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Abstract

Understanding the origin of eukaryotic cells is one of the most difficult problems in all of biol-
ogy. A key challenge relevant to the question of eukaryogenesis is reconstructing the gene
repertoire of the last eukaryotic common ancestor (LECA). As data sets grow, sketching an
accurate genomics-informed picture of early eukaryotic cellular complexity requires
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provision of analytical resources and a commitment to data sharing. Here, we summarise
progress towards understanding the biology of LECA and outline a community approach to
inferring its wider gene repertoire. Once assembled, a robust LECA gene set will be a useful
tool for evaluating alternative hypotheses about the origin of eukaryotes and understanding
the evolution of traits in all descendant lineages, with relevance in diverse fields such as cell
biology, microbial ecology, biotechnology, agriculture, and medicine. In this Consensus View,
we put forth the status quo and an agreed path forward to reconstruct LECA’s gene content.

Introduction

The origin of the eukaryotic cell is one of the most significant evolutionary transitions in the
history of life [1]. Eukaryotes are fundamentally different from their prokaryotic relatives (Bac-
teria and Archaea) in how the cell is organised, how these cells “feed,” move, and respond to
stimuli, and how their genes are structured and expressed. Eukaryogenesis is a subject of active
research and debate [2-9]). Because the eukaryotic cell evolved between 1.5 and 2.5 billion
years ago [10-12], direct experimental approaches are limited and phylogenetic analyses are
vulnerable to methodological artefacts [13-15]. These are problems compounded by having
no other major transition of a similar age and complexity to which eukaryogenesis can be
compared. Consensus on how eukaryotes first arose is thus lacking, and it is unclear how best
to approach unanswered questions in order to maximise the effectiveness of future research.

Debates about eukaryogenesis span multiple disciplines including microbiology, paleobiol-
ogy, and cell biology; yet they often rely heavily on phylogenomic investigations [16]. These anal-
yses involve inferring the distribution and evolutionary history of gene families across eukaryotic
and prokaryotic diversity. Here, we provide recommendations for establishing a robust phyloge-
nomics-based picture of the genetic, metabolic, and cellular repertoires of the ancestral form(s)
that gave rise to all extant eukaryotes, i.e., the last eukaryotic common ancestor (LECA) [17,18].
The goal is to produce a resolved picture of LECA and a tractable gene repertoire. The latter will
serve as an important data set for understanding the prokaryotic origin-(s) of the eukaryotes and
to compare different hypotheses pertinent to early eukaryotic cell evolution.

A minimal consensus on the origin of eukaryotes

Most researchers accept that LECA originated after an association of at least 2 organisms descend-
ing from prokaryotes of evolutionarily distinct lineages—one arising from within the Archaea
[19,20], likely within the Asgardarchaeota [8,21], and the other related to Alphaproteobacteria
[21-24]. We refer to this scenario as the “two+” model of eukaryogenesis (i.e., 2 partners coupled
with significant evolutionary change in the fundamental cell biology of this emerging form). This
baseline scenario provides a starting point for comparing alternative hypotheses. For example,
many variant hypotheses suggest that additional lineages contributed to eukaryogenesis [25], e.g.,
a “third partner” arising from deltaproteobacteria [26] or chlamydia-like bacteria [27], while oth-
ers have suggested an alternative starting point to eukaryogenesis from close to the planctomy-
cetes [28]. Still others have suggested that viruses were major contributors [29-33], although
viruses of various forms certainly acted as agents moving genes between lineages throughout the
history of eukaryotic evolution [30,34], thus making it difficult to identify early viral contributions
to eukaryogenesis. Which auxiliary lineages participated, when and how—either by bursts of hori-
zontal gene transfer (HGT) from short-lived microbial associations, or longer-term integrations
like the endosymbiotic processes that led to the mitochondrion or the plastid [22,35]—are long-
standing questions in the eukaryogenesis debate.
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Although there is broad acceptance that living eukaryotes arose from a common ancestor that
had genetic and cellular features of mixed archaeal and bacterial ancestry, hypotheses differ as to
which cellular lineage is proposed to have “encapsulated” the other; some suggest an archaeon
took up a bacterium [36-40] while others argue the opposite [26]. Other models envisage the
alphaproteobacterium-related mitochondrion as having been established via phagocytosis by a
proto-eukaryote of archaeal ancestry that already possessed many of the canonical features of
extant eukaryotes, such as a cytoskeleton, endomembrane system, and nucleus [41]. These various
models have been discussed extensively (e.g., [21,26,36-40,42,43]) with little resolution.

Several contributions have sought a clear definition of terms relating to eukaryogenesis to
help frame wider debate [21,44-46]. The First Eukaryotic Common Ancestor (FECA) can be
defined as the first descendant—on the eukaryotic side—of the last common ancestor of an
Asgardarchaeota lineage and the eukaryotes [44,46] (i.e., the first organism whose living descen-
dants only include eukaryotes and no other extant lines). Under the two+ model at least one
other FECA lineage can be said to have existed, i.e., the first descendant of the last common
ancestor of the alphaproteobacteria-related progenitor and the eukaryotes [23,24,44,46]. To
simplify discussion, we refer to this latter FECA as the first mitochondrial common ancestor or
FMCA (pronounced “Firmca”) [21]. There could be additional FECAs if a third or even fourth
lineage were also involved in eukaryogenesis as suggested by some analyses [47]. The diver-
gences of eukaryotes from Asgard archaea and from Alphaproteobacteria are important because
they mark the beginning of the period in which the hallmark features of eukaryotes might have
evolved. However, crucially and perhaps counterintuitively, there is no implication that archaeal
FECA or FMCA were more eukaryote-like than their immediate prokaryotic ancestors, because
the cellular features we now associate with eukaryotes might have evolved at any point on the
stems between either the archaeal FECA and LECA or between FMCA and LECA [46].

At present, the unresolved gap between the archaeal FECA and LECA, and indeed FMCA
and LECA, makes it difficult to infer the order and nature of events between these ancestral
forms [21]. Additional sampling of lineages that branch closer to the eukaryotes than currently
known prokaryotes would add greater resolution in understanding eukaryogenesis. Attempts
have been made to reconstruct the order of prokaryotic gene acquisition (e.g., Asgard, alpha-
proteobacterial, or additional prokaryotic contributions) between these 2 points [47,48], but
our understanding of this process remains limited. Analyses of shared gene content between
Asgardarchaeota and extant eukaryotes have been useful in gaining a clearer picture of one set
of contributions to LECA [8,9,49]. However, reconstructing the contribution of any FECA—
including FMCA—depends on knowing the gene content of LECA.

How can reconstruction of LECA inform our understanding of
eukaryogenesis?
In order to appropriately understand LECA, 2 related problems need to be addressed:

i. What was the molecular cell biology of LECA? Specifically, what molecular components
and cellular systems evolved prior to LECA? Which of those systems arose later, as the
eukaryotic lineages diverged?

ii. Where did LECA come from? Specifically, which prokaryotic subgroups were the key part-
ners and which genes did they contribute? Conversely, which genes evolved de novo during
the FECA-to-LECA transition/s?

If we can achieve consensus on these points, understanding LECA would enable us to
define the endpoint of eukaryogenesis. This would be the end state at which all eukaryogenesis
models must arrive and a starting point for understanding the evolution of the major
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eukaryotic groups and the cellular systems that arose within them (i.e., a baseline comparator
for polarising all subsequent evolutionary transitions).

A consensus LECA gene repertoire also provides a framework for judging the relative merits
of different eukaryogenesis models. Specifically, we can use these data to determine if “eukaryo-
genesis model X” has merit (utility) because it is consistent with the inferred evolutionary histories
of the genes present in the LECA gene repertoire. For example, if a pattern of “third-party” ances-
try (e.g., deltaproteobacteria or chlamydia [26,27,43,50,51]) is identified in a significant proportion
of LECA gene trees (e.g., Fig 1A), then a three-partner eukaryogenesis model could then be
favoured. We note that without evidence of an endosymbiotically derived compartment or
genome, it would not be possible to distinguish between bursts of gene transfer from transient
microbial associations, or a longer-term integration similar to the process which generated the
endosymbiotically derived organelles. However, such patterns may theoretically be distinguishable
from serial HGT processes as identified, for example, from viral contribution (e.g., [34]) using
phylostratigraphy-like approaches [52]. However, if a substantial third-party prokaryotic signal is
absent (e.g., Fig 1B), phylogenetic patterns provide little support beyond the two+ model.

Fig 1 compares a range of possible outcomes from LECA analyses, not just the presence or
absence of a third-party contributor. For example, a relatively large LECA gene repertoire
(Fig 1A) versus a smaller one (Fig 1B), implies a very different relative role for gene family gain
and expansion post LECA. Furthermore, the models demonstrate very different roles for de
novo gene evolution and the relative contribution of prokaryotic genes. For simplicity, these fac-
tors are shown in 2 distinct constellations. This is not to say that these are the only constellations
possible—indeed different combinations of the characteristics illustrated across the 2 models can
be imagined. This is not to trivialise the problem or the complexity of the data; there is a range of
possible outcomes, and LECA reconstructions may identify a result somewhere between the 2
extremes shown in Fig 1. Our goal is to outline how different models might be supported,
refuted, and appropriately modified in response to data, thereby minimising polarised debates
about what genes, molecular systems, and cellular processes were—and were not—“important”
for eukaryogenesis. A community-wide effort to define LECA will permit informed comparisons
of different models so that they can be judged on their relative merits.

Understanding the mixed ancestry of LECA

Of the fraction of genes present in LECA that possess obvious prokaryotic homology, only a
small fraction can be definitively shown to be of alphaproteobacterial or asgardarchaeal origin.
In a recent study of gene family evolution in eukaryotes [48], 10,233 Pfam domain families
were inferred to be present in LECA. Of these, 4,335 families were acquired from prokaryotic
sources, and 77% of these acquisitions were identified as having bacterial ancestry; 7%
appeared to be of alphaproteobacterial-like origin. Approximately 16% of the prokaryotic
acquisitions were identified as “archaeal” with only 7% specifically of Asgardarchaeota ances-
try [48]. However, raw percentages do not necessarily linearly correlate with evolutionary
importance. Few gene acquisitions can give rise to fundamental systems; consequently, com-
parisons using such statistics have to be considered carefully. Nonetheless, such data have pro-
found implications for the two+ basic model and suggest a LECA model more closely aligned
with Fig 1B (a scenario in which the ancestry of most prokaryotic genes cannot be traced back
to specific donors, e.g., the Asgardarchaeota or the Alphaproteobacteria) rather than Fig 1A.
What might this mean for eukaryogenesis?

The large number of LECA genes that do not trace back to either Asgardarchaeota or Alpha-
proteobacteria has been interpreted as evidence for additional or alternative prokaryotic or viral
contributors to LECA (e.g., [25-31]). However, the presence of additional genomes and/or
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A. extant eukaryotes B. extant eukaryotes
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[[] De novo gene innovation (no prokaryotic ancestry)

[l «----» Prokaryotic and/or viral HGT

[C] Prokaryotic contribution with undefined phylogenetic ancestry

Fig 1. Genetic contributions to LECA. LECA’s gene repertoire was chimeric, containing genes derived from the
Asgardarchaeota-derived host cell, mitochondrial endosymbiont, and potentially other prokaryotic sources, along with
a set of eukaryote-specific genes that evolved after the divergence of eukaryotes from prokaryotes. The number of
sources, and the proportions and identities of genes from each source, remain uncertain but can be investigated using
the approach articulated in the main text of this paper. Here, we illustrate 2 possible LECA reconstructions that are
broadly compatible with what is currently known about eukaryotic gene origins. (A) Shows a larger LECA gene
repertoire reconstruction as indicated by the large pie chart. Such an inference may be the result of relatively few gene
innovations post LECA, as indicated by the modest expansion after LECA leading to extant eukaryotic diversity. This
hypothetical model also shows strong Asgardarchaeota and alphaproteobacterial signals and a strong additional signal
from a “third party” contributor. This “third signal” could be used to argue for the role of 3 contributing lineages to
eukaryogenesis beyond the two+ model. Here, the fraction of genes of de novo gene evolution (i.e., bona fide ESPs) is
relatively small. The proportion of gene families of prokaryotic ancestry with poor phylogenetic resolution is not a
dominant ancestral signal. (B) Shows a smaller LECA gene repertoire reconstruction as indicated by a smaller pie
chart. Such an inference may indicate a larger-scale gene innovation post LECA, as indicated by the wider expansion
after the LECA lineage leading to extant eukaryotic diversity. In this hypothetical model, the LECA repertoire with
identifiable prokaryotic origin is dominated by genes of undefined ancestry. This model also shows that the LECA
gene families of de novo gene ancestry (ESPs) is extensive. Only a tiny proportion of gene families present in LECA can
be accurately attributed to either the Asgardarchaeota or the Alphaproteobacteria. The question marks inside the ovals
on both models A and B indicate an unknown order of contribution and/or unknown contributing lineages. Dashed
double arrow-headed lines indicate possible HGT contributions throughout eukaryogenesis and subsequent
diversification of eukaryotes. Not all aspects of these models are mutually exclusive; for example, a large LECA
repertoire (as shown in A) could be combined with a two+ model for ancestry (as shown in B). ESP, eukaryote
signature protein; HGT, horizontal gene transfer; LECA, last eukaryotic common ancestor.

https://doi.org/10.1371/journal.pbio.3002917.g001

compartments within the eukaryotic cell, separate from the nucleus, and hosting these genes (like
mitochondria and plastids), would provide indisputable evidence for additional prokaryotic part-
ners. In the absence of such evidence, an alternative explanation is that early eukaryotic forms
engaged in HGT [114] both into and out of the FECA-to-LECA lineages, a pattern seen in extant
eukaryotes [115-119]. An additional variant of the HGT explanation is that these detected
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prokaryotic ancestries are footprints of prior transient endosymbiotic associations that laid the
groundwork for the eventual mitochondrial endosymbiosis, as seen in more recent symbiotic asso-
ciations and organelle acquisition events [120,121]. Another, not mutually exclusive, explanation
is the “fluid prokaryotic chromosome model,” which posits that HGT between prokaryotes has
been so frequent and ongoing that the genomes of the 2 prokaryotic lineages constituting the two
+ model were themselves highly mosaic at the time of eukaryogenesis. More generally, incomplete
taxon sampling and/or complex patterns of gene retention and loss since eukaryogenesis likely
contributed to the mixed prokaryotic phylogenetic affinities seen in extant eukaryotes [122,123].

Many genes inferred to have been present in LECA do not currently have identifiable prokary-
otic homologs (e.g., [48,63-65,124]). Such genes encode possible “eukaryotic signature proteins”
or ESPs [39,124-127]. For example, in a 2021 study by Vosseberg and colleagues [48], 58% of the
eukaryotic gene families analysed had no identifiable prokaryotic ancestry, a number that is likely
to be further revised as methods change and more prokaryotes (and eukaryotes) are sampled.
This reinforces the view that eukaryogenesis was a radical transition that triggered—and indeed
was to a certain extent enabled by—gene family expansion. However, the discovery that Asgar-
darchaeota possess a subset of the genes previously classified as ESPs has somewhat altered this
picture [8,9,21,49]. Nonetheless, numerous proteins not yet found in the Asgardarchaeota remain
as candidate ESPs. So where did the significant proportion of LECA genes with no apparent simi-
larity to prokaryotic genes come from? Beyond de novo gene evolution (i.e., new genes arising
from non-coding DNA), it is possible that an unsampled (or extinct) third-party “prokaryotic”
donor group possesses (or possessed) genes uniquely shared with the eukaryotes. It is also likely
that a high rate of sequence evolution at eukaryogenesis currently prevents us from identifying
the prokaryotic homologs of many ESPs based on sequence similarity alone.

A final consideration when trying to understand the ancestry of the genetic constituents of
LECA is the limitations of current phylogenetic methods. Even the best methods currently
avaijlable may struggle to model sequence evolution accurately over the timescales needed to
understand LECA [128-131]. Phylogenomic analysis is vulnerable to artefacts [13-15] and
understanding the proportion of gene families for which the signal is saturated and therefore
prone to artefacts will be important to consider when evaluating support for different eukaryo-
genesis models (Fig 1). As a consequence, obtaining sufficient phylogenetic resolution for
many gene families adds a considerable margin of error to any estimates for the ancestry of the
LECA gene repertoire. Indeed, one of the most important results stemming from any study of
LECA and eukaryogenesis would be to determine what proportion of the LECA gene set is reli-
able for phylogenetic inference beyond the eukaryotic clade and thus potentially useful for dis-
tinguishing between alternative hypotheses of gene ancestry.

Despite more than 2 decades of research, no data sets define the gene family repertoire that
would help us to reconstruct the widest characteristics of LECA and evaluate eukaryogenesis
hypotheses. This limits our ability to quantitatively estimate contributions to the stem lineages
between FECA(s) and LECA from different sources, through either HGT or additional endo-
symbiotic partners. The absence of these data also prevents us from understanding the roles of
evolutionary phenomena such as de novo gene evolution, gene fusion, and gene duplication.
Understanding such phenomena requires resolved data sets and detailed approaches (e.g.,
[132]). We therefore argue that it is not possible to rigorously address the origin of eukaryotes
without a quantitative assessment of the gene repertoire of LECA.

Gene duplication—A further complexity in understanding LECA

A consideration for LECA reconstruction analyses is the accurate identification and determi-
nation of the relative contributions of gene duplication and loss [133] (i.e., paralogous gene
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family expansions and differential paralog loss—see Fig 3A). Eukaryotes have a much greater
abundance of duplicate genes and functionally differentiated paralogs than do prokaryotes,
demonstrating the profound significance of this process in eukaryotic evolution, before, dur-
ing, and after the divergence of the major lineages in the eukaryotic tree [48]. Indeed, paralo-
gous expansions underpin many of the LECA cellular systems discussed in Box 1 and Fig 2.
For example, the diversification of motor proteins through gene duplication and domain
recombination has been a factor in the evolution of eukaryotic cellular complexity (e.g., [59-
61,134]). Furthermore, large-scale expansions have occurred in many gene families such as
small GTPases [135,136], kinases [137], and transcription factors [89,90] that control eukary-
otic cellular pathways. Further back in time, gene families derived from archaea (e.g., those
that play roles in DNA storage and replication and protein folding) have been subject to
numerous rounds of gene duplication before LECA [76,79,138]. A full understanding of the
biology of LECA thus requires an accurate delineation of the role of gene duplication before
and after eukaryogenesis for both the prokaryote-derived and eukaryote-specific gene families.

Box 1: What do we know about LECA?

LECA reconstruction studies have largely focused on either cellular system-by-system
analyses or investigations that take stock of total gene repertoire (e.g., [48,53]). System-
specific analyses have demonstrated that LECA possessed: (i) a nucleus, nucleolus,
nuclear lamina, and nuclear pore complexes [54-57]; (ii) a complex actin- and tubulin-
based cytoskeleton including associated motor proteins and the systems to encode fla-
gella, pseudo/filopodia [58-62], and mitosis encompassing a complex cell replication
cycle [63-66]; (iii) genes necessary for meiosis and a facultative sexual cycle [53,67-70];
and (iv) a complex and diversified endomembrane and endomembrane trafficking sys-
tem [71-74]. LECA is also inferred to have had: (v) histone/nucleosome-based chroma-
tin with H2A, H2B, H3, and H4 paralogs and chromatin-associated catalytic functions
such as methyltransferases, modification readers, and erasers [75,76], as well as SMC-
based higher-level chromatin organization [77,78]; (vi) a largely archaeal-derived DNA
replication system diversified by gene duplications [79,80] with some eukaryotic-specific
additions (but see [32]); (vii) a spliceosome and a diversified repertoire of introns [81-
86]; (viii) linear nuclear chromosomes with centromeres and telomeres [87,88] and with
multi-layered regulation of gene expression [89-91]; (ix) membranes composed of fatty
acid chains linked to a glycerol-3-phosphate (G3P) head group via ester bonds [92] and
containing diverse sterols [93]; (x) peroxisomes [94]; and (xi) a fully integrated mito-
chondrial organelle similar to those found in extant lineages, with its own genome [95-
100]. The population of cells that approximately constituted LECA thus had a fully
fledged and elaborate eukaryotic molecular and cellular biology (Fig 2), not unlike many
extant heterotrophic flagellated protists [17,18,101]. These patterns do not mean, how-
ever, that these core systems are immutable. Indeed, replacements, modifications, and
reductions of these systems have occurred frequently across the eukaryotic tree. These
include, for example, losses of flagella [102,103], peroxisomes [104], and phagocytosis
[105,106], loss or radical modification of mitochondria [107-111], and the depletion of
histones [112,113]. A robust LECA gene set is essential if we are to understand and
appropriately account for secondary loss in eukaryotic evolution.Fig 2Cellular features
inferred to be present in LECA.

This schematic follows on from [17] and summarises the cellular features discussed in
the section titled “What do we know about LECA?” (and references therein). Note that
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the process of meiosis, mitosis, cell division, associated machines, and processes, inferred
to have been present in LECA, are not shown here. Created in BioRender. Eme, L.
(2024) https://BioRender.com/w64x492. LECA, last eukaryotic common ancestor.
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o Nucleus with nucleolus and eu/heterochromatin @ Basal bodies @ DNA of multiple origins (eukaryotic, archaeal,
Q Endoplasmic reticulum @ Vacuoles bacterial, and viral)
e Peroxisome @ Iron-sulfur cluster biosynthesis via the CIA system @ Extensive repertoire of transcription factors
° Endo/lysosome, ESCRT system @ Mitochondria @ Spliceosome and intron-containing transcripts
e Golgi Q Flagella (MT based) @ Meiosis, mitosis, complex cell cycle
° Endo/exocytosis, actin-based @ Nuclear pore + NPC @ Mitochondrial import and export
° Pseudo/Filopodium @ Linear chromosomes with centromeres and telomeres @ Mitochondrial DNA encoding ~100 proteins
o Sterol-based membrane; G3P + ester bond phospholipids Q Chromatin @ TCA cycle
e Microtubule-based cytoskeleton and organizing center @ Histone-based nucleosomes; epigenetic readers, Q Electron Transport Chain

erasers and writers @ Iron-Sulfur cluster biosynthesis (ISC system)

Fig 2. Cellular features inferred to be present in LECA. This schematic follows on from [17] and summarises the cellular features discussed in the section titled “What
do we know about LECA?” (and references therein). Note that the process of meiosis, mitosis, cell division, associated machines, and processes, inferred to have been
present in LECA, are not shown here. Created in BioRender. Eme, L. (2024) https://BioRender.com/w64x492. LECA, last eukaryotic common ancestor.

https://doi.org/10.1371/journal.pbio.3002917.9002
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How to resolve LECA: A call for cooperative action, accessible data, and a
path towards reconciliation of distinct data sets

A key problem in the field of eukaryotic evolution is that the inventory of genes from across
the diversity of life is incomplete and requires continual updates as new lineages are discov-
ered, more genomes are sequenced, and as annotation of existing genomes improves (e.g.,
[139-141]). Data sets relevant to the reconstruction of LECA will amass quickly, for example,
as a product of the Earth Biogenome Project [142] and the associated Darwin Tree of Life
[143] and Aquatic Symbiosis Genomics [144] projects, and from metagenomic sampling of
microbial diversity (e.g., [9,145-147]). Furthermore, as models of sequence evolution continue
to improve [23,128-131,148,149] phylogenetic and phylogenomic relationships will be re-eval-
uated. Improved homology detection methods, particularly structure-based methods utilising
the latest AI approaches [150], will resolve homology relationships, trigger re-analysis of the
relative contributions of different prokaryotes to LECA, and further improve comparative phy-
logenetic analyses [151]. Such approaches will also help to clarify patterns of homology
between divergent eukaryotic genes, leading to a reassessment of when and how ortholog
groups were acquired within the eukaryotic radiation. For these reasons, attempts to define a
LECA gene repertoire are a “hostage to fortune”; as new data become available and methods
improve; revision and tools to enable revision are needed. We provide a set of reccommenda-
tions that could serve as a pathway forward and sketch an analytical approach allowing recon-
ciliation of different LECA data sets (Fig 3A and 3B).

We are advocating for a large-scale, cooperative, and community-minded approach to
inferring a full LECA gene set (Box 2). This reconstruction requires the accurate estimation of
eukaryotic orthologous gene family relationships [152], followed by the identification of sister
group relationships in order to identify and polarise gene duplications and, when appropriate,
infer prokaryotic ancestry (Fig 3A). Fast approximations of ortholog clustering are possible
using automated methods [153-155], but these approaches are error-prone—they can classify
paralog-containing clusters as orthologs (under-splitting), separate in-paralogs/recent duplica-
tions from their bona fide orthologs (over-splitting) [156], and erroneously split orthologous
groups due to high levels of sequence divergence (also over-splitting) [157]. As a consequence,
some researchers combine fast ortholog clustering with manual curation [158,159], a practice
that can mitigate such issues but also introduces subjectivity. The greater part of these curation
process (and the subjectivity involved) is lost to the wider scientific record and can produce
data sets that are difficult to analyse, compare, and critically assess [160]. Providing access to
the data from these “chains” of analyses will be important, especially for the systematic integra-
tion of new data sets which allows for the revision of ortholog classifications (see Box 2 recom-
mendations and Fig 3B).

Once ortholog groups are established, it is in principle possible to compare these groups
with homologous gene clusters from prokaryotes and then map the origin of eukaryotic gene
families onto the prokaryotic tree of life (Fig 3C). Such analyses are complicated by ever-grow-
ing data sets that often result in sequence alignment sizes that restrict the use of sophisticated
phylogenetic methods, in turn necessitating phylogenetically informed down-sampling. None-
theless, ancestral state reconstruction using parsimony, Bayesian, or maximum likelihood
methods [161] can be used to map gene family acquisition to a species tree, each giving some-
what different views of how gene content is inherited across the tree [162]. Some methods also
allow for joint species tree/gene tree reconciliation analyses using likelihood-based inference,
enabling mapping of gene repertoires onto species phylogenies [163]. Understanding the pat-
tern of gene flow identified by these differing approaches requires further investigation of indi-
vidual gene phylogenies to identify eukaryote-to-eukaryote or prokaryote-to-eukaryote HGT,
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Fig 3. Proposed LECA gene repertoire analysis pipeline. (A) Eukaryotic gene complements are divided into candidate
ortholog groups using phylogenetic trees. Black arrows indicate how phylogenetic analyses can be used to move from gene
family phylogenies to distinct ortholog groups. Black blocks indicate genes that are specific to eukaryotes (i.e., ESPs). Orange
blocks indicate eukaryotic genes of prokaryotic ancestry (phylogenetic donor-relationship is identified by red branches in the
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trees; red discs on the tree indicate information for inferring provenance of prokaryotic ancestry, e.g., taxonomy and node
support statistics). Note that numerous genes are likely to be classified as “genes that cannot be assigned to cluster groups”
(marked as box X). This pool is a repository which would allow for further revision, addition of unclassified genes to new
cluster groups as they arise, or subsequent inclusion within established cluster groups as more genome data are included and
the HMM s are revised. The broader process would allow cross referencing of specific orthologs to larger gene clusters,
thereby allowing the ultimate ancestry of ortholog families to be inferred. (B) Overview of analytical process that would allow
community-based revision of ortholog cluster-groupings necessary for LECA gene repertoire estimations. This process is
based on HMM generation and several levels of revision allowing cluster groupings to be updated with input from numerous
additional sources of data (as shown). (C) LECA gene repertoire estimation based on ancestral state estimation and allowing
for alternative eukaryotic species tree topologies. Sources of analytical challenge and error are marked using “*” convention.
*Resolving gene clusters and ortholog groups will be a highly challenging due to lack of phylogenetic resolution and hidden
paralogy, likely leading to a high proportion of genes that cannot be resolved to cluster or ortholog groups. It is for this
reason we advocate for iterative chains of analysis allowing for appropriate identification of such gene sets and where possible
revisions. **HMMs generated for ortholog groups will likely cross-sample paralogs and/or xenologs. New tools are needed to
allow ortholog sampling that excludes paralogs (e.g., [174]). ***Pipelines to cluster orphan genes will be subject to high error
with false clustering of unrelated genes. ****Manual correction will involve subjective error; this is unavoidable but
community access to these processes is critical to allow for downstream improvement. *****The flow of new genomic data,
with different assembly and annotation standards and varying sources of contamination, will be a difficult challenge to
integrate while also maintaining standards for comparative analyses. Legend is shown in a box. ESP, eukaryote signature
protein; HMM, hidden Markov model; LECA, last eukaryotic common ancestor.

https://doi.org/10.1371/journal.pbio.3002917.g003

as well as sequence data contamination, to avoid overestimating gene presence in ancestors
such as LECA. The inference of sister group relationships informed by ancestral state recon-
struction between prokaryotic gene clusters and eukaryotic orthologs can allow understanding
of when and how gene families were acquired by eukaryotes (e.g., HGT, endosymbiosis, de
novo gene acquisition, and gene duplication). Ancestral gene complements can also be recon-
structed under various eukaryotic phylogenies and root hypotheses so that different ortholog
gene family repertoires can be compared, which is important when there is uncertainty regard-
ing topological relationships within the species phylogeny (e.g., [164-167]) (Fig 3C).

Ortholog detection is a challenge that increases in complexity with gene family size, gene
loss events, and data asymmetry, e.g., the comparison of highly sampled taxonomic groups
with groups with few genome sequences. The goal of the community-based “Quest for Ortho-
logs” initiative [168] is to evaluate the strengths and weaknesses of tools for identifying ortho-
logous gene families; members are committed to open exchange of methods and approaches
supported by shared benchmarking tools enabling cross validation [169]. This is exactly the
approach needed for the study of LECA, a community that provides tools and benchmarks,
and sets standards for data sharing.

An aspect of this community approach would be a clear framework for systematic compari-
son of different LECA reconstructions. For example, given a set of putative eukaryote-wide
orthologs, it is possible to generate individual hidden Markov models (HMMs [170-173]) that
can be used to define each individual ortholog cluster. Current HMM methods can also be tai-
lored to exclude certain sequences thereby allowing analyses to be targeted for specific ortho-
logs while excluding paralogs and xenologs [174]. Refined HMM sets can then be used to
compare [172] and add additional genomes to the comparative data set, allowing for iterative
revision of both the ortholog groups and the HMMs themselves (Fig 3B).

One advantage of HMM-to-HMM comparison methods (e.g., [172]) is that they make it
possible to compare and, if needed, reconcile different LECA ortholog data sets. Such an
approach can be used to systematically revise ortholog gene families as new LECA data sets are
released. But the data must be accessible to allow systematic comparisons (Box 2 and Fig 3B).
Ideally, such an endeavour would be mounted as a web-based database for the community,
allowing updates and corrections. Ortholog classifications can then be improved iteratively
with more data and increasing engagement (Fig 3B). The history of source data and the revi-
sion chain would therefore be available for each gene family so researchers could view how
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ortholog assignments have progressed. In addition, the orthogroups identified as part of this
community effort could be of wider use. Validated orthogroups could for example be used as
an update to the KOG database that provides the core of the eukaryotic level orthology in Egg-
NOG [175], thereby providing feedback to the larger comparative genomics community and
making orthogroup classifications readily usable for gene annotation and other informatic
applications.

Box 2: Aspirational standards for a community approach to LECA
analyses

For both large-scale and system-specific reconstructions

« Eukaryote-wide phylogenomic analyses should make phylogenetic trees, amino acid
sequence alignments, and HMMs representing gene clusters, along with the underly-
ing methods, easily accessible (e.g., through data repository services).

Trees, alignments, and HMMs representing gene clusters should be accessible for
cross comparison, i.e., presented in tractable file formats (e.g., NEWICK, FASTA,
HMMs, respectively).

Source and assembly versions of the genome data sets used for analyses should be indi-
cated, ideally with date of access or annotation version available.

Sequence data decontamination processes should be described, and the resulting
genome/proteome made available.

o LECA repertoire estimations should account for ancient gene duplications both in the
prokaryotes (pre-LECA) and within the eukaryotes, thus separating gene families into
eukaryotic ortholog clusters where possible, such that paralog relationships are
identifiable.

For each LECA gene repertoire reconstruction, eukaryotic phylogenies and root
hypotheses should be clearly stated and, optimally, various alternatives should be con-
sidered so that different ancestral complements can be compared.

If ancestral gene repertoire reconstructions are estimated, alternative approaches
should be compared (e.g., Dollo parsimony, maximum likelihood [with different
birth/death models], Bayesian, and reconciliation approaches).

Different methods of ancestral gene repertoire reconstruction will provide variant esti-
mates of eukaryote-to-eukaryote HGT. This factor should be acknowledged and tar-
geted phylogenetic analysis to validate candidate HGT families is advised.

Automated ortholog assessment methods should be supervised and/or validated. Cor-
rection and validation processes should be recorded in a data accessible manner (e.g.,
differences between processed ortholog sets should be made available).

« The process of ortholog amendments should be described.
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Specific to large-scale, all-systems reconstruction of LECA

» LECA repertoire estimations should identify gene sets where there is no phylogenetic
resolution or there are too few alignable sites to allow conclusive phylogenetic
analyses.

For each LECA gene repertoire reconstruction, the proportion of LECA gene families
for which a prokaryotic donor can or cannot be pinpointed should be indicated.

o The approach used to account for eukaryotic paralog expansions, i.e., whether
expanded eukaryotic families are counted as a single entity or individually by duplicate
number in LECA should be clearly stated when assigning relative percent prokaryotic
contributions to LECA.

For hypotheses invoking multiple prokaryotic donors into LECA, the relative propor-
tion of phylogenies which support each purported prokaryotic donor group should be
indicated.

Having established the set of prokaryotic donors to LECA, ancestral gene repertoires
should be used to systematically test for the role of HGT pre-LECA.

A related consideration is that the data sets arising from LECA-scale analyses are contained
within the supplementary materials of complex publications. Here, the traditional publication
model fails the phylogenomic endeavour because these data are not easily accessible or stan-
dardised for systematic comparison. Such comparisons are fundamental for understanding
how to improve estimation of LECA gene repertoire sets. Given the data problems outlined, as
a community, we must strive for data release, accessibility and analysis standards that allow for
systematic comparison.

We have provided recommendations (Box 2) and sketched a pathway (Fig 3A and 3B) to
enable an accessible large-scale, all-taxa reconstruction of LECA, providing access to cross-
comparison and facilitating iterative improvement. To enable this endeavour, we also advocate
for the development of web-based database resources to support such interactions (e.g., [176]).
As genome sampling increases and ortholog sets are corrected, LECA gene complement esti-
mation could be iteratively revised (e.g., LECA 2.0, etc.; ideally with a release schedule outlined
so researchers in the field can plan accordingly). Now is the time for the community to start
building LECA-specific tools and resources for handing the complicated task of data analysis
required to resolve the gene repertoire of LECA in a way that caters to differential approaches
and perspectives while also making iterative chains of phylogenomic analyses available. We
recognise that many groups will continue with focused analyses of individual cellular systems.
These analyses will complement, and can integrate with, any large-scale LECA reconstruction,
providing important ground-truthing data sets for the annotation and manual correction
phases outlined in Fig 3B. Furthermore, large-scale LECA reconstruction will identify groups
of genes that are especially difficult to resolve using bioinformatic pathway-based approaches
which therefore need focused analyses, making these approaches both complementary and
iterative. Many of the recommendations regarding data sharing, standards, and transparency
(Box 2) apply equally to both types of effort.
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Beyond eukaryogenesis—The wider value of reconstructing LECA

The origin of the eukaryotic cell laid the foundation for a vast diversification of biological
forms leading to additional major evolutionary transitions. As a resolved LECA gene reper-
toire provides a baseline from which to infer lineage-specific evolutionary changes within the
eukaryotes, this data set will allow researchers to address a multitude of questions, both evolu-
tionary and cell biological in nature.

A LECA gene set will allow study of the evolutionary dynamics during the early diversifica-
tion of the major eukaryotic groups, including the contributions of gene gain, loss, duplication,
HGT, and domain rearrangement (i.e., gene-fusions and -fissions). Such data will also support
a range of downstream analyses, for example, providing expected ortholog distribution maps
for evaluating eukaryotic genome assembly completion, similar to the approaches applied in
BUSCO [177] and OMArk [178]. Resolved ortholog relationships will also be an important
resource for concatenated multi-gene phylogenomic analysis (e.g., [179]) underpinning fur-
ther investigations of the eukaryotic tree. Finally, a LECA repertoire provides a starting gene
repertoire from which to infer the evolution of nearly all extant eukaryotic cellular functions.
This includes the origin and spread of photosynthetic organelles [180,181], the repeated evolu-
tion of pathogenicity (e.g., [182-185]), and the multiple origins of multicellular forms such as
plants, animals, fungi, and seaweeds [186].

The LECA gene set should also serve as baseline data for fundamental cell biological inqui-
ries aiming to move beyond standard model organisms (e.g., yeast, animal, or plant). Such
organisms are unrepresentative of the diversity of eukaryotic traits and cellular forms,
although comparison of the 3 groups is, of course, important. The genes, proteins, and pro-
cesses found in LECA can be considered ancient and are potentially generalizable as features
of “the eukaryotic cell.” Furthermore, the LECA analyses proposed here would identify con-
served gene families present across the eukaryotes for which there is no known functional
annotation. Many of these may turn out to be jétnarlogs—genes with patchy distributions,
absent in model organisms, but present in diverse organisms of medical or ecological impor-
tance (e.g., [71,187]). Such data are important, for example, when researchers wish to identify
a gene present in a group of pathogens/parasites with no host-encoded homologous protein as
a putative drug target. Finally, a LECA gene repertoire facilitates investigation of co-occur-
rence patterns between uncharacterised core systems and known cell functions (e.g.,
[102,188]), thereby providing clues regarding function. The results of a wide range of LECA
analyses can be compared to large-scale knockout libraries in model systems providing further
information on function and evolution [189].

Conclusion

Resolving the early evolution of the eukaryotic cell remains a huge challenge [21]. Given its
importance and antiquity, we have more hypotheses than definitive data. Consequently, every
detail upon which a consensus is reached can push inferences towards one eukaryogenesis sce-
nario over another, or help us to resolve a key factor in the early evolution of eukaryotes. An
estimation of the LECA gene repertoire is a foundational data set for testing pivotal ideas
about how the early eukaryotic cell evolved, providing an end state at which all eukaryogenesis
models need to arrive and a starting point for understanding the evolution of major eukaryotic
groups and their cellular systems. A community-wide effort to define LECA in terms of cell
biology and gene repertoire will permit informed comparisons of different models so that they
can be judged on their relative merits. This is a complex task, one in which different
approaches and new data can radically alter patterns. Such investigation can therefore only
realistically move forward through systematic community engagement with adherence to
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shared standards. To that end, we have outlined recommendations for data analyses and acces-
sibility to allow for systematic comparisons. We have also sketched out an analytical pathway
that would allow for the cross comparison of LECA data sets given the changing availability of
data (Fig 3). Our hope is that this framework will be useful for individual research teams and
discipline-wide consortia alike, and that the ideas presented herein about how these data
should and could be used will trigger new ways of thinking about the problem of eukaryogen-
esis and early eukaryotic cell evolution (Box 2).
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