 0 and 1 second, respectively; then p(@origin, s,0) =
—20 (meaning @origin is violated), while p(¢,,eqk, 8, 0) = 10 (mean-
ing ¢,eqk is satisfied. Thus, the degree of weakening is measured as
Asveak (Porigin: Prweak S, 0) = 30 (meaning requirement weakening
from ¢yeqk t0 @origin), while degree of strengthening is measured
as Astrong(Pweak> Porigin, S, 0) = 30 (meaning strengthening from
Peak tO Porigin)-

o(p1 —

5.3 Runtime Adaptation as a MILP Formulation

The requirement adaptation process can be performed by reducing
it to an instance of MILP, where the problem consists of solving for
a set of decision variables that optimize certain objectives while ful-
filling a set of hard constraints. We next show how minimizing the
degree of weakening and maximizing the degree of strengthening
can be formulated as MLIP objectives.

ProBLEM 5.1. Graceful Degradation as MILP. Given the cur-
rent requirement ¢ (v(p)) and its weaker version to be found, ¢ (V' (p)),
transition systemT = (Q, A, 6, Q;), and state sequence qt =qo,---,qr
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representing the signal observed from the environment so far, compute:

argmin,s (). Mueat(@(/(D)), 9V (§)), 5,0) (12)
st si=gqifori <t A (13)

si = 0(si—1,aj—1) fort <i <t+N A (14)

0,V (p)) € d(s 9) (15)

There are two decision variables to be solved in this MILP prob-
lem: parameters v/ (p) and control action sequence a. Note that in
Eq. (13), the past signal is defined up until the current time. Eq. (14)
involves the prediction of a future signal from the next time step
to time t + N using the transition system T that encodes an envi-
ronment model. N € N is a finite predictive horizon inferred from
the STL requirement ¢. Eq. (15) guarantees that the new require-
ment is within the defined range of requirements by restricting the
parameters of the PSTL formula to the validity domain.

Finally, by minimizing the degree of weakening from ¢(v(p)) to
(V' (p)) in Eq. (12), we guarantee that the system utility associated
with the requirement is degraded by a minimal necessary amount.

The formulation of recovery as MILP mirrors that for degrada-
tion:

PrROBLEM 5.2. Recovery MILP Formulation. Given the current
requirement ¢ (v(p)) and it strengthened version to be found, o (v' (p)),
transition systemT = (Q, A, 8, Q;), and state sequenceq’ = qo, . . ., qr
representing the signal observed from the environment so far, compute:

argmax,, (p),a Astrong(‘l’("(l’))) ‘P(V, (p).s0) (16)
sit. si=gqi fori <t A (17)

si =0(si—1,aj—1) fort <i <t+N A (18)

0,V (p)) € d(s,9) (19)

In comparison to the MILP formulation for the degradation prob-
lem, the objective here is to maximize the degree of strengthening
between ¢(v(p)) and ¢(v'(p)), as shown in Eq. (16). This allows
searching for the best possible requirement that allows the system
to regain utility that was temporarily sacrificed during an earlier
degradation step.

6 IMPLEMENTATION
6.1 Simulator

To illustrate our proposed requirement adaptation approach, we
have developed a prototype implementation! based on SUAVE [29],
an unmanned underwater vehicle that supports the customization
of self-adaptation logic. It uses a ROS2-based platform and imple-
ments a pre-defined mission that detects, follows, and inspects
a pipeline on the seabed. The backend of the simulator uses Ar-
duSub [34], which provides various controller APIs to control the
trajectory of the underwater vehicle. The vehicle trajectory and en-
vironmental setup can be visualized through the Gazebo simulator
[20] with the UI shown in Fig. 3 where the seabed pipe is indicated
with the yellow cylinder, while the UUV is illustrated by the rectan-
gular box to the left side of the pipe. Various environmental entities
(i-e., lighting, terrain) are listed on the panel to the right, and can
be adjusted as needed.

1Al the code, models, and experimental  data available at

https://github.com/sychoo/cps-degradation-recovery

are
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Figure 3: A screenshot of the Gazebo UUV simulator.

Features. For evaluation, we implemented two mission-related
features in the UUV. When these features are activated, they gener-
ate propulsion actions (in the form of velocity vectors) or system
reconfiguration actions that override those from the path planner.
The implemented features are as follows:

o Visibility Monitor ensures that the UUV maintains sufficient
visibility to the pipelines. To achieve this, it generates actions
to enforce the UUV to close in on the pipelines when the
visibility is below a safety threshold.

e Thrust Monitor ensures that the UUV maintains enough
thrust to support the timely completion of the mission. The
thrust monitor may change the system configuration dynam-
ically (i.e., turning on additional thrusters when the actual
thrust falls below the expected thrust.)

Environmental Anomalies. Next, we randomly injected ab-
normal environmental events throughout the operation of the UUV.
We list two failures that we investigated:

o Loss of visual contact with the underwater pipeline: The low
water visibility makes it difficult for the UUV to detect and
follow the underwater pipeline. When it occurs during the
pipeline inspection, it may result in the UUV losing sight of
the pipeline and requiring it to dive deeper in the short term,
regain the visual line of sight, and continue the inspection
progress. The change in the water visibility is introduced
randomly during the simulation.

o Thruster failure: A thruster failure causes the engine of the
UUV to provide partial propulsion, move erratically, or shut
down completely. Similarly, thruster failures are modeled
and injected in a stochastic manner.

6.2 Environment Model

Our framework leverages a model of the environment during the
adaptation process. For the UUV system, the environmental model
captures the (1) physical dynamics of the system (2) thruster estima-
tion from the engine, and (3) the estimated coordinates of the seabed
pipeline. The dynamics model is used to estimate the velocity of
the UUV based on the accelerating or decelerating actions. The
thruster estimation is based on the configuration of the thrusters
(i.e., which ones are turned on or off). Lastly, the estimated coordi-
nates of the seabed pipeline are based on information received via
onboard sensors. The coordinate information is also used to keep
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track of the inspection progress and guide the diving operation
toward the pipeline.

All aspects of the environmental model are specified in the MiniZ-
inc modeling language, translated to linear constraints and solved
using MILP during the adaptation process.

7 EVALUATION

This section describes the evaluation of our proposed approach. We
present the following:

e RQ1: Does our approach achieve a higher overall system
utility than existing state-of-the-art approaches?

e RQ2: What is the runtime overhead of the proposed ap-
proach? Does it interfere with system operations?

7.1 Experimental Design

We conducted a set of experiments to evaluate the proposed adap-
tation approach through comparison against with state-of-the-art
self-adaptation method in TOMASys [5].To ensure that our adapta-
tion approach generalizes across various scenarios, we randomly
generated 100 different system setups and failure scenarios, includ-
ing the duration of the simulation, times when failures are injected,
changes in the water visibility, number of usable thrusters, the
initial position of the UUV, and the location of the underwater
pipeline.

To compare our proposed method and the baseline approach,
we use the cumulative utility as the metric, which is measured
by calculating the robustness of the minimal requirement for the
signal collected during the degradation and recovery process. The
reason why we chose to measure the satisfaction of the minimal
requirement is that it is the lower bound of the instantiated STL
formula under which the system feature ceases to function and
provides useful utility. We assume that the robustness metric is a
suitable medium to reflect the desirability of the system behavior.
The robustness is measured upon the start of the degradation events
and ends upon the satisfaction of the optimal requirement (¢op;)
which indicates the end of the recovery. If the optimal requirement
is never reached due to persistent environmental disruptions, the
cumulative robustness measurement will continue until the end of
the simulation life cycle.

Before we conducted the experiments for the case studies, we
created the following hypotheses to be tested:

e H1: Our approach results in a higher cumulative utility
throughout degradation and recovery processes than the
existing method.

e H2: Our approach results in a higher run-time overhead but
it does not disrupt normal system operations.

All our experiments were run on a Ubuntu desktop machine with
16 GB RAM, 6-core Intel Core i5, and a NVIDIA GeForce RTX 3060
graphics card.

7.2 Seabed Pipe Inspection Case Study

Recall the example mentioned in Section 2, where a UUV is con-
ducting a mission to inspect underwater pipes on the seabed. The
optimal STL formula ¢,p; and the minimal requirement @y, for
the water visibility and thrust requirement are specified as follows:
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(Pvisibility_opt : D[O,l] (v131b111ty <20 =

Olo,5]distance_to_pipeline < 10) (20)
Poisibility_min * O[0,1](visibility <20 = -

0[0,15]distance_to_pipeline < 10)
@thruster_opt * O[o,1](thrust > 100) (22)
@thruster_min * O[0,1](thrust > 50) (23)

The visibility requirement ¢;s;p;1i¢ ensures that the UUV can
closely observe the pipelines upon the visibility falling below the
safety threshold 20. The thrust requirements allow the system to
continuously provide adequate propulsion to ensure a timely mis-
sion completion.

®)

0
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Figure 4: Cumulative robustness for visibility and thruster
monitor features for the pipeline inspection case study

7.3 Experiment Results

In Fig 4, charts (A) and (B) show the cumulative robustness values
for both the visibility and thruster monitor feature while the system
is encountering thruster failures or low water visibility events. The
results show that our adaptation approach achieves a higher cumu-
lative robustness value than the baseline self-adaptive approach.
Specifically, in the case of the water visibility monitor, it achieves
an approximately 2-fold increase in cumulative robustness (with
a 26.9 increase in robustness). In the case of the thruster monitor
feature, our approach has a 24.3 lead in cumulative robustness.
The SUAVE artifact [29] also comes with a set of mission-related
metrics that measure the quality of the mission completion. We
reused some of the metrics, namely, the distance of the pipeline
inspected. We discovered that our approach, on average, can inspect
86.10 meters of the pipeline while the baseline approach can only in-
spect 49.63 meters, an increase of about 74%. However, the standard
deviation of our approach (36.68) is slightly worse than the baseline
approach (23.30), meaning that the actual performance fluctuates
more across various failure scenarios in the 100 experiment runs.
There are two main reasons for this increase in the cumulative
utility and the quality of the mission completion. First, it is the
dynamic nature of the action planning based on the specific scenario
or context. For instance, TOMASys relies on a fixed set of actions
(determined at design time) to address each scenario. To satisfy the
objective of regaining contact with the pipeline after losing visuals,
TOMASys simply has a predefined action to dive several meters
down the seabed, whereas our approach predicts all possible signals
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given available actions using an environmental model. Then it
chooses the actions that result in the most desirable signals. Second,
it is the ability to flexibly adapt goals in different situations—namely,
adjusting the requirements when they are not attainable or have
the potential for improvements. The dynamic action planning and
the requirement adjustments result in a more measurable system
utility, and therefore, more robust and desirable system actions.

7.4 Performance Overhead

Since the requirement adaptation approach requires the use of MILP
to search for requirements and plan actions at run time, it has a
higher overhead than the baseline approach that uses actions that
are defined at design time. We measure the overhead as the aver-
age additional time the system uses per control cycle as a result
of deploying our adaptation approach compared to the baseline
approach using TOMASys. Consequently, we measured the average
overhead across both the visibility and thrust monitor features as
0.35 seconds. We have not observed noticeable delays or disrup-
tions to our UUV during the operation, as the UUV controller was
running at 2Hz, resulting in a window of 0.5 seconds for each cycle
of the controller update.

Furthermore, the performance overhead is subject to the com-
plexity of both the feature requirements and the environmental
model. For example, the visibility monitor feature incurs a higher
overhead because the encoding of the STL formula results in a more
complex set of constraints for the MILP solver at runtime.

7.5 Threats to Validity

Internal Validity: The sampled configuration space is partial and
may not capture all exceptional scenarios exhaustively. However,
we have mitigated selection biases by randomizing the configura-
tion parameters. For example, at which point failures occur, the
initial location of the UUYV, the setup of the underwater pipelines,
etc. In addition, we are using a deterministic environmental model
that captures simple physical dynamics. This is to simplify the
scope of the problem and reduce the search space for the changed
requirements and corresponding actions. However, the model may
not capture the dynamic of the real world caused by external factors
(i.e., UUVs may deviate from the direction it is accelerating towards
due to water currents). We attempted to mitigate this discrepancy
by manually inspecting the source code of the ArduSub simulator
to ensure the model largely captures the logic of the simulator.

External Validity: The overhead of the simulation is application-
specific and hardware-dependent. More restrictive hardware or
outdated MILP solver may increase the runtime overhead of our
framework and therefore require more performance tuning than
our existing software artifacts.

Furthermore, the result of the case study may not be generalized
to all applications of CPS. Depending on the specific applications
(i.e., electricity grids, UAVs), the system requirement may be ex-
pressed differently, and so does the way to degrade the systems.
However, we believe the concept of using requirement weaken-
ing and strengthening to perform degradation and recovery is
requirement-agnostic, and that it can be generalized across dif-
ferent domains.
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8 RELATED WORK

Graceful Degradation and Recovery. Graceful degradation is
the ability of a system to maintain an acceptable level of function-
ality even when a significant portion of the system is rendered
inoperable due to environmental disturbances. Recovery refers to
the ability of the system to restore to a safe or desired state after a
failure. Both areas are well-studied in control systems and human-
machine interfaces. Many degradation frameworks have been de-
veloped for different applications and domains, such as adaptive
cruise control [22], autonomous drones [10, 35], software user in-
terfaces [14], industrial control systems [6, 12], and design patterns
for degradation[27], respectively. There is also a large body of work
on system recovery. [9] proposed an STL-based resilient framework
that enables analysis of trade-offs between time-to-recovery and
durability in a cruise control system using multi-objective optimiza-
tion, while [17] and [31] propose checkpointing techniques (i.e.,
storing system traces with a finite horizon leading up to the current
state). Lastly, [16] and [1] use system restart and reset to recover the
system from a failure. As far as we know, no prior work provides
a coordination mechanism to facilitate these two processes in a
single system.

Self-adaptive Systems. Self-adaptive systems aim to design
systems that are capable of adjusting to changes in the environment.
The most influential reference control model in autonomic and self-
adaptive systems is the MAPE-K [2] architecture, which stands
for Monitor-Analyze-Plan-Execute over a shared Knowledge, on
which our resolution architecture is based. Self-healing systems
[28] have been proposed by Shaw, et al. to address the problem of
coping with fluctuations and uncertainties in the environment. The
idea is that the system always keeps a background maintenance
process running regardless of the current state of the system and the
environment (i.e. garbage collection, optimized network routing,
etc.). This way, the system will eventually maintain internal stability
and continuous improvement despite external changes. This state is
also known as a homeostasis state. Our approach draws inspiration
from this idea, in that we attempt to ensure that the system aims
to achieve the most desirable requirement relative to the current
requirement.

The concept of meta-control has been used for design-time analy-
sis. For example, OpenODD [25] has been used as a scenario-based
analysis framework for autonomous systems, especially in self-
driving cars. TOMASys [5] provides a comprehensive set of recon-
figuration strategies ranging from architectural reconfiguration,
to monitor construction, and then to scenario-based definition of
adaptation tactics.

Requirement Adaptation. Requirement adaptation has been
investigated in the context of self-adaptive systems. The idea of
weakening a requirement has been studied for feature interaction
resolution [10], handling a violation of environmental assumptions
and safety properties [6, 35], controller synthesis [7, 8], and goal
adjustment for security-critical systems [30]. As far as we know,
however, these existing works focus on how to gracefully degrade
the system using requirement relaxation, instead of combining both
degradation and recovery stages or attempting to coordinate them
using requirement adaptation.



SEAMS 24, April 15-16, 2024, Lisbon, AA, Portugal

RELAX [32] is designed to support expressing requirements that
explicitly capture uncertainties about runtime system behavior
based on fuzzy temporal logic. For example, with RELAX, users can
specify requirements like, "Once a user request is sent, it should
be processed as early as possible". Although our approach differs
in that it relies on STL as the underlying specification formalism,
an interesting future work would be to investigate the utility of
RELAX for the type of degradation-recovery loop that we have
explored.

Both [33] and [18] study goal adaptation in the context of chang-
ing stakeholder goals or user preferences. However, their proposed
methods are designed to be dependent on human inputs, not for
automatically adapting to changing environments. [4] focuses on
requirement adaptation based on resource constraints and proposes
a 2-tier adaptation framework that (1) first tries to fulfill goals by
finding alternative resources and (2) if needed, deviates the goal
slightly from the original one to compensate for limited resources.
Our approach differs from these approaches in that our utility is rep-
resented as the desirability of requirements over run-time signals,
instead of adequate resources being allocated.

9 LIMITATIONS AND FUTURE WORK

We propose a requirement-driven runtime adaptation framework
that coordinates between grace degradation and recovery. Through
the case study on UUVs, we have demonstrated our proposed ap-
proach can result in more desirable system behaviors during periods
of degradation and recovery.

However, our approach makes several assumptions about the
system that may limit its applicability. First, our approach tackles
the class of requirements can be specified using STL [19]. These
requirements are specific to cyber-physical systems, where the
system is time-sensitive, and sensor inputs can be monitored and
transformed into continuous signals and quantified using state
predicates. Thus, the framework is currently not designed to handle
other classes of requirements (e.g., discrete behavioral specifications
in LTL or stochastic ones in PCTL[11]).

Secondly, we assume the system has a meaningful way of quan-
tifying the satisfaction of its requirements, these requirements can
be weakened, and the user is willing to tolerate temporary degra-
dation in the associated system utility. Thus, this framework is not
well-suited for safety-critical requirements, which tend to be hard
constraints and cannot be negotiated (i.e., a collision avoidance
system for smart vehicles).

Thirdly, we assume that interactions between the system and the
external environment (i.e. how a UUV move around the water based
on an actuator command) can be predicted by a deterministic envi-
ronmental model. However, the estimation from the environmental
model may deviate from reality, due to environmental disturbance
and other uncertainties. To address this, we used model predictive
control [24], which involves repeated prediction and planning on a
short horizon to reduce the effect of deviation in the estimation.

Another limitation of our approach is that a MILP solver may fail
to find a satisfiable solution. This can be due to an overly restrictive
environmental model, a limited range of alternative requirements
that the solver can search for, or an unresolvable system state at
the time of the adaptation. While this happened rarely in our case
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studies (less than 2% of adaptation cycles), we can cope with the
problem through some minor tuning of the adaptation frameworks
like reducing constraints to the environmental model, increasing the
ranges of requirements available, or defining some simple fallback
adaptation approaches, etc.

In future work, we also plan to investigate the applicability of
our approach in our domains, such as robotics and cyber-security,
where the ability to gracefully degrade and recover is critical for
system autonomy and resilience.
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