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ABSTRACT

The likelihood of encountering in-training failures rises sub-
stantially with larger Deep Learning (DL) training workloads,
leading to lost work and resource wastage. Such failures are
typically offset by checkpointing, which comes at the cost of
storage and network bandwidth overhead. State-of-the-art
approaches involve lossy model compression mechanisms,
which induce a tradeoff between the resulting model quality
and compression ratio. We make a key enabling observa-
tion that the sensitivity of model weights to compression
varies during training, and different weights benefit from
different quantization levels, ranging from retaining full pre-
cision to pruning.We propose (1) a non-uniform quantization
scheme that leverages this variation, (2) an efficient search
mechanism that dynamically finds the best quantization con-
figurations, and (3) a quantization-aware delta compression
mechanism that rearranges weights to minimize checkpoint
differences and thereby improving compression.
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We instantiate these contributions in Inshrinkerator, an
in-training checkpoint compression system for DL work-
loads. Our experiments show that Inshrinkerator consis-
tently achieves a better tradeoff between accuracy and com-
pression ratio compared to prior works, enabling a com-
pression ratio up to 39x and withstanding up to 10 restores
with negligible accuracy impact in fault-tolerant training.
Inshrinkerator achieves at least an order of magnitude re-
duction in checkpoint size for failure recovery and transfer
learning without any loss of accuracy.
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1 INTRODUCTION

Large-scale Deep Learning (DL) training workloads, increas-
ingly require weeks or months of compute time on GPU
clusters [64]. As the duration and scale of these training ef-
forts grows, so does the frequency of failures. For example,
the DL training workloads in a Microsoft cluster encounter a
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Figure 1: Inshrinkerator provides better accuracy-storage
tradeoffs compared to baselines for ResNet152 training.

failure every 45 minutes on average (excluding early failures)
due to various system and user errors [40]. This makes the
role of checkpointingścreating periodic snapshots of a DL
model during its trainingśincreasingly crucial. When fail-
ure occurs, training can be recovered from the most recent
checkpoint to reduce lost work.
During the model development phase, developers often

resume from a stable mid-training checkpoint instead of
starting from scratch for each bug fix or modification [1].
Checkpoints are also used in transfer learning, where a saved
model state can be adapted for a different task. Due to these
varied uses, there is a growing research interest in check-
pointing systems [11, 23, 37, 41].
Frequent checkpoints ensure minimal loss of progress in

the event of failures but also increase the storage cost. For in-
stance, checkpoints for language models like Pythia [9], OPT
[64] require tens of gigabytes of storage for each checkpoint.
During the course of training, hundreds of such checkpoints
are generated. As models grow in complexity and size, and
as organizations seek to maintain a multitude of checkpoints,
compressing these checkpoints becomes necessary.

As a result, several model compression systems have been
proposed in the recent past [11, 23, 37, 41], however, exist-
ing checkpoint compression systems face shortcomings in
terms of suboptimal trade-off between compression ratio
and accuracy degradation as shown in Figure 1. We find
that this issue originates due to the following factors. First,
model parameters exhibit different levels of sensitivity to
compression. Systems such as Check-N-Run [23] and QD-
Compressor [41] adopt uniform quantization strategies that
provide all parameters with the same level of resolution ś
oblivious to the level of their impact on the model quality.
Second, it’s observed that models, as they accrue knowledge
over the course of training, exhibit higher quantization er-
ror. However, existing systems adhere to fixed quantization
configurations, e.g., a preset number of quantization bins,
throughout training.

To overcome these limitations, we introduce InshrinkeratorÐ
an efficient, transparent in-training model checkpoint com-
pression system for DL workloads (Figure 2). Inshrinkerator
is premised on the observation that not all model parameters
contribute equally to model quality, and this contribution
varies as the model trains. This observation informs three
main aspects of Inshrinkerator.
First, Inshrinkerator uses a comprehensive quantization

configuration space that partitions model parameters into
three groups based on their significance: parameters pre-
served with full precision (unchanged), pruned parameters
(set to zero), and quantized parameters. For the quantized
parameters, Inshrinkerator proposes a novel non-uniform
quantization approach using a sketch-based approximate
K-Means clustering, achieving up to 65× speed up compared
to a naïve implementation. This enables more effective com-
pression by reducing the number of required quantization
bins by 2-3× compared to uniform quantization.

Second, Inshrinkerator includes an efficient dynamic quan-
tization configuration search component. This component
automatically adapts the quantization configuration as pa-
rameters’ sensitivity towards compression changes over train-
ing time. This has the combined benefit of improving com-
pression performance and alleviating the cognitive burden
onML practitioners to manually choose these configurations.
Finally, Inshrinkerator implements a novel quantization-

aware delta encoding scheme, based on the observation that
most parameters remain in the same quantization bin across
consecutive checkpoints. Our delta encoding scheme rear-
ranges the model parameters such that parameters for each
quantization bucket are stored separately, improving delta
encoding efficiency with compression ratios 3-4× higher
than existing delta compression schemes.
Inshrinkerator builds on the following key contributions:

• A novel non-uniform quantization algorithm using ap-
proximate K-Means clustering.
• Amechanism for efficient, automatic quantization con-
figuration search space navigation during training.
• Adelta compression algorithmwith effective run length
encoding enabled by quantization-aware model param-
eter rearrangement.

We evaluate Inshrinkerator on 7 different model families,
including tasks in vision and languagemodeling. Inshrinkerator
reduces checkpoint size by 26-39× for fault-tolerant training
and sustains up to ten failures (for multi-day training jobs)
with negligible impact on the final accuracy of the trained
model, achieving a 1.3-3.3× improvement over state-of-the-
art methods. Inshrinkerator can also reduce the storage over-
head of snapshots of pre-trained models used for transfer
learning by 10× with no impact on the performance of the
fine-tunedmodel. Overall, Inshrinkerator can achieve at least
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Figure 2: High-level workflow of a checkpoint compression and saving request, and resumption of training on failure from a

saved compressed checkpoint in Inshrinkerator.

an order of magnitude checkpoint overhead reduction on
both use cases with minimal accuracy loss.

2 BACKGROUND AND USE CASES

We start by introducing the notion of checkpointing in deep
learning systems and highlight a variety of scenarios where
model checkpoint compression is beneficial. Model check-
points serve as snapshots of a deep learning model at a cer-
tain stage in its training process. They encompass themodel’s
architecture, learned parameters, and optimizer state. One
can think of checkpoints as analogous to code commits in
version control systems, where each checkpoint represents
a version of the model at a specific stage of its development.
In the rest of this section, we describe several use cases for
model checkpoint compression.

Failure Recovery In Training Workloads. Large-scale
deep-learning training workloads are highly susceptible to
various hardware and software failures. Any failure during
this period prompts recovery from the most recent check-
point. Joen et al. [40] show that on average DL training
workloads in a Microsoft cluster encounter a failure every
45 minutes (excluding early failures) due to various system
and user errors. Zhang et al. [64] also observe that the train-
ing of the OPT-2 model required 100+ restarts due to fail-
ures across the span of two months. As we move toward
developing not only larger but also more complex models
and distributed training systems, the likelihood of experi-
encing system failures is expected to rise. Simultaneously,
constraints on bandwidth and storage capacity, especially
in shared multi-tenant environments, limit the frequency of
checkpoints. This creates tension between frequent check-
pointing to minimize wasted work and managing the storage
and network checkpointing overheads. Addressing this chal-
lenge calls for a compression mechanism that enables more
frequent checkpoints with minimal overhead.

IterativeModel Development. In the development of deep
learningmodels, checkpoints are useful formultiple use cases
including version control and continual learning. DL model
development is an iterative process with bug fixes, hyper-
parameter tuning, and architectural adjustments. Given the
substantial GPU hours invested in training, it is wasteful to
discard progress just to make these adjustments. As a result,
practitioners make these changes mid-way through training
and resume the training from a stable checkpoint [1]. This
prompts the need for an effective git-like version control sys-
tem for models, to manage their development cycle. Beyond
the training phase, production environments often require
continuous updates to models to accommodate new data and
maintain performance. In such scenarios, model checkpoints
are preserved for extended periods for reasons such as debug-
ging, reliability, and provenance. Delta-encoded checkpoints,
where only the changes between successive checkpoints are
stored, can help minimize storage requirements and stream-
line recovery processes in these use cases.

Model Hubs & Transfer Learning. Model hubs, such as
Hugging Face [3], provide pre-trained models for a variety
of tasks. These pre-trained models can be used for transfer
learning, a process in which a pre-trainedmodel is fine-tuned
for a new task or domain. With the growth of the number
of models on such hubs, the bandwidth required to trans-
fer model checkpoints becomes a significant concern. For
example, the BERT Base [19] model alone was downloaded
more than 41 million times from the HuggingFace model
hub [2] in a 30-day window as of August 2023. Model check-
point compression can reduce the bandwidth required for
transferring models between users and model hubs.

3 OVERVIEW

This section outlines the design goals and key components
of Inshrinkerator.
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In-training ✓ ✓ ✓ ✓ × ✓

Low Overhead ✓ ✓ ✓ ✓ × ✓

Model Agnostic × ✓ ✓ ✓ ✓ ✓

Scalable ✓ ✓ ✓ ✓ × ✓

Algorithmically Transparent ✓ × ✓ ✓ ✓ ✓

Dynamic Configuration Management × × × ✓ × ✓

Non-uniform Quantization × × ✓ × ✓ ✓

Quantization-aware Delta Encoding × ✓ ✓ ✓ × ✓

Table 1: Comparison of checkpoint compression systems.

Design Goals. Inshrinkerator aims to preserve model accu-
racy under multiple restores from compressed checkpoints
while minimizing storage overhead. Additional design goals
include:

• Low Overhead: Compression should impose minimal
overhead (< 0.5%) on training runtime.
• Model Agnostic: The quantization algorithm should
handle diverse model architectures without requiring
model-specific adjustments.
• Scalable: Ability to process models with hundreds of
millions to billions of parameters efficiently.
• Algorithmically Transparent: No interference with the
original training algorithm, unlike quantization-aware
training methods.

Table 1 compares the main features of Inshrinkerator with
existing checkpoint compression systems. A detailed discus-
sion is provided in ğ 11.

System Overview. Inshrinkerator processes checkpoint
requests in three stages, as illustrated in Figure 2. First, the
Quantization Config Manager performs a distributed
search to identify an optimal quantization configuration.
Next, theQuantizer compresses the model using the iden-
tified configuration. Finally, the Delta Encoder processes
the compressed checkpoint in CPU memory.
Quantization Config Manager (ğ 5): The quantiza-
tion configuration (Figure 2, Table 2) summarizes all quan-
tization related parameters. Over the course of training,
Inshrinkerator dynamically updates the quantization con-
figuration throughout training to maximize the compression

while satisfying to user-defined quality threshold (𝜖) for max-
imum allowed quantization error per checkpoint. An effi-
cient search algorithm identifies a configuration maximizing
compression ratio while adhering to 𝜖 .
Quantizer (ğ 4): Given a specific quantization configura-
tion, Inshrinkerator divides all the model parameters into
three categories accordingly: prune (set to zero if below
the pruning threshold), protect (preserve in full precision
if above the protection threshold), or quantize (apply non-
uniform quantization). Inshrinkerator uses a novel efficient
non-uniform quantization scheme using sensitivity-aware
approximate K-Means clustering, where quantization granu-
larity is determined by the number of bins used in K-Means
(e.g., 8-bins=3-bits). This approach offers superior quantized
models with reduced runtime overhead compared to tradi-
tional methods and allows for any number of quantization
bins.
Delta Encoder (ğ 6): Inshrinkerator performs lossless
compression using quantization-aware delta compression,
exploiting similarities between consecutive checkpoints.Delta
Encoder employs a novel parameter rearrangement tech-
nique enabling efficient run-length encoding, reducing stor-
age overhead by up to two orders of magnitude. After delta-
compression and run-length encoding, model parameters
are encoded in a combined byte stream format.

4 QUANTIZER

This section outlines the design and implementation of the
Quantizer. An overview of Quantizer’s workflow is shown
in Figure 3. First, the Quantizer ranks model parameters
according to their magnitude and sensitivity (ğ 4.1). Based on
the ranking, the parameters are then partitioned into three
groups (ğ 4.2). The least important parameters are pruned,
the most important ones are protected with high precision,
while the remaining parameters are quantized using our
novel non-uniform quantization approach (ğ 4.4).

4.1 Metrics for Parameter Ranking

First, we need to rank parameters by importance in order to
assign them for protection, pruning, or quantization.

The two popular metrics used to determine the importance
of parameters are magnitude and sensitivity. Magnitude-
based ranking approaches simply use the parameter magni-
tude as an importance score [33]. Themagnitude score 𝐼𝑚 (𝑤)
for parameter𝑤 is defined as 𝐼𝑚 (𝑤) = |𝑤 |. Sensitivity-based
ranking approaches attempt to estimate the impact on the
end-to-end loss value when a parameter is altered [21, 44]. In
this paper, we use the first-order Taylor series approximation
formulation of sensitivity for the sake of computational effi-
ciency. The sensitivity score is defined as 𝐼𝑠 (𝑤) = |∇L(𝑤)𝑤 |,
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Figure 3: A high-level illustration of the quantization process in Inshrinkerator.

(a) Parameter partitioning

schema in Inshrinkerator.

(b) Parameter distribution for

ResNet152.

Figure 4:Model parameters are partitioned into three groups

for pruning, protection, and quantization by jointly evaluat-

ing magnitude and sensitivity scores.

where L represents the loss function and ∇L(𝑤) is the gra-
dient of weight 𝑤 with respect to the loss function. It has
been shown that magnitude-based parameter ranking ap-
proaches perform poorly in the early stage of training [56].
On the other hand, as we approach convergence, gradients
start to diminish, making the sensitivity metric less reliable.
To address the above limitations, we propose to use a

combination of sensitivity and magnitude to get a reliable
ranking throughout the training process. Figure 4b shows the
distribution of parameters across the two ranking dimensions
for a ResNet152 model trained on Imagenet data. While there
is a strong correlation betweenmagnitude and sensitivity, we
observe a significant number of outliers, which have a high
magnitude score but a low sensitivity score or vice versa. By
ranking parameters across both the metrics, Inshrinkerator
can identify and preserve these parameters.
For efficient sensitivity computation, we reuse gradients

computed during the training process for sensitivity esti-
mates and asynchronously copy the gradients to pinned
CPU memory to avoid GPU memory overhead. We discuss
implementation details in Section 4.5.

4.2 Parameter Partitioning

Given the magnitude and sensitivity score for each model
parameter, the Quantizer partitions the parameters into
one of the three groups (Figure 4a).
Protection. Inshrinkerator preserves the most important
model parameters in the high precision bfloat16 format.

Recent quantization studies [15, 18] show a significant re-
duction in quantization error when a few important weights
are protected. Our experiments suggest that protecting a
small fraction (0.05-0.1%) of both the highest magnitude and
sensitivity parameters provides the best performance. The
precise protection fraction is determined dynamically by
theQuantization Config Manager. Based on the fraction
(𝐹prot) of parameters to be protected, we identify the mini-
mum magnitude and sensitivity thresholds (quantiles) for a
parameter to qualify for protection.
Pruning. We prune the least significant model parameters,
based on the pruning fraction 𝐹prun (typically between 10-
40%) and the pruning metric, magnitude or sensitivity. An
important design consideration is the granularity level at
which the pruning is performed. Layer-level pruning can
degrade model quality due to different redundancy levels
across the network layers. Conversely, global pruning may
disproportionately affect different layer types (e.g., Convolu-
tion, Attention, Linear) due to varied weight distributions.
To tackle this, we perform per-layer type pruning, i.e. using
the same pruning fraction across all layers of a given type.
We observed that in GPT-2 Medium, we can eliminate up to
30% parameters with a minimal effect on the model’s quality.

4.3 Efficient Parameter Partitioning via
Quantile Sketches

Computing quantiles required for determining pruning and
protection thresholds can be costly, especially for large mod-
els due to the log-linear time complexity of the operation.
Moreover, in cases where models are trained via model paral-
lelism, and parameters are distributed across different worker
groups, computing global quantiles can be quite challenging.

To facilitate efficient partitioning of model parameters, we
use a sketch-based quantile estimation algorithm that is a
simplified and parallelized version of DDSketch [48]. This
enables us to compute approximate quantile estimates in
linear time with a configurable 𝛼-relative-error bound, that
is, the sketch produces an estimated quantile value corre-
sponding to the quantile value 𝑥𝑞 such that |𝑥𝑞 − 𝑥𝑞 | ≤ 𝛼𝑥𝑞 .
For computing protection and pruning thresholds, that re-
quire tail quantiles, DDSketch’s relative error bounds outper-
form alternative quantile sketches that guarantee rank error.
Furthermore, the quantile sketches are mergeable, which
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Figure 5: DDSketch’s log space transformation creates a

histogram with value-dependent bucket width.

simplifies the computation of global quantile estimates from
individual model shards.

The sketching algorithm transforms the input values into
a logarithmic space and then divides them into an equal-
width histogram (Figure 5). Due to the use of a logarithmic
scale, we achieve varying levels of detail for different ranges
of the original values. Specifically, smaller original values
will land in narrower bins, while larger values will fall into
broader bins. This allows the sketch to provide the 𝛼-relative
error property of the sketch. To produce quantile estimates,
the sketch sums up the buckets until it finds the bucket
containing the desired quantile value.
Algorithm 1 describes the parallelizable version of DDS-

ketch [48] optimized for GPU execution. We forgo the bucket
merging step in the original DDSketch for ease of paralleliza-
tion. This has limited impact in practice, as we observe that
the number of buckets does not exceed a few thousand even
for models with hundreds of millions of parameters with
a strict relative error bound of 1%. We implement a highly
parallelized version of this algorithm using Pytorch that can
run on GPUs. We observe a 3-4× speed-up compared to off-
the-shelf GPU-enabled implementation provided by CuPy
[51] while using significantly less memory.

Algorithm 1 GetQuantileSketchHistogram

Require: 𝑋 {Input list}
Require: 𝛼 {Relative Error Bound}
1: 𝛾 ← (1 + 𝛼)/(1 − 𝛼)

2: Define 𝑋𝑞 as an empty array
3: for all 𝑥 in 𝑋 do

4: Append ⌈log𝛾 (𝑥)⌉ to 𝑋𝑞

5: end for

6: (bucket_vals, bucket_counts) ← unique(𝑋𝑞)

7: return bucket_vals, bucket_counts

4.4 Non-uniform Quantization via
Approximate K-Means Clustering

The remaining model parameters that are not pruned or pro-
tected go through quantization. Quantization reduces the
precision of model parameters to lower-bit representations

(e.g., from 32-bit floating-point to 8-bit integers), leveraging
redundancy and noise tolerance in large networks. Uniform
quantization strategies create equally spaced quantization
levels across the parameter space, while non-uniform quan-
tization approaches use varying intervals between levels to
adapt to the parameter distribution.

Non-uniform quantization techniques, such as via K-Means
clustering [23, 32, 63], generally provide better compression
and model quality. However, they have seen limited adoption
in checkpoint compression systems due to their computa-
tional complexity. For instance, GOBO [63], that utilizes a
variant of K-Means clustering, takes roughly 50 minutes to
quantize a small model like ResNet-18 (11.7M parameters).

Algorithm 2 Approximate K-Means Clustering

Require: 𝑋 {Input data points}, 𝑘 {Number of clusters}
Require: 𝛼 {Relative error}, 𝜎 {Linear combination factor}
1: 𝑋𝑞 ,𝐶𝑞← GetQuantileSketchHistogram(𝑋 , 𝛼) {Obtain

log sketch histogram Algorithm 1 for coarse grain clus-
tering. 𝑋𝑞 are the histogram bucket centers and 𝐶𝑞 are
the corresponding frequencies.}

2: 𝑋𝑞 , 𝐶𝑞 ← Normalize(𝑋𝑞), Normalize(𝐶𝑞)

3: 𝑊 = 𝜎 ∗𝐶𝑞 + (1− 𝜎) ∗ |𝑋𝑞 | {Compute sample weight for
histogram buckets according to frequency and magni-
tude}

4: centers ← WeightedKMeans(𝑋𝑞 , 𝑊 , 𝑘) {Perform
weighted k-means++ on histogram keys and values}

5: return centers

Approximate K-Means Clustering. We introduce a novel
non-uniform quantization method leveraging approximate
K-means clustering, which strikes a balance between quanti-
zation quality and computational efficiency. Our key insight
is to perform K-means clustering on histogram buckets of the
parameters, rather than on the raw parameters themselves.
This significantly reduces the computational burden of K-
means clustering, resulting in up to 65× speedup compared
to the standard implementation in CuML (ğ 9.3).

Algorithm 2 describes the two-step quantization algorithm.
First, we group model parameters into coarse-grain buckets,
utilizing the same log-space projection approach in DDS-
ketch. We then perform weighted k-means clustering, where
the histogram bins serve as the data and their heights as
sample weights, to establish quantization boundaries. Two
key optimizations enhance this clustering performance:
First, we introduce an additional parameter, 𝜎 , to our

weighted K-Means to help balance the allocation of reso-
lution between high-importance parameters with low fre-
quency and high-frequency parameters with low importance.
Usually, non-uniform clustering offers increased resolution
to denser parameter spaces. However, for neural network
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Figure 6: Two-step quantization: (1) group model parame-

ters into coarse-grained bucketswith sketch-based histogram

computation. (2) cluster parameter buckets using sample

weighted K-means clustering.

Algorithm 3 Weighted K-Means++ Initialization

Require: 𝑋 {Input data points}
Require: 𝑊 {Input sample weights}
Require: 𝑘 {Number of clusters}
1: 𝐶 ← 𝑋 [random_choice(𝑊 )] {Initialize the first cen-

troid randomly according to weights}
2: for 𝑖 in 2 to 𝑘 do

3: 𝐷 ← min_distance(𝑋,𝐶) {Compute distance of each
point to nearest centroid}

4: 𝐷 ← 𝐷 ·𝑊 {Weight the distances}
5: 𝑃 ← 𝐷/sum(𝐷) {Compute probabilities}
6: 𝐶 ← 𝐶∪𝑋 [random_choice(𝑃)] {Select new centroid}
7: end for

8: return 𝐶

parameters, this would allocate greater resolution to values
near zero. To address this, we calculate the sample weight of
a bucket, 𝑏𝑖 , as a linear combination of the bucket’s normal-
ized frequency and magnitude:𝑤 𝑖

= 𝜎 ∗𝑏𝑖
freq
+ (1−𝜎) ∗𝑏𝑖mag

(see line 2 in Algorithm 2). Our observations suggest that
values of 𝜎 in the range 0.1 − 0.4 generally provide the best
compression results. We use 𝜎 = 0.2 for all experiments.
Second, the success of the K-Means clustering algorithm

relies heavily on proper initialization. Inappropriate initial-
ization can lead to suboptimal solutions and slower conver-
gence. K-means++ [6] addresses this by ensuring the initial
centroids are uniformly distributed across the space, often
leading to near-optimal solutions with a single round of
clustering. We extend the K-means++ [6] algorithm for ini-
tialization with support for sample weights, Algorithm 3
provides a sketch of this process.

Error Analysis. In the first step of the quantization algo-
rithm, we create a histogram using DDSketch’s log-space pro-
jection approach, which provides a configurable 𝛼-relative
error bound. Using this approach, we formally show that the
difference between optimal loss of K-Means clustering over

raw inputs 𝑋 and its histogram counterpart 𝑋̃ is bounded

by 𝛼 . We can further show that when the clustering is per-
formed with sample-weighted k-means++, then the expected

loss over 𝑋̃ is bounded by the optimal loss over 𝑋 and an
additional term related to 𝛼2 (Appendix A.3).

4.5 Efficient Sensitivity Computation

To save computational resources, we reuse gradients com-
puted during the training process for sensitivity estimates
instead of calculating them separately. To avoid any GPU
memory overhead, we asynchronously copy the gradients
to pinned CPU memory as soon as the backward pass is
completed. The gradient copy operation is overlapped with
the optimizer step, data loading, and forward pass of the
next batch, making the overhead of this operation negligible
as shown in Figure 7. The copied gradient values are accu-
mulated on the CPU using an exponential moving average
EMA𝑡

𝑔𝑤
= 𝛽 ∗ 𝑔𝑡𝑤 + (1 − 𝛽) ∗ EMA𝑡−1

𝑔𝑤
, where EMA𝑡

𝑔𝑤
is the

exponential moving average of the gradient 𝑔𝑤 at timestep
𝑡 . We set the value of 𝛽 to be 0.9 in all our experiments to
emphasize the recent gradients. The gradient copy mecha-
nism is only invoked for a limited preconfigured number of
batches before checkpointing is scheduled to be performed
to further avoid any impact on steady-state throughput. We
identify that typically recording gradients for fifty batches
is sufficient to get good sensitivity estimates.

Figure 7: Schematic representation of asynchronous gra-

dient offloading for efficient sensitivity computation in

Inshrinkerator.

5 QUANTIZATION CONFIG MANAGER

In this section, we describe Quantization Config Man-

ager’s search space of quantization configurations and its
efficient search algorithm. Unlike checkpoint compression
systems that use a predefined quantization configuration
throughout training, the manager dynamically searches for
a configuration that maximizes compression ratio while sat-
isfying the quality constraint 𝜖 at every checkpoint.
Search Space. Table 2 describes the quantization configu-
rations that comprise the search space of Quantization

Config Manager. To keep the search space manageable, we
choose to use the same number of quantization bins across
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Algorithm 4 Guided Exhaustive Search

Require: Quality threshold𝑇 , Configuration cube𝐶cube, Compres-

sion Ratio 𝐶𝑅max

Ensure: Optimal configuration 𝐶opt

1: 𝐶opt ← Null

2: 𝐶𝑅max ← 0

3: 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 ← GetDiagonal(𝐶cube)

4: 𝐶opt,𝐶𝑅max ← ParallelSearch(𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙,𝑇 )

5: 𝑆𝑢𝑏𝐶𝑢𝑏𝑒𝑠 ← GetFeasibleSubCubes(𝐶cube,𝐶opt)

6: for each 𝑆𝑢𝑏𝐶𝑢𝑏𝑒 in 𝑆𝑢𝑏𝐶𝑢𝑏𝑒𝑠 do

7: 𝐶temp,𝐶𝑅temp ← GuidedExhaustiveSearch(𝑇, 𝑆𝑢𝑏𝐶𝑢𝑏𝑒)

8: if 𝐶𝑅temp > 𝐶𝑅max then

9: 𝐶opt ← 𝐶temp

10: 𝐶𝑅max ← 𝐶𝑅temp

11: end if

12: end for

13: return 𝐶opt

all layers except embedding layers. We use separate quan-
tization parameters for embedding layers, since we have
observed that embedding layers are considerably more sensi-
tive to quantization, in line with findings from other research
on Transformer model quantization [57, 63].

Parameter Values

Number of bins 4, 6, 8, 12, 16, 32
Pruning Fraction 0, 0.1, 0.2, 0.3, 0.4, 0.5
Pruning Metric Magnitude, Sensitivity
Protection Fraction 0.0005, 0.005, 0.01

Table 2: Inshrinkerator’s quantization configuration space.

Overview of the Search Algorithm. Naïvely evaluating
each configuration in the search space is costly ś the search
space contains over 200 configurations for non-embedding
layers alone. To speed up the search, our key insight is that
the optimal quantization configuration remains largely simi-
lar between adjacent checkpoints. At the first checkpoint, we
perform a guided exhaustive search to identify the optimal
configuration. Subsequently, we greedily evaluate the con-
figurations that are close to the previous best configuration
and only fall back to the exhaustive search if we can not
identify a configuration that satisfies the quality constraint.
We observe that we need to resort to exhaustive search at
most 2-3 times during model training.
Guided Exhaustive Search. We use domain knowledge
to reduce the cost of exhaustive search. If there was only
one parameter, like the number of quantization bins, model
quality would increase monotonically with the number of
bins, while the compression ratio decreases. In this setting,

Figure 8: Configuration search space as a function of prun-

ing fraction, protection fraction, and number of bins. The

color gradient indicates the direction of higher quality.

we can find the optimal number of bins using a variation
of binary search. We apply this approach to multiple con-
figuration parameters, organizing them in a ‘configuration
cube’ where each axis represents a configuration knob as
shown in Figure 8. This layout ensures a monotonic increase
in model quality across each axis, allowing us to use a divide-
and-conquer method (Algorithm 4). We repeat this search
procedure with the two pruning metrics, magnitude and
sensitivity, and select the better of the two.
Delta-Neighbourhood Search. In the steady-state, we ob-
tain a suitable configuration by greedily selecting the best
configuration within the 𝑒-delta neighborhood of the con-
figuration chosen at the previous checkpoint. The 𝑒-delta
neighborhood is defined as all configurations that are at
most 𝑒 steps away in the configuration cube from the given
configuration. At the start of each neighborhood search, we
evaluate a configuration identical to the last best configura-
tion, except with a different pruning metric. If we observe a
significant improvement in the quantized model’s quality, we
change the pruning metric and proceed with the neighbor-
hood search using the newmetric. As training progresses, the
model becomes denser and more sensitive to compression.
Hence, subsequent neighborhood searches intentionally rule
out configurations more aggressive than the prior setting.
Parallelized Implementation. Since each data parallel
replica maintains an identical model state, we can parallelize
the search process. Configuration search trials are evaluated
in groups of𝑚, where𝑚 is the degree of data parallelism.
While scheduling the trials, we arrange them in a way that
allows for an early exit. For instance, in the delta neighbor-
hood search, we order the configurations in decreasing order
of compression ratio. If in a given round of evaluation, we
find a solution that satisfies the quality constraint, we can
exit the search without evaluating the rest of the configu-
rations. Our experiments show that for a data parallelism
degree of eight, a high-quality configuration can be found
within a single round of evaluation.
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6 DELTA ENCODER

To enhance the storage efficiency of compressed models, we
introduce a Delta Encoder that stores the differences be-
tween successive checkpoints. Delta encoding works well
with quantized models, tracking changes between quantiza-
tion buckets rather than exact values.
Calculating Delta. To compute the delta between the ad-
jacent checkpoints, we transform quantized values into in-
tegers and calculate the difference between the quantized
integer values of the successive checkpoints for each layer.
We employ the technique proposed in QD-compressor [41]
that treats the quantization range as a cyclic buffer. Con-
cretely, for integer-mapped quantized checkpoints 𝐶𝑖−1

𝑞 and

𝐶𝑖
𝑞 , we compute the delta 𝐷𝑖 as 𝐷𝑖 = (𝐶𝑖−1

𝑞 − 𝐶𝑖
𝑞) mod 𝐵,

where 𝐵 is the number of quantization bins.
Due to the dynamic changes in the system configuration,

the number of quantization bins may vary between check-
points. We address this by adjusting the size of the cyclic
buffer to the maximum number of bins in either checkpoint.
Additionally, pruned and protected values in our quantiza-
tion scheme are treated as unique quantization levels with
the same delta calculation. The protected values from check-
point 𝐶𝑖 are stored separately to aid reconstruction.
Encoding Delta. After delta calculation, we use a combina-
tion of run-length encoding [29] and Huffman [39] encoding
to reduce its storage footprint. Given that parameter changes
are minimal in the later training stages, run-length encoding
is particularly effective for compression. Standard run-length
encoding can incur significant overhead due to the values
with a run-length of one. We can reduce this overhead by
only storing the run-lengths only when it is greater than one.
However, this requires a mechanism to distinguish between
the encoded values and their run-lengths. We achieve this
by simply negating the sign of all the values, such that all
the run-lengths are positive while all delta values are less
than or equal to zero. Huffman encoding is then applied to
the run-length encoded data for further compression.
Optimization: ParameterRearrangement. The efficiency
of run-length encoding depends on the arrangement of the
parameters. We observe that the migration rate (i.e., the frac-
tion of parameters that change the quantization bucket be-
tween adjacent checkpoints) of parameters can differ signifi-
cantly between different quantization buckets. In the default
arrangement where parameters of all quantization buckets
are interleaved, the run lengths get interrupted by the buck-
ets with high migration rates, resulting in poor compression.
To prevent this, we rearrange parameters to isolate the

parameters from different quantization buckets. After calcu-
lating the delta, we split delta values corresponding to each
quantization bucket in the source checkpoint into separate
groups, as shown in the second step of Figure 9. Each group

Figure 9: Rearrange and split computed delta based on the

quantization bucket each parameter belonged to in the last

checkpoint.

Algorithm 5 Rearranging parameters for efficient encoding

Require: Δ (Delta values calculated from adjacent check-
points)

Require: 𝐶𝑖−1
𝑞 (The quantized integer values of the last

checkpoint)
Ensure: Delta groups (A dictionary containing delta values

for each unique quantization bin)
1: bins← unique_bins(𝐶𝑖−1

𝑞 )

2: delta_groups← create_empty_dict(bins)
3: for 𝑗 ∈ [0, length(𝐶𝑖−1

𝑞 )] do

4: delta_groups[𝐶𝑖−1
𝑞 [ 𝑗]].append(Δ[ 𝑗])

5: end for

6: return delta_groups

is then encoded separately. This ensures that quantization
bins with high migration rates don’t affect others. The pro-
cess can easily be reversed during reconstruction and does
not require any additional storage to obtain the parameter
arrangement. Algorithms 5 and 6 provide a sketch of this
algorithm. The approach is particularly useful when the num-
ber of quantization bins changes between checkpoints. As
demonstrated in ğ 9.3, this optimization can significantly
improve the compression ratio.

7 IMPLEMENTATION

We have developed Inshrinkerator and all the baseline sys-
tems discussed in ğ 8 using Pytorch, amounting to 7377 lines
of Python code. To enhance the performance of delta encod-
ing, we have implemented Huffman encoding and run-length
encoding using 300 lines of C++ code. Inshrinkerator can be
effortlessly integrated into user applications with less than 10
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Algorithm 6 Reconstructing parameters after rearrange-
ment

Require: delta_groups (Delta groups obtained from the re-
arranging step)

Require: 𝐶𝑖−1
𝑞 (The quantized integer values of the previous

checkpoint)
Ensure: 𝐶𝑖

𝑞 (The quantized integer values of the current

checkpoint)
1: 𝐶𝑖

𝑞 ← create_zero_array(length(𝐶𝑖−1
𝑞 ))

2: for 𝑗 ∈ [0, length(𝐶𝑖−1
𝑞 )] do

3: bin← 𝐶𝑖−1
𝑞 [ 𝑗]

4: if delta_groups[bin] ≠ ∅ then
5: 𝐶𝑖

𝑞 [ 𝑗] ← 𝐶𝑖−1
𝑞 [ 𝑗] + delta_groups[bin].pop(0)

6: end if

7: end for

8: return 𝐶𝑖
𝑞

from inshrinkerator import CompressorRegistry

# Before train loop

compressor = CompressorRegistry.get_compressor(

system , model , eval_batches , search_config ,

search_metric , threshold)

...

while global_step < max_training_steps:

...

# Inside train loop

if should_checkpoint(global_step):

compressor.compress(global_step)

...

# Before flushing gradients

compressor.before_gradient_flush ()

optimizer.zero_grad ()

...

# After backwards pass

compressor.on_backward_pass_end ()

optimizer.step()

...

Listing 1: Inshrinkerator API usage with native Pytorch

applications

lines of code modifications (Listing 1). Additionally, we pro-
vide a custom callback for the MosaicML composer library,
enabling single-line integration of our system into applica-
tions developed with Composer (Listing 2). This strategy can
be readily extended to frameworks such as Pytorch-lightning
and Keras, both of which offer a high-level trainer interface.

8 EVALUATION SETUP

In this section, we describe the setup used in our evalu-
ations. Our experimental environment comprises servers

from composer import Trainer

from inshrinkerator.integrations.composer import

InshrinkeratorCallback

# Add InshrinkeratorCallback to list of callbacks

trainer = Trainer(

...

callbacks =[ InshrinkeratorCallback ()],

)

trainer.fit()

Listing 2: MosaicML Composer application with

Inshrinkerator callback integration.

Model Task Parameters

ResNet18 [34] Vision 11.7 M
ResNet50 [34] Vision 25.6 M
ResNet152 [34] Vision 60.2 M
MobileNet V3L [36] Vision 5.5 M
VGG19 [58] Vision 143.7 M
ViT B32 [22] Vision 88.2 M
ViT L32 [22] Vision 306.5 M
BERT Base [19] Language 110 M
BERT Large [19] Language 345 M
GPT-2 Medium [52] Language 335 M
Pythia 1B [9] Language 1 B

Table 3: Summary of models used in the evaluation.

equipped with 8 NVIDIA A40s GPUs connected with peer-
wise NVLINK, 128 AMD CPU cores, and 504 GB memory.

We compare checkpoint compression systems along the
following three metrics:
Storage Efficiency. We report the end-to-end compression
ratio, calculated by comparing the total size of compressed
model checkpoints to their uncompressed counterparts.
Model Quality.We compare the quality of machine learn-
ing models trained from compressed checkpoints against a
baseline model trained without checkpoint compression and
report the relative quality degradation on accuracy or loss.
Runtime Overhead. We report time spent on compression
as a fraction of the total training time.

8.1 Evaluation Scenarios, Models and
Datasets

We evaluate Inshrinkerator across 7 different model fami-
lies, including tasks in vision and language modeling. These
models vary in complexity, with the number of parameters
ranging from 5.5 million to 1 billion. Details on all models
and datasets used are reported in Table 3 and Table 4.

1021



Inshrinkerator: Compressing Deep Learning Training Checkpoints via DynamicQuantization SoCC ’24, November 20ś22, 2024, Redmond, WA, USA

Dataset Task Training Mode

Imagenet [17] Image Classification Pre-training

C4 [53]
Masked Language

modeling
Pre-training

Openwebtext [28] Next Token Prediction Pre-training

STS-B [62]
Semantic Textual

Similarity
Transfer Learning

MNLI [62]
Natural Language

Inference
Transfer Learning

Alpaca [60]
Instruction

Fine-Tuning
Transfer Learning

Table 4: Summary of datasets used for evaluation

We evaluate Inshrinkerator for two use cases:
Fault-tolerant Training.We simulate multiple failures dur-
ing the training process and perform the recovery using
compressed checkpoints. Our evaluation involves four mod-
els: ResNet-152, ViT-32L, BERT Base, and GPT2 Medium.
The first two, representing the vision models, are trained on
the Imagenet 1K datasets for classification tasks. The latter
two, BERT and GPT models, undergo training for language
modeling tasks using C4 and OpenWebText datasets, respec-
tively. Training of GPT2 Medium and ViT-32L requires ≈
650 NVIDIA A40 GPU hours. The hyper-parameters and
implementation details are provided in Appendix A.1.
Transfer Learning. We perform transfer learning tasks by
training from a compressed checkpoint of pre-trainedmodels.
We use BERT Large and Pythia models. The BERT model is
fine-tuned on GLUE tasks, STS-B, SST-2, and MNLI, while
the Pythia model is fine-tuned using the Alpaca dataset.

8.2 Baseline Systems

We compare the performance of Inshrinkerator against two
state-of-the-art checkpoint compression systems, Check-N-
Run [23] and QD-compressor [41], as well as a post-training
quantization system GOBO [63] that uses a similar quanti-
zation technique. Due to a lack of openly accessible func-
tional implementations, we re-implemented their described
quantization and delta compression algorithms within the
Inshrinkerator framework. All re-implementations benefit
from GPU-accelerated quantization algorithms. None of the
systems supports dynamic configurations, so we extended
Inshrinkerator’s search capability to all baselines, with each
baseline having a different search space defined by its quan-
tization algorithm. Unless otherwise mentioned, we use a
default per-checkpoint quality degradation threshold of 𝜖 =

0.05 in the configuration search. Appendix A.2 provides ad-
ditional implementation details.

• Uniform: An entropy-based variable bit-width uni-
form quantization scheme and delta compression with
Huffman encoding, used in QD-compressor.
• Adaptive: Adaptive uniform quantization [30] algo-
rithm used in Check-N-Run. The delta compression
algorithm was designed for recommendation models
and does not directly extend to general DL workloads.
• KMeans: Naive K-Means non-uniform quantizationwith
L1 distance used in GOBO. GOBO does not have a delta
compression algorithm.

9 EVALUATION

In this section, we evaluate the empirical performance of
Inshrinkerator. Experiments show that:

• Inshrinkerator achieves up to 26-39× compression ra-
tio and less than 0.6% runtime overhead in fault-tolerant
training, consistently offering the best accuracy-storage
tradeoff compared to alternatives (ğ 9.1).
• Inshrinkerator achieves better or similar performance
on downstream transfer learning tasks using com-
pressed checkpoints that are 10× smaller than the size
of the pre-trained models, outperforming the closest
state-of-the-art compression system by 2× (ğ 9.2).
• Inshrinkerator’s non-uniform quantization algorithm
and delta encoding scheme contribute meaningfully
to the overall performance (ğ 9.3).

9.1 End-to-end Evaluation: Fault-Tolerant
Training

We conduct end-to-end training of four models under sim-
ulated failure conditions. Each experiment has 10 evenly
distributed failures (every 3-8 hours of training) throughout
the training duration. All models are trained using data par-
allelism across 8 NVIDIA A40 GPUs, with the largest models
taking 3.5 calendar days (27 GPU days).

Table 5 compares different systems in terms of model qual-
ity, compression ratio, and runtime overhead on the failure
recovery task. Overall, Inshrinkerator achieves between 26-
39× reduction in storage requirements across various model
families, marking a 3.5-6.5× improvement over Adaptive,
and 1.3-3.3× improvement over Uniform. This is achieved
while keeping the end-to-end relative degradation below 1%,
and the overhead of our system remains less than 0.6% of the
total training time. For ViT-L32, we observe that restoring
from compressed checkpoints can act as a regularization
mechanism, and result in better end-to-end performance.

While Uniform achieves a higher compression ratio com-
pared to Adaptive due to its delta compression ability, we
find the quality of models generated by the system to be
inconsistent. In particular, we see a large drop in accuracy
(to 4.43%) after 8 restores for BERT-Base training. KMeans is
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Figure 10: Compression ratio at every checkpoint during the training of various models.

System Deg. % CR Ovr. %

ResNet-152 Adaptive 0.36 5.71 0.61

(Base Acc: 77.41% ) Uniform -0.09 11.82 0.11

Ours 0.50 39.09 0.35

ViT L32 Adaptive -0.21 7.82 0.96

(Base Acc: 71.36%) Uniform 0.12 16.31 0.18

Ours -0.46 26.19 0.51

BERT Base Adaptive 3.97 6.78 1.03

(Base Acc: 68.49%) Uniform × × ×

Ours 0.80 29.25 0.58

GPT-2 M Adaptive 0.25 6.35 0.55

(Base Loss: 2.72) Uniform 1.10 22.15 0.10

Ours 0.61 29.81 0.32

Table 5: Performance of checkpoint compression systems

for failure-recovery. Deg. % = Relative quality degradation,

CR = Compression ratio, Overhead % = Runtime Overhead.

omitted in this experiment as it was originally designed for
post-training quantization and is significantly slower than
other in-training methods (details in ğ 9.3).
Figure 10 shows the change of the compression ratio

throughout training, where the peaks in the compression
ratio correspond to checkpoints directly following restores
from the compressed state. Inshrinkerator’s delta encoding
scheme is particularly effective during the later stages of
training when model updates decelerate. Inshrinkerator’s
peak compression performance is above 100× for all models.

Figure 1 illustrates the trade-off between storage overhead
and model quality under different quality thresholds (𝜖) in
ResNet-152 training. At 𝜖 = 0.01, we achieve 21.82× compres-
sion, with no end-to-end quality degradation. At 𝜖 = 0.05,
there is a small end-to-end relative accuracy drop (0.5%)
while the compression ratio goes up to 39.09×. For all thresh-
olds, Inshrinkerator demonstrates an end-to-end degrada-
tion of less than 1% and achieves a better compression-quality
tradeoff when compared to Adaptive and Uniform. Notably,
both baselines struggle to reach high compression ratios.

Finally, Inshrinkerator can withstand up to 20 restores for
ResNet152, which is equivalent to a restore every 4.5 epochs,
while still maintaining a relative error of 1.1%; for reference,
the error is only 0.16% for 5 restores.

Model Task Metric Base Adap Uni Ours

BERTśL
CR - 4.57 4.00 11.32

SST-2 Acc 93.2 92.9 93.0 93.3

MNLI Acc 85.9 86.0 86.0 85.9
STS-B PC 86.1 87.6 87.8 88.3

Pythia 1B
CR - 5.33 4.57 9.99

Alpaca CE 0.894 0.910 0.906 0.919

Table 6: Performance comparison on the transfer learning

task. CR = Compression ratio, Acc = Accuracy, PC = Pearson

correlation, CE = Cross-entropy Loss.

9.2 End-to-end Evaluation: Transfer
Learning

For the transfer learning experiments, we perform the com-
pression process on pre-trained model checkpoints, then
deploy the compressed models for downstream task fine-
tuning. The checkpoints are obtained with a quality thresh-
old 𝜖 = 0.05. We evaluate the BERT-Base and Pythia 1B
models on a suite of downstream tasks. Table 6 shows results
for all three fine-tuning tasks. We observe that for both the
models, Inshrinkerator can achieve compression ratios up
to 11× even without delta encoding, 2× higher compared to
other systems. Notably, we find that the use of compressed
checkpoints does not harm the performance of the down-
stream model, and we achieve performance comparable to
baseline across all tasks and models.

9.3 Microbenchmarks & Ablation Studies

Quality of Non-uniform Quantization. To evaluate dif-
ferent quantization algorithms, we collect ten checkpoints
spaced throughout the training of different models. For each
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Model Mean Number of Quantization Bins (↓)
0.1% Degradation 1% Degradation 5% Degradation

CNR+ QD+ GB+ Ours CNR+ QD+ GB+ Ours CNR+ QD+ GB+ Ours

ResNet18 42.84 × × 21.25 33.75 35.51 33.12 16.85 23.55 23.25 17.50 10.19

ResNet50 46.36 × × 21.39 35.07 53.65 31.78 14.36 23.06 33.69 20.12 8.24

ResNet152 59.32 × × 20.18 40.71 × × 11.92 26.74 39.36 × 7.20

MobileNet V3 Large 65.24 × × 27.92 54.44 × × 32.48 36.68 47.96 30.79 17.91

VGG19 50.46 × × 13.06 31.01 45.36 × 8.99 18.48 25.15 × 6.26

ViT B32 37.01 × × 19.88 28.37 38.43 × 14.33 20.85 28.79 × 9.75

ViT L32 37.40 × × 13.31 32.95 × × 10.79 25.36 35.34 × 8.46

BERT Base × × × 54.30 81.45 × × 22.75 43.18 53.10 × 12.74

GPT-2 Medium 106.86 × × 54.71 47.71 60.17 × 16.19 24.60 31.14 × 9.08

Table 7: One-shot compression performance under quality degradation constraints. We consider the mean number of quan-

tization bins required to achieve the quality degradation constraint across ten evenly spaced checkpoints during training.

System timeouts (30 mins for each evaluation of each configuration) are represented by ×, while scenarios, where no suitable

configuration is found, are marked by ×.

Model Runtime in Milliseconds (↓)
Quantile Clustering (K=32)

CuPy [51] Ours CuML [54] Ours

ResNet152 71.9 15.2 10200 1160

ViT L32 364 80.9 50100 1140

BERT Base 155 33.9 20700 411

GPT-2 M 390 86.2 53400 819

Table 8: Runtime of various operations in Inshrinkerator

compared with off-the-shelf implementations.

algorithm, we determine the minimum number of quanti-
zation bins needed to meet per-checkpoint thresholds of
𝜖 = 0.001, 0.01, 0.05, then calculate the mean number of bins
across all checkpoints. We disable parameter pruning in our
system for this experiment to allow for easier comparison.
The results are presented in Table 7.

We observe that Inshrinkerator consistently outperforms
across all the models and quality thresholds. KMeans, which
uses a naïve implementation of k-means clustering algo-
rithm for quantization, takes over 30 minutes for models
with more than 30 million parameters, while Inshrinkerator
usually takes a few seconds. Uniform fails to find valid quan-
tization configurations for strict quality thresholds. Among
baselines, only Adaptive manages to constantly find quan-
tization configurations that satisfy the quality thresholds.
However, it requires a 2-4× higher number of quantization
bins to achieve the same quality as Inshrinkerator due to
their use of uniform quantization.

Figure 11: Parameter rearrangement significantly improves

the performance of delta encoding schemes (ResNet-152). HE

=HuffmanEncoding, RLE =RunLength Encoding +Huffman

Encoding, PE = Parameter Rearrangement-based Encoding.

Quantization Runtime. Table 8 reports the runtime of
two key operations in our quantization algorithm: comput-
ing qualities for pruning and protection, and the K-Means
clustering for quantization. We implement our approach in
Pytorch with support for both CPU and GPU execution. We
compare the performance of our implementation against off-
the-shelf GPU-enabled implementations for quantile estima-
tion in CuPy and K-Means clustering in CuML respectively.
Our quantile estimation algorithm achieves 3-4× higher per-
formance compared to CuPy, while we note a speed-up of
up to 65× in quantile computation.
Parameter Rearrangement-based Delta Encoding. The
key optimization in Inshrinkerator’s delta encoding scheme
is parameter rearrangement, which enables it to decrease the
entropy in each compressed chunk. To assess the contribu-
tion of this optimization, we compare three variants of our
delta encoding scheme: the Huffman encoding variant used
in Uniform (HE), run-length plus Huffman encoding (RLE),
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and parameter rearrangement-based delta encoding (PE) on
the ResNet-152 training job. The results are illustrated in
Figure 11. With parameter rearrangement, we achieve much
higher compression in the later phase of training. Notably,
we obtain a maximum compression ratio of 366 with re-
arrangement compared to 79 with RLE and 30 with HE. This
translates to overall lower storage overhead. The Huffman
and run-length encoding-based schemes only achieve overall
storage overhead reduction of 25× and 28× respectively, as
opposed to 39× with parameter rearrangement.

10 DISCUSSION

Inshrinkerator demonstrates significant reduction in check-
point storage overhead with minimal impact on model accu-
racy. However, several aspects of the system design warrant
further investigation and development:

• Delta CompressionOptimization:While delta compres-
sion optimizes storage, it can increase restore latency as
the chain of delta checkpoints grows. Future work should
explore adaptive policies for balancing storage efficiency
and restore time, potentially incorporating periodic full
checkpoints or intermidate compaction. These policies
could dynamically adjust based on training progress, fail-
ure rates, and available resources.
• Integration with High-Frequency Checkpointing: Re-
cent work [49] has proposed dynamic, high-frequency,
iteration-level checkpointing to minimize work loss due
to failures. As model sizes increase, the storage and net-
work costs of such frequent checkpoints become signif-
icant. Future research could explore how Inshrinkerator
can be integrated with these systems to alleviate storage
and network bottlenecks while maintaining the benefits
of frequent checkpointing. This integration may require
adapting Inshrinkerator’s configuration search for short
intervals between checkpoints and considering the impact
on I/O bandwidth and overall system performance.
• Adaptive Application-Specific Tuning: The quality
degradation threshold 𝜖 should be dynamically tuned based
on application requirements and environmental factors.
Future work could develop a framework for automatically
determining optimal 𝜖 values using characteristics such as
model architecture, dataset properties, and training envi-
ronment. Online learning techniques could be employed to
adapt 𝜖 during training, balancing compression efficiency
with application-specific quality requirements.
• QuantizationHeuristics:Our current approach of mono-
tonically increasing quantization precision during training
prioritizes model quality. Future work could explore more

sophisticated strategies, to optimize the quantization strat-
egy throughout training. Multi-objective optimization ap-
proaches could be developed to balance compression ratio,
model quality, and computational overhead dynamically.

These considerations open avenues for further research in
adaptive checkpoint compression strategies, potentially lead-
ing to even more efficient and versatile checkpoint storage
solutions for large-scale deep learning training.

11 RELATED WORK

Our work intersects with three main areas of research: model
compression techniques, checkpoint compression systems,
and checkpointing at scale. We discuss each of these below.

11.1 Model Compression Techniques

Model compression techniques aim to reduce the storage,
memory, and computational requirements of deep learning
models without compromising their performance.

Quantization. Quantization has beenwidely studied, partic-
ularly for efficient model inference. Post-Training Quantiza-
tion (PTQ) [7, 10, 13, 26, 35] and Quantization-Aware Train-
ing (QAT) [14, 31, 38, 46, 55, 59] are two main approaches.
While QAT incorporates quantization errors into the loss
function during training, our proposed in-training check-
point quantization operates on intermediate model states
without affecting the training optimization function.

Variable bit-width quantization assigns different bit-widths
to model layers based on their importance [12, 20, 21, 25, 42,
45]. This approach enables better compression without com-
promising performance, although determining the optimal
bit-width for each layer can be time-consuming.

Pruning. Pruning is another popular model compression
technique in which unimportant parameters are removed
from the model. Magnitude-based pruning techniques re-
move parameters with the smallest absolute values [33],
while sensitivity-based pruning methods consider the impact
of parameter removal on the model’s loss [16, 24, 61, 65].

Recentwork on the Lottery Ticket Hypothesis with Rewind-
ing [27] has shown that simple magnitude-based heuristics
can identify extremely sparse subnetworks early in train-
ing that yield performance similar to the full network when
trained in isolation. Our work leverages this insight for in-
training pruning, applying it to checkpoints during training.

11.2 Checkpoint Compression Techniques

Several studies have explored compression techniques specif-
ically for model checkpointing systems to minimize storage
overhead [11, 23, 37, 41]. These systems typically employ a
combination of model quantization and delta encoding, lever-
aging the high similarity between adjacent checkpoints.
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Quantization inCheckpointCompression. Recent check-
point compression systems have employed various quantiza-
tion techniques. LC-Checkpoint [11] uses an exponent-based
non-uniform quantization scheme, choosing the non-linear
function heuristically. Delta-DNN [37] proposes a uniform
quantization approach with an exhaustive configuration
search strategy. QD-Compressor [41] employs an entropy-
based variable bit-width uniform quantization scheme, while
Check-N-Run [23] applies an adaptive uniform quantization
method [30] for large deep recommendation models.

Delta Compression. Delta compression is a key technique
in reducing storage overhead for model checkpoints. Each
compressed checkpoint only stores the differences since the
previous checkpoint, allowing for reconstruction of the final
checkpoint by iteratively applying these deltas.
While QD-Compressor [41] proposes a delta encoding

algorithm, it doesn’t account for changes in quantization
bit widths induced by their variable bit-width technique.
Check-N-Run [23] introduces a delta compression scheme
specifically for recommendation models, but its applicability
to traditional deep learning models is limited.

11.3 Checkpointing at Scale

As machine learning models grow in size and complexity,
efficient checkpointing strategies become crucial.

Distributed Checkpointing. Distributed checkpointing
systems [23, 50] save partial model states across multiple
nodes within a distributed system. This approach is espe-
cially useful when the model state cannot fit on a single
device and reduces the overhead associated with storing and
retrieving large checkpoints. Our proposed method is fully
compatible with distributed checkpointing, enabling check-
point compression even when the model state is distributed
across different processes.

Frequent Checkpointing. Frequent checkpointing min-
imizes the risk of losing progress due to unexpected fail-
ures and allows for more granular control over the training
process. CheckFreq [49] facilitates frequent checkpointing
through a two-phase process that overlaps computation with
checkpointing operations. It dynamically determines check-
pointing intervals to balance trade-offs between overhead
and wasted work.

12 CONCLUSION

Inshrinkerator combines non-uniform quantization, dynamic
quantization configuration search, and quantization-aware
delta compression to enable efficient in-training checkpoint-
ing. In our experiments, Inshrinkerator demonstrates the
ability to induce a tradeoff space between the end-to-end
model quality and checkpoint storage overhead, achieving

up to 10× compression without loss in model quality for fault-
tolerant training and transfer learning.
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A EVALUATION SETUP

A.1 Model Implementations

For pre-training the ResNet-152 and ViT-32L models on Ima-
genet1k, we utilize the implementation and hyperparameters
available in the Torchvision package [47], while BERT-Base
and GPT-2 Medium training leverages implementations pro-
vided byMosaicML [4] and NanoGPT [? ] repositories respec-
tively. Notably, we maintain the original training duration
and model hyperparameters, avoiding any potential skewing
of evaluation results, with the exception of GPT-2 Medium
where we truncate the training procedure to 30 billion tokens
to restrict the training duration. In ViT-32L we find that the
default parameters result in unstable training, so we reduce
the learning from 0.003 to 0.001.

A.2 Baseline Implementation

In this section, we describe modifications made to Check-N-
Run [23], QD-compressor [41], and GOBO [63] algorithms
during our implementation of the baselines.

For QD-compressor, we address an oversight in the origi-
nal description which restricted the applicability of the delta
compression algorithm to cases where the number of bins
assigned to a layer changes between successive checkpoints.
While GOBO was originally proposed for post-training

quantization, we implement it within the Inshrinkerator
framework to allow in-training compression. We also modify
the GOBO clustering algorithm to include a soft termination
condition which significantly reduces the runtime.
Since Check-N-Run was originally developed with the

intent to support deep learning recommendation models,
the delta compression algorithm proposed in the system
cannot be used for regular deep learning workloads. Thus
we only implement the quantization algorithm [30] used by
Check-N-Run for comparison.
Recall that we also added Inshrinkerator’s dynamic con-

figuration search capability for all baselines. Tables 9 to 12
list the range of values used for the configuration parameters
for Inshrinkerator, QD, CNR, and GOBO respectively.

Parameter Values

Number of bins 4, 6, 8, 12, 16, 32

Number of bins (Embedding Layers) 16, 32

Pruning Fraction 0, 0.1, 0.2, 0.3, 0.4, 0.5

Pruning Metric Magnitude, Sensitivity

Protection Fraction 0.0005, 0.005, 0.01

Table 9: Search space for Inshrinkerator quantization

configuration

Parameter Values

Minimum number of bins 8, 16, 32, 64, 128, 256

Maximum number of bins 8, 16, 32, 64, 128, 256

Table 10: Search space for QD quantization configura-

tion

Parameter Values

Number of bins 8, 16, 32, 64, 128, 256

Number of step bins 10, 25, 50, 100

Range 0.1, 0.2, 0.3, 0.4, 0.5

Table 11: Search space for CNR quantization configu-

ration

Parameter Values

Number of bins 8, 16, 32, 64, 128, 256

Number of bins (Embedding Layers) 16, 32

Outlier threshold -4

Max Iteration 1000

Table 12: Search space for GOBO quantization configu-

ration

A.3 Additional Details for Approximate
K-Means

A.3.1 Proof for Error-bound Guarantees. We restate the no-
tations and propositions here for clarity. Let𝑋 = {𝑥1, . . . , 𝑥𝑛}

and 𝑋̃ = {𝑥1, . . . , 𝑥𝑛} denote a set of 𝑛 points where 𝑥𝑖 , 𝑥𝑖 ∈
[0, 1] and for all 𝑖 , |𝑥𝑖 − 𝑥𝑖 | ≤ 𝛼𝑥𝑖 for some 𝛼 ∈ (0, 1). Let
𝑀 = {𝜇1, . . . , 𝜇𝑘 } be the cluster centers of𝑋 and the loss of𝑀
over inputs 𝑋 is defined as L(𝑀) = 1

𝑛

∑
𝑥∈𝑋 min𝜇∈𝑀 |𝑥 − 𝜇 |.

The cluster centers 𝑀̃ and loss L𝑞 over 𝑋̃ are defined simi-
larly. The optimal loss L(𝑀∗) is the loss of the optimal clus-

ter centers 𝑀∗ = argmin𝑀 L(𝑀). The optimal loss L𝑞 (𝑀̃
∗)

and cluster centers 𝑀̃∗ over 𝑋̃ are defined similarly. Let
𝜇𝑀 (𝑖) = argmin𝜇 |𝜇 − 𝑥𝑖 | denote the cluster center in 𝑀

that is closest to the ith input 𝑥𝑖 (𝜇̃𝑀̃ (𝑖) is defined similarly
for 𝑥𝑖 ).
Note that the loss L(𝑀̃) over the original inputs 𝑋 with

any clustering 𝑀̃ over 𝑋̃ is at most 𝛼 greater than the loss

L𝑞 (𝑀̃),

L𝑞 (𝑀̃) =
1

𝑛

𝑛∑︁

𝑖=1

|𝜇̃𝑀̃ (𝑖) − 𝑥𝑖 | ≤
1

𝑛

𝑛∑︁

𝑖=1

( |𝜇̃𝑀̃ (𝑖) − 𝑥𝑖 | + 𝛼𝑥𝑖 )
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= L(𝑀̃) +
𝛼

𝑛

𝑛∑︁

𝑖=1

𝑥𝑖 ≤ L(𝑀̃) + 𝛼

where the first inequality follows from triangle inequality
and the second follows from the fact that 1

𝑛

∑𝑛
𝑖=1 𝑥𝑖 ≤ 1. Using

similar arguments, one can verify that L(𝑀̃) ≤ L𝑞 (𝑀̃) + 𝛼 .

Proposition A.1. Given any two sets 𝑋, 𝑋̃ of 𝑛 points as

defined above such that |𝑥𝑖 − 𝑥𝑖 | ≤ 𝛼𝑥𝑖 ∀𝑖 . For any 𝑘 ≥ 1, the

difference between the optimal loss of clusterings over 𝑋 and

𝑋̃ are bounded as,

|L(𝑀∗) − L𝑞 (𝑀̃
∗) | ≤ 𝛼 (1)

Proof. We first show that L𝑞 (𝑀̃
∗) ≤ L(𝑀∗) + 𝛼 .

L𝑞 (𝑀̃
∗) =

1

𝑛

𝑛∑︁

𝑖=1

|𝜇̃𝑀̃∗ (𝑖) − 𝑥𝑖 | ≤
1

𝑛

𝑛∑︁

𝑖=1

|𝜇𝑀∗ (𝑖) − 𝑥𝑖 |

≤
1

𝑛

(
𝑛∑︁

𝑖=1

|𝜇𝑀∗ (𝑖) − 𝑥𝑖 | + 𝛼

𝑛∑︁

𝑖=1

𝑥𝑖

)
≤ L(𝑀∗) + 𝛼 (2)

In Equation (2), the first inequality follows from the fact

that 𝑀̃∗ is the optimal clustering over 𝑋̃ and hence replacing
the cluster centers 𝜇̃𝑀̃∗ (𝑖) with 𝜇𝑀∗ (𝑖) leads to a quantity

which is greater than equal to L𝑞 (𝑀̃
∗). The next inequality

follows from triangle inequality and uses the fact that |𝑥𝑖 −
𝑥𝑖 | ≤ 𝛼𝑥𝑖 . Using similar arguments, one can verify that

L(𝑀∗) ≤ L𝑞 (𝑀̃
∗) +𝛼 . Combining the two equations, we have

that |L(𝑀∗) − L𝑞 (𝑀̃
∗) | ≤ 𝛼 which is the main statement of

the proposition.

The proof for L(𝑀∗) ≤ L𝑞 (𝑀̃
∗) + 𝛼 follows similar argu-

ments leading to the main statement of the result.
□

Remark A.1. The results show that the difference between

optimal loss of k-means clustering over inputs𝑋 and its grouped

counterpart 𝑋̃ is bounded by𝛼 . Building upon this, we will show

that when the clustering is performed with sample-weighted

k-means++, the expected loss over 𝑋̃ is bounded by the optimal

loss over 𝑋 and 𝛼2.

To keep notations close to [6], we denote the loss over
squared norm as 𝜙 (𝑀) = 1

𝑛

∑
𝑥∈𝑋 min𝜇∈𝑀 |𝑥 − 𝜇 |

2. The loss

𝜙𝑞 (𝑀) is defined similarly over 𝑋̃ :𝜙𝑞 (𝑀̃) =
1
𝑛

∑
𝑥̃∈𝑋̃ min𝜇̃∈𝑀̃ |𝑥−

𝜇̃ |2.

Proposition A.2. Given any two sets 𝑋, 𝑋̃ of 𝑛 points as

defined above such that |𝑥𝑖 − 𝑥𝑖 | ≤ 𝛼𝑥𝑖 ∀𝑖 . For any 𝑘 ≥ 1, let

𝑀 be the clustering obtained by applying weighted kmeans++

(Algorithms 3 and 2) over the set 𝑋̃ . Then,

𝐸 [𝜙𝑞 (𝑀)] ≤ 16(ln𝑘 + 2) (𝜙 (𝑀∗) + 𝛼2) (3)

Proof. Wefirst upper bound the optimal loss𝜙𝑞 (𝑀̃
∗) with

𝜙 (𝑀∗) and 𝛼 . See that

𝜙𝑞 (𝑀̃
∗) =

1

𝑛

𝑛∑︁

𝑖=1

|𝜇̃𝑀̃∗ (𝑖) − 𝑥𝑖 |
2 ≤

1

𝑛

𝑛∑︁

𝑖=1

|𝜇𝑀∗ (𝑖) − 𝑥𝑖 |
2

≤ 2

(
1

𝑛

𝑛∑︁

𝑖=1

|𝜇𝑀∗ (𝑖) − 𝑥𝑖 |
2 +

𝛼2

𝑛

𝑛∑︁

𝑖=1

𝑥2𝑖

)
≤ 2(𝜙 (𝑀∗) +𝛼2) (4)

Applying weighted-kmeans++ (Algorithms 3 and 2) over

the set 𝑋̃ produces𝑀 . Using Theorem 1.1 in [6], we have that

𝐸 [𝜙𝑞 (𝑀)] ≤ 8(ln𝑘 + 2) (𝜙𝑞 (𝑀̃
∗)) and using Eq. 4 to replace

𝜙𝑞 (𝑀̃
∗), we obtain the main statement of the proposition.

□

Remark A.2. The result implies that Algorithms 2 and 3

is 𝑂 (ln𝑘)-competitive with 𝜙 (𝑀∗) + 𝛼2 while being orders of

magnitude faster in comparison with the vanilla k-means++

which is 𝑂 (ln𝑘)-competitive with 𝜙 (𝑀∗).

We now analyze certain conditions where the clustering

memberships of every point in the two cases (𝑋 and 𝑋̃ ) would
be identical. Let 𝐶 = {𝑋1, . . . , 𝑋𝑘 } be a clustering (or parti-
tion) of 𝑋 ⊆ [0, 1] with centers 𝑀 = {𝜇1, . . . , 𝜇𝑘 }. For all
𝑥 ∈ 𝑋𝑖 , and 𝑖 ≠ 𝑗 , |𝑥 − 𝜇𝑖 | ≤ |𝑥 − 𝜇 𝑗 |. Let the minimum
distance between any two points in two different clusters
in 𝐶 be the split of the clustering denoted as 𝑠𝑝𝑙𝑖𝑡𝐶 (𝑋 ). Let
the maximum distance between any two points in the same
cluster be the width of the clustering denoted as𝑤𝑖𝑑𝑡ℎ𝐶 (𝑋 ).

Definition A.1. [8] A clustering 𝐶 = {𝑋1, . . . , 𝑋𝑘 } of 𝑋 ⊆

[0, 1] is 𝜎-𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒 for 𝜎 ≥ 1 if 𝑠𝑝𝑙𝑖𝑡𝐶 (𝑋 ) > 𝜎 ·𝑤𝑖𝑑𝑡ℎ𝐶 (𝑋 ).

In other words, any clustering𝐶 is 𝜎-𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒 if the min-
imum distance between any two points in separate clusters
is greater than the maximum distance between two points
in the same cluster.
We now show that if the optimal clustering over the set

𝑋 is 𝜎-𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒 , then for small enough 𝛼 depending on the

value of 𝜎 , the optimal clustering over 𝑋 and 𝑋̃ will be the
same.
First note that, if a 𝜎-𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒 clustering 𝐶 exists for a

given set of inputs, then only one such paritioning of the
inputs.

Lemma A.1. [5] If there exists a k-clustering 𝐶 of 𝑋 , for

𝑘 ≥ 2, such that 𝐶 is 𝜎-𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒 , then there is only one such

partitioning of 𝑋 .

The proof of the above Lemma can be found in [5]. We

now show that if 𝛼 <
𝑠𝑝𝑙𝑖𝑡𝐶 (𝑋 )−𝑤𝑖𝑑𝑡ℎ𝐶 (𝑋 )

4
, then the same

paritioning over 𝑋̃ is also 𝜎-𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒 and hence the optimal

clustering for both 𝑋 and 𝑋̃ are identical.
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Let 𝑠1 and 𝑠2 be the two points in 𝑋 such that the distance
between them is minimum among all pairs of points in sep-
arate clusters (|𝑠2 − 𝑠1 | = 𝑠𝑝𝑙𝑖𝑡𝐶 (𝑋 )). Let 𝑤𝑙 and 𝑤2 be two
points in𝑋 such that the distance between them is maximum
among all pairs of points in the same cluster.

For the points in 𝑋 to have a 𝜎-𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒 clustering in 𝑋̃ ,
the following condition should hold in the worst case,

𝑠2 (1 − 𝛼) − 𝑠1 (1 + 𝛼) > 𝑤2 (1 + 𝛼) −𝑤1 (1 − 𝛼)

=⇒ (𝑠2 − 𝑠1) − 𝛼 (𝑠1 + 𝑠2) > (𝑤2 −𝑤1) + 𝛼 (𝑤1 +𝑤2)

=⇒ 𝛼 <

(𝑠2 − 𝑠1) − (𝑤2 −𝑤1)

4
=
𝑠𝑝𝑙𝑖𝑡𝐶 (𝑋 ) −𝑤𝑖𝑑𝑡ℎ𝐶 (𝑋 )

4

This implies that if the original clusters are 𝜎-𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒
and 𝛼 is small enough then the optimal cluster memberships

over 𝑋 and 𝑋̃ will be identical.
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