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Abstract

High-quality distractors are crucial to both the
assessment and pedagogical value of multiple-
choice questions (MCQs), where manually
crafting ones that anticipate knowledge defi-
ciencies or misconceptions among real students
is difficult. Meanwhile, automated distractor
generation, even with the help of large lan-
guage models (LLMs), remains challenging for
subjects like math. It is crucial to not only
identify plausible distractors but also under-
stand the error behind them. In this paper,
we introduce DiVERT (Distractor Generation
with Variational Errors Represented as Text),
a novel variational approach that learns an in-
terpretable representation of errors behind dis-
tractors in math MCQs. Through experiments
on a real-world math MCQ dataset with 1,434
questions used by hundreds of thousands of
students, we show that DiVERT, despite using
a base open-source LLM with 7B parameters,
outperforms state-of-the-art approaches using
GPT-40 on downstream distractor generation.
We also conduct a human evaluation with math
educators and find that DiVERT leads to error
labels that are of comparable quality to human-
authored ones.

1 Introduction

Multiple-choice questions (MCQs) are arguably
the most common form of questions found in stan-
dardized tests. Each MCQ contains a question stem
that states the context of the questions and the task
to be completed, and a series of options: akey, i.e.,
the correct answer, embedded among several other
distractors, i.e., incorrect answers. See Figure 1
for an example. MCQs are widely used in real-
world, large-scale educational/psychological tests
and surveys, mainly due to the ease in automated
grading (Nitko, 1996; Airasian, 2001; Kubiszyn
and Borich, 2016). However, constructing a good
set of distractors can be quite challenging: On the

“These authors contributed equally to this work.

one hand, they should correspond to clear errors
in the factual recall or reasoning process required
by the question’s task. On the other hand, these
errors should not be too obvious such that no stu-
dent would select the distractors. Therefore, de-
signing high-quality MCQs that measure specific
knowledge components/concepts/skills and more
importantly, corresponding distractors good at cap-
turing specific knowledge deficiencies among real
students/test takers is very important to the devel-
opment of high-quality MCQs.

The typical approach to MCQ distractor devel-
opment primarily relies on extensive human effort,
which can be burdensome for educators, which mo-
tivated the development of auromated approaches.
Prior work on automated distractor generation pri-
marily focuses on i) cloze tasks in language learn-
ing to assess vocabulary recall or grammatical
knowledge and ii) reading comprehension ques-
tion answering to assess comprehension of a given
text or article (Alhazmi et al., 2024). Approaches
include using knowledge graphs, encoder-decoder
models, and with help from large language models
(LLMSs). See Section 7 for a more detailed review
of related work.

For other subjects where common tasks require
(possibly complex) reasoning ability, such as math,
there exist relatively few approaches to automated
MCQ distractor generation. In these domains, gen-
erating high-quality distractors is more challenging
than in language learning or reading comprehen-
sion: distractors need to reflect abstract mathemati-
cal misconceptions and/or procedural errors in the
mathematical reasoning process. Earlier works ei-
ther use symbolic, rule-based approaches to gen-
erate distractors (Tomas and Leal, 2013; Prakash
et al., 2023), which have limited generalizability
beyond template-based questions, or sample incor-
rect generations during a math problem solving
process as distractors (Dave et al., 2021). More
recently, (Feng et al., 2024; Scarlatos et al., 2024a)



Minimize KL Divergence

= —— e == - -

Question stem s

Error Prior

LLME® p(é|s)

— Compute 1 = l
6 3

D)L Error Identifier|* S g
18 . [LLMY g(é|s,d) | Soft Error Tokens €
Distractord ' - — — — — — — — _ _ Monte Qarlo
Sampling

«<---Gradient Flow

Multiplies numerators
and denominators

Controllable 7

L. Distractor Gen. —»E
LLM¢ p(d|s, é)
A

Figure 1: Overview of DiVERT’s variational pipeline for error explanation and distractor generation in math MCQs.

investigate a wide array of LLLM-based approaches
for math MCQ generation, particularly focusing on
the plausibility of distractors, i.e., how likely is a
distractor going to be selected among real students.
However, to the best of our knowledge, no ex-
isting approach has attempted to generate expla-
nations of errors underlying MCQ distractors. In
assessment scenarios where one’s goal is to mea-
sure the overall ability of a student/test taker, being
able to generate a good set of distractors may be
sufficient. However, in real-world educational sce-
narios where one’s goal is to maximize the learning
gain of students, being able to interpret the cause
of error behind a distractor is highly important;
this information can be used for student knowledge
diagnosis, i.e., identifying areas where they lack
sufficient knowledge (VanLehn, 1982) or even pin-
point specific misconceptions they exhibit (Wang
et al., 2021). Such diagnosis can be used to pro-
vide feedback to both teachers, to help them better
understand students’ learning progress and directly
to students in real-time, through intelligent tutoring
systems (Ritter et al., 2007), online learning plat-
forms (Heffernan and Heffernan, 2014), or via chat-
bots powered by LLMs (Academy, 2024). There-
fore, interpreting the errors behind students select-
ing specific distractors in math MCQs is important
yet challenging, partly due to the mathematical rea-
soning processes required by these questions.

1.1 Contributions

1. We introduce DiVERT !(Distractor Genera-
tion with Variational Errors Represented as
Text), a novel variational approach to jointly
learn error representations in math MCQs as
well as generate distractors corresponding to
errors.

ICode: https://github.com/umass-mlded/divert

2. We add interpretability to DiVERT by using
LLMs to parameterize all distributions in our
variational approach. This design enables us
to represent and interpret errors as text tokens.

3. We conduct extensive quantitative and qual-
itative experiments on a real-world math
MCQ dataset. We find that DiVERT, by
jointly learning to represent errors and gen-
erate distractors, outperforms state-of-the-art
approaches on distractor generation.

4. We conduct a human evaluation with math
educators and find that DiVERT leads to error
explanations comparable in quality to human-
authored ones, and significantly outperforms
GPT-4-generated errors despite using a much
smaller base LLLM with 7B parameters.

2 Problem Formulation

We denote each math MCQ as @ =
{s,k, f,t,D,E}, which contains a set of
textual components, including the question stem
s, the key k, (optionally) an explanation of the
key f, (optionally) question topic/concept tags
t, and a set of distractors D: we denote each
distractor itself as d; € D, with e¢; € E denoting
the error explanation associated with the distractor,
e.g., a misconception. In this paper, we do not
consider MCQs with figures or diagrams since the
open-source LLLMs we work with cannot process
visual input. All of these textual components are
sequences of words and math symbols and we
denote them as a series of tokens {w,...,wr},
with L being the length of the sequence.

We study the task of learning an interpretable
space of errors behind distractors in math MCQs.
Since it is difficult to quantitatively evaluate error
representations, we also study the downstream task
of distractor generation (Feng et al., 2024). Specifi-
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cally, our two major goals are:

1. Error generation: From a set of real-world
math MCQs, learn an error representation
space underlying distractors. Possible errors
include insufficient knowledge on required
skills or exhibiting specific misconceptions.

2. Distractor generation: For each plausible er-
ror, generate corresponding distractor(s), i.e.,
incorrect answer(s) that an incorrect approach
with that error leads to.

We select distractor generation as the downstream
task since performance on this task is easily quan-
tifiable; however, there are other meaningful tasks,
such as feedback message and tutoring dialogue
turn generation, where current methods struggle to
implicitly identify student errors (McNichols et al.,
2024; Scarlatos et al., 2024b), yet knowing what
error a student made significantly improves LLMs’
performance on these tasks (Jurenka et al., 2024).
We leave exploring such tasks for future work.

We formulate the error generation task as learn-
ing a function that outputs a plausible error in an
MCQ, given the question stem and attributes in-
cluding the key and (optionally) explanation and
topic tags, i.e., ¢°" (s, k, f,t) — €. Similarly, we
formulate the distractor generation task as learning
a function that outputs a distractor that corresponds
to a plausible error, i.e., gdis(s, k,f,t,é) — d.

3 Methodology

We now detail our approach to error representation
learning and distractor generation in math MCQs.

3.1 Variational Approach

There can be numerous plausible errors among real
students for each math MCQ, all of which may
lead to different distractors. For example, in the
MCQ in Figure 1 on fraction division, the distractor
% may result from a student exhibiting the error
“multiplies numerators and denominators”, while
the distractor % may result from the error “adds nu-
merators and denominators”. Without explicit error
annotations, an error e is a latent variable underly-
ing a distractor d. Thus, the observed likelihood of
a distractor given a question stem s is

p(d[s) = 3" ce (els)p(d]s, €), (1)

where p(e|s) is the probability that the error e can
be made on question s, p(d|s,e) is the probabil-
ity that d corresponds to the error e, and £ is the

space of all possible errors, which can be compu-
tationally intractable depending on how the errors
are represented. While there are many potential
representations of the errors, such as discrete cate-
gories or continuous latent vectors, we choose to
represent each error as a sequence of textual tokens,
so that the learned underlying representations of
distractors are interpretable by both humans and
language models.

Given this perspective, we naturally use a vari-
ational approach to learn an approximation of the
large latent error space. Similar to variational auto-
encoders (Kingma and Welling, 2014), we jointly
learn the latent distribution and maximize the likeli-
hood of the data by maximizing the evidence lower
bound (ELBO) on the observed data log-likelihood,
given by

log pg(d|s) > ELBO(d|s) = L(8, ¢)
= Eq,(e)s,a) [log po,(d]s; €)]
— BDxi(gg(els, d) || po.(els)), (2)

where 6, 04, and ¢ are the parameters of the prior
model, distractor likelihood model, and variational
model, respectively. The parameter 5 > O controls
the balance between the distractor reconstruction
loss and the KL divergence between the approxi-
mate posterior and the prior.

To maximize the objective above, we jointly
train three models, each parameterized by an LLM:

1. The error prior model py_(e|s): This model
generates a textual explanation of an error that
students can make given the MCQ’s stem.

2. The controllable distractor generation
model py,(d|s, ): This model generates a dis-
tractor that is the resulting incorrect answer
after making a specific error in this question.

3. An error identifier model g, (e|s, d): This ap-
proximate posterior model generates the error
behind a question-distractor pair, and acts as
the variational distribution during training.

We note that there can be many choices for the
variational distribution ¢(-); we choose g(e|s, d)
since it can be useful in practice by allowing us to
recover textual errors from distractors. We leave
experimenting with other useful approximate dis-
tributions such as g(e|t) or even simply ¢(e) for
future work. Next, we detail how we train all three
models in a connected fashion, with the pipeline
shown in Figure 1.



3.2 DiVERT

As discussed above, to promote interpretability in
error representations, we parameterize all distri-
butions in our variational approach using LLMs.
We use a different LLM for each distribution;
each is fine-tuned from the same base LLM us-
ing QLoRA (Dettmers et al., 2024). We denote
them as LLM€, LLM¢, and LLM?. Next, we de-
tail a series of novel methods that we introduce to
enable DiVERT to effectively perform the tasks of
error learning and distractor generation.

Differentiable Learning through Discrete To-
kens. The ELBO in Equation 2 can easily be
approximated by Monte Carlo simulation, with
samples drawn from gg(el|s,d) (see Supplemen-
tary Material A). However, since we parameterize
ge with an LLM, these samples are sequences of
discrete text tokens. Therefore, we cannot simply
use the reparameterization trick to sample from g.
Using a similar approach to (Liu et al., 2023), we
use soft tokens, i.e., differentiable versions of hard,
discrete text tokens during training to enable the
flow of gradients. Specifically, for the k-th error to-
ken é; generated by LLMY, we replace its discrete
embedding ve, with ), pk,;v;, where pg,; is the
probability of generating token 5 at position k from
LLMY and v is the embedding vector of token j
in the vocabulary of LLM9Y. This approximation
enables us to sample discrete tokens while differen-
tiating through continuous vectors during training.
We calculate py, j; = softmax(zy/));, where zy is
the output logit vector from LLLM? at position k
and A > 0 is a temperature parameter. Following
prior work (Jang et al., 2017), we initialize A to 1
and exponentially anneal it to 0.1 during training.
This process means that the soft tokens are smooth
when training starts to enable better gradient flow,
while later becoming closer to hard tokens.

Initialization with Supervised Fine-tuning. De-
spite LLMs exhibiting better and better mathemat-
ical reasoning capabilities, their capacity in un-
derstanding errors (Sonkar and Baraniuk, 2023)
and generating distractors that correspond to er-
rors (Feng et al., 2024) remains surprisingly poor.
Therefore, we solicit a collection of error labels be-
hind question-distractor pairs, (s, d), from math ed-
ucators. Then, we fine-tune all three LLMs in their
respective formats using this annotation data to
initialize DiVERT’s three LLM components. With-
out this step, base LLLMs, even ones that perform

well on question answering tasks, generate low-
quality error explanations that hurt performance,
especially during early training stages. In Section 5,
we demonstrate that using a small portion of error
labels for warm-up fine-tuning helps DiVERT’s
ability to learn from unlabeled (s, d) pairs.

Q Regularization. Since the space of plausible
errors can be large, we add a regularization term
in our loss function to prevent the approximate
posterior distribution g4 (e|s, d) from deviating too
much compared to its initialized version after su-
pervised fine-tuning, g, . . This term, weighted by
a balancing parameter a > 0, controls the amount
of exploration in our error tokens sampled from
qs(els,d) and prevents it from diverging during
training. Concretely, the regularization is given by

Lreg=3" 100 \DKL(5 (615, D) |a6(Ex]s, ), (3)

with our final training objective to minimize be-
coming

_‘C(G: ¢') + a‘creg- 4)

We note that this term is similar to the KL penalty
used when training LLMs with reinforcement learn-
ing (Ouyang et al., 2022), specifically NLPO (Ra-
mamurthy et al., 2022) that also uses a token-level
penalty. However, the key difference is that we di-
rectly backpropagate gradients from this loss rather
than use it to form a reward.

Overgenerate-and-rank for Errors and Distrac-
tors. At test time, we first generate a set of N,
errors, denoted as E , through LLLM®, using diverse
beam search (Vijayakumar et al., 2018) for decod-
ing, to promote diversity among generated errors.
Then, for each generated error é € E , We generate
N, distractors through LLM? using standard beam
search since the distractors exhibit much less vari-
ation under a specific error. Finally, we rank all
N, x Ny candidate distractors in D by their associ-
ated beam scores and select the top-K (Ashok Ku-
mar et al., 2023).

4 Experimental Evaluation

In this section, we detail our experiments on a real-
world math MCQ dataset. For quantitative evalua-
tion, we compare DiVERT against state-of-the-art
approaches and strong baselines on the task of dis-
tractor generation. For qualitative evaluation, we
perform a human evaluation of the generated error
explanations with math educators.



4.1 Dataset Details

We work with a real-world math MCQ dataset
from the Eedi learning platform?, containing 1,434
MCQs written in English, each with a set of 3
distractors. We collect error labels from middle
school math teachers for each question-distractor
pair, explaining why a student may select that dis-
tractor. The questions are designed primarily to as-
sess students aged between 10 to 13, on 41 unique
subtopics, including “Basic Arithmetic”, “Frac-
tions”, and “Solving Equations”. We divide the
dataset into train-val-test splits by questions to en-
sure no overlap in the MCQ stem across the splits,
resulting in roughly a 72%-16%-12% split over
question-distractor pairs. See Supplementary Mate-
rial D for statistics, and Supplementary Material G
for MCQ examples.

4.2 Metrics

Error Evaluation. The open-ended and math-
ematical nature of errors makes automated text
similarity metrics like ROUGE-L F1 (Lin, 2004)
and BERTScore F1 (Zhang et al., 2020) unsuit-
able. Therefore, we conduct a human evaluation
of generated errors, which we detail in Section 6.
For completeness, we report error evaluation on
automated metrics in Supplementary Material E.

Distractor Evaluation. Following prior work
on automated distractor generation (Feng et al.,
2024), we use alignment-based metrics to measure
how well the K generated distractors align with
ground-truth human-authored ones. The first met-
ric, Exact match (h.), measures whether all three
human-authored distractors in I are matched ex-
actly by some subset of the generated distractors D.
Similarly, Partial match (h,) measures whether
at least one generated distractor matches human-
authored ones. Concretely, these binary metrics
are defined as he(D,JD) —1ifDC D,and0
otherwise, while h,(D, D) = 1if DN D # 0, and
0 otherwise. The third, continuous metric, Propor-
tional match (hy,), measures the portion of human-
authored distractors that match generated ones, de-
fined as h,(D,D) = |D N D|/3. We compute
all metrics averaged across all MCQs in the test
set and report percentages. We vary K € {3,10},
similar to the setup for metrics such as MAP@K.
The Proportional match metric is most important
since it is more robust than the other two.

’https://eedi.com/us

4.3 Baselines

We compare our variational approach, DiVERT, to
state-of-the-art distractor generation approaches as
well as several strong baselines, outlined below.

Prompting Baselines. We compare DiVERT
to two prompting-based approaches proposed in
(Feng et al., 2024) using the state-of-the-art LLM
GPT-40 (OpenAl, 2024a). In contrast to our ap-
proach, these approaches generate all distractors in
one pass, without considering errors behind them.
The first is KNN, their best-performing approach,
where we use the 3 most similar MCQs in the train-
ing set as in-context examples and teacher-written
errors as chain-of-thought reasoning to aid distrac-
tor generation. We only use questions that have
errors for all distractors as examples. The second
is CoT, where no in-context examples are given
but the model is prompted to generate errors as
chain-of-thought (Wei et al., 2022) reasoning be-
fore each distractor. We note that Feng et al. (2024)
use teacher-written feedback instead of errors as
CoT, but we use errors for a fairer comparison to
our method. We make other small updates to the
prompts to include question tags and to generate
either 3 or 10 distractors per question. All our
prompts are shown in Supplementary Material H.
In Supplementary Material B, we show results from
other baselines in Feng et al. (2024) on our data.
We also perform a preliminary, small-scale com-
parison with the recent OpenAl ol model (Ope-
nAl, 2024b), which reportedly performs better than
GPT-40 on mathematical reasoning tasks.

Fine-Tuning Baselines. We introduce three
strong fine-tuning baselines for distractor gener-
ation. The first is DisSearch-D, where we fine-
tune the base LLM to directly generate a distractor
from the question stem, i.e., training p(d|s) on all
question-distractor pairs. The second is DisSearch-
ED CoT, where we fine-tune the base LLM to
generate the error first, as chain-of-thought (Wei
et al., 2022) reasoning, followed by the distrac-
tor, i.e., training p(e, d|s) on all question-distractor
pairs. At inference time, we also use beam search
to match the overgenerate-and-rank setup used
in DiVERT. The third is DisSearch-ED CoT
Pipeline, where we use the fine-tuned p(d|s, €) and
p(e|s) models without variational training and test
with the same two-step pipeline as DiVERT.
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K=3 K=10

Model Exact@3  Partial@3 Prop@3 | Exact@10 Partial@10 Prop@10
Proprietary Base LLM, GPT-4o
GPT-4o0 Zero-shot CoT (Feng et al., 2024) 6.221218 69.144397 35.2741.74| 19.471330 T78.661371 50.00+1.06
GPT-40 kNN (Feng et al., 2024) 21.2843.43 78421581 49.6313388| 33474348 85.144477 60.194387
Open-source Base LLM, MetaMath-Mistral 7B
DisSearch-D 13. 744086 74131452 41.761050| 34.124233 86.17T+401 61.411268
DisSearch-ED CoT 1411, 95 73.1813.81 42141152 36.21,; 5; B6.77,45, 62.83,, ¢
DisSearch-ED CoT Pipeline 13.53:|:1,74 73.6314_05 41.26&1,57 32.9713_45 86.2313‘33 60-4212.80
DiVERT (ours) 13374170 7633, 45 42.87,,,5| 37.001320 87264420 63.241337

Table 1: Cross-validation performance on distractor generation for all approaches across all metrics. DiVERT, using
an open-source base LLM with 7B parameters, outperforms all baselines and performs on par with or better than the
much larger and proprietary GPT-4o. Best performance is in bold and second best is underlined.

4.4 Experimental Setup

For the prompting baselines, we use the same im-
plementation and hyperparameters as the public
code repository in Feng et al. (2024) for a fair com-
parison. We use the latest base LLM from the GPT-
4 family, GPT-4o (as of June 13, 2024), instead of
GPT-3.5, to further strengthen their performance.
For DiVERT, we use MetaMath-Mistral 7B (Yu
et al., 2023) as our base LLM since it is one of the
best-performing LLLMs in the 7B family on math-
ematical reasoning; we found that it outperforms
other open-source LLLMs with similar size on our
tasks. See Supplementary Material F for detailed
parameter settings. At test time, we overgener-
ate N. = 10 errors via LLM® using diverse beam
search (Vijayakumar et al., 2018) and Ny = 10
distractors through LLM? using standard beam
search. Among the set of N, x Ny = 100 error-
distractor pairs we select the top-K € {3,10}.
For DisSearch-ED CoT, we use standard beam
search with 100 beams for a fair comparison with
DiVERT. DisSearch-D performs better with 10
beams so we report its performance with 10 beams.
For the primary results in Table 1, we perform a
5-fold cross-validation, rotating the test set over
the dataset, and report the average and standard
deviation of metrics across methods. For all other
experiments, we evaluate on a single fold to reduce
training time.

5 Results, Analysis, and Discussion

In this section, we quantitatively evaluate the qual-
ity of generated distractors, qualitatively evaluate
both errors and distractors, perform error analyses
on failed cases, and conduct an ablation study.

5.1 Quantitative Evaluation

DiVERT performs comparably or better than
GPT-40 and outperforms baselines. Table 1
shows downstream distractor generation perfor-
mance for all approaches on all evaluation met-
rics. Our variational approach, DiVERT, using an
open-source base LLM with 7B parameters, per-
forms on par with GPT-4o, especially on the ro-
bust Proportional @ 10 metric, where it outperforms
GPT-40 by a wide margin. GPT-40 kNN performs
best on K = 3 evaluation metrics, which is not sur-
prising since prior work (Feng et al., 2024) found
that the kNN approach exploits in-context exam-
ples in the training set that have the same under-
lying structure as the target MCQ, different only
in named entities and numerical values. There-
fore, all it needs to do is to follow patterns and
generate three distractors correspondingly without
understanding errors. However, it does not perform
as well on K = 10 metrics since it often fails to
go beyond the top three errors in MCQs that have
numerous plausible errors. In contrast, DiVERT
performs well by training on error labels to ac-
quire an understanding of plausible mathematical
errors. Under the same base LLM, DiVERT per-
forms better than baselines on almost all metrics,
which highlights the importance of its variational
approach, since sampling from the LLM? model
during training encourages exploration of the error
space and improves model robustness.

Errors as ‘“chain-of-thought” improve perfor-
mance. Comparing among baselines, we see that
training on human-authored error explanations im-
proves distractor generation performance. This
result can easily be explained by error labels serv-
ing as valuable chain-of-thought (Wei et al., 2022)
supervision during training.
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Figure 2: Distractor generation performance with in-
creasing percentages of error labels dropped (unused
in training). DiVERT outperforms baselines, especially
when only a small number of error labels are used.

Model Exact Partial Prop

DiVERT 4236 91.67 68.75
— variational training 35.41 90.27 64.81
— train g, (freeze q,) 37.50 91.66 66.20
— g4 regularization 40.97 89.58 66.20
— temperature annealing 41.66 89.58 67.36

Table 2: Ablation study of DiVERT on distractor gener-
ation performance on K = 10 metrics on a single fold.

DIiVERT works even with a small number of
error labels. Since soliciting error labels be-
hind question-distractor pairs from math educa-
tors is time-consuming, we investigate DiVERT’s
reliance on the amount of error label data. Fig-
ure 2 shows DiVERT’s distractor generation per-
formance using different portions of the available
error labels. We see that on the most stable met-
ric, Prop@10, DiVERT performs better than base-
lines, especially when the majority of error labels
are dropped: the performance gap is widest when
less than half of the training error labels are used
for training. This result further highlights the im-
portance of the self-exploration training setup in
DiVERT’s variational approach at going beyond
human-authored labels and linking different error
types across questions.

Ablation study. Table 2 shows the results of the
ablation study on the more robust @10 metrics
on a single fold. We see that the variational train-
ing process is crucial and removing it results in a
large drop in performance (see Supplementary Ma-
terial C). We also see that not training g, and using
its fine-tuned initialized version g, ., also drops
performance, which highlights the importance of

Q: What is the lowest common multiple of 12 and 157

Error Distractor

Ground-Truth

Believes finding the product of two numbers 180
gives their lowest common multiple.

Believes the largest number in a set of numbers 15
is always their lowest common multiple.

Confuses factors and multiples. 3

DiVERT

Believes they can find the lowest common mul- 27
tiple by adding the numbers together.

Confuses factors and multiples. 3
When asked for the lowest common multiple, 15
thinks they can just give any multiple of one of

the numbers.

GPT-40 kNN

Confuses the product of the two numbers with 180
the LCM.

Incorrectly identifies a common multiple that 120
is not the lowest.

Incorrectly adds the two numbers. 27

GPT-40 Zero-shot CoT

Confusing the concept of the lowest common 3
multiple with the greatest common divisor.
Incorrectly adding the two numbers instead of 27
finding the lowest common multiple.

Confusing the concept of multiples with thatof 5
prime factors.

DisSearch-ED CoT
Confuses factors and multiples. 3
Does not understand the term multiple. 15

Identifies a common multiple but not the lowest 75
common multiple.

Table 3: Examples of errors and corresponding distrac-
tors generated by different approaches for a test MCQ.

sampling from g4 and exploring the error space of
math MCQs. Regularizing g4 and using tempera-
ture annealing in the soft token approximation are
also effective at making training more robust.

5.2 Qualitative Evaluation

Table 3 shows generated errors and correspond-
ing distractors for an MCQ stem in the test set.
DiVERT and GPT-40 kNN each generate a diverse
set of plausible errors and corresponding distrac-
tors. However, GPT-40 Zero-shot CoT prioritizes
error diversity and generates errors unlikely to be
made by real students like “Confusing the concept
of multiples with that of prime factors”. The best
fine-tuning baseline, DisSearch-ED CoT, generates
generic error descriptions like “Does not under-
stand the term multiple”, which is not specific to
the question’s context.



Failure Pattern Analysis. We now investigate
failure patterns in the generated errors and corre-
sponding distractors from DiVERT. Table 4 shows
a representative example MCQ in the test set. We
observe that a majority of generated errors from
p(e|s) are mathematically valid, with high diver-
sity, but some are less likely among real students
such as “Subtracts instead of divides”, matching
the observation made in prior work (Feng et al.,
2024). By far, the most frequent failure pattern we
observe is on the controllable distractor generation
model p(d|s, ), where the generated distractor is
not faithful/consistent to the error. In this example,
for the error “When dividing a fraction by an inte-
ger, divides the denominator by the integer”, the
generated distractor is % rather than the consistent
g. The reverse can also occasionally happen when
a distractor is plausible but the error is not. This ob-
servation highlights that although effectively learn-
ing good error representations and capable of iden-
tifying what errors can be made in a math MCQ,
the biggest limitation of DiVERT is in its inability
to enforce consistency in the downstream distractor
generation model p(d|s,e). This limitation sug-
gests a major direction for future work, possibly by
exploring the use of an error-distractor consistency
penalty in the training objective.

6 Human Evaluation of Errors

6.1 Evaluation Setup

While automated distractor evaluation is well-
defined since there is ground-truth, it is more chal-
lenging to automatically evaluate errors. Reference-
based evaluation may penalize errors that faithfully
reflect the mathematical error behind a distractor
but are semantically different than the ground truth,
or conversely, reward errors that are invalid but
semantically similar to the ground truth. To ad-
dress this challenge, we conduct a human evalua-
tion to measure the quality of generated and human-
authored errors. We recruit two experienced math
teachers who have extensive expertise in designing
math MCQs as annotators. We randomly select
20 questions from the test set on a diverse set of
topics, and for each question, show annotators the
ground-truth, human-authored errors, and gener-
ated errors from both DiVERT and GPT-4o, for
a total of 180 errors. For DiVERT, we select the
top 3 distractors from the p(e|s) model using di-
verse beam search to promote error diversity. For
GPT-40, we select the errors generated during CoT

Question stem: Calculate: % +3

Error Distractor

Plausible error, plausible and consistent distractor.

‘When dividing a fraction by an integer, divides %

both the numerator and denominator by the
integer.

Plausible error, plausible but inconsistent distractor.

When dividing a fraction by an integer, divides 7

the denominator by the integer.

Implausible error, plausible but inconsistent distractor.

Divided by the denominator instead of the nu- %

merator.

Implausible error, implausible and inconsistent distractor.

Subtracts instead of divides. %

Table 4: Qualitative error analyses of generated errors
and corresponding distractors from DiVERT on an ex-
ample MCQ stem from the test set.

DiVERT
3.07+£1.39

GPT-4o
256+1.25

Human

3.23+1.28

Rating

Table 5: Average error quality rated by math teachers.
Human and DiVERT errors are similar in quality, and
both are better than GPT-40 with statistical significance.

distractor generation. We randomize the order of
errors shown to annotators and do not tell them
how each error is generated. We instruct annotators
to rate each error on a 5-point Likert scale, with
5 being the best, depending on whether an error
is relevant to the question, mathematically sound,
specific, conceptual, and likely to be made by a
real student. See Supplementary Material 1.1 for
the exact instructions given to annotators.

6.2 Results

Table 5 shows the average and standard deviation
of annotators’ ratings on errors that were human-
authored and LLLM-generated, by both DiVERT
and GPT-40. We find that the quality of DiVERT’s
errors are close to human ones, with no statistically
significant difference between them using a Two-
Sample ¢-Test (p = 0.36). This result suggests that
DiVERT retains the human-level quality of errors
it is trained on during fine-tuning. Moreover, we
find that both human and DiVERT-generated errors
are better than GPT-40 ones, with statistical signif-
icance (p < 0.01). This result is promising since
our base LLM, MetaMath-Mistral 7B, is orders of
magnitude smaller than GPT-4o0. Qualitatively, we



find that GPT-40’s errors are often not what real
students are likely to make, and even occasionally
confuse the correct solution approach with an error.
This result shows that even state-of-the-art LLMs
are not able to anticipate student errors, and that
training on human-authored labels is likely nec-
essary for LLLMs to accurately diagnose student
errors. Finally, we note that overall, the error la-
bels vary a lot in terms of quality and score lower
than expected. The Pearson correlation coefficient
between our annotators’ ratings is also only 0.33,
indicating low-to-moderate agreement. This result
is due to many errors deemed to be unlikely to be
made by students by annotators, rather than being
mathematically incorrect. It is likely that even for
humans, anticipating errors made by students is a
challenging task, which suggests that future work
should focus on understanding the nature of errors
made by real students and their causes.

7 Related Work

For automated distractor generation in language
learning and reading comprehension, prior works
have explored ranking candidate distractors based
on semantic similarity to the key and using knowl-
edge graphs (Susanti et al., 2018; Stasaski and
Hearst, 2017; Alsubait et al., 2014). More recent
works use an end-to-end pipeline for distractor gen-
eration, which lead to longer and higher-quality
distractors (Lee et al., 2024; Qiu et al., 2020; Shuai
et al., 2023; Xie et al., 2021; Gao et al., 2019), also
leveraging open-source LLLMs such as BERT and
T5 (Kalpakchi and Boye, 2021; Chiang et al., 2022;
Rodriguez-Torrealba et al., 2022; Qu et al., 2024;
Wang et al., 2023a); these approaches are similar
to the baselines we use in this work. Other works
prompt state-of-the-art proprietary LLLMs such as
ChatGPT and GPT-4 to generate distractors, with
carefully crafted prompts, for a wider range of sub-
jects including math and computer science (Tran
et al., 2023; Bitew et al., 2023; Feng et al., 2024).
Evaluating the quality of distractors, however, re-
mains challenging: (Moore et al., 2024) proposes a
series of features that can be used to evaluate the
quality of distractors, although those features are
mostly about surface semantics and do not apply
to subjects like math that require deeper reason-
ing. Another line of recent work in (Feng et al.,
2024; Scarlatos et al., 2024a) proposes to measure
the quality of distractors through how likely they
are going to be selected by real students, which

requires training another model to predict student
option selection behavior. However, most exist-
ing MCQ datasets do not come with such student
response information.

At a high level, an alternative to our approach
of representing errors as text is to learn latent error
representations (Li et al., 2020; Tu et al., 2022),
i.e., characterizing errors as a latent stochastic error
vector, possibly in the text embedding space. How-
ever, in our experiments, we found this approach to
be uninterpretable and ineffective, significantly re-
ducing distractor generation performance, possibly
because errors behind distractors in math MCQs
correspond to complex reasoning processes and are
harder to capture than different user writing styles.
Our approach in improving the diversity of gen-
erated errors also bears some resemblance to the
works in (Wen et al., 2022; Wang et al., 2023b),
although the nature of our task is more complex
than dialogue generation and question answering.

8 Conclusions and Future Work

In this paper, we proposed DiVERT, a novel vari-
ational approach to jointly learn an interpretable,
textual representation of errors in math MCQs and
how to generate distractors that correspond to these
errors. On a real-world math MCQ dataset, we
showed that DiVERT results in better downstream
distractor generation performance over state-of-the-
art approaches. We also conducted a human evalu-
ation with math educators and found that DiVERT
leads to errors as interpretable as those provided by
humans, and outperforms GPT-4o0, despite using a
much smaller base LLM.

There are many avenues for future work. First,
we plan to apply the learned error representations
to another downstream task, feedback generation,
and explore whether our approach leads to a more
accurate student profile/model, which will in turn
result in higher quality feedback in math tutoring
chatbots. Second, we plan to test the across-topic
generalizability of our approach and investigate
whether the error representations can generalize to
previously unseen math topics. Third, we hope to
develop new, LLM-based metrics to evaluate the
mathematical validity of an error and the equiva-
lence between two error explanations, to alleviate
the need for human evaluation of error quality.
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Limitations

We identify several technical and practical limita-
tions of our work. First, the main limitation of
DiVERT is its tendency to generate distractors that
do not always correspond with the preceding gener-
ated error. However, we note that all baselines (in-
cluding GPT-4) also exhibit this behavior, and we
plan on addressing this limitation as a line of future
work. Second, we note that DiVERT requires a set
of human-authored errors for initialization through
fine-tuning. This process of labeling distractors
with textual errors can be time-consuming and dif-
ficult to scale, although we observe that DiVERT
retains most of its ability when only a small subset
of the data is labeled. Third, we only experiment
with one dataset, since to the best of our knowl-
edge there are no similar distractor datasets with
labeled textual errors. Finally, we do not perform a
human evaluation on the quality of the distractors
themselves due to limited resources.

Ethical Considerations

Our goal in this work is to develop a system that
can automatically create distractors for assessments
or practice problems, and do so in an explainable
way so that the distractors can be easily verified by
human educators. We hope that such systems will
save educators time on content creation, allowing
them to spend more resources on personal student
interactions. However, there is a concern that such
systems could replace human educator jobs, which
is a shared concern across most domains with Al
applications. We note that while there is little risk
for bias in the creation of mathematical distractors,
the use of textual errors introduces the possibility
of generating biased text by inheriting tendencies
from the base LLM. Another risk of automatically
generating distractors is that lower-quality learn-
ing content compared to human-authored content
could lead to negative student learning outcomes.

Because of these reasons, we recommend that gen-
erated errors and distractors be reviewed by experts
before being deployed to real students.
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A Monte Carlo Approximation of ELBO
Training Objective

Since exact inference of the posterior distribu-
tion is computationally intractable, g4 (e|s, d) is
an approximation of the true posterior. We per-
form approximate inference by maximizing the
evidence lower bound (ELBO) on the observed
data log-likelihood, given in Equation 2. The
ELBO in Equation 2 can easily be approximated
by Monte Carlo simulation, with samples drawn
from g4 (els, d), as shown below:

Eq, (e)s,a) [log po, (d]s, €)]
— BDxi(g4(els, d) || po.(els))
=Eg,(els.0) [log pe,(d|s, €)]
— BEqy(els,a)log gs(e|s, d) — logpe,(els)]
~ Zém%(qs,d) log pg, (d|s, €) — Bloggg(éls,d)
+ Blog pe, (€|s)

B Additional Baselines

In Table 6, we show results on distractor generation
for additional baselines from (Feng et al., 2024),
including kNN using feedback instead of errors and
the rule-based method, where GPT-4o first selects
errors from a pool before generating distractors.
We also run the CoT baseline using the OpenAl
ol model (OpenAl, 2024b). To reduce costs, we
collect these additional results on a single fold of
the data, and show the other GPT-40 baselines and
DiVERT performance on this fold for reference.

We first observe that CoT with ol only
slightly outperforms CoT with GPT-40, improv-
ing Prop@ 10 by 1.62. This indicates that the long
internal reasoning generated by ol does not in-
crease alignment with teacher-written distractors,
though it may reduce arithmetic or logical errors
resulting in the slight increase. We next observe
that the Rule-Based method is slightly better than
CoT, though still significantly worse than kNN,
consistent with findings in (Feng et al., 2024). Fi-
nally, we observe there is little difference when
using feedback instead of errors in kNN. This re-
sult validates our choice of using errors as textual
reasoning before generating distractors, and also in-
dicates that the exact form of the reasoning may not
be significant in the context of generating aligned
distractors.

0 20 40 60 80 100
Percentage of data used for variational training

Figure 3: Distractor generation Prop @ 10 performance
with an increasing percentage of data used for varia-
tional training. Sampling errors from g on all train
question-distractor pairs performs best.

C Variational Training Ablation: Q
Model Helps DiVERT Learn a Robust
Error Space

In real-world educational scenarios, there are mul-
tiple errors plausible among real students for the
same MCQ stem. DiVERT, can learn a robust error
space, by leveraging sampled errors from gg4(e|s, d)
around the original human-authored ones dur-
ing variational training. As shown in Figure 3,
sampling errors from g4 on a higher number of
question-distractor pairs in the train set, leads to a
more robust learned error space, with better down-
stream distractor generation performance.

D Real-world Math MCQ Dataset Details

We divide the real-world math MCQ dataset into
train-val-test splits by questions to ensure no over-
lap in the MCQ stem across the splits, resulting
in roughly a 72%-16%-12% split over question-
distractor pairs. Table 7 shows detailed statistics of
the dataset. Each of the 1434 MCQs has 3 distrac-
tors leading to 1434 - 3 = 4302 question-distractor
pairs. Among these pairs, 3601 pairs have human
annotated error descriptions; other pairs are not
labeled due to the non-mathematical nature of er-
rors, e.g., careless slipping, reading the question
incorrectly, etc. There are 1231 unique error de-
scriptions. For the test set, we only keep questions
containing human annotated error descriptions for
all three associated distractors, leading to 144 ques-
tions with 144 - 3 = 432 question-distractor pairs.
We manually checked a random subset of the data
and found no personally identifying information or



K=3 K=10

Model - -

Exact@3  Partial@3 Prop@3 | Exact@10 Partial@10 Prop@10

Proprietary Base LLM, OpenAl ol

OpenAl ol Zero-shot CoT 4.17 72.22 36.11 | 25.69 T77.78 52.08

Proprietary Base LLM, GPT-4o
GPT-4o Zero-shot CoT (Feng et al., 2024)  2.78 68.75 33.33 20.83 81.25 50.46
GPT-40 Rule-Based (Feng et al., 2024) 4.17 67.36 35.42 26.39 77.78 53.70
GPT-40 kNN Feedback (Feng et al., 2024)  25.69 83.33 55.09 36.81 88.89 63.89
GPT-40 kNN Errors 23.61 85.42 52.78 36.81 88.89 63.66

Open-source Base LLM, MetaMath-Mistral 7B

DiVERT (ours) 13.19 81.25 46.06 | 42.36 91.67 68.75

Table 6: Single fold performance on distractor generation for additional baselines and reference methods. Best

performance is in bold and second best is underlined.

| Train I

Validation Test

Math MCQ Dataset|| 2570 question-distractor pairs || 599 question-distractor pairs || 432 question-distractor pairs

|| m | o | Min | Max || m | o | Min | Max || m | o | Min | Max
# tokens/Q stem 43.2 | 30.9 5 224 42.3 | 31.5 5 174 35.1 | 279 6 164
# tokens/solution 66.0 | 35.3 | 12 234 67.0 | 39.0 | 15 266 59.3 | 20.7 | 11 164
# tokens/key 93 | 115 1 189 95 | 14.6 1 175 7.5 4.7 1 44
# tokens/distractor 94 | 11.6 1 184 9.7 | 15.3 1 176 5.1 3.7 1 31
# tokens/error 143 | 6.0 4 42 14.0 | 6.1 5 36 13.8 | 5.5 5 39

Table 7: Statistics of the real-world math MCQ dataset which contains 1,434 MCQs across 41 unique subtopics.

offensive content.

E Automated Error Evaluation

E.1 Metrics

The open-ended and mathematical nature of er-
rors makes automated text similarity metrics
like ROUGE-L F1 (Lin, 2004) and BERTScore
F1 (Zhang et al., 2020) unsuitable. Therefore, we
conduct a human evaluation of generated errors,
which we detail in Section 6. For completeness,
we report error evaluation on automated metrics
below.

We evaluate generated errors on two key aspects:
1) similarity with ground-truth, human-authored
errors E' with |[E| = 3, and 2) diversity. We se-
lect the best 3 errors generated for each MCQ, i.e.,
|E| = 3. We compute both recall, which evalu-
ates how well the generated errors recover actual
human-authored errors, and precision, which eval-
uates how accurate the generated errors are with
respect to the human-authored errors. Concretely,
we measure recall by

. h 2 ~
simy (B, E) = ) eep maX,c 5 (h(e, €)) /| E|
and precision by

Simg(E, E) = > ect; MaXeer (h(é, e))/|El,

where h denotes the choice of the textual similarity
metric. We use traditional textual similarity metrics
including ROUGE-L F1 (Lin, 2004) and cosine
similarity using the pre-trained SBERT encoder
MPNet (Song et al., 2020), as well as recent metrics
like BERTScore F1 (Zhang et al., 2020).

For diversity, following (Padmakumar and He,
2024; Shaib et al., 2024), we report the complement
of the homogenization score of a set of errors F as

div*(E) =1 =3, se,cp P(e1,€2)/|E x E],

where h denotes the choice of the textual similar-
ity metric. We report diversity for both human-
authored errors F and predicted errors E, averaged
across all test MCQs.

E.2 Baselines and Results

We introduce a new fine-tuning baseline for error
generation, ErrorSearch-E, where we fine-tune
the base LLM to directly generate an error from
the question stem, i.e., training p(e|s) on all error-
question pairs. For a fair comparison, we generate
errors from the p(e|s) model of DiVERT in a stan-
dalone fashion. We use diverse beam search decod-
ing (Vijayakumar et al., 2018) to generate errors
from both models. We also compare with errors
generated from GPT-40 Zero-shot CoT, as well as



ROUGE-L F1 BERTScore F1 Cosine Similarity
Model Precis. Recall F1 Div. | Precis. Recall F1 Div. | Precis. Recall F1 Div.
Proprietary Base LLM, GPT-4o0
GPT-40 Zero-shot CoT  0.251 0.272 0.261 0.718 | 0.632 0.635 0.633 0.293 | 0.602 0.607 0.605 0.376
Open-source Base LLM, MetaMath-Mistral 7B
ErrorSearch-E 0.498 0.597 0.543 0.781| 0.741 0.786 0.763 0.368| 0.698 0.759 0.727 0.475
DisSearch-ED CoT 0.595 0.526 0.558 0.448| 0.786 0.751 0.768 0.207| 0.735 0.702 0.718 0.278
DiVERT p(e|s) (ours) 0.479 0.576 0.523 0.786 | 0.732 0.775 0.753 0.372| 0.680 0.746 0.711 0.487

Table 8: Performance on automated error evaluation for all error-based approaches across all metrics. Best

performance is in bold and second best is underlined.

the finetuning baseline DisSearch-ED CoT, both of
which generate errors followed by distractors.

Table 8 shows error generation performance for
all error-based approaches on all evaluation met-
rics. As a reference for the diversity of predicted
errors shown, the diversity of ground-truth, human-
written errors is 0.574, 0.300, and 0.349, for the
choice of the similarity metric as ROUGE-L F1,
cosine similarity, and BERTScore F1, respectively.
The finetuning baseline ErrorSearch-E imitates the
ground-truth human-written error distribution and
performs best on recall performance across all tex-
tual similarity metrics. DisSearch-ED CoT per-
forms best on precision performance across all tex-
tual similarity metrics. However, the same beam
search decoding helping precision, leads to a drop
in the performance of DisSearch-ED CoT on recall
and diversity. GPT-4o0 Zero-shot CoT exhibits good
error diversity, but as expected performs poorly
on textual similarity metrics, with the zero-shot
errors generated not matching the distribution of
human-written errors. The p(e|s) model from our
variational method, DiVERT, generates errors with
the highest diversity. This diversity also leads to a
slight drop in overall F1 performance across tex-
tual similarity metrics. This result is not surprising
since by design, during the variational training of
DiVERT, the p(e|s) model aligns with the entropy
model g4(e|s, d), which is encouraged to generate
error samples around human-written errors to learn
a robust error space representation, leading to better
downstream distractor generation performance.

We note that reference-based evaluation may pe-
nalize errors that faithfully reflect the mathematical
error behind a distractor but are semantically dif-
ferent than the ground truth, or conversely, reward
errors that are invalid but semantically similar to
the ground truth. Therefore, we conduct a human
evaluation of generated errors, which we detail in
Section 6.

F Experimental Setup

As detailed in Section 3.2, we finetune all
three LLMs, LLM®, LLM¢, and LLMY, using
the collection of error label annotations behind
question-distractor (s, d) pairs obtained from mid-
dle school math teachers, to initialize py_(els),
po,(d|s,e), and gg(els,d), respectively. We
use the AdamW (Loshchilov and Hutter, 2019)
optimizer with a batch size of 32, a learning
rate of 2e-5, and perform gradient clipping for
training stability. We use the Parameter Effi-
cient Fine-Tuning (PEFT) library from Hugging-
Face (Wolf et al., 2020) to load the base LLM,
MetaMath-Mistral 7B, and train via low-rank adap-
tation (LoRA) (Hu et al., 2022) (LoRAa =
256, LoRA r = 128, LoRA dropout = 0.05) us-
ing 8-bit quantization (Dettmers et al., 2024). We
fine-tune for 5 epochs with early stopping on the
validation set on a single NVIDIA A100 80GB
GPU, with each epoch taking up to 35 minutes.
We follow the same training setup for our fine-
tuning baselines, DisSearch-D, DisSearch-ED, and
DisSearch-ED CoT Pipeline.

After initialization, we perform DiVERT train-
ing for LLM®, LLM¢, and LLM? using the same
QLoRA setup as above. We use Monte Carlo sim-
ulation to approximate the ELBO in Equation 2
with 4 error samples drawn from gg(e|s,d). We
use AdamW with a learning rate of 5e-6, matching
the learning rate in MetaMath finetuning (Yu et al.,
2023), and perform gradient clipping for training
stability. A single batch contains 16 question-
distractor pairs, each having 4 Monte Carlo sam-
ples, for an effective batch size of 64. We set 3
in Equation 2 to 0.1, following prior work (Ghosh
et al., 2020) to upweight the reconstruction loss.
We set a in Equation 4 to 0.95 to upweight the
ELBO compared to the Q regularization loss. We
train for 1 epoch on a single NVIDIA A100 80GB
GPU, which takes up to 9 hours. Wherever possi-



ble, we use standard hyperparameters and do not
do extensive parameter tuning like a grid search.
Due to high computational and Open AI API cost,
we report performance on one run of our DiVERT
model and baselines. For metrics, for ROUGE we
use the rouge-score library with Porter stemmer
enabled, and for BERTScore we use the bert-score
library with microsoft/deberta-xlarge-mnli as the
underlying model. We additionally note that we
used GitHub Copilot minimally in the writing of
our code. All software we use in the development
of this work is open source. We are consistent with
the terms and intended use of all software and with
the OpenAl APL

G Example MCQs from Real-world Math
MCQ Dataset

We show example MCQs from the dataset in Ta-
ble O.

H Prompts

H.1 Prompts for Base LLMs in DiVERT

We show all prompts used for the base LLMs in
DiVERT, the error prior model p(e|s) parameter-
ized by LLM¢ in Table 10, the controllable distrac-
tor generation model p(d|s,e) parameterized by
LLM¢ in Table 11, and the error identifier model
p(els, d) parameterized by LLM? in Table 12.

H.2 Prompts for Prompting-based Baselines

We show all prompts used for prompting-based
baselines, GPT-40 Zero-shot CoT in Table 13, and
GPT-40 kNN in Table 14.

I Human Evaluation Details

We received IRB approval for our human evalu-
ation of error quality. Our evaluators were vol-
unteers contacted through a research partner and
were not compensated monetarily. They were made
aware that their annotations would be used in sci-
entific research in AI. We provide the instructions
given to them for evaluating errors in Supplemen-
tary Material L.1.

I.1 Human Evaluation Instructions

For each error, provide a rating between 1 and 5
(inclusive) in the “rating” column, where 1 is the
worst and 5 is the best.

Please use the following criteria for evaluating
errors:

Relevant: The error should be applicable to
the current question and the way it is solved.

Correct: The error should be mathematically
sound and concrete.

Specific: The error should be specific to the
question’s topic not be too generic.

Conceptual: The error should be conceptual
in nature, such that it could be applied to other
similar questions.

Plausible: The error should be likely to be
made by some (or many) real students.

Overall Rating: The rating you give should re-
flect the overall quality of the error across all
the above criteria; you may deem that some
criteria are more important than others de-
pending on the context, so use your best judg-
ment.



Question stem

James starts counting from —2, adding one each time. What is the 5th number he says?

Topic

Concept
Solution
Correct answer

Adding and Subtracting Negative Numbers

Count forwards starting from a negative integer including through zero

2

Starting on —2, we add one each time, moving up towards and then beyond 0 until we reach
the 5th number, which is 2.

Distractor 1 6

Error 1 Counts on by 2, when asked to count forward in steps of 1
Distractor 2 3

Error 2 Counts on from the wrong number

Distractor 3 —6

Error 3 Counts on from the wrong number’

Question stem

72 =7

Topic Squares, Cubes, etc

Concept Calculate the square of a number

Solution T=TxT7=49

Correct answer 49

Distractor 1 14

Error 1 Mixes up squaring and multiplying by 2 or doubling
Distractor 2 T2

Error 2 Reads a power as a normal digit

Distractor 3 7

Error 3

Mixes up squaring with repeating a digit

Question stem

‘What is the highest common factor of 8 and 287

Topic Factors and Highest Common Factor

Concept Identify the Highest Common Factor of two numbers

Solution 8 has factors 1, 2, 4 and 8 and 28 has factors 1, 2, 4, 7, 14 and 28. The highest factor common
to both is 4.

Correct answer 4

Distractor 1 28

Error 1 Believes the largest number in a set of numbers is always their highest common factor

Distractor 2 8

Error 2 Believes the smallest number in a set of numbers is always their highest common factor

Distractor 3 2

Error 3

Identifies a common factor but not the highest common factor

Table 9: Example MCQs from the real-world math MCQ dataset.

A teacher assigns the following math question to a class of middle school students.
The question is: <question stem>

The question topic is: <topic>

The question concept is: <concept>

The solution is: <worked out solution>

The correct answer is: <answer>

A possible error made by a student is:

Table 10: Prompt for error prior model p(e|s) parameterized by LLM® in DiVERT.

A teacher assigns the following math question to a class of middle school students.
The question is: <question stem>

The question topic is: <topic>

The question concept is: <concept>

The solution is: <worked out solution>

The correct answer is: <answer>

The error made by the student is: <error>

The incorrect answer given by the student is:

Table 11: Prompt for controllable distractor generation model p(d|s, €) parameterized by LLM? in DiVERT.



A teacher assigns the following math question to a class of middle school students.
The question is: <question stem>

The question topic is: <topic>

The question concept is: <concept>

The solution is: <worked out solution>

The correct answer is: <answer>

The incorrect answer given by the student is: <distractor>

The error made by the student is:

Table 12: Prompt for error identifier model g(e|s, d) parameterized by LLM? in DiVERT.

You are given the following math question along with the correct answer and explanation. Please use the following
template to give <n> alternative incorrect answers to be used as multiple-choice options in a multiple-choice exam. Prior
to the incorrect answer, provide the underlying error corresponding to that incorrect answer. These errors should be
conceptual in nature and should not refer to numbers, variables, or names in the question.

[Template]

Distractor1 Error:

Distractor1:

Distractor<n> Error:
Distractor<n>:

Question: <question>

Topic: <topic>

Concept: <concept>

Explanation: <worked out solution>
Answer: <answer>

Table 13: Prompt for GPT-40 Zero-Shot CoT.

You will be given a math question along with the correct answer and explanation. You will be also provided with several
example questions that include incorrect distractor answers. Please generate <n> incorrect distractor answers for the
current question to be used as multiple-choice options in a multiple-choice exam.

[Template]

Distractor1 Error:

Distractor1:

Distractor<n> Error:
Distractor<n>:

<selected examples>

Question: <question>

Topic: <topic>

Concept: <concept>

Explanation: <worked out solution>
Answer: <answer>

Table 14: Prompt for GPT-40 kNN.
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