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Localizing video moments based on the movement patterns of objects is an important task in video analytics.

Existing video analytics systems o�er two types of querying interfaces based on natural language and SQL,

respectively. However, both types of interfaces have major limitations. SQL-based systems require high

query speci�cation time, whereas natural language-based systems require large training datasets to achieve

satisfactory retrieval accuracy.

To address these limitations, we present SketchQL, a video database management system (VDBMS) for

o�ine, exploratory video moment retrieval that is both easy to use and generalizes well across multiple video

moment datasets. To improve ease-of-use, SketchQL features a visual query interface that enables users to

sketch complex visual queries through intuitive drag-and-drop actions. To improve generalizability, SketchQL

operates on object-tracking primitives that are reliably extracted across various datasets using pre-trained

models. We present a learned similarity search algorithm for retrieving video moments closely matching the

user’s visual query based on object trajectories. SketchQL trains the model on a diverse dataset generated

with a novel simulator, that enhances its accuracy across a wide array of datasets and queries. We evaluate

SketchQL on four real-world datasets with nine queries, demonstrating its superior usability and retrieval

accuracy over state-of-the-art VDBMSs.
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1 Introduction

Video moment retrieval, also known as video moment localization, is an important task in video
analytics whose goal is to search for target moments (where each moment is a sequence of frames)
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(a) Nearby car, acute angle, turn-

ing towards top of the screen.

(b) Distant car, acute angle, turn-

ing towards top of the screen.

(c)Distant car, obtuse angle, turn-

ing towards le� of the screen.

Fig. 1. Challenges in Video Moment Retrieval – Diverse le�-turn motions in a real-world tra�ic

surveillance video stream [59].

within a video. This task has numerous applications in tra�c surveillance [59], sports analytics [30],
and autonomous driving [63, 69]. For example, transport researchers are interested in retrieving
di�erent instances of left-turning vehicles from surveillance video streams to analyze driving
behaviors and improve tra�c safety [5].

There are two main types of query interfaces for video moment retrieval, SQL-based and natural
language-based, primarily developed by the data management and machine learning communities
respectively. However, it is challenging to use these interfaces to e�ectively retrieve even simple
events such as “car making a left-turn" in diverse, real-world videos, as shown in Figure 1.

1. SQL-based Interface.Many recent video database management systems (VDBMSs) use a
SQL-based interface [11, 17–19, 26, 39, 46, 60, 62] to retrieve relevant video moments. These systems
either specify object and action categories of interest as query predicates [11, 19, 39, 60, 62], or apply
spatio-temporal rules over video frames [17, 18]. They utilize low-level primitives extracted using
pre-trained models such as pre-trained object detectors [39, 62], object tracking models [39, 62], or
scene graph extraction models [17]. The main advantage of SQL-based interfaces is their ability to
generalize across di�erent datasets and video domains with few or no labeled examples, thanks to
the robust performance of pre-trained models for extracting low-level primitives [55].
However, SQL-based systems require considerable time for query speci�cation, as it is often

non-intuitive to translate visual patterns into SQL. For example, the left-turn event in Figure 1c can
be retrieved using the following SQL query, which uses bounding boxes extracted from an object
tracking model as the low-level primitives:

Q1: SELECT car FROM (PROCESS InputVideo

PRODUCE car USING ObjectTracker)

WHERE TurningAngle(car) > 15 deg

AND RelativeXVelocity(car) < 0

AND MovingDistance(car) > 20

The query enforces the following conditions: (1) The turning angle must exceed 15 degrees, con-
�rming that the vehicle is making a turn; (2) The x-component of the velocity vector should be
negative, which helps distinguish left turns from right turns; (3) The vehicle must move at least
20 pixels, eliminating false positives caused by minor camera shakes. Each condition requires
a non-trivial implementation of user-de�ned functions (UDFs), such as TurningAngle shown
in Listing 1. Moreover, users must manually adjust the query parameters to match the diverse
left-turn instances showcased in Figure 1. Due to these complexities, our experiments �nd that
even simple queries like identifying left-turns can consume a signi�cant amount of programming
time (exceeding 10 minutes).
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def TurningAngle(boxes, angle):

centroids = _bounding_box_centroid(boxes)

# get bounding box centroid movements between frames

centroids_rel = [centroids[i+1]-centroids[i] for i in np.arange(0, len(centroids)-1, 10)]

# find the angle of the relative velocity vector

for i in range(len(centroids_rel) - 1):

u1 = centroids_rel[i]/np.linalg.norm(centroids_rel[i])

u2 = centroids_rel[i+1]/np.linalg.norm(centroids_rel[i+1])

angle = np.arccos(np.clip(np.dot(u1, u2), -1.0, 1.0))

angles.append(np.degrees(angle))

# return frames that satisfy the predicate

return [angles[i] > angle for i in range(len(angles))]

Listing 1. TurningAngle function for identifying le� turns.

(a)Miris [11] requires hardcoded zonal

markings to detect a le� turn.

(b) Clip [48] returns frames with parked

cars facing "le�".

Fig. 2. Limitations of SoTA VDBMSs – Illustrative video moments retrieved by VDBMSs for "car

making a le� turn" query.

There are certain workarounds to simplify query speci�cation for SQL-based methods, which
come with other compromises. For example, Miris [11], a state-of-the-art SQL-based VDBMS,
identi�es left turns using zonal markings in �xed camera con�gurations, as shown in Figure 2a.
However, this simpli�ed approach only works with �xed cameras and simple movement patterns,
unable to accurately answer several queries in our evaluation.

2. Natural language-based Interface. Natural language-based interfaces retrieve target
video clips based on user-speci�ed text (e.g., “Car making a left turn") and are popular within the
ML community [16, 27, 43, 61, 71, 73]. The main advantage of these methods is that they are easy to
use for non-experts. These methods are typically implemented by training end-to-end deep learning
models that directly map text to raw video frames [72, 73].

A key limitation of thesemethods is their requirement of large training dataset to support accurate
retrieval [8, 31, 49], which limits their application outside the original training contexts. For example,
ActivityNet, a popular benchmark for human activities in videos, requires ∼8 Amazon Mechanical
Turk workers to annotate each video [13, 32]. Despite this immense labeling e�ort, we discover
that a retrieval model trained on ActivityNet struggles to identify even a single player-kicking-ball
event in soccer game videos. Researchers have also proposed large pre-trained vision-language
models for zero-shot video analysis [48]. These models also su�er from the generalization problem
and often require additional �ne-tuning to perform well on other datasets [48, 75, 76]. For example,
when prompted with the natural language query “A car makes a left turn", the pre-trained vision-
language model Clip [48] mostly retrieves frames containing stationary cars facing left, as shown
in Figure 2b.

As a result, these natural language-based methods are primarily used in closed-world scenarios
such as indoor activities [27], where clips are retrieved only from a pre-de�ned domain with a large
collection of labeled training data.
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Query Interface Representative Systems Ease-of-use Generalizability

SQL Miris [11] Low High

Natural language Clip [48], 2DTAN [73] High Low
Visual SketchQL (this paper) High High

Table 1. Comparison of di�erent video moment query interfaces. Along each dimension, bold text

denotes the best se�ing.

Challenges. Table 1 summarizes the advantages and limitations of SQL-based and natural
language-based interfaces. Systems with SQL-based interfaces have better generalizability across
datasets but are not easy to use; systems with natural language interfaces are easy to use but do not
generalize to datasets di�erent from the training set. A VDBMS must ideally satisfy both criteria:

1. Ease-of-use. The system must allow intuitive expression of intricate object motions and multi-
object interactions. It should automatically retrieve relevant video moments without signi�cant
programming time and manual parameter tuning.

2. Generalizability. The system should generalize across datasets and trajectory variations without
extensive real-world training data. It must support arbitrary trajectory patterns and achieve high
accuracy even for complex multi-object trajectories.

(a) The user selects an object type and performs a series of drag-and-drop actions

on the visual canvas in the Sketcher.

(b) The Matcher automatically maps the user sequence to the relevant video

moment using learned similarity search.

Fig. 3. Illustration of SketchQL’s moment retrieval system

3. Our Approach – Sketch-Based Interface. In this paper, we present SketchQL, a VDBMS
for o�ine, exploratory video moment retrieval that is both easy to use and generalizes across
datasets. SketchQL focuses on object track queries [11], which queries video moments based on
object trajectories or trajectory interactions. SketchQL addresses the aforementioned challenges
with its three key components.
(1) Sketcher. The �rst component, Sketcher, features a visual query interface that enables users
to sketch complex queries through simple drag-and-drop actions. For example, Figure 3a illustrates
how users can specify a query to �nd a car making a left turn followed by a right turn with
drag-and-drop. By leveraging a human’s inherent ability to capture complex events via sketches,
Sketcher improves the usability and expressivity of query speci�cations for non-expert users. To
support more complex queries involving multiple objects, the Sketcher also provides an intuitive
composition interface (§3) to create, edit, and align sketches of multiple objects.
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(2) Matcher. To match user-provided visual queries to video moments, SketchQL utilizes a
learned similarity search module called theMatcher. This module compares the query trajectories
provided by the user to object bounding box trajectories extracted using pre-trained object trackers,
as illustrated in Figure 3b. It encodes similarities between trajectories using a transformer-based
neural network model and outputs the top-K similar moments.
Matcher provides high generalizability via two key features:
• Similar to existing SQL-based methods (e.g.,Miris [11]), the module utilizes object tracking
primitives, which can be reliably extracted across datasets with pre-trained models [55].
• The neural network model for encoding similarity is pre-trained on a large, diverse set of

bounding box trajectory pairs, generated automatically through a novel synthetic data genera-
tion process. Since the model is exposed to a wide diversity of trajectories beyond any single
dataset, it can retrieve trajectories across datasets without manual parameter tuning.

(3)Tuner.TheMatcherworkswell out-of-the-box across datasets, as wewill show in experiments
(§6.2). However, visual queries can be ambiguous, leading to multiple interpretations. Consider the
query in Figure 3a: it is unclear whether the user is only interested in the left-turn motion or if the
car’s initial direction also matters. In such scenarios, re�ning our pre-trained transformer model
(that measures the similarity between query and video) to align more closely with the user’s intent
can enhance result relevancy.
To address this, we develop a human-in-the-loop module called the Tuner that incorporates

explicit user feedback. Speci�cally, the Tuner allows users to label the Matcher’s outputs as posi-
tive or negative examples. It leverages these labeled examples to rapidly �ne-tune the Matcher’s
transformer model using state-of-the-art techniques. The �ne-tuned Matcher then generates
updated results with better accuracy.

Contributions. The key contributions of this paper are:
• We develop a VDBMS to address the ease-of-use and generalizability limitations of SoTA
VDBMSs, using a novel architecture consisting of Sketcher,Matcher, and Tuner (§2).
• We introduce a visual query interface, Sketcher, to query video moments of object trajectories

and trajectory interactions. We illustrate that Sketcher enables users to express object track
queries e�ectively (§3).
• We propose a learned similarity search module,Matcher, to match user sketches to real-world
video moments based on object trajectories.Matcher leverages a novel synthetic training data
generation method to pre-train a transformer model on diverse trajectories, thus generalizing
across a wide range of datasets and queries (§4).
• We develop a human-in-the-loop module, Tuner, to adapt the system to each speci�c query
as necessary through �ne-tuning the learned model based on user feedback (§5).
• We evaluate SketchQL on diverse datasets and show that it signi�cantly improves the moment
retrieval accuracy over SQL-based and natural language baselines (§6).

2 System Overview

In this section, we present an overview of the key components and work�ow of SketchQL.

2.1 The Bounding Box Abstraction

Querying raw videos requires extensive training per dataset [28, 44]. To improve generalizability,
SketchQL is designed to operate on top of per-frame object bounding boxes rather than raw pixels,
similar to Miris [11] and STAR Retrieval [17]. Bounding box sequences for objects across frames
are obtained using pre-trained object trackers [74] without dataset-speci�c retraining.
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Fig. 4. SketchQL processes moment queries in four phases - (0) Object Tracking, (1) Sketcher, (2)

Matcher, and (3) Tuner.

Speci�cally, each bounding box � = (G; , ~; , Gℎ, ~ℎ) is determined by two points - the top right
coordinate (Gℎ, ~ℎ) and the bottom left coordinate (G; , ~; ). A bounding box sequence �( (CB , C4 ) =
{�1, �2, ...} for an object consists of bounding boxes tracked over time, where CB and C4 are the start
and end frames. Each object is de�ned by its type) (e.g., car) and bounding box sequence from frames
CB to C4 :$ (CB , C4 ) = (), �( (CB , C4 )). We pad frames that do not contain the object with empty bounding
boxes �emp = (0, 0, 0, 0) to create �xed length sequences between CB and C4 . A video clip between
frames CB and C4 is de�ned as a set of objects� (CB , C4 ) = {$1 (CB , C4 ),$2 (CB , C4 ), . . . ,$< (CB , C4 )}. The full
video+ contains all the objects, with bounding boxes over the entire duration:+ = {$1 (0, Cmax), . . .}.
Each clip in + then consists of the subset of objects present in the sub-range of frames [CB , C4 ] ⊆
[0, Cmax].
Admittedly, this bounding box abstraction loses detailed information like color and texture from

the raw video. However, bounding boxes have proven useful for a wide range of applications [11]
since they enable methods to work across di�erent videos with minimal adaptation e�orts. Fur-
thermore, the videos retrieved by SketchQL still contain the original raw pixel information. This
enables applying more �ne-grained predicates (e.g., color detection, re-identi�cation) beyond the
bounding box abstraction if needed.

2.2 SketchQL Workflow

The overall work�ow of SketchQL is shown in Figure 4. SketchQLwork�ow contains four phases:
(0) Object tracking. This is a one-time pre-processing phase that converts the raw video into a

set of objects+ = {$1 (0, Cmax), . . .} using the bounding box abstraction (§2.1). For each object, apart
from the bounding boxes, object tracking models also provide the object type information [74]. Once
extracted, the resulting + can be reused for future visual queries. We use the state-of-the-art object
tracker ByteTrack [74] for this phase. Note that our target usage scenario is o�ine exploratory
video analytics, where users interactively query over bounding box trajectories extracted from the
videos to understand object movement patterns and interactions.

(1) Creating Visual Query. Users compose visual queries using the drag-and-drop Sketcher

interface (Figure 5a). For example, to query video clips of a car turning left, moving straight, and
then right, the user selects a car object, drags it in a leftward motion, then straight, and �nally in a
rightward motion on the canvas. This dragging motion is automatically recorded as a sequence of
bounding boxes representing the car’s trajectory over time (Figure 5b).
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Through these simple drag-and-drop gestures, the user creates a visual query clip�& containing
the desired object motions. The key challenge is enabling the intuitive composition of complex
multi-object scenes and motions. The Sketcher provides an e�cient visual interface for this
complex query speci�cation (§3).

(2) Similarity search. For a given visual query�& , our goal is to �nd video clips, each represented
by �+ (CB , C4 ), with the highest similarity to this query.

The key challenge is measuring the similarity B8<(�& ,�+ ) between the bounding box sequences
in the query and video clips. This measurement is challenging due to variations in camera angles and
movements in real-world videos, such as shown in Figure 1. To address this, our Matcher module
proposes to pre-train a model that learns a similarity function B8<({�(1, �(2, ...}, {�(

′
1
, �( ′

2
, ...})

between any two set of bounding box sequences where �(8 is the bounding box sequence of the 8th

object in query and �( ′8 is the bounding box sequence of the 8th object in a video clip. The model is
pre-trained on diverse synthetic trajectories designed to capture diverse real-world patterns (§4.2).
Since videos can be represented as bounding box sequences across domains, our pre-trained model
generalizes to real-world datasets with zero or minimal adaption, as evidenced by our experiments.
TheMatcher uses the pre-trained model to retrieve the clips via a sliding window similarity

search, as shown in Figure 4. First, it identi�es the candidate clips by iterating over all combinations
of objects within each sliding window that matches the query object types. It then uses the pre-
trained model to measure the similarity between the query bounding boxes and each candidate
clip and retrieves the top : clips with the highest similarity scores (§4.3).

(3) Incorporating user feedback. The pre-trainedmodel inMatcherworkswell across datasets.
To further boost performance, we allow adapting the model speci�cally to each query. To support
this, we introduce a Tuner module that can adapt the pre-trained model by incorporating user
feedback at query time. Speci�cally, the Tuner enables users to provide additional feedback by
labeling candidate clips as positive or negative examples. The Tuner uses these labels to �ne-tune
the pre-trained model to the speci�c query. The �ne-tuned model re-predicts similarity scores for
the candidate clips, re-ranking the results. Users can iteratively provide more feedback to further
re�ne the model and rankings.

In the following sections, we present the internals of the three core components of SketchQL. We
discuss the visual query interface, Sketcher, in §3. We then describe theMatcher’s synthetic data
generation and learned similarity search methods in §4. Finally, we discuss the Tuner’s �ne-tuning
strategy to improve the accuracy of the Matcher in §5.

3 Sketcher: Composing visual queries

(a) Canvas. (b) Trajectory Panel.

Fig. 5. Sketcher Interface

This section describes our proposed visual query interface, the Sketcher. In contrast to SQL’s
textual syntax, the Sketcher uses a visual query language comprised of visual components to
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construct trajectories of objects and represent relationships between them. The Sketcher has two
components: (a) The Canvas. This is a whiteboard where users can place and drag objects to
compose clips, as shown in Figure 5a. (b) The Trajectory Panel. This is a panel where users can
adjust multiple trajectories of the same object and align the trajectories of di�erent objects (shown
in Figure 5b). These visual components make it easy for users to create query clips visually by
allowing the following actions:
(1) Object Creation. This action allows users to select an object type (e.g., through a drop-down
menu) and place the object on the canvas. Users can create an object of a speci�c type (e.g., car) or
an Any type that encompasses all types of objects that the object detection model can identify.
(2) Trajectory Creation with Drag and Drop. When a user moves an object on the Canvas
via drag-and-drop, all the coordinates of the movements are automatically recorded as bounding
box sequences �( . This way, both the query clip and the video clips are represented in the same
bounding box format. We record trajectory as it is with possible noise and design the Matcher to
be noise-tolerant.
(3) Trajectory Editing. To enable users to compose complex motions intuitively, the Trajectory
Panel allows users to edit and compose multiple trajectories (of multiple objects). In other words,
users do not have to create a complete query in one pass and can create a query one segment by
segment. The Trajectory Panel is similar to the soundtrack panel in existing audio editing tools.

Consider a scenario where the user wants to identify clips in a tra�c surveillance video stream
where a car �rst takes a left turn, then goes straight, stops for a while, and then takes a right turn
(Figure 5a). To achieve this, the user �rst creates a car object on Canvas. The user then drags the
car object to make a left turn (indicated by the red dashed arrow in Figure 5a) to specify the query
trajectory. Once the object is released from the dragging motion, the trajectory is automatically
recorded and appears on >1 91’s timeline in the Trajectory Panel (The red "1" box in Figure 5b).
Similarly, the user creates a second trajectory by dragging the car object in a straight line (blue
dashed arrow in Figure 5a), resulting in a second trajectory box on the timeline. Users can shift
these trajectory boxes on the timeline to change the ordering of the two events or to adjust the
duration of the car’s stationary period. Additionally, users can also adjust the length of the trajectory
boxes along the timeline to change the speed of the movements. For complex queries involving
multiple objects, users can repeat these steps. For example, they can add a pedestrian object, set
its trajectory, and adjust the trajectory boxes of the pedestrian and the car to de�ne temporal
correlations between them in the Trajectory Panel.

Query Compilation. Query compilation converts the object trajectories created on the Canvas
into a query clip�& (0, C4 ) = {$1,$2, ..., } (de�ned in §2.1) by recording the bounding box sequences
for each object’s trajectory.

Limitations of Visual Querying. Due to the inherent nature of a visual interface, visual querying
is best suited for queries that can be expressed by sketches, such as arbitrary movement patterns of
objects. Currently, the unsupported types of queries include:
1. summarization queries – e.g., count number of cars in a frame

2. queries with hard constraints – e.g., Speed(car) > 30 km/h or Speed(car) is larger at one part of
trajectory than another part.

3. semantic queries – e.g., person laughing
We can extend visual querying to support type 2/3 queries by adding additional annotations (e.g.,
velocity, activity class) to the objects. Speci�cally, we can have a pre-processing or post-processing
step that uses SQL-like rules [11] or semantic models [48] to narrow down the objects and frames
that satisfy the constraints.
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Fig. 6. Camera perspective variations - the same trajectory can appear di�erent when recorded

from di�erent camera angles.

Another limitation of our current implementation of visual query is that users can only select
pre-de�ned object types. In some cases, the users might want to specify more abstract or "semantic"
object types, e.g., a stylish car. One possible way to address this is to allow users to de�ne object types
with natural language. Subsequently, during the query execution step, we use a vision-language
model to match the object types.

4 Matcher: Identifying Similar Clips

TheMatcher aims to identify video clips �+ that are most similar to a given visual query �& . The
pseudo-code for the similarity search algorithm is shown in Algorithm 1.
We perform a sliding window similarity search where the default window size is the duration

of the query. As indicated in Line 4, we vary the window size by di�erent scales to consider
candidate clips with a di�erent duration from the query. At Line 6, we iterate over all possible
clips (combinations of objects) of sub-video beginning at CB and ending at C4

1. For each clip �+ ,
we check whether it is a valid candidate that contains the same number of objects and the same
object types as the query �& at Line 7. For a valid candidate clip, we obtain its similarity score
with the query using a similarity function B8<(�& ,�+ ). Finally, we handle temporally overlapping
clips with identical objects from Line 9 to Line 14. For instance, if one clip spans from time [0, 10]
and another similar clip from [1, 11], only the clip with the highest score is retained. Optionally,
SketchQL also allows �ltering candidates with user-de�ned functions (UDFs) in a pre-processing
step before the similarity search or a post-processing step after the search to support semantic
queries and queries with hardcoded parameters.

4.1 Challenge: Measuring Similarity

The core objective in similarity search is de�ning the similarity function B8<(�& ,�+ ). For our
target object track queries, variable camera perspectives and movements pose a major challenge:
for example, the same moving objects can have di�erent trajectories and sizes when recorded
by cameras from di�erent angles as illustrated in Figure 6. Ideally, our similarity function must
remain una�ected by camera angles since users may describe object movements from perspectives
di�erent from the video’s actual viewpoint. Another challenge is the camera movements caused
by environmental factors such as wind and vibration. Users might assume a stationary camera
when specifying queries, but SketchQL needs to identify relevant events despite minor camera
movements.

1Note that this step is just for conceptual illustration; there are more e�cient ways of implementing this without requiring

iterating over all the clips.
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Algorithm 1: Similarity search

Input: Query �& , Video + , similarity function B8<, number of clips : to be retrieved

Output: top : clips with highest similarity scores

1 Let CF be the duration of �& and Cmax be the length of + .

2 Let ( be the set of candidate clips.

3 for CB ← 0 to Cmax do

4 for scale in [0.5, 0.75, 1, 1.25, 1.5, 2] do

5 C4 = CB + CF*scale

6 for �+ be a clip with subset of objects in + (CB , C4 ) do

7 if �+ has same num and type of objects as �& then

8 score = B8<(�& ,�+ )

9 if objects in �+ makes up a clip �′
+
in ( then

10 if �+ and �′
+
have no temporal overlap then

11 ( .append(�+ )

12 else if score of �+ is higher then

13 replace �′
+
with �+ in ( .

14 end

15 else

16 ( .append(�+ )

17 end

18 if len(()>: then

19 Pop the clip with the smallest score in (

20 end

21 end

22 end

23 end

24 end

25 Optional: �lter ( with UDFs.

26 return (

Baseline: Classic Distances on Manual Features. A naïve solution is to use classic distance
metrics like Euclidean distance and DTW distance [65] to measure the similarity on manually
extracted features (e.g., position and angle of objects.), which reduces the problem into a relational
time series query problem. However, this approach does not work well, as we verify in our ex-
periments in §6.4. We observe that the classic distance metrics are sensitive to camera angles and
noises like camera movements.

Instead, we propose to train an end-to-end model that takes in �& and �+ as input and outputs
a similarity score. The model encodes the trajectory similarities into distances in the learned
embedding space, thus obviating the need for manual feature engineering. The learned model is
also trained to ensure the similarity is robust to camera angles and noises. We discuss how to
obtain training data for the model in §4.2 and how to design an e�ective architecture and training
procedure in §4.3.

4.2 Scalable Training Data Generation

Obtaining labeled training data is challenging for two reasons: (1) A large amount of labeled data is
needed to train an accurate model, and (2) For the trained model to work across domains out of the
box, the training data must be as diverse and generic as possible. Inspired by the wide adoption
of simulators in generating training data for autonomous driving models [24, 52], we propose
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synthesizing labeled training data using a custom trajectory simulator. The simulator operates on
top of the bounding box abstraction, enabling it to synthesize trajectories across video domains.

The high-level idea of our simulator is to generate motions in a 3D space and create 2D video clips
by recording the event from virtual cameras placed at random locations in the 3D space. Intuitively,
2D video clips from the di�erent cameras of the same 3D clip are positive (similar) examples, and
2D video clips from di�erent 3D clips are negative (dissimilar) examples. We also insert random
variations (e.g., �ipping, shifting, and white noise) into the bounding box sequences of positive
examples to simulate real-world variations. We do not consider object types during training data
generation, as clips whose object types do not match those of the query are automatically skipped
in Algorithm 1 (Line 7).

3D-Clip Generation. To generate a 3D clip with a single object represented as a 3D box, we use the
following method. For clips with multiple objects, this process is repeated. The object’s dimensions–
width, length, and height–are uniformly sampled from (0,0.1). Note that these dimensions may
appear di�erently in a 2D video representation based on the object’s distance from the camera. The
object is placed at (G0, ~0, 0) in a 3D space, where G0 and ~0 are randomly sampled from [0, !max],
with !max = 2 being a reference scale for the object trajectory.

We make the object perform a random walk in the x-y plane over a frame count =frame, which
is randomly sampled from [100, 1000]. Since real-world objects do not frequently change their
velocities, we randomly select =change (sampled from [0, 10]) frames where the object changes its
velocity while the velocity remains constant at all other frames. The object’s x and y velocity
at each frame are sampled from [−!max/100, !max/100], so that the trajectory is at the scale of
[!max, 10!max].
To obtain the corresponding 2D clip from the 3D clip, a pin-hole projection is performed based on

the camera’s location and orientation [20]. This projection retains expected camera characteristics,
such as size scaling with proximity. The 3D box is then projected into a 2D polygon, which is then
enclosed by a minimum bounding box to create sequences of 2D bounding boxes for each object.

Positive & Negative Example Generation. Users may create visual queries based on one
perspective while the actual video is recorded from another angle. Despite these di�ering viewpoints,
both clips originate from the same 3D event (Figure 6) and should therefore have a similarity score
of 1. Leveraging this insight, we propose to generate positive and negative training examples as
follows: pairs of 2D clips recorded by di�erent cameras serve as positive examples, and pairs of
clips capturing di�erent events are negative examples. We ensure the two clips in one negative
pair have the same number of objects to avoid trivial negative examples.

To further improve the robustness of the trained model, we inject the following random variations
into each clip:
• random �ipping horizontally or vertically;
• random rotation by a random angle;
• random white noise on the coordinates at each frame;
• randomly dropping [0, 20%] frames in the beginning and end;
• randomly warping the frames, e.g., [f1,f2, f3, f4, f5, f6] becomes [f1, f3, f5, f5, f6, f6] where we
speed up the �rst half and slow down the second half.

We apply each variation to the clip with a 50% probability. For variations with parameters (e.g.,
rotation angle), parameters are sampled randomly.
Discussion. Our method of obtaining training data has both advantages and limitations:
• Perspective and scale invariances. These two invariances are necessary because the user might
not have the correct assumptions about the perspective and level of zoom-in of the captured
videos. Our method ensures both invariances. Since we consider each pair of clips from two
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Fig. 7. Encoder architecture for trajectory representations.

di�erent cameras (with di�erent perspectives) that record the same 3D clip as a positive
example, the trained model is naturally perspective invariant. In §4.3, we also normalize the
coordinates of the bounding boxes, making the model scale-invariant.
• In�nite data quantity. Another bene�t with our simulator is that we can generate an unlimited
amount of training data.
• Discrepancy from real-world data distribution. This is one limitation of our method. The distri-

bution of our generated data may di�er from real-world data in two ways. First, although we
inject random variations into the clips, real-world variations can be more diverse. Second, the
movement patterns of di�erent objects in the real world can vary signi�cantly. For example,
cars travel faster and change directions less frequently than pedestrians. However, in our
simulator, we generate motions for all objects following the same procedure. One way to
address this limitation is to collect real-world clips from tra�c videos and �netune the trained
model on real-world data.

4.3 Learned Similarity Function

Our goal is to train an encoder model that e�ectively learns object trajectory representations. The
model �rst encodes the input -+ (and -& ) into an embedding vector 4+ (and 4& ). The similarity
between the query and a video clip is obtained as the cosine similarity between their embedding
vectors: B8<(�& ,�+ ) = 2>B (4& , 4+ ).

Figure 7 shows our proposed encoder architecture. An MLP �rst encodes object trajectories in
each video frame into a lower-dimensional embedding vector of dimension 128. These embeddings,
along with the positional encoding of the frame position, are fed into a transformer encoder to
encapsulate spatial-temporal information across frames. We use learnable positional embeddings
for each frame position and four transformer encoder layers [3]. Following the standard practice,
we use the embedding at position 0 in the transformer’s output as the �nal output embedding.

This architecture also allows for e�ciency improvements. For example, during preprocessing,
we can encode all video clips into embeddings and build an index for all the embeddings based on
cosine similarity (e.g., using LSH [7]). Subsequent user queries are then quickly processed through
this index. We considered an alternative model architecture (Figure 11) that uses a cross attention
module [35] and an MLP classi�er. However, our evaluation (§ 6.4) shows that the MLP classi�er
easily over�ts the training data.

Let 4anchor denote the encoded embedding of an anchor clip; let 4pos and 4neg denote the encoded
embedding of the anchor’s positive clip and negative clip generated via the simulator. We have the
following intuitions for training:
• We would like to maximize the di�erence 3sim between the similarity score of the anchor to the

positive clip 2>B (4anchor, 4pos) large and that of the anchor to the negative clip 2>B (4anchor, 4neg)).
• Consider two scenarios: (1) 2>B (4anchor, 4pos) = 0.99 and
2>B (4anchor, 4neg) = 0.89; (2) 2>B (4anchor, 4pos) = 0.39 and 2>B (4anchor, 4neg) = 0.29. In both cases,
3sim = 0.1. Intuitively, in scenario (1), we should make 2>B (4anchor, 4neg) small as it is almost
not possible to make 2>B (4anchor, 4pos) larger. In contrast, in scenario (2), we should focus on
making 2>B (4anchor, 4pos) larger as the score is too small for a positive clip.

We use circle loss [58] as our objective function as it incorporates both of the above intuitions.
During training, we generate random training data on the �y for each batch to maximize data
diversity. We train the model until training loss converges.
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Data normalization. We transform each 2D clip generated from the simulator to a suitable input
format for the encoder model as follows. We �rst normalize the bounding box coordinates using
their mean and standard deviation. Since it is easier for neural networks to use �xed-size input,
we sub-sample or over-sample uniformly to ensure the clips �& and �+ have a �xed 128 frames,
which is enough to represent a 1-minute video and is still understandable to humans. We limit our
focus to at most four objects per clip, given that most queries usually involve only a few objects.
In scenarios with fewer than four objects, we pad the sequence with zero-valued bounding boxes.
Therefore, �& = {$1,$2,$3,$4} includes four sequences of bounding boxes, where each sequence
$8 has a length of 128. We concatenate the four values of the bounding boxes for four objects in
each frame and obtain a matrix -& with size 128x16, which is used as input for the model. We
obtain -+ for �+ similarly.

5 Tuner: Incorporating User Feedback

The trained encoder model serves as a cold start to query similar clips, and our experiments have
shown that this already exceeds baseline performance (§6.2). However, given the ambiguous nature
of visual content, there could be di�erent user intents even with the same visual query. For example,
consider the car making a left turn, then moving straight, and then a right turn query in Figure 4.
The user might want the clips where the car eventually moves southward, or the user may not care
about the direction at all. Therefore, we incorporate user feedback to adapt the pre-trained model
to the user query at hand to better capture user intent by learning from the feedback.
The feedback-learning process works as follows. We �rst present users with clips retrieved by

the default model sorted by similarity. The user then reviews these clips and labels some of them
as either “good” or “bad” examples (e.g., labeling the 1st and the 3rd examples as positive and the
2
nd and 4

th examples as negative). The Tuner uses this feedback to adapt the pre-trained model
and re�ne its understanding of the user’s intent and preference. We can repeat this feedback loop
until the user is satis�ed with the results.

One challenge we face is the limited amount of labeled examples from user feedback. Therefore,
we need the learning process to be e�ective while preventing over�tting.We develop four techniques
to learn from limited user feedback e�ectively:

Data Augmentation. We augment the user-provided labeled examples by performing random
rotation on the bounding box sequence and adding random white noise to each bounding box. We
use data augmentation to generate three times the number of negative examples and then generate
positive examples to ensure the number of positive pairs matches the number of negative pairs.

Fine-tuning. Let (�pos and (�neg denote the set of labeled positive examples and negative examples
respectively after data augmentation. To simplify notation, we add the query �& into (�pos, i.e.,
�& ∈ (�pos, because the synthetically created query �& is a positive example just like any other
positive examples labeled by user. During �netuning, any pair of examples �8 ,� 9 where �8 ∈ (�pos

and � 9 ∈ (�pos serve as a positive example for the model, and any pair of examples �8 ,� 9 where
�8 ∈ (�pos and � 9 ∈ (�neg serve as a negative example for the model.

Intuitively, when there are more labeled examples, we trust the labeled examples more and
�ne-tune the model for more steps; when there are fewer labeled examples, we trust the pre-trained
model more and �ne-tune the model for fewer steps to avoid over�tting. Therefore, we set the

number of �netuning steps as
√

|(�pos | + |(�neg |, proportional to the number of available labeled
examples |(�pos | + |(�neg |.

Layer-wise Decreasing Learning Rate. A typical practice is to �ne-tune only the last layer(s).
This works well when the �rst layers of the pre-trained model can recognize almost all common
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low-level features for the task. For example, when adapting models pre-trained on ImageNet to
downstream tasks, one only needs to �netune the last layers as the images in ImageNet include
almost all possible low-level image features, and one only needs to adapt the high-level semantic
features.

However, in our case, the model is pre-trained on synthetic data, which might lack some low-level
variations in real data. Therefore, we propose �ne-tuning all layers so that the model adapts low-
level and high-level semantic features. Fine-tuning all layers can easily lead to over�tting. Inspired
by existing work on �ne-tuning large language models [57], we use layer-wise decreasing learning
rates, assigning lower learning rates to the �rst and larger ones to the last layers. Speci�cally, we
use learning rate 14−5 (same as the learning rate used for pre-training) for the �nal layer and decay
by a factor of 0.5 for each previous layer.

Augmenting Query Set with Found Positive Examples. Intuitively, any positive examples
from the user feedback can serve as our query. Since these examples are from the actual video,
using them as the query might increase recall. Therefore, we augment the query with user-labeled
positive examples. Speci�cally, for the original sketched visual query, we obtain a similarity score
~8 for each video clip. Similarly, for each labeled positive example � 9 , we obtain a similarity score

~
9
8 for each clip. Let’s say there are #pos positive examples. We obtain a �nal similarity score by

incorporating all positive examples as ~∗8 =

~8+
∑

9 ~
9

8

1+#pos
. We then use ~∗8 as the prediction for each

video clip and rank the clips based on ~∗8 .
During the user-feedback loop, the number of found positive examples #pos increases. Since

we need to use each positive example as the query for prediction, the time complexity increases.
However, this can be easily parallelized. In addition, we expect the user to only label a few examples
(and even fewer positive examples), so the increased time complexity is computationally tractable.

6 Experiments

In our experiments, we demonstrate the e�ectiveness of SketchQL by investigating the following
questions:
• How does SketchQL compare against state-of-the-art approaches in accurately retrieving
relevant video moments? (§6.2)
• How does SketchQL’s visual query interface compare to natural language- and SQL-like
interfaces in its ease of use? (§6.3)
• How much do each of SketchQL’s components contribute to the �nal accuracy? (§6.4).
• What is the runtime performance of SketchQL? (§6.5)

6.1 Experimental setup

Datasets.We use the following datasets:
• VIRAT [47]. This is a tra�c surveillance video benchmark dataset used extensively in the
computer vision community. We use the longest video from the dataset with 7k frames.
• BDD100k [68]. This is a driving video dataset of dashcam footage. We use a subset of 3.5k
frames from the dataset.
• SoccerNet [29]. This is a dataset of broadcast soccer games and is a popular benchmark dataset.
We use the labeled subset (with ground-truth object tracking results) totaling 43k frames.
• YouTube-8M [6]. This is a public video classi�cation dataset with YouTube videos from diverse
domains. We use a Broadcast American college football video containing 11k frames.

Three datasets, VIRAT, BDD100k, and YouTube-8M, do not have ground-truth object bounding
box trajectories, so we use Bytetrack [74] object tracker to obtain the object bounding box trajecto-
ries. The SoccerNet dataset has ground-truth object bounding box trajectories, and each person
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Dataset Query ID Query

VIRAT
Q1.1 A car makes a left turn [11].

Q1.2 A car makes a left turn and then a
right turn.

Q1.3 A car stops to yield to a pedestrian
that crosses the road.

BDD100k Q2.1 A pedestrian crosses the street on a
crosswalk [11, 51].

SoccerNet
Q3.1 A player kicks the ball [25].

Q3.2 A player kicks the ball into the air.

Q3.3
A player passes the ball to one of his
teammates but an opponent player
tries to intercept the ball.

YouTube-8M Q4.1 An opponent tackles a running
player in an American football match.

Q4.2 A player dashes forward with
two other players running behind.

Table 2. �eries for each dataset.

object has the annotation "player_left" for players in the left team and "player_right" for players in
the right team. Notably, our method does not access the datasets during pre-training; datasets are
only used during evaluation and to �ne-tune our model in the user feedback learning experiment
in §6.2.3. The tra�c datasets VIRAT and BDD100k have stable cameras in most frames, while the
sports broadcast datasets SoccerNet and YouTube-8M contain camera movement and are more
challenging.

Baselines. We evaluate SketchQL against these baselines:
• NL-Clip. This method uses a natural language interface. Similar to Zelda [51], it is adapted
from the large vision-language model Clip from OpenAI [48]. It is trained on a large corpus
of image-text pairs. Given a text query, it retrieves relevant frames from the video.
• NL-2DTAN [72, 73]. This is a popular natural language-based method for video moment
retrieval that is trained directly on video clips and associated captions. Since we consider
the zero training data scenario, we use a pre-trained version of 2DTAN that was trained on
ActivityNet [13].We observed that 2DTAN has zero retrieval accuracy on all the queries in our
datasets since the videos di�er from the training set, so we omit this baseline from our results.
• SQL-Track. This method uses a SQL-like interface where users can retrieve video clips by
writing rules over object trajectories. Notably, similar to SketchQL, it uses object trajectories
as the primitive. This baseline is similar to Miris [11]. Both methods return the same output
clips, while Miris additionally accelerates the query execution.
• SQL-Scene. This method also uses a SQL-like interface where users retrieve video clips by
writing rules over scene graphs [38]. We use the state-of-the-art model [64] to extract scene
graphs for this method. This baseline is similar to EQUI-VOCAL [70] on scene graphs. The
main di�erence is that, unlike EQUI-VOCAL, where queries are synthesized automatically,
SQL-Scene queries are constructed by users with best e�orts over the scene graphs.

For a fair comparison, the main results are reported without user feedback learning. We evaluate
the impact of user feedback learning on SketchQL in §6.2.3.

Setup Forallmethods. For SketchQL, we pre-train on synthetic data using theAdamoptimizer
at a learning rate 14−5 and a batch size of 500. We generate training data on the �y for each batch
to ensure maximum training data diversity. We train the model until convergence, which takes
about 7 days on an A40 GPU.
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Method Query format

NL-Clip "A player kicks a ball on a soccer �eld"

SQL-Track

SELECT person, ball FROM ObjectTrackUDF(video)

WHERE MinDistance(person, ball)=0

AND RelativeSpeed(person, ball)>0

AND BBoxY(ball) >= 0.75*BBoxY(person)

AND BBoxY(ball) < BBoxY(person)

SQL-Scene

SELECT frame, graph FROM SceneGraphUDF(video)

WHERE graph.subject="person"

AND graph.predicate="kicking"

AND graph.object="ball"

SketchQL

Table 3. �ery specification in SketchQL and other systems.

We use the pre-trained ViT-B/32 model for NL-Clip [1] and the pre-trained PSGTR model with
a ResNet-50 backbone for SQL-Scene [2]. Since NL-Clip and SQL-Scene operate on individual
frames, we �rst retrieve the top-K similar frames and generate video clips using a �xed number of
frames before and after the matching frame. For SQL-Track, we implement handcrafted rules for
each query in Python (similar to Listing 1) with up to 100 minutes per query for rule creation and
manual parameter tuning to optimize performance. Rules are reused where possible across queries.

�eries. Table 2 presents the queries evaluated for each dataset, where citations denote that the
same queries were used in the cited papers. Not all queries used in prior works are supported by our
visual interfaces (discussed in § 3), and we have included new queries that emphasize the movement
patterns of objects. These selected queries are motivated by real-world applications. For example,
transport researchers are interested in retrieving di�erent instances of left-turning (Q1.1) vehicles
from surveillance video streams to analyze driving behaviors [5]. Detecting pedestrian crossing the
street (Q2.1) is critical for autonomous driving systems to ensure the safety of pedestrians [53].
Recognizing the moment when an opponent tackles a running play in an American football match
(Q4.1) can facilitate automated highlights detection.

Each query is created using the interface supported by its respective method: natural language
for NL-Clip, a SQL-like language (i.e., rules) for SQL-Track and SQL-Scene, and visual queries for
SketchQL. Table 3 shows how query Q3.1 is represented in each of the baselines. We also include
samples of found clips by SketchQL for the queries in our artifacts [4].

Performance Metric. Performance metrics like precision and recall do not account for clip
ranking. Since we favor true positives ranked higher, we adopt the AveP score, commonly used in
information retrieval, as our performance metric [41, 50]. Using the top-k retrieved clips, precision
and recall are calculated for each : . As : increases, the recall improves. Let ? (A ) denote the precision

at recall A . AveP is de�ned as the area under the precision-recall curve [21]: AveP =

∫

1

A=0
? (A )3A .

Intuitively, AveP is higher when more true positives are ranked higher, with the maximal AveP=1
when all =pos positive instances are ranked in top =pos. A clip is considered to be a positive match if
its overlap ratio (size of intersection/size of the union) with a ground-truth clip is more than 50%.
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NL-Clip SQL-Track SQL-Scene SketchQL (w/o feedback)
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Fig. 8. AveP score comparison of SketchQL (without user feedback) against other baselines

The ground-truth clips are obtained by our manual inspection of each video in all datasets. For
each query, we consider top 10×=?>B clips from each method to numerically compute the AveP
score where =?>B is the number of ground-truth positive examples.

Hardware Setup.We run the experiments on a server with one NVIDIA A40 RTX GPU, 120
Intel CPU cores, and 384 GB of RAM. We use the GPU for object tracking, model training, and
inference.

6.2 End-to-end �ery Performance

6.2.1 �antitative Results. We execute the query for each system and evaluate the quality (mea-
sured by AveP) of the retrieved results. The results are shown in Figure 8.
The natural language-based method NL-Clip has a low AveP score on six of the nine queries.

This is because natural language-based methods require training on a large amount of labeled data
for each dataset to perform well. Additionally, NL-Clip only supports frame-level querying. This
results in its satisfactory performance on Q2.1 and poor performance on temporal queries such as
Q1.3. We tested a di�erent natural language method, 2DTAN, for video-level querying. However,
we observed that 2DTAN achieves a 0 AveP score on all the queries. In our "zero-shot" scenario with
no training data for each dataset, pre-trained natural language-based methods do not generalize
well due to data distribution di�erences from their original training set. Finally, we observe that
NL-Clip performs better when the query can be identi�ed using keywords. For example, Q4.1 is
more heavily dependent on the keyword "tackle", which allows NL-Clip to retrieve some relevant
clips.
SQL-Track is the best-performing baseline method. SQL-Track operates on object trajectory

primitives that can be obtained more reliably across datasets. As long as the user writes good UDFs
(i.e., rules), it can achieve good performance. At the same time, its performance is limited due to
the reliance on the user’s expertise to write good UDFs. For example, for Q1.1, the rules written by
a graduate student got a 0 AveP score. The student had to debug and tune the parameters multiple
times to achieve the reported performance, which was a time-consuming and tedious process.
SQL-Scene does not support four of the nine queries. While Q1.1 and Q1.2 are single-object

queries (involving only one car) that cannot be represented by scene graphs, Q3.2 and Q3.3 involve
complex actions (e.g., kicking the ball into the air) that are unavailable in the scene graph taxonomy.
SketchQL outperforms SQL-Scene in all the supported queries. We observe that the pre-trained
scene-graph models do not generalize well and perform poorly on di�cult sports broadcast datasets
with more camera movements.

Overall, SketchQL outperforms all the baselines by 20% on average. This is because (1) similar
to SQL-Track, SketchQL leverages object trajectories that can be obtained more reliably across
datasets, and (2) unlike SQL-Track, SketchQL does not rely on the user’s expertise to write good
UDFs; users can easily create the queries by simple drag-and-drop gestures.
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Fig. 9. �alitative comparison of SketchQL against other baselines. Details of the failures discussed

in §6.2.2.

Limitations. SketchQL’s performance declines in four scenarios: (1) Object tracking failures.
State-of-the-art object trackers like Bytetrack [74] do not perform well when there is occlusion,
causing tracking failures (e.g., trees blocking cars in VIRAT [47]).
(2) Unstable camera. Camera movement adversely a�ects the relative trajectories of objects. For
instance, a windy environment in the VIRAT dataset leads to camera shakes. This results in
SketchQL retrieving some cars moving straight but appearing to turn left.
(3) Loss of semantic information. SketchQL relies on bounding boxes, so it loses some semantic
information. Nevertheless, SketchQL can be used to retrieve the "syntactically" correct clips, and
then a more expensive semantic model can be used for further �ltering.
(4) User intent ambiguity. Users may sketch the same visual query for di�erent intents. To address
this, SketchQL supports a post-processing step where users can use rules like SQL-Track to �lter
out clips. Since writing rules is di�cult, SketchQL can also re�ne results for each query by learning
from user feedback (i.e., labels) on retrieved clips (§6.2.3).

6.2.2 �alitative Results. The qualitative results for di�erent systems are shown in Figure 9. Both
NL-Clip and SQL-Scene works best when processing individual frames, so they fail to recognize
clips with moving cars in Q1.3. In contrast, SketchQL and SQL-Track use trajectory-based match-
ing to accurately detect object movement. Additionally, NL-Clip’s pre-trained model struggles to
detect the ball in Q3.1. The object tracking primitives used by SketchQL and SQL-Track better
handle such di�cult detections. SQL-Track heavily relies on the user’s expertise to write proximity
and displacement rules to identify individual object movements. However, these rules written
within a limited time span are prone to errors. For example, in Q3.1, we observe that SQL-Track
incorrectly retrieves clips that contain the ball �ying past a player since they match all the rules
for player kicks ball. SketchQL does not rely on the user’s expertise and can accurately match the
visual queries to the video moments using the learned model, making it less prone to errors.

6.2.3 �ery Performance with User Feedback. We evaluate the performance of SketchQL with
human feedback. Since the baseline methods do not support learning from user feedback, we only
show results for our method. We initially run SketchQL with the visual query and label the top-5
retrieved clips. We then incorporate this feedback using the process described in §5 to re�ne the
model. Finally, we retrieve clips with the re�ned model and report the AveP score on the newly
retrieved clips.
The results are shown in Table 4. Overall, by incorporating user feedback, the performance is

improved in 5 out of 9 queries by 5.5% on average. However, incorporating the feedback does not
change the performance in a few cases: (1) The top 5 clips are all correct (e.g., for Q2.1), so the
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Q1.1 Q1.2 Q1.3 Q2.1 Q3.1 Q3.2 Q3.3 Q4.1 Q4.2

w/o Feedback 0.87 0.60 0.56 0.80 0.52 0.39 0.38 0.36 0.31
w/ Feedback 0.93 0.73 0.56 0.80 0.58 0.44 0.58 0.36 0.31

Table 4. Performance of SketchQL without and with user feedback.

feedback does not provide additional information. (2) The performance is limited by the noise in
the video (e.g., Q4.1 and Q4.2), including camera movements and object tracking errors.

6.3 Ease-of-use Evaluation

6.3.1 User E�ort. We investigate the amount of user e�ort, measured in time, required to express
the queries using di�erent query interfaces. Table 5 shows the time taken for a graduate student to
compose each query via each interface. This time includes the duration from the start of the query
composition to the point of achieving a fully functioning query.

Q1.1 Q1.2 Q1.3 Q2.1 Q3.1 Q3.2 Q3.3 Q4.1 Q4.2

NL-Clip <1 <1 <1 <1 <1 <1 <1 <1 <1

SQL-Track

(from scratch)
90 100 20 40 10 90 40 100 45

SQL-Track

(reuse rules)
90 10 20 30 10 30 20 80 30

SQL-Scene - - <1 <1 <1 - - 2 <1

SketchQL <1 <1 2 <1 2 2 4 4 3

Table 5. �ery composition time (minutes) for di�erent interfaces.

NL-Clip requires the least time as the user can trivially express each query in natural language.
For SQL-Track, we report two variants: (1) From scratch - where we write the required rules (UDFs)
from scratch for each query (2) Reuse rules - where we develop queries one at a time, and for each
query, we reuse existing rules from previous queries where possible. In both cases, SQL-Track
requires signi�cantly more time than other methods since it is non-trivial to express notions like
"left-turn" with SQL-like rules.
SQL-Scene requires low e�ort to represent the query, as the user can de�ne the query as

a relationship between objects detected in the scene graphs. For example, query Q2.1 can be
represented in the scene-graphmodel as the (subject, relationship, object) tuple of (’person’, ’kicking’,
’ball’). However, scene graph models only support simple relationships between the subject and
object, such as ’kicking’, ’in front of’, ’on’ etc. So, non-trivial events such as the orientation-agnostic
left turn of a car or a player kicking the ball into the air cannot be retrieved using this baseline.

In contrast, users can e�ciently compose queries in SketchQL by simply dragging and dropping
the objects with the mouse in any direction. Notably, users can create single-object queries such as
car left turn and pedestrian crossing street in less than a minute. Users require more time when
more objects are involved in the query, requiring up to 4 minutes for queries involving 3 or more
objects. In multi-object queries, users must temporally align the trajectories corresponding to each
object. For example, in Q3.3, the user has to create four objects — three players and one ball. The
user must then draw the trajectories, which takes around 30 seconds for each object. Next, the
user uses the trajectory panel to temporally align the trajectories for di�erent pairs of objects. This
requires around 2 minutes since the user must align and edit the trajectories of each player and
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+ Rotation degrees + Noise level

Q1.1 90 180 270 5% 10% 15%

AveP score 0.87 0.86 0.87 0.87 0.87 0.85 0.82

Table 6. Performance of SketchQL on Q1.1 under 1) di�erent degrees of rotation and 2) di�erent

levels of white noises.

the ball while also adjusting the relative timelines of pairs of player trajectories. Overall, while
such �ne-grained sketch composition for complex multi-object queries is slightly slower than the
natural language interface, it is highly expressive and results in a much higher retrieval accuracy,
as shown in §6.2. Sketch composition requires much less time than SQL-based methods. Users only
need to perform visual operations instead of coding, which is much more user-friendly.

Fig. 10. Variants of user sketches for the le� turn query.

6.3.2 �ery Sensitivity. This experiment measures the sensitivity of the system to user sketches.
For example, Figure 10 shows di�erent ways a user can depict a left turn query. We observe that
SketchQL produces similar AveP scores for all the variants without any �ne-tuning. This can be
attributed to SketchQL’s synthetic training data generation process that automatically generates a
diverse set of trajectories, described in §4.2. In contrast, baseline methods like SQL-Track require
writing new rules to support each variant.

For a more quantitative assessment, we consider two variations: rotation and white noise.
Rotation. Table 6 shows the AveP scores under query rotations of 90, 180, and 270. The scores
remain stable under di�erent degrees of rotation. We observe the rankings of the retrieved clips
are almost identical, with only minor variations like the 5th and 6th clips swapping places. Thus,
SketchQL is robust to di�erent query rotations. The robustness stems from our training data
generation method that considers rotation variation.
White Noise.We add white noise to the query to simulate wobbly trajectories in the query that
humans may create when drawing queries by hand/mouse. We set the magnitude of the white
noise to 5%, 10%, and 15% of the scale of the query trajectory (measured by the standard deviation
of coordinates). The results are shown in Table 6. When the noise level increases, the AveP score
decreases. However, the system remains robust, maintaining performance for noise up to 10% of
the overall query trajectory scale.

Overall, SketchQL is robust to di�erent user sketch variations, so the query speci�cation is easy.

6.4 AlternativeMatcher Designs

We evaluate alternative designs of the Matcher component discussed in §4.3. Speci�cally, we
consider (1) replacing the learned model with classic time series similarity search using manually
extracted features and (2) using a di�erent model architecture.
Time series similarity search with manual features. This is the baseline we discussed in
§ 4.1 where we convert the problem to a time series similarity search under Euclidean or DTW
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Fig. 11. Alternative Model Architecture

distance [65]. We manually extract diverse features using domain knowledge. The features include
(1) absolute positions, i.e., trajectories, (2) velocities, (3) angles, and (4) relational features (e.g.,
distances) between object pairs. We also normalize each feature to ensure all features are at the same
scale. We use Euclidean distance (DTW distance gives similar results) to compute the similarity
between the query and video clip features. We also manually tune the weights for each feature
dimension to give this baseline an advantage.
Alternative model architecture. When encoding clip �+ , one intuition is to be aware of the
query�& . For example, if the query trajectory is circular, the model could focus more on trajectory
features in �+ to match that pattern. This motivates the model architecture shown in Figure 11,
which features a cross-attention module [35] for the clip and query to pay attention to each other.

Q1.1 Q1.2 Q1.3 Q2.1 Q3.1 Q3.2 Q3.3 Q4.1 Q4.2

SketchQL 0.87 0.60 0.56 0.80 0.52 0.39 0.38 0.36 0.31

*manual feat 0.24 0.0 0.12 0.49 0.21 0.17 0.08 0.13 0.15
*alt arch 0.28 0.17 0.56 0.61 0.42 0.21 0.27 0.28 0.24

Table 7. Ablation Study: AveP scores.

As shown in Table 7, replacing any component substantially decreases performance, especially
when using manual features with classic distance functions instead of the pre-trained model. This is
because (1) metrics like Euclidean distance and dynamic time warping are not invariant to di�erent
camera angles (Figure 6), while the learned model ensures invariance; (2) The manual features are
limited by human knowledge of crafting the features while the learned model can consider subtle
features that are less obvious to humans; (3) It is very di�cult to manually balance the importance
of di�erent features. The alternative architecture performs poorly because it has a built-in MLP
classi�er, which can easily over�t the training data. In contrast, our proposed architecture focuses
on learning feature representations and is thus less prone to over�tting than an MLP classi�er.

6.5 E�iciency analysis

We report the running time of di�erent methods on the queries.
Primitives Computation. Table 8 reports the time for primitive computation for each method.
For SoccerNet, the object tracks are provided in the dataset, so we omit this step. SQL-Track and
SketchQL both use the same object tracker, Bytetrack [74], so their running time is identical.
SQL-Scene requires more expensive scene graph computation. Additionally, in three of the four
datasets, SQL-Scene requires computing scene graphs in a 2×2 grid to achieve reasonable accuracy,
increasing the time 3×. For NL-Clip, we precompute and save the image embeddings for each
frame. For all methods, primitive computation is a one-time process, and the computed primitives
can be reused for all future queries.
Query Execution. SketchQL’s execution time is generally on par with other baselines. The
runtime for SketchQL, however, may �uctuate when there are more objects in the query. It
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VIRAT BDD100K SoccerNet Youtube-8M

NL-Clip 77 13 458 76
SQL-Track 335 151 - 417
SQL-Scene 1139 152 5728 1189
SketchQL 335 151 - 417

Table 8. Time (seconds) required for primitive computation. SQL-Track and SketchQL use object

tracking while SQL-Scene uses scene graphs. NL-Clip uses image embeddings for each frame.

may increase (Q3.3) when the number of possible combinations for �nding the one-to-one object
mapping increases. It may decrease (Q1.3) when the additional objects do not appear often and serve
as early �lters. Consider the concrete example of Q3.3. The query contains 3 player trajectories
and 1 ball trajectory. SketchQL must iterate over all the combinations of these objects in the
original video. Each frame in the soccer dataset contains 10-15 players, resulting in more than 100
combinations to compare for each frame, increasing the runtime. SQL-Track also faces this issue.
One workaround to address this limitation is to parallelize the query across video chunks, which
we leave for future work. SketchQL performs early �ltering to remove frames that do not contain
the target objects. This enhances SketchQL’s runtime e�ciency for surveillance videos (Q1.1-1.3),
which are sparsely populated. However, broadcast soccer videos are dense, with all the frames
containing at least 3 players, and do not bene�t from this optimization.

Q1.1 Q1.2 Q1.3 Q2.1 Q3.1 Q3.2 Q3.3 Q4.1 Q4.2

NL-Clip 28 29 29 2 136 142 152 36 34
SQL-Track 70 75 110 3 53 57 64 6 24
SQL-Scene - - 1 1 2 - - 2 2
SketchQL 12 14 8 1 19 20 67 6 14

Table 9. Running time (seconds).

Model Re�nement.When users provide feedback, SketchQL re�nes the model and re-executes
the query. The time required for model re�nement is roughly the same for all queries and is about
2.9 seconds. The time is short because we are only �netuning the model for a few steps with a few
examples.
Summary andDiscussion.Our experiments evaluated the generalizability, usability, and e�ciency
of all methods. Overall, SketchQL demonstrates the best generalizability and usability, with
comparable e�ciency to other methods. However, it is important to acknowledge the strengths
of other approaches: SQL-based methods support hard constraints, while natural language-based
methods require minimal query speci�cation time.
In addition to the metrics used in our experiments, two other key factors for VDBMS are data

storage and real-time capability. The performance of a method in these two dimensions heavily
depends on the implementation choices. In our implementation, NL-Clip requires pre-computing
and storing the embeddings for each frame, which requires signi�cant storage but enables better
query execution e�ciency. Alternatively, computing the embeddings on-the-�y during query
execution reduces storage but worsens e�ciency. With our current implementation of the methods,
NL-Clip requires signi�cantly more storage, while the other methods require a comparable amount
of storage. All methods perform similarly in their real-time capabilities, as the query execution
time is comparable.
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7 Related Work

Query Interfaces. SoTA VDBMSs support two interfaces for querying video moments: natural
language-based interface [16, 27, 43, 61, 71] and SQL-based interface [11, 17, 18, 26, 39, 42, 60, 62].
Natural language-based methods require a large amount of training data and do not generalize
well on datasets di�erent from the training data. SQL-like methods are di�cult to use, requiring a
considerable amount of query speci�cation time. EQUI-VOCAL [70] is a recent work that simpli�es
query speci�cation for SQL-like queries over videos through automatic query synthesis from a
few labeled examples. However, the user would need to �nd the few labeled examples �rst, which
can require non-trivial human e�ort if the event of interest is rare. Furthermore, EQUI-VOCAL
uses scene graphs as the data model, so its performance depends on the quality of scene graphs,
which currently can not be extracted as reliably as object trajectories [15]. In addition, single object
queries like car left turn are unsupported under this data model since scene graphs must involve at
least two objects.

Our visual query language (Sketcher) provides an intuitive visual interface with high usability,
and our query execution component (Matcher) provides high generalizability across datasets.
Visual query language for videos. There were early attempts to develop visual query languages
for videos in the 2000s [23, 33, 34, 40]. These methods provide GUI components for some prede�ned
predicates, and users can use them to compose queries in a visual interface. Example predicates
include temporal predicates like "start at" and "�nish by" [33, 34] and spatial predicates like "overlap"
and "cover" [40]. These visual query languages are more like a visual representation of SQL-like
languages and are limited by prede�ned predicates. In addition, they su�er from the same limitation
as SQL-like languages in that the user has to translate what he wants to be rules composed by
the prede�ned predicates (in the form of GUI or not), which can be non-trivial. Alternatively,
researchers have explored the query-by-example (QBE) paradigm for video retrieval [67]. Methods
using animated sketches [14] and drawings with query conditions [66] have been proposed as
query formulations for video retrieval. These formulations are more intuitive and expressive,
as users can directly sketch what they want to query. However, these methods rely on manual
feature engineering to match user sketches to video motions, which can be inaccurate (§4.1). These
pioneering works inspire SketchQL’s sketch-based interface. We obviate the need for prede�ned
predicates, allowing users to freely draw animated sketches of the target event. We enhance
the interface’s real-world usability and accuracy via automatic feature extraction and a learned
similarity search module.
Top-k similarity search in multimedia databases. Pioneering work in multimedia database
systems led to signi�cant progress in visual similarity search before the advent of deep learning [56].
The �rst class of methods leverages automated semantic annotation and tagging to retrieve similar
videos accurately [10, 45]. The second class of techniques proposes novel indexes and distance
functions for e�cient querying in high-dimensional spaces [12, 54]. Both paradigms pave the way
for modern video retrieval systems. Deep learning models leverage semantic tags in the form
of labeled training data, and unstructured indices and learned similarity functions are built on
top of deep learning model pipelines. SketchQL uses a trained object tracking model to match
object tags and leverages a learned similarity function to accurately encode distance between
complex trajectories. Methods have also been proposed to e�ciently incorporate user feedback
for interactive similarity search in high dimensional spaces [9]. SketchQL focuses on retrieval
accuracy and incorporates user feedback by �netuning the learned similarity model with very few
examples using SoTA techniques.
Video data management systems. A line of existing video data management systems focuses on
improving the e�ciency of video analytics queries. For machine learning inference queries, PP [46]
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and BlazeIt [39] use lightweight models to �lter out irrelevant frames, and EVA [62] reuses results
across queries. For object track queries, MIRIS [11] processes the video at low framerates when
possible. Our work SketchQL focuses more on the query interface and features a visual query
language for video moment retrieval.
Spatiotemporal information-based video retrieval. There are also existing methods that use
spatiotemporal information for video retrieval. For example, methods use spatiotemporal descriptors
as features to train a model [22] and trajectory shape-based matching using manually designed
similarity functions [36, 37]. A recent work STAR-Retrieval [17] formalizes the retrieval problem as
a graph-matching problem and supports fuzzy matching through discretization (e.g., discretizing
distance between two objects). However, STAR-Retrieval is sensitive to the orientation of the objects
in the query due to its de�nition of angles between two objects. User-provided sketch of a single
object trajectory is also explored as the query interface [36, 37]. However, in existing methods, the
sketch is drawn on the video frame, and the absolution location information is used for matching
(the goal is to �nd "near exact" matches). For example, on a tra�c surveillance video, the sketch may
be on one particular road lane, and existing methods aim to �nd objects that follow the trajectory
in that lane. Therefore, these sketches are tied to a particular video, and even in that video, the
retrieved trajectories are tied to a particular location, orientation, and scale. STAR-Retrieval [17]
supposedly supports user-provided sketch in the form of a sequence of graphs, but no detail on
the sketch interface is available. The sketch represents spatial relationships as distance and angle
parameters, similar to predicates in SQL. SketchQL supports multiple objects and is designed to
be dataset/location/orientation/scale independent.

8 Conclusion

Videomoment querying is an important yet challenging task for video analytics. Existing techniques
for this task su�er from poor ease of use and generalizability. In this paper, we presented SketchQL,
a novel visual querying system that enables intuitive video moment retrieval through sketch-based
queries. SketchQL allows users to visually depict queries using the Sketcher interface. It then
matches user queries to video moments using a transformer model-based Matcher trained on
diverse synthetic data. Furthermore, SketchQL incorporates user feedback via the Tuner to
improve retrieval accuracy. Our experiments demonstrate that SketchQL signi�cantly improves
the usability and retrieval accuracy over state-of-the-art methods.
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