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Abstract

In this study, a decentralized safe learning-based adaptive control is developed for multi-agent systems (MAS) operating in
uncertain environments. Ensuring the safety of MAS in uncertain environments becomes a challenging task, particularly
when the dynamics of the individual agent are unknown and their accurate state information is unavailable to the local
agent. Due to the fact that the safe set of the local agent depends on the other agents’ states, the uncertainty of these
external systems leads to an uncertain safety set. As a consequence, the safe control design of the local agent system in a
multi-agent setting under environmental uncertainties becomes intractable. To address this challenge and ensure the safety
of the local agent, a neural network (NN)-based adaptive observer is designed to estimate the state of the unknown external
agents in the multi-agent environment. Based on the state estimation of external agents, an adaptive interplay control
barrier function (AI-CBF) is formulated. The AI-CBF is designed by considering both the local agent’s state and the
estimated states of external agents. Notably, the limitation of forward invariance for the approximated safe set without
guaranteeing the same for the actual safe set is acknowledged in AI-CBF design. The AI-CBF incorporates the bounds on
state estimation errors of external agents to guarantee the strict safety requirements of the local agent. Based on the safety
constraint enforced by the AI-CBF, a control framework is formulated using a quadratic programming (QP) method that
integrates the safety and stability of the system. In addition, a stability analysis based on Lyapunov theory is performed to
demonstrate the convergence of the neural network-based adaptive observer as well as the closed-loop stability of the
overall system. Eventually, experimental validation and comparison study confirm the effectiveness of the developed
approach that can ensure multi-agent system safety under challenging conditions in a decentralized manner.
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1 Introduction technologies, it becomes crucial to emphasize the devel-

opment of robust safety measures. Thoroughly addressing

Ensuring safety stands as a paramount consideration in
real-world control design especially for automated systems
such as unmanned aerial vehicles (UAVs) [1, 2], robots [3],
autonomous ground vehicles [4], and so on. With the
potential risks and hazards associated with these
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safety considerations during the control design process
allows for the cultivation of trust, reduction of accidents,
and protection of human lives and valuable assets in
practical settings [5, 6]. Since the safety concept has been
introduced to real-time system design in [7], a significant
body of research has been conducted in the fields of safe
control and safe learning systems. Notably, a considerable
amount of research has been dedicated to certified learning-
based control approaches with constraint-set certification in
the presence of dynamic uncertainty [8—10]. This certifi-
cation process relies on the introduced robust positive
control invariant safe sets. Two distinct approaches for
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state constraint-set certification are the control barrier
function (CBF) method [10-12] and the Hamilton-Jacobi
reachability [13—15] analysis. Although both methods aim
to ensure safety, they differ in their relevant computational
requirements [16]. The CBF-based approaches focus on
guaranteeing safety without explicitly determining the
reachability set, which is computationally intensive.
Instead, it utilizes a control barrier function that enforces
constraints on the behavior of the system. By developing a
controller that satisfies the requirement of barrier function,
safety can be assured without the need for extensive
reachability analysis. This CBF-based approach has proven
effective in diverse applications, such as collision avoid-
ance in multi-agent systems [17, 18] and car racing envi-
ronments [19], safe lane change maneuvers [20], adaptive
cruise control [21], and the safe control of robots [22].
Most of these existing techniques rely on precise agent
state information to guarantee safety. However, imple-
menting CBF to ensure the forward invariance of a safe set
becomes more complex and challenging since uncertainty
widely exists in the environment. Numerous studies have
focused on addressing the issue of system dynamic
uncertainty in CBF-based safe controls. In a recent paper
[23], the authors incorporated a probabilistic control Lya-
punov function (CLF) and CBF design to handle uncer-
tainties in the dynamic model and real-time safety
constraints. To mitigate the effects of unknown structured
systems, [23] introduced an element-wise parameter iden-
tification law. Additionally, [24] presented a safety control
scheme that utilized CBF and addressed uncertainty by
dismissing the uncertainty associated with the unknown
structured system. Furthermore, a reinforcement learning-
based technique was designed in [25] to learn and address
model uncertainties present in both CLF and CBF. How-
ever, in a multi-agent system, when a local agent shares its
environment with other agents, achieving safety for the
local agent becomes challenging due to the environment
uncertainty associated with the safe set. In practice, agents
like robots, UAVs, and automobiles often operate within
complex and uncertain environments. For example, con-
sider a UAV flying in airspace alongside other aircraft. The
uncertainty of shared airspace presents challenges for
ensuring the safety of the UAV and other aircraft. Simi-
larly, a self-driving car navigating through a road system
with other cars poses safety concerns due to the shared road
environment. The shared environment introduces com-
plexities for ensuring the safety of individual agents,
requiring a safe control mechanism to avoid collision and
promote safe interactions. In a recent study by Marvi et al.
[16], a safe controller is designed for system maneuvering
in shared environments. They designed a control strategy to
ensure the forward invariance criterion for the intersection
of the actual safety set and the approximated safety set.
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Please note that the actual safe set in this study is formed
by using the states of external agents. However, in practice, the
external agents’ states cannot be measured directly and only the
system’s input and output are measurable. Lack of full state
information on external systems, achieving the actual and
approximated safe sets’ intersection is very difficult and even
impossible. This assumption of the actual safe set may violate
the safety of the local agent when the exact full state informa-
tion of the external agents is not available. In this paper, a novel
observer is designed to estimate external agents’ states and
further used for generating safety sets for local agents. How-
ever, the external agents’ systems are unknown and uncertain.
So the known model-based observer design cannot be directly
implemented in this system. This problem has been addressed
in [26, 27] which combined observer design with neural net-
work-based system identification.

These studies used a static approximation of the gradient
by assuming the system state to be constant and remain
unchanged over time. However, this presumption lacks
practicality and efficiency in practice. In the real world,
external agents’ states are usually time-varying and the
local agent has no authority over these external agents’
actions, i.e., control inputs. To address these issues, an
online neural network (NN)-based adaptive observer has
been developed to learn external agents’ unknown
dynamics as well as their states. A modified objective
function for the gradient descent weight update mechanism
is designed while addressing the limitation of static gra-
dient approximation. Additionally, a mathematical
demonstration of the stability of the observer-based iden-
tification of the external system is provided. Then, the
existing control barrier function can be reformulated using
the local agents’ system state and observed external system
states. Using the reformulated adaptive interplay control
barrier function (AI-CBF), the safety criteria are designed
as a function based on the local agents’ own state and also
the state of the external agents obtained from the observer.
As the actual safe set remains unknown at the initial
learning stage, and the local agent relies solely on the
approximated safe set, an error bound is introduced for the
estimated external agent state. This error bound is then
incorporated in the AI-CBF to avoid the violation of strict
safety while the local system is learning the external
agents’ dynamics. Later, the estimated external agents’
states will converge to actual states along with the con-
vergence of learning. Moreover, the approximated safe set
can gradually converge toward the actual safe set. This
developed algorithm differs from the previously discussed
algorithm by offering an AI-CBF-based robust decentral-
ized safe control design, please see Fig. 1. It addresses the
uncertainty of external agents within the safe set by
introducing a novel neural network-based adaptive obser-
ver design. A comparative study of the proposed AI-CBF
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Fig. 1 An illustration of Al-
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approach has been conducted, including scenarios without
CBF and with other existing CBF approaches [14]. Our
approach introduces the following contributions to the
field:

e A decentralized safe control design based on AI-CBF is
developed for individual agents navigating in a multi-
agent shared environment characterized by the presence
of unknown external agent dynamics. The developed
control design incorporates both the local agent and
observer-based external agent estimated states. The
developed method ensures robust safety, even in cases
where the accuracy of the external agents’ state
information is compromised.

e A novel multi-NN-based adaptive observer is designed
to estimate the state of the unknown external agents and
further ensure the local system safety.

e The stability of the NN-based observer for external
multi-agent systems and also the closed-loop stability of
the local agent is guaranteed through Lyapunov stabil-
ity analysis. Additionally, a comparative study against
other existing algorithms has been conducted to vali-
date the effectiveness of the developed algorithm.

The structure of the paper is given next. In Sect. 2, the
decentralized safe control problem is formulated. Then in
Sect. 3, the multi-neural network-based observer and Al-
CBF are designed. Moving on to Sect. 4, the control
framework is presented. Then the simulation results are
demonstrated in Sect. 5, followed by the conclusion in
Sect. 6.

2 Problem formulation and background

Consider a nonlinear affine system of local agent A in
multi-agent systems given by the following dynamics

(1) = f(x(1)) + g(x(2))u(7) (1)

where x(r) = [x1 (1), x2(¢), ..., x,(¢)]" € R" represents the
state and u() = [u1 (1), ua (1), ..., (1)]" € R™ represents
the control input of the local agent. Also, f : R" — R" and
g : R" — R™" demonstrates the intrinsic dynamics of the
system. Moreover, recall to [28], the function f{.) satisfies
the condition f(0) = 0. Also, f(x) 4+ g(x)u is bounded by a
Lipschitz constant. The objective of the agent A is to reach
a predefined destination safely by avoiding collision in a
multi-agent environment. Now, the dynamic of an external
agent i can be defined as:

Zi(t) = falzi(t),wi); yi(t) = Czi(t) (2)

where z;(1) = [zi1(2), zi2 (1), ...,zi7,,(t)]T € R" represents the
state, y;(t) = [yi.1, Vi, ...,y,-‘n]T € RP represents the output
and u; denotes the control input of the external agent i.
Also, f, is an unknown nonlinear function that captures the
effect of an external agent. It is assumed that the external
multi-agent systems are observable. Now, the dynamic of
the external agent can be rewritten as:

Zi(t) = Azi(t) + F(zi(1),u;); yi(t) = Czi(1) 3)

with F(z;(t),u;) = fu(zi(t),u;) — Az;(#) and A represents
Hurwitz matrix. Also, x; represents the desired destination
that the agent is required to achieve. Then the error can be
defined as e = x — x; with the error dynamic given as:

é = fule) + ga(e)u (4)

where f,(e) =f(e+x,;) and g,(e) =g(e+x4). The
agent’s safety cannot be solely determined by its own
control inputs and characteristics but also relies on the
interplay with other external systems in an uncertain multi-
agent environment. Thus, to maintain the safety of local
agents, it is needed to consider both local agent’s behavior
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as well as interaction with other agents. However, in real-
world scenarios, the states of the external agents are not
available while only the outputs of the external systems are
measurable. Moreover, the dynamics of the external sys-
tems are also unknown. Hence, the objective of this
research is to guarantee the safety and stability of the agent
A in a multi-agent setting where the external agent states
are not directly measurable and the dynamics of these
external agents are unknown. The objectives are listed as
follows:

1. Design a feedback controller for the agent A in a
decentralized manner, which guarantees the trajectory
of the agent stays inside a safe set in the multi-agent
environment while achieving a desired destination x4
that satisfies

hi(x(7),z:(¢)) >0 for >0 (5)

with h;(x(¢),z;(¢)) being a continuously differentiable

function. Also, the safe set for the agent A is defined as
the intersection of the sets associated with all other
external agents, i.e.,

S=8NS... NSy (6)

with N being the external agents’ number in the
environment.

2. Design a multiple NN-based adaptive observer to
estimate the state of all the other external agents to
guarantee the safety of local agent A.

3. Guaranteeing the stability of local agent .4 and the
observer-based external agent’s state estimation.

Before proceeding with the developed algorithm, it is
essential to provide a concise introduction to the control
barrier function (CBF).

Control Barrier Function: The safety framework [11] is
characterized by an invariant set, known as the actual safe
set. This set, denoted as S, can be derived as a super-level
set of a continuously differentiable smooth function
h:X C R" — R. Then, for the dynamical system provided
in Eq. (1), the safe set can be defined as:

S={xe X CR":h(x)>0},
0S ={x e X C R": h(x) =0},
Int(S) = {x € X C R" : h(x) > 0}.

Here, 0S represents the boundary of the safe set and Int(S)
denotes the interior of the safe set S. Now, i can be
referred to as a control barrier function if there exists an
extended class /C, function o such that the following con-
dition is satisfied for the given dynamical system:

sup(Lsh(x) + Leh(x)u] > — a(h(x)) (7)

uclU
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for all x € X. where Ly = Zf(x) and L, = L g(x) repre-

sents the Lie derivatives of h(x) along the intrinsic func-
tions f and g, respectively. Then, the extended K, function
can be defined as follows:

Definition 1 A function o: R — R is known as an
extended class /C, function if the function is strictly
increasing and o(0) = 0. Please see [11] for the definition.

The above condition can also be defined for discrete
cases [29]. Now, the control inputs set that satisfies Eq. (7)
and renders the set S safe can be defined as:

Kot (x) = {u € U : Lyh(x) + Lgh(x)u + a(h(x)) > 0}.
(3)

The proof of this result relies on Nagumo’s theorem [30]
which necessitates the fulfillment of a regularity condition
[11]. This condition states that the function A, serving as a
control barrier on the set X, must satisfy g—ﬁ (x) # 0,
Vx € 0S. According to Nagumo’s theorem, to establish the
existence of a set to be positive invariant, the dynamics x
should either point inward toward the boundary or be
tangent to it [16].

3 Neural network-based adaptive observer
with adaptive interplay control barrier
function design

In this paper, an adaptation has been introduced to the
control barrier function (CBF) within the context of a
shared environment comprising multiple agents. These
agents possess unknown dynamics, and their states are not
accessible for direct online measurement. The barrier
function is now reformulated as a function of x and z;,
where i is the index for the external agent. Specifically, a
neural network-based adaptive observer has been designed
to estimate the states of the external agents first. Then,
employing the estimated states of external agents from the
observer, the CBF is reformulated to AI-CBF using both
the local agent Ath state x and estimated state 7; of any
external agent i. Lastly, to integrate safety and stability by
combining the Lyapunov function and CBF, a feedback
controller is constructed using quadratic programming

(QP).

3.1 Multiple NN-based adaptive observer design
for external agents

In this part of the paper, a multiple NN-based observer is
designed, as shown in Fig. 2, to estimate the external
agents’ state. Here, neural networks are used to identify the
external agents’ unknown dynamics, and observers are
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Fig. 2 The structure of multi-NN adaptive observer-based safe
control scheme

used along with NNs to estimate the states of these agents.
Now, the model of the observer can be described as:

Zi(t) = AZi(t) + F(Z:(0), wi) + H(yi(t) — CZi(t))
Yi(t) = CZi(t)

with Z; and y; being the state and the output of the observer
for external agent i. The selection of the observer gain
H € R ensures that the matrix A — HC is Hurwitz.
Please note that the observability of pair (C, A) depends on
the selection of the matrix A. By selecting A properly, the
existence of the gain H is ensured. According to universal
approximation theory [31], the unknown function of the
external agent is represented as:

F(zi(t),u) = W d(zi) + & (10)

©)

with W € R™" being the neural network ideal weight and [
is the neuron numbers in the hidden layer. Please note that
the activation function is bounded as ||¢(z;)|| < ¢, and the
ideal weight is bounded as ||W;|| < Wy,. Now, the function
of the external agent is approximated as

FGE(),u) = W, §(2) (11)

where W € R™" is the neural network estimated weight.
Now, replacing the approximation of the unknown func-
tion, the observer model is represented as

4(1) = AZ (1) + W, $(2) + H(yi(t) — C2 (1))
Vi) = Czi(1).

Then, the state and output estimation error of the observer

(12)

is defined as z; = z; — Z; and y; = y; — y;. Next, the state
and output error dynamics can be evaluated using Eqs. (12)
and (10) as

G(t) = &(t) — &)
=Azi(t) + W p(z) + e — AZ(t) — W
— H(yi(t) — C%(t))
= AZ(1) + W] p(z) + & — W, (%) — HCZ(1)
= (A —HO)Z(t) + W (z) — W, () + ¢

And,

Yi(t) = yilt) = yi(t) = C%(1). (14)
Then, the estimation error of the neural network weight is
W, =W, — Wi and the activation function approximation
error is (Z) = ¢(z) — ¢(%). Also, A — HC = A,. Equa-

tion (13) is now written using the weight and activation
function approximation errors:

G(0) = Az(0) + WTO(@) = W) + WI(E) — Wi (@) + o
= AZ(1) + WIB(E) + W] () + o
(15)

Assumption 1 The external system activation function
approximation error is Lipschitz continuous. It implies the
existence of the Lipschitz function, denoted as Ly, that
satisfies the inequality || (z)|| < Ly||Zi]-

Once the neural network structure has been established,
it is essential to develop an appropriate learning algorithm
to update the neural network weights. In this paper, a
modified weight update law has been designed to guarantee
the stability of the NN-based observer. Taking the first
derivative of the approximated output of the external agent
in Eq. (14)

Yi(t) = Czilt) = ClAE (1) + W d(@) + W () + ]
= CAE(t) + CWIG(G) + CW, §(&) + Cer
= CAL(CTC) ' CTy, + CWT () + CW, ¢(&) + Cer
(16)
where (CTC)™'CT = C* is the pseudoinverse of the matrix

C. After substituting the pseudoinverse, Eq. (16) is now
written as follows:
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Vilt) = CALCHy, = CWI (&) + CW, (&) + Cer. (17)
Now, the objective function can be defined as

1 ~ ~ ~ ~
Ji =5 05(1) = CACTF)T (1) = CACTY). (18)

The gradient descent-based update law is defined as
follows:

. oJ; . _ 100 (t) — CA,CY)
W, = —a—r = —a(y,(1) — CA,CTy,) == _ i
(X@W,- a(y; (1) i) W

= aCP(5) [CWT§(Z) + CW, §(z) + Cer]"

(19)

where o represents the learning rate of the neural network.
The weight approximation error dynamic can be defined as:

Wi = Wi — W, = —aCh(z) [CWI d(z) + CW; d(z) + Cer] "
(20)

Theorem 1 The weight update law is given by Eq. (19),
with positive constants representing the learning rate o for
the neural network. When the neural network reconstruc-
tion error is present, the weight approximation error W,
and state approximation error Z; are uniformly ultimately
bounded (UUB). Also, in the absence of reconstruction
error [32], the weight approximation error converges to
zero.

Proof Consider the Lyapunov candidate function as
follows

1 .
V,==iTPs + Etr{W,.TW,-}

; (21)

where P represents a positive definite matrix. Also, P sat-
isfies the following condition

ATP+PA, =—-Q (22)

where Q represents a positive definite matrix and A, is a
Hurwitz matrix. Also, please note that the norm of a vector
a € R" is denoted as |ja|| = VaTa. Also, the Frobenius
norm [26] of a matrix M € R™" is represented as
|M|[3 = tr(M”M). Next, we have omitted the subscript F
from the matrix norm to simplify the notation throughout
the rest of the paper. Now, the first derivative of Eq. (21)
can be written as

@ Springer
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Using Eqgs. (15) and (20), Eq. (23) can be rewritten as:

(23)

Vi = S A0E0) + WIGE) + W1 $(2) + o] ™Pa

n %z;TP[A,,z}(t) + W ()
W 9(@) + ) + 0{ W] (-aCh(@) (W 9()
+ W (5) + Cr ")}

lr . -1, . .
— EZ;'TPZ[AE +5¢) (ZI)PZiWi
1 ~T i~ 1 Trm 1 T _ 1~T
+5¢ (@)PGWi+ 56/ PG + 5 PAG + 54 P
_ N 1.
Wi (z) +§ZiTPWiT¢(Zi) +§z,-TP£f

+u{ W [~ aCTChE)d (@)W
—oCTC||p()PW: — 2CTCh(z)el ]}

1 -
=3 (ATP + PA,)Z % + PZW] (2)

+ PEW, $(3) + e7 PG — r{aCTCP()

;T ~ ~T A ~T ~

¢ (G, Wi} - te{aCTCH (2)$(2)W, Wi}

— tr{aC"CW p(2)ef }.

(24)

Consider the bounds of activation function and ideal
weights, given by ||¢(z;)]| < ¢y, and |[|W;]| < Wy, and also
using Eq. (22) and Assumption 1, Eq. (24) can be written as

V< — %Z:-TQZ:- +IPIWLIZIE] + PG W, 2
+[IPlzier — te{eCT (2N ()W Wi
—aCTCl|$(@) |2 IWil]* — uw{aCTCW; d(z)el ).

< — 3205 + |PIWL I + [PIB(E)WT
+ [|Pl|zier — tr{aC"CH(2)
¢ (@)W, Wi} — al| CI2 (b 7| Wi
— t{aCTCW, ()¢l ).
(25)

Using Young’s inequality [33], Eq. (25) is written as
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1 7on
+52(ICI*)l16(@)
1 . . 1
+5 2 (ICIPV U@ IWH + 5 el

1 . .
< =5 2in(Q)ZIP + [[PIIWarLg||Z]*

- 1
2 2 ~ 112
I"lwill +§Wf4L§,||z,~||

[\

1 P B
+272||PH2HZ,-H2+§a2H¢(Zz‘)IIZIIWiII2 (26)
1 i R
JrEHPIIZHZiHZ—°<||C||2||<75(z,*)IIZHW,-H2

. _ 1
4 ~AN(12 2 ~ 112 2
+ 2 [ICI ISP IWHl" + 5 WiLg 1zl + el
1 1,5 1, s
< — [=min(Q) = |P|WiLy — — |IP|* — =
< = [34mn(Q) = IPIIWuLy = 55 IPI” =3 [

~ WLl - (=l CI?
lE)I1* = 2lCl b
- %“Zﬂqg(fi)”z} Wil + llar
where Amin(Q) represents the minimum eigenvalue of Q.
Let,

1. 1 1 150
Kiz = Eﬂmin(Q) — ||Pl[WaLg —272\|P|| —§||PH — 5 WuLy-

(27)
. al 1 VR
kiw = A|CIPIEI° — 2 ICI* S - Sl b(@)”.
(28)
Equation (26) can be rewritten as

Vs < = il = el Will* + o (29)

The first derivative of the Lyapunov function V), is less than
zero outside a compact set if

1

2
= B,,.
ol =B,

1 _
alISfII2 =B Wil >

(30)

Here, the condition given in Eq. (30) on ||Z]] and ||W;||
ensures the negative semi-definiteness of V;. Additionally,
the minimum eigenvalue Ay, (Q) and learning o are lower
bounded by Anin(Q) > 4; and oy, respectively, to guarantee
the negative semi-definiteness of V. This provides an
assurance of the stability and convergence of the neural
network.

Remark 1 Considering the second term in Eq. (29) is
negative [26], VS is negative definite outside the ball with
radius B,, defined as Z = {z; | ||z|| > B}, ensuring that
Z; is uniformly ultimately bounded (UUB). The region

within the ball is attractive because an increase in Vs for
the values of ||Z;|| leads to an increase V, and Z, pushing z;
outside the ball Z. In this outer region, V; is negative semi-
definite, which in turn reduces V, and Z;. This ensures the
UUB of z;. Additionally, since the activation function (,?)(z})
is bounded by ¢,,, and both C and Z; are bounded, then the
boundedness of W; is also ensured.

em

Remark 2 If the neural network reconstruction error is
ignored, then the weight and state estimation error con-
verges to zero as time progresses.

3.2 AI-CBF design for observer-based state
estimation of external agents

The characterization of the safety framework necessitates
the safety set positive invariance property, which needs to
be carefully formulated to guarantee the safety of the local
agent A in a multi-agent environment, please see Fig. 3.
While the local agent is operating within a shared envi-
ronment with multi-agents, the safe set is defined as the
intersection of all the sets associated with the different
external systems present in the shared environment. This
approach ensures that the local agent remains within the
boundaries of safety, accounting for the various dynamics
and behaviors exhibited by the external agents. However,
as stated earlier, only the output of the external agents
states are available and the dynamics as well as full state
information of the external agents are unknown. Since
there is no accurate state information available for the
external agents, the actual safe set of agent A (local agent)
is not available. Therefore, local agent .4 depends on the
estimated safe set for safe action on the environment. In
this regard, the control barrier function is reformulated to
incorporate the state of agent A and external agents.
Besides that, a state approximation error bound is consid-
ered for the worst-case scenario to ensure strict safety even
if the actual safe set is not available to the local agent. In
the initial stages of the NN-based observer’s training, the
estimation error Z tends to be relatively large. Conse-
quently, this leads to a substantial bound on the approxi-
mation error, resulting in a larger unsafe region for the
local agent. However, while the NN-based observer is well-
trained, the approximation error decreases significantly.
Consequently, agents have more flexibility and a larger
safe maneuvering space as the unsafe region diminishes in
size. Now, let the output measurement error y; belong to a
sector [34] that can be defined as

zl* <15l < il (31)

Y

Here, z; is the state approximation error of the external
agent i. Also, y and f§ are real numbers that satisfies § > 7.
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(b)
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(c) (d)

Fig. 3 Approximated safe set convergence to actual safe set. a Actual

safe set S| and S, and approximated safe set S 1 and 32 with respect to
external agents 1 and 2. Also, the actual safe S set of agent A is the
intersection of all actual safe sets associated with different agents.

Similarly, the approximated safe set S of agent A is shown in the

Using this sector-bounded condition, the upper bound of
the state approximation error is now defined as follows:

~ 2
1zi]" < —IIy,H = [zl < —= il (32)

\/_
For the given dynamical system of agent 4 in Eq. (1) and
external agent dynamic in (2), the approximated safe set
associated with external agent i can be defined as

S—(xeRr: hi<x,f,-,\1[|yz||> >0},
08 = {x e R" : hy(x, zz,\/_||yl||) =0},
Int(S) = {x € R" : hy(x, %, —||5}||) > 0}.

\/7

The function A;(x, v:||) represents a smooth function

that incorporates both the variables x and Z;. Please note
that Z; is the estimated state information of the external
agent i which is available to the agent .A. Besides that, the
bounded error is incorporated to ensure strict safety of the
agent A for the observer-based external agent state esti-
mation. The function 4;(.) describes the constraint imposed
by the external system. Now, the safe set for the agent A is
derived by taking the intersection of sets associated with all
external agents in the shared environment. This intersection
ensures that the agent operates within the overlapping
boundaries of safety defined by external agents. Then, the
approximated safe set of the local agent A4 is derived as
follows:

S(x,2)

=81(x,2)NS2(x,2) ... NSn(x,2n) (33)

with N being the external systems number. The function
hi(x, ZA,-,\%H)ZH) is the adaptive interplay control barrier
function (AI-CBF). If there exists an extended class /C,
function « : R — R such that for given dynamical system
in (1) and (2), the following conditions hold:

@ Springer

figure. b Safety is ensured since the approximated safe region is inside
the boundary of the actual safe region. ¢ The approximated safe set is
approaching the actual safe set as learning progress d By converging

Sto S, the agent A has more space for safe maneuver

1 1
Sup[thi(xvfiai ||)}le) +L hi(xa Ziy—= ”)71”)”!
v \F g f (34)

15ilD] = — ahix, i, —= [Iill)

\/_ \/—
%(x) Lgfaa’l ()andefa’F()areLie
derivatives of A;(x, z,~,7y||y,»|\) along f, g and F, respec-

+ Lphi(x,Z;,—
where Ly =

tively. Now, the set of control input that satisfies (34) is
defined as:

1
Kt ={ucl: Lehi(x,%;,—
c { f \/’?

1Vill) + orhixe, 2 —

5 +Lgh,-<x,z,,\1f
151 >0}
(35)

1

V.||, )u + Leh;(x, Z;,—
1Villo)u + Lrhi(x, Zi NG \/—
The safe set is defined here for both agent A and the
external agents’ systems. The establishment of the safe set
is intrinsically tied to the external system, wherein the
learning phase can only yield an approximate safe set. To
ensure safety for the agent A, the AI-CBF is formulated as
a function of both the local agent and external agents and
incorporates the worst-case scenario for the observer-based
state estimation of the external agents. The formulated Al-
CBF ensures the forward invariance of the approximated

safe set S, if the following two assumptions are satisfied.
Assumption 2 The condition requires that the agent A

starts its operation from an initial state, and belongs to the
interior of the safe set:

Xo € int(S). (36)

Assumption 3 The initial state of any external systems
denoted as i satisfies the following condition

Si(x0,zip) = {x0 € R" : hjo(x0,zi0) >0}. (37)
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Algorithm 1 Safe control with Multiple NN-based observers

1: Initialize the state of the local agent x that meets the safety condition g € int(S).
2: Observe the output y; of any external agent i.

3: Initialize the weights W1, Wa, ..., Wi of the neural network for N external agents.
4: Initialize the safe approximation Z; for external agent 7.

5: Initialize the objective function error threshold §;, for external agent .

6: while TRUE do

7 while J; > §;, do

8: Update NN weight using equation (19).

9: Update objective function using equation (18).

10: end while

11 Calculate the upper bound %H@H

12: Design AI-CBF.

13: Evaluate the controller using Quadratic Programming in (38).

14: Apply the controller u(z, 2;).
end while

—
(o

4 Control framework

It is essential to design a control input to guarantee safety
and maintain the local system stability in a multi-agent
environment. This requirement highlights the importance
of integrating a Lyapunov function V,(x,x,). The con-
straint in the derivative of the Lyapunov function V,(x, x,)
and AI-CBF constraint are unified to achieve robust safety
and stability performance. Then, providing a nominal
controller & for local agent A to achieve the desired des-
tination, the safety of the local agent operating in a multi-
agent shared environment needs to be guaranteed. The
nominal controller guides the local agent to the destination.
Next, a quadratic programming (QP) [12, 35]-based
method has been adopted. Building upon prior research
efforts [11, 16], this QP-based controller unifies stability
and safety constraints within an optimization framework.
By leveraging quadratic programming, the controller
facilitates continuous updates of the control actions. The
formulation of AI-CBF-based quadratic programming
controller is given as:

1
u(x, Z;) = arg min 3 |l — i]|* + po*
u,0

1 1
s.t. Lehi(x, Zi, — ||3;]]) + Lehi(x, 2o, — ||| ) u
rhi( ﬂll 1) + Lghi( ﬂll )
1 N
+ Lrhi(x, 2o, —= |Will) + ohi (x, Zi, —= [ 93]]) = 0

4 V7
Vsys (x7 xd) S Bcls-

(38)
where 0 serves as a relaxation variable to guarantee
quadratic program solvability and p represents the relax-
ation factor coefficient. Additionally, the controller

incorporates the Lyapunov function denoted as Vi to
achieve stability.

Lemma 1 There exists a control policy u for the dynamic
equation given in (4) to guarantee the systems stability.

" {fule(t) + ale(t)u} < =3l (39)

Theorem 2 (Closed loop stability) The NN weight is
updated by Eq. (19) and the learning rate o is a positive
constant. Then, NN weight approximation error W, external
agent state estimation error Z;, and the local agent A regu-
lation error e are all ultimately uniformly bounded (UUB).

Moreover, W, Zi, and e are asymptotically stable when the
reconstruction error and relaxation variable 0 is zero [32].

Proof Consider the Lyapunov candidate function

nys = Ve + Vs (40)

with V, = Jtr{eT(r)e(r)} and V, =177PZ7 + lu{W W}
Here the relaxation variable 6 has an upper bound to ensure
the system stability. Equation (40) can be written as:

1 1 1 ~T ~
Vys = 5tr{e (0)e(0)} + 5Pz + Etr{vvav,-}. (41)
Taking the first derivative of Eq (40)
. 1. 1 . o
Vs = tr{e’ (1)é(1)} + Ez}TPz”,» + Ez”,.TPz”i + tr{W'W;}.
(42)

Consider the bounds of activation function and ideal
weights, given by ||¢(z;)|| < ¢y and ||W;|| < Wy and sub-
stituting Lemma 1 and Eq. (26), Eq. (42) can be rewritten
as:
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Vi Str{e"[fu(e) + gale)i(x, )]}
1, 1 2
= |3 mn(@) = IPIWatLs — 2 171
1 1 - 2 a
~ 3l = 3 W3 1P - [alcPidr
~oL 1 AL ~
- LI IR - 3G 7 +
< tr{eT[fa(e) + ga(e)u — ga(e)u + ga(e)i]}
1, 1
- [ S - L - o
1 1 i - o
IPIE = I = 3 W33 [ 1P - [sICIFId @I - 2l 1d@I?
1, - _
- 321G IV +
<~ el ~ wleTgae))
1, 1 1
= | 3@~ WLy = 53 P =
1 - R 2ia
-3 WRL 1l - [sCPId@IR - el ld@IR
= 31| IV + o
2 T ~ 2 ~112
S7lel? = tr{eTeueni) = (e}l

< el

2
g 7[

1 1 . s
(Q) = IPIWhLy — p I1PI* =5 HPH2 - EWZ%/IL?/)] 11 ~ |:O‘HC”2H(/7(ZI')”2

= 2R - 3G 7 +
1 2
< = gollel® = [ lel? + wleeutela) + 2 eateral?
+%ch4(€) - {%;“min
()il ~ P WLy ~

1 N [
- WALl - [alcP1d@lR

1 2 1 2
- P —_
1P =3 lp

=2 C* o) **062H¢>( ol ]||W;\|2+||af\|2

<~ 3olel? - [ e
f Hgauu] + 2 gl = [ 7@ ~ 1]

Lo~ s PP 21l 2wt - [criden?

P 1 R ~
= 2| e@)IF - 5216l }IIWI-HZJr ler?

1 2 2 2
< _EVHe” +- glLu ‘Z:H 5 Jmin(Q)

1
— [IP[WaLy — HPH =5 Pl Wy

1 )
—ELi,}Hz:-W - [ancu 16 - 2lCI16E) I
- %azuq‘b(mnz} IR + e 2

(43)

with g; being the Lipschitz constant of the function g,.
Also, there exists a Lipschitz constant L, that satisfy the

@ Springer

inequality ||i(x,Z;)|| < L,||Zi||. Now, adding the relaxation
variable, Eq. (43) can be rewritten as:

. 1 2
Vo <~ gollelf - [2 nn(@) = 2%~ 1P| Wa
/
1
__Lyp I STRNTY S
PP = Lol — W
Lé} &l - [aucuzuqxanf 2@

1 aoL ~ .
- —a2||¢<zi>uz} IR+ el + 8

< *—V|| I = sigellZill* = wiwe IWill* + lleg|* + & = Ba
)
with,
oo = %ﬂm(Q) - %g%Li 1P 5z 1T
— 5Pl =3 WaLh
o = ICPIBE — 2113
1

2212 2
=52 lloEI eIl

Now the first derivative of the Lyapunov function Vsys is
less than zero outside a compact set if

2 P -
el >\/;||af|| + 05 |12l > ||8f|| + 0;
lZC
_ 1 )
[Will > [—ll&fll” + 0.
Ki we

Here, the condition defined in above equation for |e]|, ||Z]|

(45)

Sys+
Also, in this study, the relaxation variable ¢ is bounded to
ensure the system’s stability with safety.

5 Simulation result

In this simulation section, we implement the developed
algorithm into a multi-agent system to illustrate the secure
maneuvering of an autonomous Unmanned Aerial Vehicle
(UAV) within a shared airspace environment, alongside
other external UAVs.

The primary objective of the local UAV is to success-
fully reach a predetermined destination while employing
collision avoidance strategies using the developed safe
controller to evade other concurrently deployed UAVs
within the uncertain shared environment. In the experi-
ment, the local UAV does not have direct access to the
external UAVSs’ current states, and it is also unaware of the
external UAVs’ dynamics. Hence, multiple neural net-
work-based adaptive observers are developed to learn the
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Fig. 4 The motion of local UAV in a multi-UAV environment. Here,
the UAV with red color represents the local UAV, and blue, green,
magenta, and maroon colored UAVs are external UAVs. Also, the
black circle on the upper part of each figure is the destination point for

states of the external UAVs. Also, there are a total of four
external UAVs in the system. Now the initial state of the
local UAV is selected as x = [9 3 0 0]" with its position
and velocity. Also, the predefined destination point of the
UAV is given as x = [12.2 9 0 0]". Moreover, the initial
states of the UAV-1, UAV-2, UAV-3 and UAV-4 are
selected as z; = [10.2 4 0 0]", z, =[85 6 0 0", z3 =
(147 0 0" and z4=1[9.5 8.5 0 0]'. The intrinsic
dynamic function of the local UAV is defined as:

(d) t = 10s

the local UAV. a The initial position of all the UAVs in the
environment at time ¢t = Os. b The position of the UAVs at time
t = 3s. ¢ The position of UAVs at time t = 7s. d The final position of
all the UAVs at time ¢t = 10s (Color figure online)

1,
—X1 —|—§x2

—0.4x3
xalcos(2x; + 1) — 1] — x;
xglcos(2x; + 12 — 1] — x3

fx) =

gx) =10 0 cos(2x;+1) cos(2xs+1)]"
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Fig. 5 The trajectory of all UAVs in the environment. The trajectory
of the local UAYV is represented by the red curve. Also, blue, green,
magenta, and maroon curves are the trajectories of external UAVs in

Moreover, the dynamics of the UAV-1, UAV-2, UAV-3
and UAV-4 are chosen as [36]. To design a neural network-
based observer, it is essential that the square matrix A be a
Hurwitz matrix. This means that all of its eigenvalues must
have negative real parts that are strictly negative, specifi-
cally Re[A]<0. Now, the external UAVS’ states are
observable if the  observability matrix O =
[C CA... CA™!]is full rank, i.e., the matrix determinant is
nonzero. The selection of matrices A ensures that both A
and A — HC have eigenvalues with strictly negative real
parts, making them Hurwitz matrices.

-1 2 0 0

-1 -3 0 0
A=

0 0 -10 12

0 0 -7 —4

In this multi-neural network adaptive observer-based
design, the activation function of each NN is selected as a
hyperbolic tangent function, i.e., tanh(.). Also, the learning
rate o of the NN is selected as 1 x 10™*. Next, the AI-CBF

is defined as ;(x,z) = ||x — zi — \Lf

Yill, = 7min- Please
note that the second term JL? |||, is used to incorporate the

estimation error bound of the external agents into the CBF
design with y = 1.5. This term ensures the strict safety of

the local UAV. Also, r> rpn With rpin = % Here, r
represents the minimum safe distance between two UAVs.
Since the state information only includes the positions of
objects, merely measuring the distance between two UAVs
isn’t sufficient to guarantee safety. To ensure that no part of
the local UAV comes into contact with other UAVs, we

include the velocity v = [x3 x4]" in the barrier function.
Then, the relaxation factor coefficient for the quadratic
program (QP) in (38) is selected as p = 0.5.

The differential equations are solved using MATLAB
ode45 and QP is solved using MATLAB quadprog func-
tion. The effectiveness of the developed algorithm has been
showcased through a series of figures. In Fig. 4, we
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the environment. This figure shows the local UAV is approaching the
predefined destination while avoiding collision with other UAVs to
ensure the safety of the system over time (Color figure online)

illustrate the safe maneuvering of the local agent within an
environment shared with other agents. In Fig. 4a, we dis-
play the initial positions of the UAVs in the system, where
the red color represents the local UAV, and the other colors
represent external UAVs. These UAVs initiate their motion
from the different corners of the figure and move in various
directions. The goal of the local UAV is to reach a pre-
defined destination indicated by a black circle. Given that
other agents are navigating within the same environment,
the local agent must ensure its safety by avoiding collisions
with them. Figure 4 clearly demonstrates that the local
UAYV approaches and ultimately reaches its destination
while maintaining safety in the presence of other UAVs.
The depicted UAV locations correspond to times ¢ = O,
t =3s,t=7s,and t = 10s in Fig. 4a, d. To provide a more
comprehensive representation of the secure maneuvers
executed by the local UAV, we have plotted the trajectories
of the UAVs in Fig. 5 at various time points: ¢ = 0Os,
t =3s,t="7Ts,and r = 10s. Here, the red curve represents
the trajectory of the local UAV, while the blue, green,
magenta, and maroon curves represent the trajectories of
external UAV-1, UAV-2, UAV-3, and UAV-4, respec-
tively. Figure 5 effectively illustrates that the local UAV
successfully reaches its destination while ensuring collision
avoidance with the other UAVs. In Fig. 5c, d, it is evident
that the local UAV adjusts its direction to maintain a safe
distance from the other UAVs before continuing toward its
destination. It is important to note that the points at which
the red curve (local UAV) intersects with the blue, green,
and maroon curves (external UAVs) do not represent
simultaneous collisions but occur at different times. In
Fig. 6a, we present the state estimation of external agents
using the developed neural network (NN) adaptive obser-
ver. The true positions of UAV-1, UAV-2, UAV-3, and
UAV-4 are represented by the blue, green, magenta, and
maroon curves, while the estimated positions are shown in
dark green color. Figure 6a effectively illustrates that as
time progresses and the neural network observer is well-
trained, the state estimation error decreases and approaches
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Fig. 8 Desired state tracking error of local UAV in x- and y-direction

zero. This observation serves as compelling evidence for
the effectiveness of the observer design. In Fig. 6b, the
initial path planning of the local UAV is demonstrated in
the presence of static external UAVs. As there are no
collisions due to the lack of movement from the other
UAVs, the local UAV successfully reaches its destination
with minimal deviation from its planned path. In Fig. 6c¢, a
scenario is presented to illustrate how the local UAV
ensures strict safety using the developed methodology in
the presence of UAV-1 and UAV-2. Here, the final desti-
nation of UAV-2 is in close proximity to the desired

X Position

(b) Original path of local UAV
for static external UAVs

X Position

(¢) Same final destination for
local UAV and UAV-2

UAV ensures strict safety in the presence of two external UAVs
through the developed method
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Fig. 9 AI-CBF hy, hy, h3 and hy for UAV-1, UAV-2, UAV-3 and
UAV-4, respectively

destination of the local UAV. To prioritize safety, the local
UAYV places a strong emphasis on collision avoidance with
UAV-2, even at the expense of reaching its desired desti-
nation. Figure 6¢ visually depicts the local UAV altering
its course at the last moment to maintain a safe distance
from UAV-2. It serves as a demonstrative example of the
effectiveness of our approach, particularly in risky situa-
tions. The normed weight of the neural network for
learning the unknown dynamic of UAV-1 is plotted in
Fig. 7 which demonstrates the convergence of NN weight
over time. Figure 8 illustrates the tracking error of the local
UAV’s desired state in both the x- and y-axes.

The blue curve represents the actual state of the local
UAYV, while the red dashed line indicates the predefined
desired state. The adaptive interplay control barrier func-
tions (AI-CBF) for UAV-1, UAV-2, UAV-3 and UAV-4
are shown in Fig. 9. In this figure, all the barrier functions
remain positive indicating that the local UAV always
ensures safety in the multi-UAV environment. Initially,
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Fig. 10 Evolution of relaxation variable &

after the deployment of UAVs, the local UAV approaches
UAV-1, causing its states to approach the boundary of the
safe set.

At that period, the value of the function is close to zero.
Subsequently, the AI-CBF h; increases as the local UAV
moves away from UAV-1.

Similarly, the AI-CBFs h,, hs;, and hy4 experience
decreases at different time points when UAV-2, UAV-3,
and UAV-4 come closer to the local UAV on different
occasions. Next, the relaxation variable ¢ is shown over
time in Fig. 10. The QP relaxes by increasing the param-
eter 0 to ensure safety over the tracking performance by
enforcing AI-CBF. Here, in this figure, the value of ¢
increases on different occasions to guarantee the local
agent’s safety. A comparison study is shown in Fig. 11 to
show the effectiveness of the developed AI-CBF-based
decentralized safe control design. The trajectories of local
and external UAVs are shown for three scenarios: without
CBF, with CBF, and with AI-CBF. This comparison
highlights the performance differences in crash avoidance
among the three cases. In all scenarios, the local UAV has
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(a) Position trajectory of UAVs in x and y
directions without considering the safety
(without CBF).

(b) Position trajectory of UAVs in z and y
directions with considering the safety using
CBF.
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(c) Position trajectory of UAVs in z and y
directions with considering the robust safety

using AI-CBF.

Fig. 11 The position trajectories of a scenario involving a local UAV along with UAV-1 and UAV-2 are depicted. The positions of the UAVs are
shown for both the x- and y-axes under three conditions: a without control barrier function (CBF), b with CBF, and ¢ with AI-CBF
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the same predefined destination of x = [12.2 9 0 0]". To
simplify and clarify the comparison, only two external
UAVs are used. Figure 11a illustrates the positions of the
UAVs in the x and y-directions over time without consid-
ering the CBF for the local UAV. In this figure, the blue,
yellow, and magenta curves represent the trajectories of the
local UAV, UAV-1, and UAV-2, respectively, while the
red dashed line indicates the predefined destination. It is
evident that the local UAV intersects with both UAV-1 and
UAV-2 in the x- and y-axes simultaneously, indicating
potential collisions with the external UAVs. To clearly
illustrate this, a maroon line with circles at both ends is
placed at the intersection points of the UAVSs’ trajectories
in the x- and y-axes. Next, Fig. 11b demonstrates the UAV
trajectories for the case with CBF. In this scenario, the use
of CBF successfully avoids a collision with UAV-2.
However, the CBF fails to prevent a collision with UAV-1
because, initially, the learning of the unknown state of this
external UAV is not accurate. Using the same scenario, the
developed decentralized control design incorporating the
multi-NN-based adaptive observer with AI-CBF is imple-
mented. Figure 11c demonstrates that the local UAV suc-
cessfully avoids collisions with all external UAVs using the
developed algorithm. In summary, the simulation results
presented here highlight the efficacy of the developed
algorithm.

6 Conclusion

This paper has developed a novel safe control approach for
local agents in a challenging multi-agent environment
where the dynamics of external agents are both uncertain
and uncontrollable, and accurate state information is
unavailable. The developed method utilizes multiple neural
network-based adaptive observers to estimate the states of
these external agents. Through the integration of state
information from both the external and local agents, an
adaptive interplay control barrier function (AI-CBF) has
been designed to ensure the local agent’s safety in the
presence of other external agents. Notably, the AI-CBF
guarantees the strict safety of the local agent by main-
taining the forward invariance of an approximated safe set.
Importantly, this algorithm has been proven to ensure
system safety without the need for precise knowledge of
the actual safe set. Furthermore, our developed algorithm
introduces the AI-CBF for safety constraints and the con-
trol Lyapunov function (CLF) for stability. This AI-CBF
and CLF combination is used for safe control development,
which guides the local agent to a predefined destination
point while guaranteeing safety and stability. The neural
network-based observer stability and the overall system

stability have been rigorously demonstrated through Lya-
punov stability analyses. Finally, a simulation study is
conducted to demonstrate the efficiency and practical
applicability of the developed algorithm.
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