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Abstract
In this study, a decentralized safe learning-based adaptive control is developed for multi-agent systems (MAS) operating in

uncertain environments. Ensuring the safety of MAS in uncertain environments becomes a challenging task, particularly

when the dynamics of the individual agent are unknown and their accurate state information is unavailable to the local

agent. Due to the fact that the safe set of the local agent depends on the other agents’ states, the uncertainty of these

external systems leads to an uncertain safety set. As a consequence, the safe control design of the local agent system in a

multi-agent setting under environmental uncertainties becomes intractable. To address this challenge and ensure the safety

of the local agent, a neural network (NN)-based adaptive observer is designed to estimate the state of the unknown external

agents in the multi-agent environment. Based on the state estimation of external agents, an adaptive interplay control

barrier function (AI-CBF) is formulated. The AI-CBF is designed by considering both the local agent’s state and the

estimated states of external agents. Notably, the limitation of forward invariance for the approximated safe set without

guaranteeing the same for the actual safe set is acknowledged in AI-CBF design. The AI-CBF incorporates the bounds on

state estimation errors of external agents to guarantee the strict safety requirements of the local agent. Based on the safety

constraint enforced by the AI-CBF, a control framework is formulated using a quadratic programming (QP) method that

integrates the safety and stability of the system. In addition, a stability analysis based on Lyapunov theory is performed to

demonstrate the convergence of the neural network-based adaptive observer as well as the closed-loop stability of the

overall system. Eventually, experimental validation and comparison study confirm the effectiveness of the developed

approach that can ensure multi-agent system safety under challenging conditions in a decentralized manner.
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1 Introduction

Ensuring safety stands as a paramount consideration in

real-world control design especially for automated systems

such as unmanned aerial vehicles (UAVs) [1, 2], robots [3],

autonomous ground vehicles [4], and so on. With the

potential risks and hazards associated with these

technologies, it becomes crucial to emphasize the devel-

opment of robust safety measures. Thoroughly addressing

safety considerations during the control design process

allows for the cultivation of trust, reduction of accidents,

and protection of human lives and valuable assets in

practical settings [5, 6]. Since the safety concept has been

introduced to real-time system design in [7], a significant

body of research has been conducted in the fields of safe

control and safe learning systems. Notably, a considerable

amount of research has been dedicated to certified learning-

based control approaches with constraint-set certification in

the presence of dynamic uncertainty [8–10]. This certifi-

cation process relies on the introduced robust positive

control invariant safe sets. Two distinct approaches for
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state constraint-set certification are the control barrier

function (CBF) method [10–12] and the Hamilton-Jacobi

reachability [13–15] analysis. Although both methods aim

to ensure safety, they differ in their relevant computational

requirements [16]. The CBF-based approaches focus on

guaranteeing safety without explicitly determining the

reachability set, which is computationally intensive.

Instead, it utilizes a control barrier function that enforces

constraints on the behavior of the system. By developing a

controller that satisfies the requirement of barrier function,

safety can be assured without the need for extensive

reachability analysis. This CBF-based approach has proven

effective in diverse applications, such as collision avoid-

ance in multi-agent systems [17, 18] and car racing envi-

ronments [19], safe lane change maneuvers [20], adaptive

cruise control [21], and the safe control of robots [22].

Most of these existing techniques rely on precise agent

state information to guarantee safety. However, imple-

menting CBF to ensure the forward invariance of a safe set

becomes more complex and challenging since uncertainty

widely exists in the environment. Numerous studies have

focused on addressing the issue of system dynamic

uncertainty in CBF-based safe controls. In a recent paper

[23], the authors incorporated a probabilistic control Lya-

punov function (CLF) and CBF design to handle uncer-

tainties in the dynamic model and real-time safety

constraints. To mitigate the effects of unknown structured

systems, [23] introduced an element-wise parameter iden-

tification law. Additionally, [24] presented a safety control

scheme that utilized CBF and addressed uncertainty by

dismissing the uncertainty associated with the unknown

structured system. Furthermore, a reinforcement learning-

based technique was designed in [25] to learn and address

model uncertainties present in both CLF and CBF. How-

ever, in a multi-agent system, when a local agent shares its

environment with other agents, achieving safety for the

local agent becomes challenging due to the environment

uncertainty associated with the safe set. In practice, agents

like robots, UAVs, and automobiles often operate within

complex and uncertain environments. For example, con-

sider a UAV flying in airspace alongside other aircraft. The

uncertainty of shared airspace presents challenges for

ensuring the safety of the UAV and other aircraft. Simi-

larly, a self-driving car navigating through a road system

with other cars poses safety concerns due to the shared road

environment. The shared environment introduces com-

plexities for ensuring the safety of individual agents,

requiring a safe control mechanism to avoid collision and

promote safe interactions. In a recent study by Marvi et al.

[16], a safe controller is designed for system maneuvering

in shared environments. They designed a control strategy to

ensure the forward invariance criterion for the intersection

of the actual safety set and the approximated safety set.

Please note that the actual safe set in this study is formed

by using the states of external agents. However, in practice, the

external agents’ states cannot be measured directly and only the

system’s input and output are measurable. Lack of full state

information on external systems, achieving the actual and

approximated safe sets’ intersection is very difficult and even

impossible. This assumption of the actual safe set may violate

the safety of the local agent when the exact full state informa-

tion of the external agents is not available. In this paper, a novel

observer is designed to estimate external agents’ states and

further used for generating safety sets for local agents. How-

ever, the external agents’ systems are unknown and uncertain.

So the known model-based observer design cannot be directly

implemented in this system. This problem has been addressed

in [26, 27] which combined observer design with neural net-

work-based system identification.

These studies used a static approximation of the gradient

by assuming the system state to be constant and remain

unchanged over time. However, this presumption lacks

practicality and efficiency in practice. In the real world,

external agents’ states are usually time-varying and the

local agent has no authority over these external agents’

actions, i.e., control inputs. To address these issues, an

online neural network (NN)-based adaptive observer has

been developed to learn external agents’ unknown

dynamics as well as their states. A modified objective

function for the gradient descent weight update mechanism

is designed while addressing the limitation of static gra-

dient approximation. Additionally, a mathematical

demonstration of the stability of the observer-based iden-

tification of the external system is provided. Then, the

existing control barrier function can be reformulated using

the local agents’ system state and observed external system

states. Using the reformulated adaptive interplay control

barrier function (AI-CBF), the safety criteria are designed

as a function based on the local agents’ own state and also

the state of the external agents obtained from the observer.

As the actual safe set remains unknown at the initial

learning stage, and the local agent relies solely on the

approximated safe set, an error bound is introduced for the

estimated external agent state. This error bound is then

incorporated in the AI-CBF to avoid the violation of strict

safety while the local system is learning the external

agents’ dynamics. Later, the estimated external agents’

states will converge to actual states along with the con-

vergence of learning. Moreover, the approximated safe set

can gradually converge toward the actual safe set. This

developed algorithm differs from the previously discussed

algorithm by offering an AI-CBF-based robust decentral-

ized safe control design, please see Fig. 1. It addresses the

uncertainty of external agents within the safe set by

introducing a novel neural network-based adaptive obser-

ver design. A comparative study of the proposed AI-CBF
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approach has been conducted, including scenarios without

CBF and with other existing CBF approaches [14]. Our

approach introduces the following contributions to the

field:

• A decentralized safe control design based on AI-CBF is

developed for individual agents navigating in a multi-

agent shared environment characterized by the presence

of unknown external agent dynamics. The developed

control design incorporates both the local agent and

observer-based external agent estimated states. The

developed method ensures robust safety, even in cases

where the accuracy of the external agents’ state

information is compromised.

• A novel multi-NN-based adaptive observer is designed

to estimate the state of the unknown external agents and

further ensure the local system safety.

• The stability of the NN-based observer for external

multi-agent systems and also the closed-loop stability of

the local agent is guaranteed through Lyapunov stabil-

ity analysis. Additionally, a comparative study against

other existing algorithms has been conducted to vali-

date the effectiveness of the developed algorithm.

The structure of the paper is given next. In Sect. 2, the

decentralized safe control problem is formulated. Then in

Sect. 3, the multi-neural network-based observer and AI-

CBF are designed. Moving on to Sect. 4, the control

framework is presented. Then the simulation results are

demonstrated in Sect. 5, followed by the conclusion in

Sect. 6.

2 Problem formulation and background

Consider a nonlinear affine system of local agent A in

multi-agent systems given by the following dynamics

_xðtÞ ¼ f ðxðtÞÞ þ gðxðtÞÞuðtÞ ð1Þ

where xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; :::; xnðtÞ�T 2 Rn represents the

state and uðtÞ ¼ ½u1ðtÞ; u2ðtÞ; :::; umðtÞ�T 2 Rm represents

the control input of the local agent. Also, f : Rn ! Rn and

g : Rn ! Rn�m demonstrates the intrinsic dynamics of the

system. Moreover, recall to [28], the function f(.) satisfies

the condition f ð0Þ ¼ 0. Also, f ðxÞ þ gðxÞu is bounded by a

Lipschitz constant. The objective of the agent A is to reach

a predefined destination safely by avoiding collision in a

multi-agent environment. Now, the dynamic of an external

agent i can be defined as:

_ziðtÞ ¼ faðziðtÞ; uiÞ; yiðtÞ ¼ CziðtÞ ð2Þ

where ziðtÞ ¼ ½zi;1ðtÞ; zi;2ðtÞ; :::; zi;nðtÞ�T 2 Rn represents the

state, yiðtÞ ¼ ½yi;1; yi;2; :::; yi;n�T 2 Rp represents the output

and ui denotes the control input of the external agent i.

Also, fa is an unknown nonlinear function that captures the

effect of an external agent. It is assumed that the external

multi-agent systems are observable. Now, the dynamic of

the external agent can be rewritten as:

_ziðtÞ ¼ AziðtÞ þ FðziðtÞ; uiÞ; yiðtÞ ¼ CziðtÞ ð3Þ

with FðziðtÞ; uiÞ ¼ faðziðtÞ; uiÞ � AziðtÞ and A represents

Hurwitz matrix. Also, xd represents the desired destination

that the agent is required to achieve. Then the error can be

defined as e ¼ x� xd with the error dynamic given as:

_e ¼ faðeÞ þ gaðeÞu ð4Þ

where faðeÞ ¼ f ðeþ xdÞ and gaðeÞ ¼ gðeþ xdÞ. The

agent’s safety cannot be solely determined by its own

control inputs and characteristics but also relies on the

interplay with other external systems in an uncertain multi-

agent environment. Thus, to maintain the safety of local

agents, it is needed to consider both local agent’s behavior

Fig. 1 An illustration of AI-

CBF-based safe maneuver of a

UAV sharing an environment

with other external UAVs in

uncertain environments. The

states of external UAVs are

estimated using a multi-neural

network-based adaptive

observer
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as well as interaction with other agents. However, in real-

world scenarios, the states of the external agents are not

available while only the outputs of the external systems are

measurable. Moreover, the dynamics of the external sys-

tems are also unknown. Hence, the objective of this

research is to guarantee the safety and stability of the agent

A in a multi-agent setting where the external agent states

are not directly measurable and the dynamics of these

external agents are unknown. The objectives are listed as

follows:

1. Design a feedback controller for the agent A in a

decentralized manner, which guarantees the trajectory

of the agent stays inside a safe set in the multi-agent

environment while achieving a desired destination xd
that satisfies

hiðxðtÞ; ziðtÞÞ� 0 for t� 0 ð5Þ

with hiðxðtÞ; ziðtÞÞ being a continuously differentiable

function. Also, the safe set for the agent A is defined as

the intersection of the sets associated with all other

external agents, i.e.,

S ¼ S1 \ S2. . . \ SN ð6Þ

with N being the external agents’ number in the

environment.

2. Design a multiple NN-based adaptive observer to

estimate the state of all the other external agents to

guarantee the safety of local agent A.

3. Guaranteeing the stability of local agent A and the

observer-based external agent’s state estimation.

Before proceeding with the developed algorithm, it is

essential to provide a concise introduction to the control

barrier function (CBF).

Control Barrier Function: The safety framework [11] is

characterized by an invariant set, known as the actual safe

set. This set, denoted as S, can be derived as a super-level

set of a continuously differentiable smooth function

h : X � Rn ! R. Then, for the dynamical system provided

in Eq. (1), the safe set can be defined as:

S ¼ fx 2 X � Rn : hðxÞ� 0g;
oS ¼ fx 2 X � Rn : hðxÞ ¼ 0g;

IntðSÞ ¼ fx 2 X � Rn : hðxÞ[ 0g:

Here, oS represents the boundary of the safe set and IntðSÞ
denotes the interior of the safe set S. Now, h can be

referred to as a control barrier function if there exists an

extended class Ka function a such that the following con-

dition is satisfied for the given dynamical system:

sup
u2U

½Lf hðxÞ þ LghðxÞu� � � aðhðxÞÞ ð7Þ

for all x 2 X . where Lf ¼ oh
ox f ðxÞ and Lg ¼ oh

ox gðxÞ repre-

sents the Lie derivatives of h(x) along the intrinsic func-

tions f and g, respectively. Then, the extended Ka function

can be defined as follows:

Definition 1 A function a : R ! R is known as an

extended class Ka function if the function is strictly

increasing and að0Þ ¼ 0. Please see [11] for the definition.

The above condition can also be defined for discrete

cases [29]. Now, the control inputs set that satisfies Eq. (7)

and renders the set S safe can be defined as:

KcbfðxÞ ¼ fu 2 U : Lf hðxÞ þ LghðxÞuþ aðhðxÞÞ� 0g:
ð8Þ

The proof of this result relies on Nagumo’s theorem [30]

which necessitates the fulfillment of a regularity condition

[11]. This condition states that the function h, serving as a

control barrier on the set X , must satisfy oh
ox ðxÞ 6¼ 0,

8x 2 oS. According to Nagumo’s theorem, to establish the

existence of a set to be positive invariant, the dynamics _x
should either point inward toward the boundary or be

tangent to it [16].

3 Neural network-based adaptive observer
with adaptive interplay control barrier
function design

In this paper, an adaptation has been introduced to the

control barrier function (CBF) within the context of a

shared environment comprising multiple agents. These

agents possess unknown dynamics, and their states are not

accessible for direct online measurement. The barrier

function is now reformulated as a function of x and zi,

where i is the index for the external agent. Specifically, a

neural network-based adaptive observer has been designed

to estimate the states of the external agents first. Then,

employing the estimated states of external agents from the

observer, the CBF is reformulated to AI-CBF using both

the local agent Ath state x and estimated state ẑi of any

external agent i. Lastly, to integrate safety and stability by

combining the Lyapunov function and CBF, a feedback

controller is constructed using quadratic programming

(QP).

3.1 Multiple NN-based adaptive observer design
for external agents

In this part of the paper, a multiple NN-based observer is

designed, as shown in Fig. 2, to estimate the external

agents’ state. Here, neural networks are used to identify the

external agents’ unknown dynamics, and observers are
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used along with NNs to estimate the states of these agents.

Now, the model of the observer can be described as:

_̂ziðtÞ ¼ AẑiðtÞ þ FðẑiðtÞ; uiÞ þ HðyiðtÞ � CẑiðtÞÞ
ŷiðtÞ ¼ CẑiðtÞ

ð9Þ

with ẑi and ŷi being the state and the output of the observer

for external agent i. The selection of the observer gain

H 2 Rn�p ensures that the matrix A� HC is Hurwitz.

Please note that the observability of pair (C, A) depends on

the selection of the matrix A. By selecting A properly, the

existence of the gain H is ensured. According to universal

approximation theory [31], the unknown function of the

external agent is represented as:

FðziðtÞ; uiÞ ¼ WT
i /ðziÞ þ ef ð10Þ

with W 2 Rl�n being the neural network ideal weight and l

is the neuron numbers in the hidden layer. Please note that

the activation function is bounded as k/ðziÞk�/M and the

ideal weight is bounded as kWik�WM . Now, the function

of the external agent is approximated as

F̂ðẑiðtÞ; uiÞ ¼ Ŵ
T

i /̂ðẑiÞ ð11Þ

where Ŵ 2 Rl�n is the neural network estimated weight.

Now, replacing the approximation of the unknown func-

tion, the observer model is represented as

_̂ziðtÞ ¼ AẑiðtÞ þ Ŵ
T

i /̂ðẑiÞ þ HðyiðtÞ � CẑiðtÞÞ
ŷiðtÞ ¼ CẑiðtÞ:

ð12Þ

Then, the state and output estimation error of the observer

is defined as ~zi ¼ zi � ẑi and ~yi ¼ yi � ŷi. Next, the state

and output error dynamics can be evaluated using Eqs. (12)

and (10) as

_~ziðtÞ ¼ _ziðtÞ � _̂ziðtÞ

¼ AziðtÞ þWT
i /ðziÞ þ ef � AẑiðtÞ � Ŵ

T

i /̂ðẑiÞ
� HðyiðtÞ � CẑiðtÞÞ

¼ A~ziðtÞ þWT
i /ðziÞ þ ef � Ŵ

T

i /̂ðẑiÞ � HC~ziðtÞ

¼ ðA� HCÞ~ziðtÞ þWT
i /ðziÞ � Ŵ

T

i /̂ðẑiÞ þ ef :

ð13Þ

And,

~yiðtÞ ¼ yiðtÞ � ŷiðtÞ ¼ C~ziðtÞ: ð14Þ

Then, the estimation error of the neural network weight is

~Wi ¼ Wi � Ŵi and the activation function approximation

error is ~/ð~ziÞ ¼ /ðziÞ � /̂ðẑiÞ. Also, A� HC ¼ Ao. Equa-

tion (13) is now written using the weight and activation

function approximation errors:

_~ziðtÞ ¼ Ao~ziðtÞ þWT
i /ðziÞ �WT

i /̂ðẑiÞ þWT
i /̂ðẑiÞ � Ŵ

T

i /̂ðẑiÞ þ ef

¼ Ao~ziðtÞ þWT
i
~/ð~ziÞ þ ~W

T

i /̂ðẑiÞ þ ef :

ð15Þ

Assumption 1 The external system activation function

approximation error is Lipschitz continuous. It implies the

existence of the Lipschitz function, denoted as L/, that

satisfies the inequality k ~/ð~ziÞk� L/k~zik.

Once the neural network structure has been established,

it is essential to develop an appropriate learning algorithm

to update the neural network weights. In this paper, a

modified weight update law has been designed to guarantee

the stability of the NN-based observer. Taking the first

derivative of the approximated output of the external agent

in Eq. (14)

_~yiðtÞ ¼ C _~ziðtÞ ¼ C½Ao~ziðtÞ þWT
i
~/ð~ziÞ þ ~WT

i /̂ðẑiÞ þ ef �

¼ CAo~ziðtÞ þ CWT
i
~/ð~ziÞ þ C ~W

T

i /̂ðẑiÞ þ Cef

¼ CAoðCTCÞ�1CT ~yi þ CWT
i
~/ð~ziÞ þ C ~W

T

i /̂ðẑiÞ þ Cef

ð16Þ

where ðCTCÞ�1CT ¼ Cþ is the pseudoinverse of the matrix

C. After substituting the pseudoinverse, Eq. (16) is now

written as follows:

Fig. 2 The structure of multi-NN adaptive observer-based safe

control scheme
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_~yiðtÞ � CAoC
þ ~yi ¼ CWT

i
~/ð~ziÞ þ C ~W

T

i /̂ðẑiÞ þ Cef : ð17Þ

Now, the objective function can be defined as

Ji ¼
1

2
ð _~yiðtÞ � CAoC

þ ~yiÞ
Tð _~yiðtÞ � CAoC

þ ~yiÞ: ð18Þ

The gradient descent-based update law is defined as

follows:

_̂Wi ¼ �a
oJi

oŴi

¼ �að _~yiðtÞ � CAoC
þ ~yiÞT oð _~yiðtÞ � CAoC

þ ~yiÞ
oŴi

¼ aC/̂ðẑiÞ
�
CWT

i
~/ð~ziÞ þ C ~W

T

i /̂ðẑiÞ þ Cef
�T

ð19Þ

where a represents the learning rate of the neural network.

The weight approximation error dynamic can be defined as:

_~Wi ¼ _Wi � _̂Wi ¼ �aC/̂ðẑiÞ
�
CWT

i
~/ð~ziÞ þ C ~W

T

i /̂ðẑiÞ þ Cef
�T
:

ð20Þ

Theorem 1 The weight update law is given by Eq. (19),

with positive constants representing the learning rate a for

the neural network. When the neural network reconstruc-

tion error is present, the weight approximation error ~Wi

and state approximation error ~zi are uniformly ultimately

bounded (UUB). Also, in the absence of reconstruction

error [32], the weight approximation error converges to

zero.

Proof Consider the Lyapunov candidate function as

follows

Vs ¼
1

2
~zT
i P~zi þ

1

2
trf ~W

T

i
~Wig ð21Þ

where P represents a positive definite matrix. Also, P sat-

isfies the following condition

AT
oPþ PAo ¼ �Q ð22Þ

where Q represents a positive definite matrix and Ao is a

Hurwitz matrix. Also, please note that the norm of a vector

a 2 Rn is denoted as kak ¼
ffiffiffiffiffiffiffiffi
aTa

p
. Also, the Frobenius

norm [26] of a matrix M 2 Rm�n is represented as

kMk2
F ¼ trðMTMÞ. Next, we have omitted the subscript F

from the matrix norm to simplify the notation throughout

the rest of the paper. Now, the first derivative of Eq. (21)

can be written as

_Vs ¼
1

2
_~zT
i P~zi þ

1

2
~zT
i P

_~zi þ trf ~W
T

i
_~Wig: ð23Þ

Using Eqs. (15) and (20), Eq. (23) can be rewritten as:

_Vs ¼
1

2
½Ao~ziðtÞ þWT

i
~/ð~ziÞ þ ~W

T

i /̂ðẑiÞ þ ef �TP~zi

þ 1

2
~zT
i P½Ao~ziðtÞ þWT

i
~/ð~ziÞ

þ ~W
T

i /̂ðẑiÞ þ ef � þ tr
�
~W

T

i ð�aC/̂ðẑiÞ
�
CWT

i
~/ð~ziÞ

þ C ~WT
i /̂ðẑiÞ þ Cef

�TÞ
�

¼ 1

2
~zT
i P~ziA

T
o þ

1

2
~/

Tð~ziÞP~ziWi

þ 1

2
/̂

TðziÞP~zi ~Wi þ
1

2
eT
f P~zi þ

1

2
~zT
i PAo~zi þ

1

2
~zT
i P

WT
i
~/ð~ziÞ þ

1

2
~zT
i P ~W

T

i /̂ðẑiÞ þ
1

2
~zT
i Pef

þ tr
�
~W

T

i

�
� aCTC/̂ðẑiÞ ~/

Tð~ziÞWi

� aCTCk/̂ðẑiÞk2 ~Wi � aCTC/̂ðẑiÞeT
f

��

¼ 1

2
ðAT

oPþ PAoÞ~zT
i ~zi þ P~ziW

T
i
~/ð~ziÞ

þ P~zi ~W
T

i /̂ðẑiÞ þ eTf P~zi � trfaCTC/̂ðẑiÞ
~/

Tð~ziÞ ~W
T

i Wig � trfaCTC/̂
TðẑiÞ/̂ðẑiÞ ~W

T

i
~Wig

� trfaCTC ~WT
i /̂ðẑiÞeT

f g:
ð24Þ

Consider the bounds of activation function and ideal

weights, given by k/ðziÞk�/M and kWik�WM and also

using Eq. (22) and Assumption 1, Eq. (24) can be written as

_Vs � � 1

2
~zT
i Q~zi þ kPkWiL/k~zikk~zik þ kPk/̂ðẑiÞ ~W

T

i ~zi

þ kPk~zief � trfaCTC/̂ðẑiÞ ~/
Tð~ziÞ ~WT

i Wig

� aCTCk/̂ðẑiÞk2k ~Wik2 � trfaCTC ~W
T

i /̂ðẑiÞeT
f g:

� � 1

2
~zT
i Q~zi þ kPkWiL/k~zik2 þ kPk/̂ðẑiÞ ~WT

i ~zi

þ kPk~zief � trfaCTC/̂ðẑiÞ
~/

Tð~ziÞ ~W
T

i Wig � akCk2k/̂ðẑiÞk2k ~Wik2

� trfaCTC ~W
T

i /̂ðẑiÞeT
f g:

ð25Þ

Using Young’s inequality [33], Eq. (25) is written as

123

Neural Computing and Applications



_Vs � � 1

2
kminðQÞk~zik2 þ kPkWML/k~zik2

þ 1

a
kPk/̂ðẑiÞa ~WT

i ~zi þ
1

2
kpk2k~zik2 þ 1

2

kef k2 � akCk2k/̂ðẑiÞk2k ~Wik2

þ 1

2
a2ðkCk2Þ2k/̂ðẑiÞk2k ~Wik2 þ 1

2
W2

ML
2
/k~zik

2

þ 1

2
a2ðkCk2Þ2k/̂ðẑiÞk2k ~Wik2 þ 1

2
kef k2

� � 1

2
kminðQÞk~zik2 þ kPkWML/k~zik2

þ 1

2a2
kPk2k~zik2 þ 1

2
a2k/̂ðẑiÞk2k ~Wik2

þ 1

2
kpk2k~zik2 � akCk2k/̂ðẑiÞk2k ~Wik2

þ a2kCk4k/̂ðẑiÞk2k ~Wik2 þ 1

2
W2

ML
2
/k~zik

2 þ kef k2

� �
� 1

2
kminðQÞ � kPkWML/ � 1

2a2
kPk2 � 1

2
kpk2

� 1

2
W2

ML
2
/

�
k~zik2 �

�
akCk2

k/̂ðẑiÞk2 � a2kCk4k/̂ðẑiÞk2

� 1

2
a2k/̂ðẑiÞk2

�
k ~Wik2 þ kef k2

ð26Þ

where kminðQÞ represents the minimum eigenvalue of Q.

Let,

ji;z ¼
1

2
kminðQÞ � kPkWML/ � 1

2a2
kPk2 � 1

2
kPk2 � 1

2
W2

ML
2
/:

ð27Þ

ji;W ¼ akCk2k/̂ðẑiÞk2 � a2kCk4k/̂ðẑiÞk2 � 1

2
a2k/̂ðẑiÞk2:

ð28Þ

Equation (26) can be rewritten as

_Vs � � ji;zk~zik2 � ji;Wk ~Wik2 þ kef k2: ð29Þ

The first derivative of the Lyapunov function _Vs is less than

zero outside a compact set if

k~zik[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ji;z
kef k2

s

¼ Bz; k ~Wik[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ji;W
kef k2

s

¼ Bw:

ð30Þ

Here, the condition given in Eq. (30) on k~zk and k ~Wik
ensures the negative semi-definiteness of _Vs. Additionally,

the minimum eigenvalue kminðQÞ and learning a are lower

bounded by kminðQÞ[ kl and al, respectively, to guarantee

the negative semi-definiteness of _Vs. This provides an

assurance of the stability and convergence of the neural

network.

Remark 1 Considering the second term in Eq. (29) is

negative [26], _Vs is negative definite outside the ball with

radius Bz, defined as Z ¼ f~zi j k~zik[Bzg, ensuring that

~zi is uniformly ultimately bounded (UUB). The region

within the ball is attractive because an increase in _Vs for

the values of k~zik leads to an increase Vs and ~z, pushing ~zi

outside the ball Z. In this outer region, _Vs is negative semi-

definite, which in turn reduces Vs and ~zi. This ensures the

UUB of ~zi. Additionally, since the activation function /̂ðẑiÞ
is bounded by /em and both C and ~zi are bounded, then the

boundedness of ~Wi is also ensured.

Remark 2 If the neural network reconstruction error is

ignored, then the weight and state estimation error con-

verges to zero as time progresses.

3.2 AI-CBF design for observer-based state
estimation of external agents

The characterization of the safety framework necessitates

the safety set positive invariance property, which needs to

be carefully formulated to guarantee the safety of the local

agent A in a multi-agent environment, please see Fig. 3.

While the local agent is operating within a shared envi-

ronment with multi-agents, the safe set is defined as the

intersection of all the sets associated with the different

external systems present in the shared environment. This

approach ensures that the local agent remains within the

boundaries of safety, accounting for the various dynamics

and behaviors exhibited by the external agents. However,

as stated earlier, only the output of the external agents

states are available and the dynamics as well as full state

information of the external agents are unknown. Since

there is no accurate state information available for the

external agents, the actual safe set of agent A (local agent)

is not available. Therefore, local agent A depends on the

estimated safe set for safe action on the environment. In

this regard, the control barrier function is reformulated to

incorporate the state of agent A and external agents.

Besides that, a state approximation error bound is consid-

ered for the worst-case scenario to ensure strict safety even

if the actual safe set is not available to the local agent. In

the initial stages of the NN-based observer’s training, the

estimation error ~z tends to be relatively large. Conse-

quently, this leads to a substantial bound on the approxi-

mation error, resulting in a larger unsafe region for the

local agent. However, while the NN-based observer is well-

trained, the approximation error decreases significantly.

Consequently, agents have more flexibility and a larger

safe maneuvering space as the unsafe region diminishes in

size. Now, let the output measurement error ~yi belong to a

sector [34] that can be defined as

ck~zik2 �k~yik
2 � bk~zik2: ð31Þ

Here, ~zi is the state approximation error of the external

agent i. Also, c and b are real numbers that satisfies b� c.
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Using this sector-bounded condition, the upper bound of

the state approximation error is now defined as follows:

k~zik2 � 1

c
k~yik2 ¼) k~zik�

1
ffiffiffi
c

p k~yik ð32Þ

For the given dynamical system of agent A in Eq. (1) and

external agent dynamic in (2), the approximated safe set

associated with external agent i can be defined as

Ŝ ¼ fx 2 Rn : hiðx; ẑi;
1
ffiffiffi
c

p k~yikÞ� 0g;

oŜ ¼ fx 2 Rn : hiðx; ẑi;
1
ffiffiffi
c

p k~yikÞ ¼ 0g;

IntðŜÞ ¼ fx 2 Rn : hiðx; ẑi;
1
ffiffiffi
c

p k~yikÞ[ 0g:

The function hiðx; ẑi; 1ffiffi
c

p k~yikÞ represents a smooth function

that incorporates both the variables x and ẑi. Please note

that ẑi is the estimated state information of the external

agent i which is available to the agent A. Besides that, the

bounded error is incorporated to ensure strict safety of the

agent A for the observer-based external agent state esti-

mation. The function hið:Þ describes the constraint imposed

by the external system. Now, the safe set for the agent A is

derived by taking the intersection of sets associated with all

external agents in the shared environment. This intersection

ensures that the agent operates within the overlapping

boundaries of safety defined by external agents. Then, the

approximated safe set of the local agent A is derived as

follows:

Ŝðx; ẑÞ ¼ Ŝ1ðx; ẑ1Þ \ Ŝ2ðx; ẑ2Þ . . . \ ŜNðx; ẑNÞ ð33Þ

with N being the external systems number. The function

hiðx; ẑi; 1ffiffi
c

p k~yikÞ is the adaptive interplay control barrier

function (AI-CBF). If there exists an extended class Ka

function a : R ! R such that for given dynamical system

in (1) and (2), the following conditions hold:

sup
u2U

½Lf hiðx; ẑi;
1
ffiffiffi
c

p k~yikÞ þ Lghiðx; ẑi;
1
ffiffiffi
c

p k~yikÞu

þ LFhiðx; ẑi;
1
ffiffiffi
c

p k~yikÞ� � � ahiðx; ẑi;
1
ffiffiffi
c

p k~yikÞ
ð34Þ

where Lf ¼ ohi
ox f ðxÞ, Lg ¼

ohi
ox gðxÞ and LF ¼ ohi

oẑi
FðxÞ are Lie

derivatives of hiðx; ẑi; 1ffiffi
c

p k~yikÞ along f, g and F, respec-

tively. Now, the set of control input that satisfies (34) is

defined as:

Kcbf ¼ fu 2 U : Lf hiðx; ẑi;
1
ffiffiffi
c

p k~yikÞ þ Lghiðx; ẑi;
1
ffiffiffi
c

p

k~yik2Þuþ LFhiðx; ẑi;
1
ffiffiffi
c

p k~yikÞ þ ahiðx; ẑi
1
ffiffiffi
c

p k~yikÞ� 0g:

ð35Þ

The safe set is defined here for both agent A and the

external agents’ systems. The establishment of the safe set

is intrinsically tied to the external system, wherein the

learning phase can only yield an approximate safe set. To

ensure safety for the agent A, the AI-CBF is formulated as

a function of both the local agent and external agents and

incorporates the worst-case scenario for the observer-based

state estimation of the external agents. The formulated AI-

CBF ensures the forward invariance of the approximated

safe set Ŝ, if the following two assumptions are satisfied.

Assumption 2 The condition requires that the agent A

starts its operation from an initial state, and belongs to the

interior of the safe set:

x0 2 intðSÞ: ð36Þ

Assumption 3 The initial state of any external systems

denoted as i satisfies the following condition

Siðx0; zi;0Þ ¼ fx0 2 Rn : hi;0ðx0; zi;0Þ� 0g: ð37Þ

Fig. 3 Approximated safe set convergence to actual safe set. a Actual

safe set S1 and S2 and approximated safe set Ŝ1 and Ŝ2 with respect to

external agents 1 and 2. Also, the actual safe S set of agent A is the

intersection of all actual safe sets associated with different agents.

Similarly, the approximated safe set Ŝ of agent A is shown in the

figure. b Safety is ensured since the approximated safe region is inside

the boundary of the actual safe region. c The approximated safe set is

approaching the actual safe set as learning progress d By converging

Ŝ to S, the agent A has more space for safe maneuver
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Algorithm 1 Safe control with Multiple NN-based observers

4 Control framework

It is essential to design a control input to guarantee safety

and maintain the local system stability in a multi-agent

environment. This requirement highlights the importance

of integrating a Lyapunov function Veðx; xdÞ. The con-

straint in the derivative of the Lyapunov function Veðx; xdÞ
and AI-CBF constraint are unified to achieve robust safety

and stability performance. Then, providing a nominal

controller �u for local agent A to achieve the desired des-

tination, the safety of the local agent operating in a multi-

agent shared environment needs to be guaranteed. The

nominal controller guides the local agent to the destination.

Next, a quadratic programming (QP) [12, 35]-based

method has been adopted. Building upon prior research

efforts [11, 16], this QP-based controller unifies stability

and safety constraints within an optimization framework.

By leveraging quadratic programming, the controller

facilitates continuous updates of the control actions. The

formulation of AI-CBF-based quadratic programming

controller is given as:

uðx; ẑiÞ ¼ arg min
ðu;dÞ

1

2
ku� �uk2 þ pd2

s.t. Lf hiðx; ẑi;
1
ffiffiffi
c

p k~yikÞ þ Lghiðx; ẑi;
1
ffiffiffi
c

p k~yikÞu

þ LFhiðx; ẑi;
1
ffiffiffi
c

p k~yikÞ þ ahiðx; ẑi;
1
ffiffiffi
c

p k~yikÞ� 0

_Vsysðx; xdÞ�Bcls:

ð38Þ

where d serves as a relaxation variable to guarantee

quadratic program solvability and p represents the relax-

ation factor coefficient. Additionally, the controller

incorporates the Lyapunov function denoted as Vsys to

achieve stability.

Lemma 1 There exists a control policy u for the dynamic

equation given in (4) to guarantee the systems stability.

eT
n
faðeðtÞÞ þ gaðeðtÞÞu

o
� � ckek2: ð39Þ

Theorem 2 (Closed loop stability) The NN weight is

updated by Eq. (19) and the learning rate a is a positive

constant. Then, NN weight approximation error ~W , external

agent state estimation error ~zi, and the local agent A regu-

lation error e are all ultimately uniformly bounded (UUB).

Moreover, ~W , ~zi, and e are asymptotically stable when the

reconstruction error and relaxation variable d is zero [32].

Proof Consider the Lyapunov candidate function

Vsys ¼ Ve þ Vs ð40Þ

with Ve ¼ 1
2

trfeTðtÞeðtÞg and Vs ¼ 1
2
~zT
i P~zi þ 1

2
trf ~WT

i
~Wig.

Here the relaxation variable d has an upper bound to ensure

the system stability. Equation (40) can be written as:

Vsys ¼
1

2
trfeTðtÞeðtÞg þ 1

2
~zT
i P~zi þ

1

2
trf ~W

T

i
~Wig: ð41Þ

Taking the first derivative of Eq (40)

_Vsys ¼ trfeTðtÞ _eðtÞg þ 1

2
_~zT
i P~zi þ

1

2
~zT
i P

_~zi þ trf ~WT
i
_~Wig:

ð42Þ

Consider the bounds of activation function and ideal

weights, given by k/ðziÞk�/M and kWik�WM and sub-

stituting Lemma 1 and Eq. (26), Eq. (42) can be rewritten

as:
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_Vsys � trfeT½faðeÞ þ gaðeÞûðx; ẑiÞ�g

�
�

1

2
kminðQÞ � kPkWML/ � 1

2a2
kPk2

� 1

2
kpk2 � 1

2
W2

ML
2
/

�
k~zik2 �

�
akCk2k/̂ðẑiÞk2

� a2kCk4k/̂ðẑiÞk2 � 1

2
a2k/̂ðẑiÞk2

�
k ~Wik2 þ kefk2

� trfeT½faðeÞ þ gaðeÞu� gaðeÞuþ gaðeÞû�g

�
�

1

2
kminðQÞ � kPkWML/ � 1

2a2

kPk2 � 1

2
kpk2 � 1

2
W2

ML
2
/

�
k~zik2 �

�
akCk2k/̂ðẑiÞk2 � a2kCk4k/̂ðẑiÞk2

� 1

2
a2k/̂ðẑiÞk2

�
k ~Wik2 þ kefk2

� � ckek2 � trfeTgaðeÞ~ug

�
�

1

2
kminðQÞ � kPkWML/ � 1

2a2
kPk2 � 1

2
kpk2

� 1

2
W2

ML
2
/

�
k~zik2 �

�
akCk2k/̂ðẑiÞk2 � a2kCk4k/̂ðẑiÞk2

� 1

2
a2k/̂ðẑiÞk2

�
k ~Wik2 þ kef k2

� � 1

2
ckek2 � 1

2
ckek2 � trfeTgaðeÞ~ug �

2

c
kgaðeÞ~uk2

þ 2

c
kgaðeÞ~uk2 �

�
1

2
kmin

ðQÞ � kPkWML/ � 1

2a2
kPk2 � 1

2
kpk2 � 1

2
W2

ML
2
/

�
k~zik2 �

�
akCk2k/̂ðẑiÞk2

� a2kCk4k/̂ðẑiÞk2 � 1

2
a2k/̂ðẑiÞk2

�
k ~Wik2 þ kefk2

� � 1

2
ckek2 �

�
1

2
ckek2 þ trfeTgaðeÞ~ug þ

2

c
kgaðeÞ~uk2

�

þ 2

c
kgaðeÞ �

�
1

2
kmin

ðQÞ~uk2 � kPkWML/ � 1

2a2
kPk2 � 1

2
kpk2

� 1

2
W2

ML
2
/

�
k~zik2 �

�
akCk2k/̂ðẑiÞk2

� a2kCk4k/̂ðẑiÞk2 � 1

2
a2k/̂ðẑiÞk2

�
k ~Wik2 þ kefk2

� � 1

2
ckek2 �

� ffiffiffi
c
2

r
kek

þ
ffiffiffi
2

c

s

kga ~uk
�2

þ 2

c
kgaðeÞ~uk2 �

�
1

2
kminðQÞ � kPkWM

L/ � 1

2a2
kPk2 � 1

2
kpk2 � 1

2
W2

ML
2
/

�
k~zik2 �

�
akCk2k/̂ðẑiÞk2

� a2kCk4k/̂ðẑiÞk2 � 1

2
a2k/̂ðẑiÞk2

�
k ~Wik2 þ kefk2

� � 1

2
ckek2 þ 2

c
g2
l L

2
uk~zik

2 �
�

1

2
kminðQÞ

� kPkWML/ � 1

2a2
kPk2 � 1

2
kpk2W2

M

� 1

2
L2
/

�
k~zik2 �

�
akCk2k/̂ðẑiÞk2 � a2kCk4k/̂ðẑiÞk2

� 1

2
a2k/̂ðẑiÞk2

�
k ~Wik2 þ kef k2

ð43Þ

with gl being the Lipschitz constant of the function ga.

Also, there exists a Lipschitz constant Lu that satisfy the

inequality k~uðx; ~ziÞk� Luk~zik. Now, adding the relaxation

variable, Eq. (43) can be rewritten as:

_Vsys � � 1

2
ckek2 �

�
1

2
kminðQÞ �

2

c
g2
l L

2
u � kPkWML/

� 1

2a2
kPk2 � 1

2
kpk2 � 1

2
W2

M

L2
/

�
k~zik2 �

�
akCk2k/̂ðẑiÞk2 � a2kCk4k/̂ðẑiÞk2

� 1

2
a2k/̂ðẑiÞk2

�
k ~Wik2 þ kef k2 þ d

� � 1

2
ckek2 � ji;zck~zik2 � ji;Wck ~Wik2 þ kef k2 þ d ¼ Bcls

ð44Þ

with,

ji;zc ¼
1

2
kminðQÞ �

2

c
g2
l L

2
u � kPkWML/ � 1

2a2
kPk2

� 1

2
kpk2 � 1

2
W2

ML
2
/

ji;Wc ¼ akCk2k/̂ðẑiÞk2 � a2kCk4k/̂ðẑiÞk2

� 1

2
a2k/̂ðẑiÞk2kef k2:

Now the first derivative of the Lyapunov function _Vsys is

less than zero outside a compact set if

kek[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

c
kef k2 þ d

s

; k~zk[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ji;zc
kef k2 þ d

s

;

k ~Wik[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ji;Wc
kef k2 þ d

s

:

ð45Þ

Here, the condition defined in above equation for kek, k~zk
and k ~Wik ensures the negative semi-definiteness of _Vsys.

Also, in this study, the relaxation variable d is bounded to

ensure the system’s stability with safety.

5 Simulation result

In this simulation section, we implement the developed

algorithm into a multi-agent system to illustrate the secure

maneuvering of an autonomous Unmanned Aerial Vehicle

(UAV) within a shared airspace environment, alongside

other external UAVs.

The primary objective of the local UAV is to success-

fully reach a predetermined destination while employing

collision avoidance strategies using the developed safe

controller to evade other concurrently deployed UAVs

within the uncertain shared environment. In the experi-

ment, the local UAV does not have direct access to the

external UAVs’ current states, and it is also unaware of the

external UAVs’ dynamics. Hence, multiple neural net-

work-based adaptive observers are developed to learn the
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states of the external UAVs. Also, there are a total of four

external UAVs in the system. Now the initial state of the

local UAV is selected as x ¼ ½9 3 0 0�T with its position

and velocity. Also, the predefined destination point of the

UAV is given as x ¼ ½12:2 9 0 0�T. Moreover, the initial

states of the UAV-1, UAV-2, UAV-3 and UAV-4 are

selected as z1 ¼ ½10:2 4 0 0�T, z2 ¼ ½8:5 6 0 0�T, z3 ¼
½14 7 0 0�T and z4 ¼ ½9:5 8:5 0 0�T. The intrinsic

dynamic function of the local UAV is defined as:

f ðxÞ ¼

�x1 þ
1

2
x2

2

�0:4x2
2

x2½cosð2x1 þ 1Þ2 � 1� � x1

x4½cosð2x3 þ 1Þ2 � 1� � x3

2

666664

3

777775

gðxÞ ¼ 0 0 cosð2x1 þ 1Þ cosð2x3 þ 1Þ½ �T

Fig. 4 The motion of local UAV in a multi-UAV environment. Here,

the UAV with red color represents the local UAV, and blue, green,

magenta, and maroon colored UAVs are external UAVs. Also, the

black circle on the upper part of each figure is the destination point for

the local UAV. a The initial position of all the UAVs in the

environment at time t ¼ 0s. b The position of the UAVs at time

t ¼ 3s. c The position of UAVs at time t ¼ 7s. d The final position of

all the UAVs at time t ¼ 10s (Color figure online)
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Moreover, the dynamics of the UAV-1, UAV-2, UAV-3

and UAV-4 are chosen as [36]. To design a neural network-

based observer, it is essential that the square matrix A be a

Hurwitz matrix. This means that all of its eigenvalues must

have negative real parts that are strictly negative, specifi-

cally Re½A�\0. Now, the external UAVs’ states are

observable if the observability matrix O ¼
½C CA. . . CAn�1� is full rank, i.e., the matrix determinant is

nonzero. The selection of matrices A ensures that both A

and A� HC have eigenvalues with strictly negative real

parts, making them Hurwitz matrices.

A ¼

�1 2 0 0

�1 �3 0 0

0 0 �10 12

0 0 �7 �4

2

6664

3

7775

In this multi-neural network adaptive observer-based

design, the activation function of each NN is selected as a

hyperbolic tangent function, i.e., tanhð:Þ. Also, the learning

rate a of the NN is selected as 1 � 10�4. Next, the AI-CBF

is defined as hiðx; ziÞ ¼ kx� zik2
2 � 1ffiffi

c
p k~yik2 � rmin. Please

note that the second term 1ffiffi
c

p k~yik2 is used to incorporate the

estimation error bound of the external agents into the CBF

design with c ¼ 1:5. This term ensures the strict safety of

the local UAV. Also, r� rmin with rmin ¼ kvk2

2
. Here, r

represents the minimum safe distance between two UAVs.

Since the state information only includes the positions of

objects, merely measuring the distance between two UAVs

isn’t sufficient to guarantee safety. To ensure that no part of

the local UAV comes into contact with other UAVs, we

include the velocity v ¼ ½x3 x4�T in the barrier function.

Then, the relaxation factor coefficient for the quadratic

program (QP) in (38) is selected as p ¼ 0:5.

The differential equations are solved using MATLAB

ode45 and QP is solved using MATLAB quadprog func-

tion. The effectiveness of the developed algorithm has been

showcased through a series of figures. In Fig. 4, we

illustrate the safe maneuvering of the local agent within an

environment shared with other agents. In Fig. 4a, we dis-

play the initial positions of the UAVs in the system, where

the red color represents the local UAV, and the other colors

represent external UAVs. These UAVs initiate their motion

from the different corners of the figure and move in various

directions. The goal of the local UAV is to reach a pre-

defined destination indicated by a black circle. Given that

other agents are navigating within the same environment,

the local agent must ensure its safety by avoiding collisions

with them. Figure 4 clearly demonstrates that the local

UAV approaches and ultimately reaches its destination

while maintaining safety in the presence of other UAVs.

The depicted UAV locations correspond to times t ¼ 0 s,

t ¼ 3 s, t ¼ 7s, and t ¼ 10s in Fig. 4a, d. To provide a more

comprehensive representation of the secure maneuvers

executed by the local UAV, we have plotted the trajectories

of the UAVs in Fig. 5 at various time points: t ¼ 0 s,

t ¼ 3 s, t ¼ 7 s, and t ¼ 10s. Here, the red curve represents

the trajectory of the local UAV, while the blue, green,

magenta, and maroon curves represent the trajectories of

external UAV-1, UAV-2, UAV-3, and UAV-4, respec-

tively. Figure 5 effectively illustrates that the local UAV

successfully reaches its destination while ensuring collision

avoidance with the other UAVs. In Fig. 5c, d, it is evident

that the local UAV adjusts its direction to maintain a safe

distance from the other UAVs before continuing toward its

destination. It is important to note that the points at which

the red curve (local UAV) intersects with the blue, green,

and maroon curves (external UAVs) do not represent

simultaneous collisions but occur at different times. In

Fig. 6a, we present the state estimation of external agents

using the developed neural network (NN) adaptive obser-

ver. The true positions of UAV-1, UAV-2, UAV-3, and

UAV-4 are represented by the blue, green, magenta, and

maroon curves, while the estimated positions are shown in

dark green color. Figure 6a effectively illustrates that as

time progresses and the neural network observer is well-

trained, the state estimation error decreases and approaches

Fig. 5 The trajectory of all UAVs in the environment. The trajectory

of the local UAV is represented by the red curve. Also, blue, green,

magenta, and maroon curves are the trajectories of external UAVs in

the environment. This figure shows the local UAV is approaching the

predefined destination while avoiding collision with other UAVs to

ensure the safety of the system over time (Color figure online)
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zero. This observation serves as compelling evidence for

the effectiveness of the observer design. In Fig. 6b, the

initial path planning of the local UAV is demonstrated in

the presence of static external UAVs. As there are no

collisions due to the lack of movement from the other

UAVs, the local UAV successfully reaches its destination

with minimal deviation from its planned path. In Fig. 6c, a

scenario is presented to illustrate how the local UAV

ensures strict safety using the developed methodology in

the presence of UAV-1 and UAV-2. Here, the final desti-

nation of UAV-2 is in close proximity to the desired

destination of the local UAV. To prioritize safety, the local

UAV places a strong emphasis on collision avoidance with

UAV-2, even at the expense of reaching its desired desti-

nation. Figure 6c visually depicts the local UAV altering

its course at the last moment to maintain a safe distance

from UAV-2. It serves as a demonstrative example of the

effectiveness of our approach, particularly in risky situa-

tions. The normed weight of the neural network for

learning the unknown dynamic of UAV-1 is plotted in

Fig. 7 which demonstrates the convergence of NN weight

over time. Figure 8 illustrates the tracking error of the local

UAV’s desired state in both the x- and y-axes.

The blue curve represents the actual state of the local

UAV, while the red dashed line indicates the predefined

desired state. The adaptive interplay control barrier func-

tions (AI-CBF) for UAV-1, UAV-2, UAV-3 and UAV-4

are shown in Fig. 9. In this figure, all the barrier functions

remain positive indicating that the local UAV always

ensures safety in the multi-UAV environment. Initially,

Fig. 6 This figure (a) illustrates both the estimated and actual

positions of external agents, b the original path of local UAV for

static external UAVs, and c a scenario demonstrating how the local

UAV ensures strict safety in the presence of two external UAVs

through the developed method

Fig. 7 NN normed weight convergence for UAV-1

Fig. 8 Desired state tracking error of local UAV in x- and y-direction

Fig. 9 AI-CBF h1, h2, h3 and h4 for UAV-1, UAV-2, UAV-3 and

UAV-4, respectively
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after the deployment of UAVs, the local UAV approaches

UAV-1, causing its states to approach the boundary of the

safe set.

At that period, the value of the function is close to zero.

Subsequently, the AI-CBF h1 increases as the local UAV

moves away from UAV-1.

Similarly, the AI-CBFs h2, h3, and h4 experience

decreases at different time points when UAV-2, UAV-3,

and UAV-4 come closer to the local UAV on different

occasions. Next, the relaxation variable d is shown over

time in Fig. 10. The QP relaxes by increasing the param-

eter d to ensure safety over the tracking performance by

enforcing AI-CBF. Here, in this figure, the value of d
increases on different occasions to guarantee the local

agent’s safety. A comparison study is shown in Fig. 11 to

show the effectiveness of the developed AI-CBF-based

decentralized safe control design. The trajectories of local

and external UAVs are shown for three scenarios: without

CBF, with CBF, and with AI-CBF. This comparison

highlights the performance differences in crash avoidance

among the three cases. In all scenarios, the local UAV has

Fig. 10 Evolution of relaxation variable d

Fig. 11 The position trajectories of a scenario involving a local UAV along with UAV-1 and UAV-2 are depicted. The positions of the UAVs are

shown for both the x- and y-axes under three conditions: a without control barrier function (CBF), b with CBF, and c with AI-CBF
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the same predefined destination of x ¼ ½12:2 9 0 0�T. To

simplify and clarify the comparison, only two external

UAVs are used. Figure 11a illustrates the positions of the

UAVs in the x and y-directions over time without consid-

ering the CBF for the local UAV. In this figure, the blue,

yellow, and magenta curves represent the trajectories of the

local UAV, UAV-1, and UAV-2, respectively, while the

red dashed line indicates the predefined destination. It is

evident that the local UAV intersects with both UAV-1 and

UAV-2 in the x- and y-axes simultaneously, indicating

potential collisions with the external UAVs. To clearly

illustrate this, a maroon line with circles at both ends is

placed at the intersection points of the UAVs’ trajectories

in the x- and y-axes. Next, Fig. 11b demonstrates the UAV

trajectories for the case with CBF. In this scenario, the use

of CBF successfully avoids a collision with UAV-2.

However, the CBF fails to prevent a collision with UAV-1

because, initially, the learning of the unknown state of this

external UAV is not accurate. Using the same scenario, the

developed decentralized control design incorporating the

multi-NN-based adaptive observer with AI-CBF is imple-

mented. Figure 11c demonstrates that the local UAV suc-

cessfully avoids collisions with all external UAVs using the

developed algorithm. In summary, the simulation results

presented here highlight the efficacy of the developed

algorithm.

6 Conclusion

This paper has developed a novel safe control approach for

local agents in a challenging multi-agent environment

where the dynamics of external agents are both uncertain

and uncontrollable, and accurate state information is

unavailable. The developed method utilizes multiple neural

network-based adaptive observers to estimate the states of

these external agents. Through the integration of state

information from both the external and local agents, an

adaptive interplay control barrier function (AI-CBF) has

been designed to ensure the local agent’s safety in the

presence of other external agents. Notably, the AI-CBF

guarantees the strict safety of the local agent by main-

taining the forward invariance of an approximated safe set.

Importantly, this algorithm has been proven to ensure

system safety without the need for precise knowledge of

the actual safe set. Furthermore, our developed algorithm

introduces the AI-CBF for safety constraints and the con-

trol Lyapunov function (CLF) for stability. This AI-CBF

and CLF combination is used for safe control development,

which guides the local agent to a predefined destination

point while guaranteeing safety and stability. The neural

network-based observer stability and the overall system

stability have been rigorously demonstrated through Lya-

punov stability analyses. Finally, a simulation study is

conducted to demonstrate the efficiency and practical

applicability of the developed algorithm.
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