IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 55, NO. 1, JANUARY 2025 443

An Imbalanced Mean-Field Game Theoretical
Large-Scale Multiagent Optimization
With Constraints

Shawon Dey

Abstract—A novel optimization algorithm has been developed
for distributed large-scale multiagent systems (LS-MASs), specif-
ically focusing on achieving a terminal density constraint.
While the recent advancement in mean field game (MFG)
offers a feasible distributed solution to address the “Curse
of Dimensionality”’ problem, it compromises the optimality of
large-scale homogeneous agents and lacks the capability to
achieve arbitrary fixed terminal probability density function
(PDF) constraint, especially when deviating from the normal
distribution. To tackle this issue, a novel approach -called
the imbalanced mean-field game (Imb-MFG) theory has been
designed alongside an adaptive PDF decomposition method and
distributed reinforcement learning (RL) that can effectively
obtain optimal solutions in LS-MAS even with fixed terminal
density constraints in a distributed manner. In particular, a
method based on the induction theory has been developed for
estimating the parameter of the final PDF constraint, enabling
the decomposition of MFG-PDF into multiple imbalanced normal
distributions. Subsequently, the Imb-MFG theory is developed
by integrating the decomposed multigroup MFG agents with a
K-means clustering algorithm with constraint. The developed
Imb-MFG approach decomposes a single PDF into multiple
imbalanced normal distributions, which are combined to achieve
arbitrary terminal PDF constraints. To achieve the solution of the
Imb-MFG theory, a multiactor—critic-mass (M-ACM) algorithm
is developed. This algorithm is developed to concurrently learn
the solution for coupled Fokker-Planck—Kolmogorov (FPK) and
Hamilton-Jacobi-Bellman equations. The algorithm’s conver-
gence is ensured through the Lyapunov analysis. The effectiveness
of this algorithm is validated through a simulation study.

Index Terms—Large scale multi agent systems, mean field
game, reinforcement learning.

I. INTRODUCTION

N RECENT times, a growing interest has emerged in the
field of multiagent systems (MASs) [1]. The emerging
attention is observed by both research communities and indus-
trial sectors, particularly focusing on applications like traffic
management [2], the use of autonomous unmanned-aerial-
vehicle (UAV) [3], and so on. Besides that, rapid advances in
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control [4] and the game theory [5] have effectively facilitated
the study of control strategies and decision making for MAS,
grounded in solid mathematical principles [6]. However, while
extending a conventional multiagent control system to a large-
scale multiagent system (LS-MAS) through increasing the
number of agents, two major challenges arise. First, to accom-
plish a shared objective, the data exchange among a massive
number of agents in LS-MAS is required but challenging to
sustain because of communication complexity. Second, the
“Curse of Dimensionality” [7] poses a challenge due to the
exponential growth in agent interactions when attempting to
solve the PDE-based large-scale system optimal control. In
order to overcome these two issues, prior research [7], [8]
incorporated the mean field game (MFQG) theory [9], [10] into
their respective studies. In the MFG theory, a large number
of neighboring agents has been considered as one united
group represented as a probability density function (PDF).
Recall to [10], by considering all the agents in LS-MAS
are homogeneous and start from a known initial distribution,
each agent can independently estimate all the other agents’
behaviors (i.e., PDF) by solving a PDE known as the Fokker—
Planck—Kolmogorov (FPK) equation. By employing this local
PDF, each agent can efficiently access group information
without additional communication and computational burdens.
However, MFG restricts the system capabilities by assuming
all the agents are homogeneous and maintain a unified PDF.
For instance, while navigating LS-MAS in a complex environ-
ment with numerous unstructured obstacles, these mean-field
agents may need to be divided into various groups with
multiple probability distributions corresponding to each group.
Through this division, the overall LS-MAS can successfully
adapt to challenging environments with numerous unstructured
obstacles. Moreover, the assumption of homogeneous dynamic
in current MFG control [7] typically results in the LS-MAS
PDF being Gaussian. This makes it challenging to enforce a
non-Gaussian distribution, limiting the practical applicability
of existing MFG methods. For example, considering LS-MAS
pursuit and evasion games [11], a large number of pursuers
might need to formulate a non-Gaussian PDF to maximize
their probability of capturing massive evaders. Utilizing stan-
dard MFG that can only ensure LS-MAS single Gaussian PDF,
is not a feasible approach for solving this type of problem.
To address these issues, an imbalanced mean-field game
(Imb-MFG) theory framework is developed alongside an
adaptive PDF decomposition method for LS-MAS of MFG
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interaction [8]. Then, the solution of the Imb-MFG has been
learned by employing the reinforcement learning (RL) [12]
technique. Specifically, a PDF decomposition approach with
an induction-based method is designed to evaluate the
parameters that effectively achieve imbalanced normal dis-
tributions by decomposing terminal density functions. This
method helps agents to obtain multiple desired final nor-
mal distributions with imbalanced mean and variances for
individual group LS-MAS. Then, a K-means algorithm with
constraint [13] is incorporated to achieve the multigroup
LS-MAS. Subsequently, the initial normal distributions of
each group of MFG agents are generated and transferred
to the respective agents. Then, the agents in each group
ensure the convergence of the mixture PDF to the desired
imbalanced distribution using the Imb-MFG theory for the LS-
MAS optimal control problem. The Imb-MFG approach also
considers the challenges associated with computational com-
plexity and communication difficulties among a large number
of agents. Next, obtaining the optimal solution for decomposed
LS-MAS with Imb-MFG interaction involves solving two
coupled PDEs: 1) the FPK equation and 2) the HIB equation.
However, solving these coupled forward and backward PDEs
is difficult to accomplish [8]. To address this problem, a novel
multiactor—critic-mass (M-ACM) learning has been designed
by incorporating RL [12] and adaptive dynamic programming
(ADP) [14] techniques. In M-ACM, multiple neural networks
(NNG5s) referred to as the mass NNs are responsible for learning
the behaviors of massive populations in individual groups
by FPK approximation. Additionally, multiple critic NNs are
employed for cost function evaluation for agents in individual
groups by learning the HIB equation solution. Finally, multiple
actor NNs are employed to determine the optimal control
strategy for agents. The key contributions are as follows.

1) A distributed optimal control with a fixed final density
constraint for a large-scale system is formulated using a
novel Imb-MFG theory.

2) A novel PDF parameter estimation based on the induc-
tion theory is developed to decompose the fixed final
PDF.

3) An M-ACM learning algorithm has been designed to
solve the Imb-MFG theory and achieve a distributed
optimal solution for LS-MAS.

4) The Lyapunov stability analysis is provided to demon-
strate the convergence of the NNs.

II. PROBLEM FORMULATION

Consider an LS-MAS with the dynamic of each agent A is
represented by

dx(t) = [f(x) + g)uldt + odw (D

with the system state x(f) € R" and control input u(f) € R™.
Similar to [15], f(0) = 0 and f(x) + g(x)u is assumed to
be Lipschitz continuous. Also, o € R™" denotes the Wiener
process w € R" coefficient matrix. The final PDF mg(x; 6) of
the LS-MAS optimization is considered as the mixture of the
N groups normal distributions [16] with distinct means and
variances

N
ma(e; 0) =Y wimaj(x:6) j=1,....N )
j=1

with my j(x, 6;) denotes the jth group normal distribution with
the parameter set 6; = {u;, ¥;}, and u; and X; are the mean
vector and the covariance matrix of the respective group.
The parameter set involving weight is denoted as 6.; =
{wj, uj, ;}. Next, the collection of the parameters in mixture-
PDF is represented by the notation 6 = {w, u, X}. The cost
function for individual agent A is defined as

J(x, m(x; 9)) = Ef / [r, )+ D O)IdE} (3)
0

with the initial term derived as r(x(¢),u(®)) = |x —
E{mg ;(x, Q,')}IIZQ + ”“”%e- Note that, E{mg j(x, 6;)} denotes the
expected mean of the jth group desired PDF.

Theorem 1: For the error e = x —E{my j(x, 6;)} correspond
to an agent A, there exist an error dynamic [7] defined as

de = [fa(e) + ga(e)u]dt +odw. “)

Proof: Provided in Appendix A. |

Following this, the coupling function in (3) is designed to
achieve the desired mixture-PDF as ® (m(x; 6)) = ||m;(x; 6) —
my j(x; 9j)||%. This function measures the difference between
the running PDF mj;(x;0) and the expected final PDF
mq j(x; 0;) of each group j. Given the continuous dynamic
in (1) represented by the stochastic differential equation and
the cost function derived in (3), it is necessary to determine
an admissible control to minimize the optimal cost function.
Based on the Bellman’s principle of optimality [17] and the
optimal control [15] theory, the Hamiltonian is derived as

H[x, 8cJ (x, mj(x; 0))] = E{r(x(®), u()) + ®(m;(x; 0))
0. (x, mi(x; 0))[F (x) + g(x)ul}. (5)
Subsequently, each agent’s optimal control is evaluated as
2Ru + g" (x)dJ (x, mj(x; 0)) = 0
u(x) = —%E{R—lgT(x)axJ(x, mj(x; 0))}. (6)

Next, the associated HJB equation in (7), as shown at the
bottom of the next page, is derived by inserting the optimal
value function into the Hamiltonian equation. Also, the mass
function (PDF) is achieved by solving the FPK as presented
in (8), as shown at the bottom of the next page.

III. IMBALANCED-MFG THEORY AND
MULTIACTOR—CRITIC-MASS LEARNING ALGORITHM

This section introduces a framework based on the Imb-
MFG theory, aimed at achieving the final mixture-PDF
through individual agents’ action in LS-MAS. First, an adap-
tive PDF decomposition based on the induction theory is
developed to break down the final desired PDF into a mixture
of imbalanced normal distributions. Subsequently, the final
desired PDF is attained by decomposing the LS-MAS into
multiple groups using a K-means clustering algorithm with
constraint, which ensures the appropriate combination of
agents in individual groups in order to converge to imbalanced
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normal distributions. Then, the distributed optimal control
framework is designed based on the developed Imb-MFG
theory. Particularly, the optimal policy for individual agents is
derived by solving the coupled PDEs known as HIB and FPK
equations. Inspired by emerging RL and ADP techniques [18],
a novel M-ACM learning framework is developed to learn the
Imb-MFG solution.

A. Adaptive PDF Decomposition Based on Induction Theory

An induction theory-based approach is designed to estimate
the respective parameters i.e., weights, means, and variances
of the final mixture-PDF. The ideal target PDF is reformulated
as a mixture-PDF

N
mg(x; 0) = Z ijd,j(x§ s z:j) ©)
j=1

with w; € R, u; € R", and X; € R™" are the ideal weight,
mean, and covariance parameters of individual group’s normal
distribution. Now, the (9) is reformulated as

ma(x; 0) = w! mg(x:p, X) (10)

with w € R represents the ideal mixture-PDF weight. The
estimated final mixture-PDF function is defined as

ﬁtd(x; é) = Wde(x; i, f) (11
Now, the approximation error of the ideal mixture-PDF is

em =wma(x; p, L) — fvad(x; i, i) (12)
The mixture-PDF estimaEion error is written as mg(x; i, 3 =
mg(x; i, X) — my(x; L, ). The (12) is as

em = wimg(x; b, T) — fvad(Jc; i, 2)
=wima(x; p, £) — med(x; i, Z) +wimy
(x; i, E) —~ Wrmd(x; i,

= wTﬁ1d(x; I, )5) + Wde<x; I, f) (13)

Assumption 1: The mixture-PDF function follows the
Lipschitz continuity assumption. It implies that there are
Lipschitz constant, L, and Ly, such that the inequality
lmaCe; i, DI < Lyllpll + Le ||Z]) is satisfied.

Now, the residual error can be derived as E,, = (1 /2)e£em.
Ifw— w, it — u, and T - ¥, then e, approaches zero.
An induction-based gradient descent approach is developed to
update the estimated final mixture PDF parameters. Here, the
iteration index in mixture PDF estimation is represented as /.
In the remaining sections of this article, the bold notation will
be excluded to simplify the presentation. However, it should be

noted that the notation without bold font still refers to vectors
and matrices. The update law is as follows:

= il —}—(xwmd(x; i, ﬁ))e},; (14)

N et + e il (x: 2, )el, (15)

oF, A N R
m_ Ol)ja—én =3z + OlEW[l]m): (X; M, E>e£1 (16)

with the learning gain oy, o, and ax. Now, the parameters
approximation errors dynamics are

Pl — awmd<X: Q, i)e}; A7)
A = g — g iy, (x: o, E)eT (18)
s = sl g iwlmy (X; i, 2A:)erjr"z' (19)

Theorem 2: The update law for the parameters of the
mixture PDFs in gradient descent is defined in (14)-(16), with
the positive constants representing the tuning gains. Based
on the theory of the mathematical induction [19], for the
base case scenario, the respective approximation errors of the
parameters, denoted as wil, /1[”, and 2 at iteration [, are
UUB. Also, By, B, and By, represents the respective bounds
of the errors. For the induction step at iteration (/ + 1), if the
UUB condition is satisfied for the base case at iteration /, then
it must also apply for the subsequent case at iteration (I + 1).

Proof: Consider the following Lyapunov function candidate:

ol il .
AL, = W T i
~ T ~
= [VV[I] — My (x; i, E)e,Tn] [fv[l] — oMy (x; Q, E)e,ﬂ

—pT (20)
Next, inserting (13) and considering the Lipschitz function in
Assumption 1, the (20) can be written as

_7ln L .
ALy = =2e, ™y L3014 Ly | 01

7l o 0
7 )+ el 2w [ L&+ L S0 ]

2
~ Tl
+w' m,,

2D
with m,, = my(x; {1, f)). Note that, in (17)—(19), each param-
eter approximation error depends on the other parameters. In
the weight updates, the previous iteration approximation errors
for the mean and covariance are used. For the mean update
step, the current weight update and covariance of the previous
iteration are considered. Finally, the covariance update uses
the current weight and mean approximations, as these have
already been updated within the current iteration. Next, the

HIB: E{®(x, mj(x;0))} = ]E{—a,J(x, mj(x; 0)) — %UZAJ(x, mj(x; 0)) + H|[x, 0] (x, mj(x; 9))]} (7)

FPK: E{a,mj(x; 0) — %azAmj(x; 6) — div(miDpH|x, dcJ (x, mj(x; 9))])} =0 (8)
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(21) can be rewritten in (22), derived at the bottom of the
page, where
@g)( (=1 - 1):=[Li‘%4“iﬂmwﬂﬂhﬂﬁLi]

VA2 + [ + 4o P12 [IEETI. 24)

From (22), the first difference AL, is less than zero if the
following condition holds:

v ( (-1 2[14])

" 2lmy|1® = 20,
w
[ o 7

Now, a Lyapunov function is considered as follows:

=
\
I

By,. (25)

~ Tu+11

~ 7l o
gl g,

AL, = (26)

Substituting (18) and (13), (23), shown at the bottom of the
page, is achieved. with

Dty (W1, B = [L3 1wl + a2 101222, w23 ]
il 2t

From (23), the first difference of AL, is less than zero if the
following condition holds:

2 A 272
n [mw—|—2aul|w 1222, m 27)

Dl (fvlll z;[lflJ)

1" > =B,. (28)
[znw[”an T ||w[”||2} :
2 [1] 272 272
L day, WAL g IWITL
Finally, a Lyapunov function is considered as follows:
~ [l ~ ~ 7l ~
ALy = ST _ g1igm, (29)

Substituting (19) and (13), the (29) is rewritten as
ALy = =20z SUHL, ] L3 + Ly 151

" )+ @3 IIPES (v LA+ Ll £

Lyg Le | EW12 oz 10 12L3, IS )2 4+ mi 191712 +
dag [WIIPLE,IwllLy, ||ul”||2+4az||w 2L, Iwll?
LE =) +2a2||~[’ L5 i 1112

~ Tl
< —Razi" wL,sz—2rxznw”||2L3,,i 2

— 4oz W
12 IWPLE SN2 4+ o, (10, 1) (30)
with

%, (1, 1) = [L2 1w + 403 1123, L2 ]
2 |12,

The first difference of ALy is less than zero if the following
condition holds:

AP + [ + 203 13022, 31

- DT (w [7]
10 > ool 17 =B
[2nw N WL, Ly —206>:||W[l]||2}

L, 4<¥2||W[I]IIZL31£||W||2L2

(32)

Here, Ly, and Ly, represent the Lipschitz constants. Using
an approach similar to the previous method, the following
condition can be derived for the next iteration as follows:

@Evon(ﬂl]’ z[l])
2imyll* — 20ty }

I+1
[+ ]” -
o
W[nmwnznwuz — 20, [l |14

lw

(33)

: ~1 s ~[—-11 s [I—1 ~[1l
with @ (all, =My < oy (@l=1 sl=1h al) <
I A, and | EW < | ZV=1)). Similarly

LYo ({VUHI glll)

i ) I = 2 Ly Wy, — e [[AAFFH 2 9
= o WP, IV + L IwiP P - 20w [Lz — 4o llw’“]llzL%mllwllzLﬁ}
ALy < =200, Wiy L 0] = 200" wimy L ISP = 2 llmy 121012 + da2 I, [ Pw2 | 2012
+ dorg [lmy [P IWIPLE I EY Y2 4 20 [y, 113012
< ap [my [P IwlP 12 A+ L2 1A 4 o 10 12 12wl + L5 I ZU 2 + 4o lm |2 [w2L25 12117 + 4oy,
g 2 WL N2 4 2000 iy I )12 — 200 [l |1 19112
s—[2aw||mw||2—2ai||mw||2||w||2—2ai||mw|| J1 02 + @, (11, £1-1) 22)

AL, <1

- Tl
) — g™l

[] ~ ~ & [l— ~
Al — 20 i N L O L 1)+ LI EE) ] T

{1 ~ ~ & [1—
) + QWL (L) + Le ) 9 ]

< =20 I Ly Wy | 4 o IAIPLE, AP + L ISP Il 4 e 2L, 17 A i 1002
+ o WL, IwIPLE A + deg) ||w[”||2L2 IwIPLE IS 20 411 ||2L3,,ﬂmw||fv[”||2

|:20l ||W[ L WL —a ”W ||2L2 —40[ ||Wl]||2L2 ||W||2L2]||M[l]||2+q)g0n<1/~\/[l],Z[l_l])

(23)
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with &g, (W1, T < agey (ll], B, 2 <
I£U=1), and ) < ). And

O (W g1

”i[lﬂ]” ~ AU+ ~+1112
. [2nw WL Ly — 205 | ||}
)

(35)

12— dars [WHI2L2 L

where q;cion(w[l-i-l], ,u,[l"'l]) < q;cion(;v[l]’ M[l]), ||ﬁ[l+1]|| <
1A%, and | SUFT) < |Z)). The estimated weight of the
mixture-PDF is represented as w = {Wi, w2, ..., wy}. Next,
a K-means clustering algorithm with [13] is incorporated
to decompose the LS-MAS with mean-field interaction into
N groups. In this context, the number of clusters is set to
K = N, with j = 1,2,...,K denoting the cluster index.
The minimum agents number in the jth cluster is evaluated
as pj = (fvj/[zjlilv}/])M, for ZjK:lpj < M and M is the
total agents number. Next, starting with the cluster centers
Ci.1.Coy, ..., Ck; at iteration ¢, the cluster assignment and
update step are outlined as follows.

1) For the agent i with state x;, assign x; to cluster j by
minimizing the given function, ensuring that the cluster
center Cj; is closest to the position x;. In this step,
the cluster center for group j is fixed, and the selection
variable g; j is the solution to the following cost function:

c,-,,n%)

M K
s.t. Zé]i,j > pj, ZQi,j =1,¢;;>0. (36)
i=1 =1

M

o0
min > Z‘b’,j(i”xi -

i=1 j=1

Be aware that the first constraint of the cost function
guarantees that the number of agents chosen for a
specific cluster j always meets the minimum threshold
requirement of agents allocated to that cluster. The
second constraint ensures that each agent is assigned
exclusively to a single cluster.

2) Update the cluster center Cj 41 at iteration ¢ + 1

M
Zi:l Q;_jxi
M
it ‘Lt', J
Cj,t

. M
if >0, qf’j >0

otherwise.

Gyl = (37)

The second step update the cluster center at each
iteration. Then, if the center of cluster j at iteration
¢t stays unchanged in the subsequent iteration ¢ 4 1,
meaning Cj,.y1 = Cj;, the algorithm is terminated,
otherwise, the iteration ¢ is incremented by 1 and the
procedure returns to step 1. This algorithm is executed
for all clusters j. Following the decomposition of LS-
MAS into N groups, each agent acquires an optimal
control strategy based on the M-ACM algorithm to
collectively achieve the desired final mixture-PDF.
Remark 1: Solving the combined HIB-FPK equations in
the Imb-MFG poses a significant challenge [7]. To address
this challenge, an M-ACM-based NN learning is designed to
achieve the HJB-FPK equations’ solution.
|

Induction-based PDF Parameter

| Large Scale Multi Agent System |
Estimation

‘ LS-MAS Decomposition H

Constrained K-means
Clustering

I

[ 1
Agent i (Group 1) [~ | Agent i (Group N)
Control t
[f(xi1) + g(xi1)uia]de H glnl lro Co,:ﬂm} M [F(xin) + gCein)uin]de
( +odwy ¥ 7 +odwiy .[

Fig. 1. M-ACM learning structure for Imb-MFG optimal control.

B. Multiactor—Critic-Mass (M-ACM) Algorithm

The M-ACM method is designed in this part. The goal of
each agent from decomposed groups is to find the optimal
control strategies to achieve the final desired PDF function
collectively. To achieve the final objective, each agent from
a particular group operates three NN models, see Fig. 1.
Here, the critic NN is employed to estimate the optimal
value function, the actor NN is utilized to evaluate the
optimal control input strategy, and the mass NN is designed
to estimate the PDF function from each group. Now, the ideal
cost function, the PDF function, and the control input are
defined as J(x,mj)) = E{W!¢;(x,mj) + emp}, mj(x, 1) =
BAW,p, bm; (5, ] 1)+, and u(x, mj) = BAW,; ¢u (x, mj) +eu},
respectively, where W;, Wy,;, and W, represents the weights of
the critic-mass-actor NNs for the jth group agent. Moreover,
the activation functions of the respective NNs are given as ¢y,
¢>mj, and ¢,. The critic, mass, and actor NNs reconstruction
error are given as €yjB, €rpK, and &,. Then, the approximated
cost, PDF functions, and the optimal control are defined as
T, i) = BAW] e mp}, i) = AW, oy (x, 7, 1)),
and u(x, ;) = E{VAVMT éu(x, m;)}, respectively. By inserting
these estimated functions into the HIB, FPK, and optimal con-
trol input (7), (8), and (6), the residuals errors are generated.
These errors are then utilized to tune the respective NNs

Efeps) = E{@(x, ) + Wf[a,é, +0.562A¢) — HW]} 38)

E{epp) = ]E{W,ﬁj Bibm — 0.507 A, — div(é)mj)Dpﬁl} 39)

Efey) = E[WMT ¢u+ 1/2R'gT(x)DI (x, rh,»)} (40)
with H = W] Hy and H = H[x, 3;$,]. Let
Uy = 3,0y + 0.562Ady — Hy
Wy, = By — 0507 A, — div (i, Dy )
®(x, mj) = P(x, fiyy) — P(x, my). (41)
Then, the residual errors (38) and (39) are as follows:
Elenss) = E{®(x,m)) + ®(x. ) + W, @2)
Eferr) = E{ W] W, (x.J.1)}. 43)

Next, the effect of reconstruction errors is considered by
inserting the ideal functions into (7) and (8)

E{®(x, mj) + W] Wy (x, m;) + emyp} = 0 (44)
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E{W,, Wiy (x, J, 1) + erp} = 0 (45)

where eyjp and eppk are the reconstruction errors. Again,
substituting (44) and (45) into (42) and (43), we have

E{egig} = E{CD(X, ﬁlj) — WJT\i—’J — WJT\T-’J — EHJB} (46)

E{eppk} = { WT WT Wy — 8FPK} (47)
oA . ~ . 1

Efes) = E{—WMT ¢u(x, ) = Wiy, i) = R™!

g7 (03 (x, 7j) — eu } (48)
The update rules for the critic, mass, and actor in the context

of gradient descent algorithm for any agent A in the group j
can be derived with the learning rates oy, ;s and

4 Wy (i, i) efyp
E{W;} = E{ —a¢j———F+——— 49
(Wi} { T ||\Ilj(x, )P (49)
R ( J.t )eFPK
E{ij} =FE —Om; (50)
L W, (.9, 1) P
3 Bu(x, 1) e
E(W,} =E{ - - 51
Wl { 1+||¢u( m)||2} Gb

Theorem 3: The critic NN weight E{W,} is updated by
the tuning rule provided in (49), assuming Wj(x, ;) is
persistently exciting (PE) [20], [21]. The approximated critic
NN’s weight error E{W;} and the cost estimation error E{J}
are UUB. Additionally, if the reconstruction error [8] is
ignored, implying the error is zero, then E{W;} and E{J}
are asymptotically stable. The bound of E{J} is derived as
E(TWI) = EQWI s + Wids + emsll) < bw, EAllds11) +
Lo, E{IWy1}bm; + E{llemsBll} = by, where Iy, represents the
Lipschitz constant of the critic NN activation functions’ ¢;.

Proof: Provided in Appendix B. |

Theorem 4: The mass NN weight E{ij} is updated by
the tuning rule (50), assuming \Ilmj(x, .7, t) is PE [20], [21].
The approximation error of the mass NN weight ]E{ij} and
the PDF approximation error [E{r;} are UUB. Moreover, if
the reconstruction error [22] is ignored, then E{ij} and
E{m;} are asymptotically stable. The mass approximation error
bound 7n; is calculated as E{||m;|} = E{IIW,Ejémj + eppk||} <
bw,, Elllgm; I} + Ellerpk I} = b

Proof: Provided in Appendix C. |

Theorem 5: The actor NN weight E{W,} is updated by
the tuning rule provided in (51), assuming ¢, (x, ;) is
PE [20], [21]. Now, the actor NN weight error E{W,} and
the approximation errors [E{u} of the control input are
UUB. Moreover, if the reconstruction error [22] is ignored,
implying the error is zero, then E{W,} and E{it} are asymp-
totically stable. Finally, the bound for u is calculated as
IEG@ | = BUW! O + Wi + ull} < bw, OE{lull} +
Lo B NWull}orm; (1) + E{lleull} = bu.

Proof: Provided in Appendix D. |

Algorithm 1 Imb-MFG Theory: Induction-Based PDF

Decomposition and M-ACM Learning

1: Initialize the state of M agents in LS-MAS.

2: Set iteration / = 0 and initialize the final PDF constraint parameters will,
2 and U,

3: Initialize the PDF function approximation error e, <— 0o.

4: Initialize the threshold &, of the approximation error.

5: Set the tuning gain ayy, oy and ay.

6

7

8

: while ¢, > 5., do
Update w using (14) and employ & and % from iteration [ — 1.
Update /i using (15) and employ w from iteration [ and ¥ from
iteration [ — 1.
9: Update ¥ using (16) and employ w and fi from current iteration /.
10: Update error e, using (13).
11: Update iteration [ <— [+ 1
12: end while
13: Define the number of clusters K = N.
14: Deﬁne the minimum number of agents in any cluster j using p; =
ZK )M Wlch,lpJ <M.
15: Imtlallze the iteration ¢.
16: Initialize the cluster center Cj; for any cluster j at iteration 7.
17: Solve (36), to assign any agent i to the nearest cluster j.
18: Update cluster center C; for next iteration ¢ + 1 using (37).
19: Repeat step 17 and 18 until convergence i.e., Cj ;11 = Cj .
20: Initialize M-ACM NN weights W], Wm/. and Wu randomly.
21: Initialize NN errors- eqjB, eppg and ey < 00
22: Initialize thresholds SyjB, dppk and dy
23: while TRUE do

24:  while ey > SHyB, €FPK > SFPK, €u > du do
25: Update the weights using (49),(50) and (51).
26: Update the residual errors using (46),(47) and (40).

27: end while

28: u(x) <« W ¢u(x m]
29: Implement the control i.
30: Observe the new state x.
31: end while

Lemma 1: For the optimal control policy u in (4)

d
E{eT[fa@(r)) + gale®)u(r) + %“ < —yE{[e]?}.(52)

Theorem 6: The NNs’ weights are updated by the tuning
rule in (49)—(51), assuming the learning rates o, O and o,
are positive. Then, E{W,}, E{W,}, IE{Vij}, and E{e} are UUB.
Also, if the reconstruction error [22] is ignored, implying
the error is zero, then E{W,}, E{ij}, E{W,}, and E{e} are
asymptotically stable.

Proof: Provided in Appendix E. The proposed method is
implemented using Algorithm 1 in the simulation section. M

IV. SIMULATION RESULTS

The efficiency of the developed algorithm is showcased
using the large-scale UAV (LS-UAV). A total number of 1200
UAVs were initially used. The objective for individual agents
within LS-UAVs is to collaboratively achieve a final PDF
distribution as a desired formation. In practical situations, e.g.,
large-scale pursuit-evasion [23], etc., successfully achieving an
arbitrary distribution assists the agents in collectively forming
diverse sha|:pes Now, a normal distribution N'(u = [4.5 7]

and ¥ = 019 039i|) is used to generate the initial states of
agents. Also, the functions for SDE in (1) is defined as f(x) =
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TABLE I
PARAMETERS AND THEIR VALUES

Parameters Value
Coefficient, () I
Coefficient, R 1
Wiener process coefficient, o 0.05 x I2
Tuning gain, a, ap, as 1x1073,1.7x 10~ %,
1x 1074
Error threshold, Je,, 1x 107"
Critic learning rate, oy 2x 10°°
Actor learning rate, o, 2x 101
Mass learning rate, am 2x 1073
HIB error threshold, duip 1x10°°
FPK error threshold, dgpk 1x103
Actor error threshold, §,, 1x 1072

Fig. 2. (a) Initial locations at time ¢+ = 0 s. (b) Position of decomposed
UAVs at time t = 20 s. (C) Positions at 1 = 45 s. (d) Final distributions of
UAVs at time ¢t = 60 s.

2
I:_xl_"g.i(l)é)xz} and g(x) = B], where x = [xl xz]T being
the state of arbitrary agent A.

However, each agent is unaware of the desired distribution
before initiating the mission. This assumption aligns well with
real-world scenarios, particularly in battlefield situations where
the agents might lack prior knowledge of their surroundings.
Here, the final PDF distribution is represented as a Gaussian
mixture defined in (2) as my(x; 0) = ZJN: 1 wimg j(x; 0;). Here,
N is the number of Gaussian components and mg ;(x; 0;) =
(1/1@m) /215D Jexp(—(1/2) (x— )T 57! (x— 7). Now,
an iterative induction-based parameters estimation framework
has been used. The selected parameters for iterative induction-
based estimation and the M-ACM algorithm are given in
Table I. The estimated weights of the mixture are obtained
as w; = 0.495, wy = 0.3025, and w3 = 0.2025, with the
cluster number N = 3. The estimated mea[ and covarian‘]e

[13.4256 9.5846]", & = 151393546 (? .7363641

[15.9451 10.8812]", %, = [0'7845 0'1826}, a3 =

are as 1] =

M2 = 0.1826 1.3426

[14.0557 12.4397]", and 3 = [8’3?3? ?';523 '

The large number of agents deployed in the LS-UAVs
are noncooperative and their interactions are captured
through MFG. However, attaining the intended PDF through
mean-field agents can be challenging, primarily because it
necessitates intricate nonlinear interactions among agents,

Fig. 3. PDF function contour plot. The real-time PDF and desired final PDF
are shown in dashed and solid lines. (a) t = 0's. (b) t = 30 s. (¢c) t = 45 s.
(d)t=060s.

especially when dealing with large-scale systems with high
dimensions. Nevertheless, breaking down agents into several
groups, which in turn leads to the decomposition of a single
mean field PDF into multiple PDFs, enables them to reach the
desired final PDF more effectively. Next, we set the number
of clusters for the constrained K-means algorithm, denoted
as K, to be equal to N, which is 3 in this case. Here, the
estimated minimum number of agents in each clusters are 596,
363, and 241, respectively. Next, the agents are assigned to
clusters using (36) and (37). Also, each agent solves a pair of
coupled HJB and FPK equations attained from the Imb-MFG.
To address these imbalanced PDEs and attain optimal control,
the proposed M-ACM algorithm is utilized. Fig. 2 illustrates
how the positions of UAVs evolve, and these changes are
visually represented through dots on a plot at specific time
intervals. The initial and the decomposed states of UAVs
are illustrated in Fig. 2(a) and (b), respectively. The different
colors depict different groups of UAVs. Also, a small window
is plotted to show the position of group 1 UAVs in detail.
Fig. 2(c) shows the position of the UAVs at time t = 45 s.
As time passes, each UAV adjusts its position with the goal
of collectively reaching the desired distribution. At the end of
the simulation (¢ = 60 s), each group of UAVs successfully
reaches a position meeting the e-Nash equilibrium, thereby
achieving the desired final PDF. The contour plot of the PDF
function is demonstrated in Fig. 3. Fig. 3(a) shows the initial
PDF of LS-UAVs in dashed lines and also the final desired
PDF with solid lines. Fig. 3(d) shows that the desired PDF is
achieved by LS-UAVs. The final PDF contour plot is shown
with dashed red lines to differentiate it from the desired PDF.

Next, Fig. 4 demonstrates the PDF distribution of agents.
In Fig. 4(a) and (e), the initial PDF is presented in a
two-dimensional (2-D) and three-dimensional (3-D) views,
respectively. After estimating the parameters of the final
mixture-PDF, we applied a constrained K-means clustering
algorithm to partition the UAVs into multiple groups. The
respective decomposed PDFs for these groups are demon-
strated in Fig. 4(b) and (f) for 2-D and 3-D views. Then,
Fig. 4(c) and (g) shows the PDF of all UAVs at time ¢ = 45 s.
Then, the final mixture PDF is illustrated in Fig. 4(d) and (h).
Next, Fig. 5 demonstrates the final PDF percentage estimation
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Fig. 4. PDF of the LS-MAS in 2-D and 3-D view. (a) and (e) Initial normal distributed UAVs PDF at r = 0 s (2-D and 3-D view). (b) and (f) Decomposed
PDF of three groups of UAVs. (c) and (g) UAVs are moving to achieve the final mixture PDF. This figure shows the PDF at time ¢ = 45 s. (d) and (h) Final

mixture-PDF at time ¢ = 60 s.
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Fig. 5. Estimation error of final PDF.
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Fig. 6.  Percentage error in PDF transition from initial distribution to

achieving the final mixture distribution.
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Fig. 7. HIB equation error of an UAV in the LS-UAV system.

error using, Error; = ([mg(x; 0) — mg(x; 0)]1/ma(x; 0)) x 100.
The PDF is estimated using the proposed iterative induction-
based parameter estimation method. This figure clearly shows
that the PDF function approximation error converges to zero
with time. A total of 350 iterations were executed to reduce the
error in approximating the PDF to a level below the threshold
8¢,,- Then, the percentage error of achieving that desired PDF
by LS-UAVs is implemented in Fig. 6. The error is calculated
as Error; = [(mg(x; 0) — m(x; 0))/(mg(x; 60))] x 100. As
the error converges to zero over time, the figure effectively
illustrates that the LS-UAVs attain the desired PDF after a
certain period. Then, the critic and mass NN performance is
demonstrated by choosing a single UAV to illustrate the errors
in the HIB and FPK equations. Fig. 7 displays the logarithmic
error associated with the HIB equation. This figure illustrates
that the HIB error gradually converges to zero over a specific
period, implying the optimality of the UAVs concerning the
cost function. Similarly, in Fig. 8, we observe the logarithmic
error convergence associated with the FPK equation.

0 4 8 12 16 20 24 28 32 36 40
Time (Sec)

Fig. 8. FPK equation error of an UAV.

V. CONCLUSION

This article introduced a novel LS-MAS distributed
optimization algorithm with a fixed final PDF constraint. This
algorithm overcomes the MFG theory limitations, including
challenges in maintaining optimality and difficulties in attain-
ing an arbitrary final PDF constraint. The proposed algorithm
integrates a novel Imb-MFG theory by decomposing the MFG-
PDF using the induction theory and further incorporates a
distributed RL algorithm to achieve the optimal solution.
Specifically, an induction-based approach for PDF parameter
estimation is employed, and a constrained K-means clustering
method is used to break down the LS-MAS into different
groups to attain the desired final PDF constraint. Furthermore,
an RL-based M-ACM learning is designed to achieve the
optimal solution of the Imb-MFG. This learning structure is
employed to solve HIB-FPK equations, with the critic NN
evaluating the optimal cost function, the actor NN calculating
the optimal control, and the mass NN assessing the PDF
function. To show the efficacy of the developed algorithm,
numerical simulations are conducted, accompanied by the
Lyapunov stability analysis, highlighting its efficiency and
applicability in real-world scenarios.

APPENDIX A
PROOF OF THEOREM 1

The error term of an agent from group j is defined as e =
x — E{myg j(x, 0))}. Here, E{my ;(x, 6;)} represents the mean of
the desired PDF. Now, the tracking error dynamic, which is
the first derivative of the tracking error [7] is obtained as
de(t) = dx(t) — dE{md,j(x, Gj)}. (53)
Substituting (1), the tracking error dynamic is obtained as
de(t) = [f(x(®) + gx(®))u()]dt + odw. (54)
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Note that, the derivative value dE{myg ;(x, 6;)} becomes zero
since E{my ;(x, 6;)} is a stationary point. Now

de(r) = [f(e(t) + E){my j(x, 0)} + gle(r) + E){ma j(x, 6)}
u(t)ldt + odw
= [fale(®) + ga(e@)u(®)]dt + odw (55)

where x(1) = e(r) +E{ma j(x, 0)), fa(e) = f(e+E{mq ;(x, 6)}),
and gq(e) = g(e + E{myq j(x, 6)}).

APPENDIX B
PROOF OF THEOREM 3

Consider the Lyapunov function candidate as
1 o
Ly(1) = St(E{W W), (56)
The critic NN weight estimation error is obtained from (49)
W (x, 7;) el
a ( J) HIB b (57)
1+ (1 (x, i) |

Based on the Lyapunov stability analysis [24], taking the
derivative of (56) with respect to time and substituting (57)

E(Wy.i} = E(~W,) = E{

; - Wy(x, my)el
i) = oqtr(]E{W]T%}). (58)

Let W; = Wy(x, ) and ¥; = W,(x, ;). Now, substitut-
ing (46) into (58), and using the triangular inequality

N - Wiy, = s
. 1 Uy 12 Wyl S
L) < —~aE w —ajE M
4 1+ || Wy |2 14 || Wy

Wiy T 12 Wiy 2
+ W +e&
_ajE||| B Wy ’_wEln b 4 el

L+ 110y 12 L+ 11y )12
&2 Wi, |2 2
toy|E [ U +E IW; A]” —HE{ ||£HJI§|| } '
1+ (|2 1+ (|2 1+ (|2
(59
Equation (59) with dropped negative terms
. 1 @y )12 1Wy )12
i) < —aE{ I | ) (60)
4 L+ 19,02

ol 2 = 12
Bw, (1) = ———————|[lo + Ly, B W, |I2}EL |1/
w0 = o o = Ly BB (1)
+ e’ (61)

where lo and ly, are the respective functions Lipschitz
constants and 7; is the PDF approximation error bound. The
approximation error of the critic NN weight will be UUB and
the bound is

(14 19012)

E(IlW,1} < 2E —
ay [y

Bw, } =bw,. (62

APPENDIX C
PROOF OF THEOREM 4

Consider the Lyapunov function candidate as

Ly (1) = %tr{]E{ng W . (63)

Using Lyapunov stability analysis [24], taking the derivative
of (63) and using the weight estimation error

\I/m_/. (x, J, t)eng

Lo (£) = aptr| EJ W - . (64
" " ( L Wy (x, T )2
Substituting (47) into (64) and using the triangular inequality

, 1 U 12| Wi |12
Ly (1) < =0ty B 18 71 Wi 12 + B,
- 2 1+ 19,12 4

B,y = /1 + B (N 12} L, ECIWo 1P} [EQITI)

+ E{llerpx 1%} (66)

with l\pmi being the Lipschitz constant. The approximation
error of the mass NN weight is UUB

(14 1, 1)

P

(65)

E{[| W, 1} < V2E By, { = bw,,. (67)

APPENDIX D
PROOF OF THEOREM 5

Consider the Lyapunov function candidate as

L) = %tr{E{WuT Wl (68)

Based on the Lyapunov stability analysis [24], taking the
derivative of (68) and using the weight estimation error

~NT

L) = oc,,tr(IE{WMTMJ)f“Z}).
L+ ll¢u(x, mj)||

Substituting (40) into (69) and using the triangular inequality

. 1 Dull> | W12
Lu(f) f ——(XME w + BWu
4 1+ llgull?

(69)

(70)

By, () = E[“—‘i
1+ 1l

where J is the critic approximation error bound. The approx-
imation error of the actor NN weight is UUB given as

(14 19u12)

“u”‘f’u”z

{IR=1eT 120712 + ||<13u||2}}.<71>

E{[|W,|} <2E Bw, t =bw,. (72)

APPENDIX E
PROOF OF THEOREM 6

Consider the Lyapunov function as

Lys(t) = %tr(E{eT(t)e(t)}) + %tr(E{WJT(t)WJ(t)})
B3 Ba

+ Zu(EfW, 0 W 0]) + S eV OW.0)). (73)

Taking the derivative with respect to time and substituting

Lemma 1 and Theorems 1-3 given in (60), (65), and (70) and
using the corresponding bound

. vBi 28187 . Pray
Lyys() < —Z=Ef|lell*} + —LEa|* — ==
2 Y 4
el WP | Baom o | 1 I20Wa 17 | Bact
14 (19,2 2 L+ ([ 112 4
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EARA
1+ Il
{12008 12} -+ 6Bl EIWs IPYE] W 12181 1)

+ B2eNHIB + B3eNFPK + BagNu + 3b4E

252 [ W 2119 17| + 6023, ECIW, |2}

{llerpx |1} + 2b2E(lleppk 17} + 3b4E{ |l emn 17}

vB1 ~ ~
< —TE{nenz} — ks E{UIWIII?) — kB Wall?)
— ke B{[| W 17} + £cs (74)
@y 121,112 .
with, sz_ﬂzaJE Iyl ||A il V= 3byE{1 012
4 1+ [¥y12
bul2IWu | 6B1g? . »
o, = Preup |19l mg _ 6B1g) E(16,12)
4 1+ [1Bull
Bactm; [ 10 IPIW, 12| 68187 ,
ij = = 2 - l¢u
2 14 1B Y

E{IWalP1Fy 12} = 6ba3, EUW, 121 $0, 1)
— 26y {[| Py |17}
6B18]

&cs = ————
14

+B2entiB + B3eNEpK + Baenu + 6baly, B{IW, (%}
E{lerex|?| + 202E lewpc 2} + 3b4E{ lenm |12}

6157
E(IWalPIEleprcI? | + =S Eleal)

(75)

where l\pmj, ly;, and Iy, are the Lipschitz constants. The

derivative of the Lyapunov function Lsys(t) is less than zero
outside a compact set, which is obtained from (74)
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