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Abstract. Locally trivial bundles of C∗-algebras with fibre D⊗K for a strongly self-absorbing
C∗-algebra D over a finite CW-complex X form a group E1

D(X) that is the first group of
a cohomology theory E∗D(X). In this paper we compute these groups by expressing them in
terms of ordinary cohomology and connective K-theory. To compare the C∗-algebraic version of
gl1(KU) with its classical counterpart we also develop a uniqueness result for the unit spectrum
of complex periodic topological K-theory.
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1. Introduction

Continuous fields of C∗-algebras occur naturally as they correspond to bundles of C∗-
algebras in the sense of topology [9]. Any C∗-algebra with Hausdorff primitive spectrum X is
a continuous field of simple C∗-algebras over X, [25], [22]. More importantly, continuous fields
are used as versatile tools in several areas: E-theory [12], deformations of the tangent groupoid
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of manifolds [11], [1], strict deformation quantization [52], [39], the Novikov conjecture and the
Baum-Connes conjecture, [37], [30], [60], representation theory and index theory [28], [29].

Particularly well-behaved examples of continuous fields over a compact space X can be
obtained as the continuous sections C(X,E) of a locally trivial bundle E → X with fibres
isomorphic to a fixed C∗-algebra A. Such bundles are constructed by gluing together trivial
bundles Ui × A over an open cover (Ui)i∈I of the base space X using 1-cocycles γij : Ui ∩ Uj →
Aut(A). Two such locally trivial bundles E and F over a compact Hausdorff space X are
isomorphic if and only if their section C∗-algebras C(X,E) and C(X,F ) are isomorphic via
a C(X)-linear ∗-isomorphism. The proof of this property is an elementary exercise in bundle
theory [14].

As the description by 1-cocycles indicates, the classification of isomorphism classes of locally
trivial bundles with fibre A can be reduced to the classification of principal Aut(A)-bundles
over X up to isomorphism, and hence to the computation of the homotopy classes of maps
from X to the classifying space BAut(A). Without further structure the homotopy type of the
classifying space is typically very difficult to determine and the computation of homotopy sets
such as [X,BAut(A)] is out of reach. This changes quite drastically, however, if A = D⊗K, where
D belongs to the class of strongly self-absorbing C∗-algebras (see Sec. 2.1) and K denotes the
compact operators on an infinite-dimensional separable Hilbert space. In this case Aut(D ⊗K)
turns out to be an infinite loop space, which not only implies that E1

D(X) := [X,BAut(D⊗K)]
is an abelian group, the 1-group of the generalized cohomology theory E∗D(X), but also that it
is amenable to methods from stable homotopy theory, [19], [18].

Remarkably, the group law on E1
D(X) coming from the infinite loop space structure of

BAut(D⊗K) coincides with the operation induced by the tensor product of D⊗K-bundles. This
led to a generalized Dixmier-Douady theory. Let us note that if D = C, then E1

C(X) ∼= H3(X,Z)
is the home of the classic Dixmier-Douady class. Strongly self-absorbing C∗-algebras [57] are
separable unital C∗-algebras D defined by a crucial property that they share with the complex
numbers C. Namely, there exists an isomorphism D → D ⊗D which is unitarily homotopic to
the map d 7→ d⊗ 1D [21], [61]. Any strongly self-absorbing C∗-algebra D is either stably finite
or purely infinite. The latter condition is equivalent to D ∼= D ⊗O∞, where O∞ is the infinite
Cuntz algebra. Due to recent progress in classification theory [62] we now have a complete
list of all the strongly self-absorbing C∗-algebras that satisfy the Universal Coefficient Theorem
(abbreviated UCT) in KK-theory.

The main goal of this paper is to compute the group E1
D(X) for all strongly self-absorbing

C∗-algebras D in the UCT class. More precisely, we express E1
D(X) and its variants using

connective K-theory and ordinary cohomology groups. While this question is interesting in
itself and in view of direct connections with higher twisted K-theory [50], we draw additional
motivation from the following recent development: a conjecture of Izumi from [33], [34] has been
recently proved due to combined work of Meyer [48] and Gabe and Szabó [26]. It asserts that for
a countable torsion free amenable group G and for a Kirchberg algebra D, there is a bijection
between the cocycle conjugacy classes of outer actions of G on D ⊗ K and the isomorphism
classes of principal Aut(D⊗K)-bundles over the classifying space BG, i.e. the set of homotopy
classes [BG,BAut(D ⊗K)].

It follows that if BG admits a model as a finite CW-complex and if D is a strongly self-
absorbing Kirchberg algebra that satisfies the UCT, then the set of cocycle conjugacy classes
of outer actions of G on D ⊗ K forms a group with respect to the tensor product operation,
and this group is isomorphic to E1

D(BG). Moreover, this group can be computed as explained
below.
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Let k∗(X) denote the complex connective K-theory of the space X. For a finite based CW-

complex X with skeleta Xi, k̃
i(X) ∼= K̃i(X,Xi−2) and in particular k5(X) ∼= K1(X,X3), see

Proposition 2.2. For a set of primes P 6= ∅, consider the C∗-algebra MP =
⊗

p∈P Mp(C)⊗∞ and

its K-theory ring ZP =
⊗

p∈P Z[1
p ] viewed as a subring of Q. Our main result is the following:

Theorem A. Let X be a finite CW-complex and let P be a nonempty set of prime numbers.
There are isomorphisms

(a) E1
Z(X) ∼= H3(X,Z)⊕ k5(X).

(b) E1
MP

(X) ∼= H1(X, (ZP )×+)⊕H3(X,ZP )⊕ k5(X,ZP )

(c) E1
O∞(X) ∼=

(
H1(X,Z/2)×tw H

3(X,Z)
)
⊕ k5(X).

(d) E1
MP⊗O∞(X) ∼= H1(X, (ZP )×+)⊕

(
H1(X,Z/2)×tw H

3(X,ZP )
)
⊕ k5(X,ZP )

The (twisted) multiplication on H1(X,Z/2)×H3(X,ZP ) is given by

(1) (w, τ) · (w′, τ ′) = (w + w′, τ + τ ′ + βP (w ∪ w′))

for w,w′ ∈ H1(X,Z/2) and τ, τ ′ ∈ H3(X,ZP ), where βP : H2(X,Z/2) → H3(X,ZP ) is the
composition of the Bockstein homomorphism β with the coefficient map H3(X,Z)→ H3(X,ZP ).
The multiplicaton in (c) is just like in (1) with βP replaced by β : H2(X,Z/2)→ H3(X,Z).

The isomorphisms above are not natural. The article is structured as follows: In Section 2.1
we recall the definition of strongly self-absorbing C∗-algebras, discuss their classification and
give their K-theory groups. To each such algebra one can associate a commutative symmetric
ring spectrum KUD (see [18]). Its definition is recalled in Section 2.2. Just like a commutative
ring has a group of invertible elements (or units), the spectrum KUD has an associated unit
spectrum, whose definition is based on commutative I-monoids, see [53]. All of these notions
are reviewed in Section 2.3. As we will see in later chapters the groups classifying bundles of
stabilised strongly self-absorbing C∗-algebras can be expressed in terms of connective K-theory
ku. Therefore we recall the main properties of ku needed in the rest of the paper in Section 2.4.

In Section 3 we discuss the classification of C∗-algebra bundles with fibre D ⊗ K for a
strongly self-absorbing C∗-algebra D. We review the construction of the cohomology theories
E∗D(X) and its variants at the beginning of Section 3. As shown in Section 3.1 these theories
all split off a low-degree summand that can be expressed via ordinary cohomology groups with
a “twisted multiplication”. The complement of this summand, called h(X) in Section 3, is
identified in Section 3.2 with bsu1

⊗(X). Due to the Adams-Priddy result on the uniqueness of
bsu, [4], we can express bsu1

⊗(X) in terms of connective K-theory (which we review in Sect.2.4).
The subtle point in this last part is that we have to deal with two constructions of the units
of topological K-theory: gl1(KUC) and gl1(KU) for a commutative S-algebra KU representing
K-theory. We will show in Sections 4 and 5 that both of these give the same cohomology theory.

Since the proof of the uniqueness result in Section 5 requires a lot of heavy machinery
from stable homotopy theory, Section 4 outlines the preliminaries that we need: We discuss the
definition of commutative S-algebras and their unit spectra in Section 4.1, which also contains
the definition of the commutative S-algebra KU that will play a crucial role in Section 5.

Section 5 of this paper is devoted entirely to the proof of the uniqueness result which gives
a natural isomorphism gl1(KUC)∗(X) ∼= gl1(KU)∗(X). In Section 5.1 we explain how to move
from units of commutative symmetric ring spectra to units of commutative S-algebras. We use
the obstruction theory of Goerss and Hopkins in Section 5.2 to show that uniqueness follows if
we have a unital and multiplicative isomorphism between a commutative S-algebra model G for
K-theory and KU in the homotopy category. In the remaining Sections 5.3 to 5.6 we construct
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an intermediate spectrum Σ∞CP∞+ [b−1], which has the benefit that maps from it to G and KU
can be constructed from maps on CPn that are easily obtained from the multiplicative natural
transformation.

2. Symmetric ring spectra representing K-theory and its localisations

Topological K-theory is a multiplicative cohomology theory and can be modelled as a
commutative symmetric ring spectrum [36]. In this form it has a natural extension KUD that
takes a strongly self-absorbing C∗-algebra D as input. For any such D the group K0(D) is
actually a ring and if D satisfies the UCT, then K0(D) ⊆ Q as a subring. The spectrum KUD

represents topological K-theory with coefficients in K0(D), i.e. a localisation of K-theory. We
recall the definition of strongly self-absorbing C∗-algebras, the construction of KUD and its unit
spectrum in the sense of stable homotopy theory in the next sections.

2.1. Strongly self-absorbing C∗-algebras. A C∗-algebra A absorbs another C∗-algebra D
tensorially if A⊗D ∼= A. As was already observed in [38, 51], tensorial absorption properties are
crucial in the classification programme for separable simple nuclear C∗-algebras. This prompted
an analysis of strongly self-absorbing C∗-algebras [58]. By definition a unital C∗-algebra D
belongs to this class if there exists an isomorphism D → D⊗D that is approximately unitarily
equivalent to d 7→ d⊗ 1.

The two Cuntz algebras O2 and O∞ with two, respectively infinitely many generators
(see [13]) are strongly self-absorbing. Another prominent example in this class is the Jiang-Su
algebra Z (see [35]), which can be viewed as the infinite-dimensional stably finite counterpart
of C, while O∞ is its purely infinite version. We have an isomorphism O∞ ⊗ Z ∼= O∞. The
unital ∗-homomorphisms C→ Z → O∞ are KK-equivalences. O2 is KK-contractible.

All self-absorbing C∗-algebras that satisfy the UCT, with the exception of C and O2, can be
obtained as tensor products of either Z or O∞ with an infinite UHF-algebra. The construction
of these is a C∗-algebraic version of the localisation at a set of primes: For a prime p, let Mp

denote the infinite tensor product Mp = Mp(C)⊗∞. For a set of primes P define MP to be

MP =
⊗
p∈P

Mp .

If P = ∅, then we set MP = C. There is a dichotomy for strongly self-absorbing C∗-algebras:
they are either stably finite or purely infinite. In the first case the algebra is isomorphic to either
C, Z, or MP for some nonempty set P of primes, in the second to O∞, MP ⊗ O∞ for some
nonempty set P of primes or to O2, [62]. If D is purely infinite, then D ⊗O∞ ∼= D.

If D is strongly self-absorbing and D 6= C, then D ∼= D ⊗ Z. In particular, we have
MP ⊗Z ∼= MP . If P ⊂ P ′ is an inclusion of subsets of prime numbers, then MP ′ ⊗MP

∼= MP ′ .
In case P is the set of all primes, then we denote MP by Q. The C∗-algebra Q is called the
universal UHF-algebra. The relationship between the various strongly self-absorbing C∗-algebras
is illustrated in the following diagram:

(2)

Z MP Q

C O2

O∞ O∞ ⊗MP O∞ ⊗Q
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An arrow D → D′ in this diagram not only indicates a unital embedding, but also the property
D′ ⊗D ∼= D′.

For strongly self-absorbing C∗-algebras D in the UCT class the K-theory groups can be
computed as follows, [58]: K1(D) = 0 and as mentioned above, the group K0(D) ∼= K0(O∞⊗D)
has a natural unital commutative ring structure with multiplication induced by the isomorphism
D ⊗D ∼= D. Let Zp = Z[1

p ] denote the localization of Z away from p and Z(p) the localization

of Z at p. Then we have natural ring isomorphisms:

K0(C) ∼= K0(Z) ∼= K(O∞) ∼= Z ,

K0(MP ) ∼= K0(MP ⊗O∞) ∼=
⊗
p∈P

Zp =: ZP ,

K0(O2) = 0 .

Mirroring the localisation of integers, we denote the algebra MP by M(p) in case P is the set of
all primes different from p. Thus: K0(Mp) ∼= Zp, K0(M(p)) ∼= Z(p), and K0(Q) ∼= Q.

We will denote the invertible elements of the commutative ring K0(D) either by K0(D)× or
by GL1(K0(D)). Note that K0(D) is an ordered group with positive cone given by the elements
represented by classes of projections in D⊗K (as opposed to formal differences). The subgroup
of positive elements of K0(D)× is then denoted by K0(D)×+. Since the order structure is trivial

if D is purely infinite, we have K0(D)×+ = K0(D)× in this case.

2.2. The symmetric spectra KUD. A Z/2Z-grading on a C∗-algebra A is an automorphism
γ ∈ Aut(A) with γ2 = idA. We call the pair (A, γ) a graded C∗-algebra and will often suppress
the grading in the notation. Any Z/2Z-graded C∗-algebra A has a Banach space decomposition
A ∼= A0 ⊕A1 with

A0 = {a ∈ A | γ(a) = a} and A1 = {a ∈ A | γ(a) = −a}

such that the even part A0 is a C∗-subalgebra and Ai ·Aj ⊂ Ai+j , where the supscript is taken
modulo 2 here. The elements a ∈ Ai are said to be homogeneous and have degree i, which we
denote by deg(a) = i. If γ = idA, then we call A trivially graded. The (minimal) graded tensor
product of two graded C∗-algebras A and B is a completion of the algebraic tensor product
A�B with the multiplication and involution defined on homogeneous elements by

(a⊗ b) · (a′ ⊗ b′) = (−1)deg(a′)·deg(b)aa′ ⊗ bb′ and (a⊗ b)∗ = (−1)deg(a)·deg(b)a∗ ⊗ b∗

The tensor flip A⊗B → B ⊗A has to be decorated with the sign (−1)deg(a)·deg(b) as well to be
a ∗-isomorphism.

Two graded C∗-algebras will play a central role in the following construction: The Clifford
algebra C`n is the unital C∗-algebra with self-adjoint generators {e1, . . . , en} and relations

eiej + ejei = δij 1 ,

where δii is the Kronecker delta. The grading γ is defined on generators by γ(ei) = −ei, i.e. the
elements ei are odd. These structures turn C`n into a finite-dimensional graded C∗-algebra.

The other non-trivially graded C∗-algebra that we will encounter is the graded suspension
algebra S = C0(R) equipped with the grading by odd and even functions. This algebra can be
equipped with a coassociative and cocommutative comultiplication ∆: S → S ⊗ S that has a
counit ε : S → C defined by ε(f) = f(0). [36, p. 94].
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Let D be a strongly self-absorbing C∗-algebra, considered as a trivially graded algebra. It
was shown in [18] that the sequence of spaces (KUDn )n∈N0 given by

KUDn = homgr(S, (C`1 ⊗D ⊗K)⊗n)

and equipped with the point-norm topology forms a commutative symmetric ring spectrum
representing the cohomology theory X 7→ K∗(C(X)⊗D). The multiplicative structure on KUD

is induced by

KUDn ∧KUDm → KUDn+m , ϕ ∧ ψ 7→ (ϕ⊗ ψ) ◦∆ .

Bott periodicity gives an element in homgr(S, C0(R)⊗C`1) and hence by extension with a rank
1-projection 1⊗ e ∈ D ⊗K an element η1 in

Map∗(S
1,KUD1 ) ∼= homgr(S, C0(R)⊗ C`1 ⊗D ⊗K)

(see [18, Sec. 4.1] for details). The unit map ηn : Sn → KUDn of the ring spectrum is constructed
as an n-fold power of η1 (using the above multiplication). As usual combining the unit maps
with the multiplication gives the structure maps

(3) S1 ∧KUDn → KUDn+1

Note that the space KUD0 = homgr(S,C) ' S0 contains only two points. One is given by the
zero homomorphism, the other one is given by the evaluation at 0, which is the only evaluation
that respects the grading. Nevertheless, as we will see in Lem. 2.1 all adjoints of the structure
maps in degree ≥ 1 are weak homotopy equivalences. Symmetric spectra with this property are
called positive Ω-spectra. In fact, more is true:

Lemma 2.1. Let D be a strongly self-absorbing C∗-algebra. The spectrum KUD is a positive
Ω-spectrum that represents X 7→ K∗(C(X)⊗D) as a multiplicative cohomology theory.

Proof. For n ≥ 1 the adjoint KUDn → ΩKUDn+1 of (3) is a weak equivalence by [18, Thm. 4.2].

Thus, KUD is a positive Ω-spectrum. By [59, Thm. 4.7] there are natural isomorphisms

[X,KUDn ] ∼= [S, C(X)⊗ C`n ⊗D ⊗K]gr
∼= KK(C, C(X)⊗ C`n ⊗D) ∼= Kn(C(X)⊗D) ,

for n ≥ 1, where [ · , · ]gr denotes the homotopy classes of graded homomorphisms. It remains
to be checked that this is compatible with the multiplicative structure. Using Bott periodicity
and a suspension argument this can be reduced to the question whether KUD2 ∧KUD2 → KUD4
implements the multiplication in K0(C(X)⊗D) ∼= K2(C(X)⊗D).

Note that C`2 ∼= M2(C) if the right hand side is equipped with the diagonal/off-diagonal
grading. Let p1, p2, q1, q2 ∈ C(X)⊗D ⊗K be projections and consider

ϕpi,qi : S → C`2 ⊗ C(X)⊗D ⊗K , f 7→ ε(f)

(
pi 0
0 qi

)
.

By [59, p. 303] this represents the element [pi] − [qi] ∈ K0(C(X) ⊗ D) in [X,KUD2 ]. We have
C`2 ⊗ C`2 ∼= C`2 ⊗M2(C) with M2(C) trivially graded. Moreover, (ε ⊗ ε) ◦∆ = ε, since ε is a
counit. Hence, we obtain

((ϕp1,q1 ⊗ ϕp2,q2) ◦∆)(f) = ε(f)

(
p1 ⊗ p2 ⊕ q1 ⊗ q2 0

0 p1 ⊗ q2 ⊕ q1 ⊗ p2

)
,

which indeed represents the class ([p1]− [q1]) · ([p2]− [q2]) ∈ K0(C(X)⊗D). �
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2.3. The unit spectrum of KUD. Following Schlichtkrull [53], we give a brief outline of how
to define the units of a commutative symmetric ring spectrum. This is based on the following
model for E∞-spaces: Let I be the category with objects the sets n = {1, . . . , n} for n ∈ N0 (with
0 = ∅) and injective maps as morphisms. This is a symmetric monoidal category, where the
tensor product is given by ntm = {1, . . . , n+m} on objects and on morphisms by identifying n
with {1, . . . , n} ⊂ ntm and m with {n+ 1, . . . , n+m} ⊂ ntm. The object 0 is the monoidal
unit and the symmetry n + m→m + n is given by a block permutation.

An I-space is a functor X : I → T from I to the category of based topological spaces. A
morphism of I-spaces is a natural transformation. The category of I-spaces also has a symmetric
monoidal structure: For two given I-spaces X and Y , the tensor product X � Y is defined as
the left Kan extension of the I2-space X × Y along t : I × I → I. This definition implies that
a morphism X � Y → Z of I-spaces X,Y, Z is the same as a natural transformation

X(n)× Y (m)→ Z(n tm)

of I2-spaces. A (commutative) I-monoid is a (commutative) monoid in the category of I-spaces.
Note that the category I is denoted by I in [40] and I-monoids are called I-FCPs. If X is a
commutative I-monoid, then

XhI = hocolimI X

is an E∞-space [40, Rem. 4.3]. One should think of the homotopy colimit of an I-space as the
homotopy type modelled by it.

Let (Rn)n∈N0 be a commutative symmetric ring spectrum and define (Ω•R)(n) = ΩnRn.
This extends to an I-space Ω•R, which should model the infinite loop space underlying the
spectrum R. However, there is a caveat here, since the homotopy groups of (Ω•R)hI and R do
not necessarily agree (see also [40, Rem. 2.1]). If R is represented by a positive Ω-spectrum,
which we will assume for the rest of this paragraph, then this problem does not arise. In analogy
to (23) we define the I-space of units (Ω•R)×(n) of R to be the subspace of ΩnRn consisting
of those based maps f : Sn → Rn which are stably invertible in the sense that there exists
g : Sm → Rm such that

µ ◦ (f ∧ g) : Sn+m → Rn+m

is homotopic to the unit map of the ring spectrum, where µ : Rn∧Rm → Rn+m denotes its mul-
tiplication. The smash product (f, g) 7→ µ◦ (f ∧g) gives (Ω•R)× the structure of a commutative
I-monoid and

(Ω•R)×hI ' GL1(R) .

Thus, the space underlying (Ω•R)× is GL1(R), but the commutative I-monoid reveals an E∞-
structure on it. To obtain the spectrum gl1(R) from this, we can turn (Ω•R)× into a Γ-space
and apply an infinite loop space machine to it turning it into a weak Ω-spectrum. For details
we refer the reader to [53] or to [40, Construction 12.1 and Def. 12.5].

Applying this functor to KUC gives a first way of defining the unit spectrum of topological
K-theory and which we denote by gl1(KUC). We will define the unit spectrum of topological
K-theory in a second way in Section 4 and denote the corresponding object by gl1(KU). The
two spectra gl1(KUC) and gl1(KU) will be compared in Section 5.

We finish this part by listing some comparison results among the spectra gl1(KUD). Recall
that a level equivalence is a map of symmetric spectra which induces a weak equivalence of the
n-th spaces of the spectra for all n ≥ 0 ([43, Definition 6.1(i)]). A level equivalence is a stable
equivalence ([43, bottom of page 466]). The converse is not true in general but it is true if the
spectra are Ω-spectra ([43, Lemma 8.11]).



8 MARIUS DADARLAT, JAMES E. MCCLURE, AND ULRICH PENNIG

The spectra KUD are positive Ω-spectra by Lem. 2.1 and therefore fibrant objects in the
model category of commutative symmetric ring spectra by [43, Thm. 14.2]. By [40, Lem. 13.5]
the functor gl1 preserves weak equivalences between fibrant objects. The ∗-homomorphisms
C→ Z and C→ O∞ induce level and therefore stable equivalences of commutative symmetric
ring spectra KUC → KUZ and KUC → KUO∞ . Given any set of primes P the unital ∗-
homomorphism MP →MP ⊗O∞ gives a stable equivalence KUMP → KUMP⊗O∞ . From these
we therefore obtain equivalences of weak Ω-spectra

gl1(KUC) ' gl1(KUZ) ' gl1(KUO∞) ,(4)

gl1(KUMP ) ' gl1(KUMP⊗O∞) .(5)

2.4. Connective K-theory. Let ku be a spectrum representing connective K-theory. It is
the connective cover i.e. the (−1)-connected cover of the spectrum KU of complex periodic K-
theory. There is a map ku→ KU of spectra which induces isomorphisms on homotopy groups
in non-negative degrees while πi(ku) = 0 for i < 0. Thus, the homotopy types of the first few
spaces forming the spectrum ku are:

BU × Z, U, BU, SU, BSU, BBSU . . .

The spectrum bsu⊕ is the 3-connected cover of ku (or of KU) (see [4]). Hence, we can identify
bsu⊕ with Σ4ku. Let k∗ be the cohomology theory associated to ku. By our observations there
is a natural isomorphism

(6) bsun⊕(X) ∼= kn+4(X), for alln ≥ 0.

For our purposes, it is useful to address the question of computing bsu1
⊕(X) ∼= k5(X). Let HZ

denote the usual Eilenberg-Mac Lane spectrum representing ordinary cohomology. The Bott
operation b induces a cofiber sequence of spectra

Σ2ku ku HZb

and hence a long exact sequence

0 k3(X) k1(X) H1(X,Z)

0 k4(X) k2(X) H2(X,Z)

0 k5(X) k3(X) H3(X,Z)

k6(X) k4(X) H4(X,Z)

b

b

c1

b

b

We see that k1(X) ∼= K1(X) and k3(X) ∼= ker
(
K1(X)→ H1(X,Z)). The map c1 identifies with

the first Chern class and is surjective so that

(7) k5(X) ∼= ker
(
k3(X)→ H3(X,Z)

)
.

The maps ki(X)→ H i(X,Z) are induced by the delopings of determinant map det : U → U(1).
For a different description of k5(X), one verifies that if X is a finite CW-complex with

i-skeleta Xi, i ≥ 0, then k3(X) ∼= K1(X,X1), k5(X) ∼= K1(X,X3) is isomorphic to the kernel of
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the restriction map K1(X,X1)→ K1(X3, X1). Indeed, for the benefit of the reader we include
the following proposition known to the experts: We define

k̃i(X,A) =

{
ki(X,A) if A 6= ∅ ,
k̃i(X) else .

and similarly for K̃i(X,A).

Proposition 2.2. If X is a finite CW-complex with base point, the pair Xi−2 ⊂ X induces an

isomorphism of reduced theories k̃i(X) ∼= k̃i(X,Xi−2) ∼= K̃i(X,Xi−2).

Proof. The long exact sequence

k̃i−1(Xi−2) k̃i(X,Xi−2) k̃i(X) k̃i(Xi−2)

gives the isomorphism k̃i(X) ∼= k̃i(X,Xi−2) since k̃i−1(Xi−2) = k̃i(Xi−2) = 0 as the space bu(r)

is (r − 1)-connected by construction and hence k̃r(Y ) = [Y, bu(r)] = 0 if dim(Y ) ≤ r − 1. Next,
the exact sequence

H̃j−1(Y,Z) k̃j+2(Y ) k̃j(Y ) H̃j(Y,Z)

shows that k̃j+2(Y ) ∼= k̃j(Y ) if Y is j-connected and hence

k̃j+2(Y ) ∼= k̃j(Y ) ∼= k̃j−2(Y ) ∼= · · · ∼= K̃j−2m(Y ) ∼= K̃j(Y )

for 2m ≥ j. Aplying this isomorphism for Y = X/Xi−2 (which is (i− 2)-connected) one obtains

that k̃i(X,Xi−2) ∼= K̃i(X,Xi−2). �

We refer the reader to [55], [16] and [15] for other applications of connective K-theory in
operator algebras.

3. Units of K-theory and the classification of bundles

Let D be a stably finite strongly self-absorbing C∗-algebra satisfying the UCT. From (2)
we know that D ∼= MP or D ∼= Z for some set P (possibly empty) of prime numbers. It was
shown in [19, 18] that the isomorphism classes of locally trivial C∗-algebra bundles with fibre
D ⊗K form a group with respect to the fibrewise tensor product. Each of these groups is part
of a cohomology theory closely related to the one represented by the spectrum gl1(KUD). The
reason for the existence of these theories is an infinite loop space structure on the spaces

Aut0(D ⊗K), Aut(D ⊗K), Aut(D ⊗O∞ ⊗K) and Autgr(C`1 ⊗D ⊗K) ,

where Aut0( · ) denotes the identity component of the automorphism group and Autgr( · ) are
the automorphisms that preserve the grading. In fact, each of these spaces is an E∞-space that
can be modelled by a commutative I-monoid naturally associated to D. These I-monoids and
our notation for the associated cohomology theory are listed in Table 1.

We refer the reader to [18, Sec. 4.2] and to [20] for further details about their construction.
Note that each of these I-monoids takes values in topological groups, and if G denotes one
of them, then n → BG(n) (defined by taking classifying spaces levelwise) is a commutative
I-monoid as well. It was shown in [18, Thm. 3.6] that the spectrum obtained from BG is in
fact the shifted version of the spectrum associated to G itself. This is not obvious, since the
classifying space delooping could a priori be different from the one produced by the infinite loop
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commutative I-monoid cohomology theory

ḠD(n) = Aut0((D ⊗K)⊗n) Ē∗D(X)

GD(n) = Aut((D ⊗K)⊗n) E∗D(X)

GD⊗O∞(n) = Aut((D ⊗O∞ ⊗K)⊗n) E∗D⊗O∞(X)

Ggr
D(n) = Autgr((C`1 ⊗D ⊗K)⊗n) Ê∗D(X)

Table 1. Cohomology theories associated to the automorphism groups

space machine. As a consequence we have [X,BAut(D ⊗ K)] ∼= E1
D(X) and similarly for the

other variations listed in the table above.
We will need the following result contained in Theorem 5.4 from [20]. Recall that the unit

spectrum of KUD, denoted by gl1(KUD) was discussed in subsec. 2.3.

Theorem 3.1. Let D be a stably finite strongly self-absorbing C∗-algebra that satisfies the UCT.
There is a natural action of Ggr

D on the ring spectrum KUD which induces a map

(8) Γ(Ggr
D)→ Γ((Ω•KUD)×)

of the associated Γ-spaces which in its turn induces an equivalence of the underlying connective
spectra in the stable homotopy category. In particular we obtain a natural isomorphism

(9) Ê∗D(X) ∼= gl1(KUD)∗(X)

for X a finite CW-complex.

3.1. Splitting results. The main result in this section is Prop. 3.9, in which we show that each
of the cohomology theories defined above splits off a low-degree ordinary cohomology group. It
suffices to treat the case where D is stably finite, because a key result of [20] establishes the
isomorphism

E1
D⊗O∞(X) ∼= Ê1

D(X) .

We have revisited in [20] the following result from [23], [49].

Proposition 3.2. For any finite CW-complex X, Ê1
C(X) ∼= H1(X,Z/2) ×tw H3(X,Z) with

group structure:
(w, τ) · (w′, τ ′) = (w + w′, τ + τ ′ + β(w ∪ w′))

for w,w′ ∈ H1(X,Z/2) and τ, τ ′ ∈ H3(X,Z), where β : H2(X,Z/2)→ H3(X,Z) is the Bockstein
homomorphism.

Let us recall the following two theorems from [20]:

Theorem 3.3. Let X be a finite CW-complex and let D be a stable finite strongly self-absorbing
C∗-algebra satisfying the UCT. The groups E1

D(X) and Ê1
D(X) fit into a short exact sequence

0 E1
D(X) Ê1

D(X) H1(X,Z/2) 0.
δ0

If L is a real line vector bundle on X with associated Clifford bundle C`L, then δ0(C`L⊗D⊗K) =
w1(L), where w1(L) is the first Stiefel-Whitney class of L.

Theorem 3.4. Let X be a finite CW-complex and let D be a stably finite strongly self-absorbing
C∗-algebra satisfying the UCT. Then there is an isomorphism of groups

Ê1
D(X) ∼= H1(X,Z/2)×tw E

1
D(X)



BUNDLES OF STRONGLY SELF-ABSORBING C∗-ALGEBRAS 11

with multiplication on the direct product H1(X,Z/2)× E1
D(X) given by

(w, τ) · (w′, τ ′) = (w + w′, τ + τ ′ + jP ◦ β(w ∪ w′))

for w,w′ ∈ H1(X,Z/2) and τ, τ ′ ∈ E1
D(X), where jP : E1

C(X) → E1
D(X) is the map induced by

the unital ∗-homomorphism C→ D and we identify E1
C(X) ∼= H3(X,Z).

Remark 3.5. Just like in [20], we use here the following basic fact, [10, p.93]. Suppose that

0 A E G 0i π

is an extension of abelian groups and σ : G→ E is a map such that σ(0) = 0 and π ◦ σ = idE .
Let c : G × G → A be the normalized 2-cocycle defined by i(c(g, h)) = σ(gh)σ(h)−1σ−1(g),
g, h ∈ G. Then the group E is isomorphic to G×A endowed with the group law:

(g, a)(g′, a′) = (g + g′, a+ a′ + c(g, g′)).

The coefficients of the cohomology theory E∗D(X) are given by the homotopy groups of
Aut(D ⊗K) computed in [19, Thm.2.18]:

(10) E−iD (∗) ∼= πi(Aut(D ⊗K)) =

{
K0(D)×+, if i = 0

Ki(D), if i ≥ 1.

If D satisfies the UCT, then Ki(D) = 0 if i is odd and in particular if P 6= ∅ is a set of prime
numbers, then

(11) E−iMP
(∗) =


(ZP )×+, if i = 0

ZP , if i = 2k > 0,

0, if i = 2k + 1.

Let P be a set of prime numbers and let A → X be a locally trivial C∗-algebra bundle with
fibre MP ⊗ K. Let (Ui)i∈I be a trivialising open cover of X for A and denote the transition
maps by ϕij : Ui ∩Uj → Aut(MP ⊗K). If we apply the K0-functor to ϕij we obtain a 1-cocycle

K0(ϕij) : Ui ∩ Uj → Aut(K0(MP ⊗K)) ∼= GL1(ZP ) ,

which factors through the group of positive invertible elements (ZP )×+ ⊂ GL1(ZP ). The cocycle
only depends on the isomorphism class of A and is compatible with tensor products, which gives
us a group homomorphism (see also [17, Prop. 2.3])

δ0 : E1
MP

(X)→ H1(X, (ZP )×+) .

Proposition 3.6. Let X be a finite CW-complex and let P 6= ∅ be a set of prime numbers. The
group E1

MP
(X) fits into a short exact sequence

0 Ē1
MP

(X) E1
MP

(X) H1(X, (ZP )×+) 0
δ0

and this sequence splits (not naturally). In particular, there is a non-natural isomorphism

E1
MP

(X) ∼= H1(X, (ZP )×+)⊕ Ē1
MP

(X) .

Proof. By (11), π0(Aut(MP ⊗ K)) ∼= K0(MP )×+
∼= (ZP )×+. By [18, Cor.2.19], there is an exact

sequence

1→ Aut0(MP ⊗K)→ Aut(MP ⊗K)→ K0(MP )×+ → 1 ,
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where Aut(MP ⊗K)→ K0(MP )×+ is defined by α 7→ [α(1⊗ e)] for a rank one projection e ∈ K.
We will first show that this sequence splits. We will do so by constructing a homomorphism
γ : (ZP )×+ → Aut(MP ⊗K) that lifts Aut(MP ⊗K)→ π0(Aut(MP ⊗K)). Note that

(12) (ZP )×+
∼=
⊕
p∈P

Z

by the prime factor decomposition. Thus, we need to find for each p ∈ P an automorphism
αp ∈ Aut(MP ⊗K) such that all of them commute and [αp(1⊗ e)] ∈ K0(MP ) corresponds to p
under the isomorphism K0(MP ) ∼= ZP induced by the trace. Fix p. We define ᾱp as follows

Mp ⊗K Mp ⊗Mp(C)⊗K Mp ⊗K
ϕ1⊗idK idMp⊗ϕ2

where ϕ1 : Mp → Mp ⊗Mp(C) and ϕ2 : Mp(C)⊗K → K are isomorphisms. If τ is the trace on
the finite rank projections of Mp ⊗ K with τ(1 ⊗ e) = 1, then τ(ᾱp(1 ⊗ e)) = p. We may view
MP ⊗ K as the tensor product over all Mp ⊗ K for all p ∈ P . In case P is an infinite set we
choose

(Mp1 ⊗K)⊗ · · · ⊗ (Mpi ⊗K)→ (Mp1 ⊗K)⊗ · · · ⊗ (Mpi ⊗K)⊗ (Mpi+1 ⊗K)

to be given by a 7→ a⊗ (1⊗ e). The automorphism αp ∈ Aut(MP ⊗K) is defined to act via ᾱp
on the appropriate tensor factor and the identity on the rest. These clearly commute.

Set D = MP and recall that ḠD(n) = Aut0((D ⊗K)⊗n).
There are maps of I-commutative monoids [20, Lem.6.2]:

(13) ḠD(n)→ GD(n)→ K0(D)×+

and a group homomorphism

K0(D)×+ ×Aut0(D ⊗K)→ Aut((D ⊗K)⊗ (D ⊗K)) ∼= Aut(D ⊗K),

given by (x, α) 7→ γ(x)⊗ α. From our previous discussion, this is a homotopy equivalence. We
obtain a homotopy equivalence

B(K0(D)×+)×BAut0(D ⊗K)→ BAut(D ⊗K).

In conjunction with (13), this gives the exact sequence from the statement (and a splitting
as a sequence of pointed sets). To see that the exact sequence of groups splits, one observes
that if X is a finite CW-complex, then H1(X, (ZP )×+) is a free group since it is isomorphic to

Hom(H1(X,Z), (ZP )×+) ∼= ((ZP )×+)r where r is the rank of H1(X,Z). �

Proposition 3.7. Let P be a nonempty set of primes and let X be a finite CW-complex. The
natural maps Ē∗MP

(X)→ Ē∗MP
(X)⊗ ZP and Ē∗Z(X)⊗ ZP → Ē∗MP

(X)⊗ ZP are isomorphisms

of groups. It follows that Ē∗MP
(X) ∼= Ē∗Z(X)⊗ ZP .

Proof. Let D be a strongly self-absorbing C∗-algebra satisfying the UCT. Since ZP is flat, it
follows that X 7→ Ē∗D(X) ⊗ ZP still satisfies all axioms of a generalized cohomology theory on
finite CW-complexes. We have natural transformations of cohomology theories:

Ē∗MP
(X)→ Ē∗MP

(X)⊗ ZP , Ē∗Z(X)⊗ ZP → Ē∗MP
(X)⊗ ZP .

These transformations induce isomorphisms of groups on coefficients by (11) and therefore they
induce isomorphisms of cohomology theories. �
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Let us recall from [19] that the natural map D → D ⊗O∞ induces an isomorphism

(14) Ē∗D(X)
∼=−→ Ē∗D⊗O∞(X)

since one checks that it induces an isomorphism on coefficients in view of (10).

Proposition 3.8. Let X be a finite CW complex. The canonical maps ρ̂ : Ê1
C(X) → Ê1

Z(X)
and ρ : E1

C(X)→ E1
Z(X) induced by the unital ∗-homomorphism C→ Z split naturally. Conse-

quently we have natural splittings

(15) Ê1
Z(X) ∼= Ê1

C(X)⊕ h(X) and E1
Z(X) ∼= E1

C(X)⊕ h(X).

Proof. By the CW-approximation theorem, there are the natural diagrams

(16)

Ê1
C(X) Ê1

Z(X)

Ê1
C(X4) Ê1

Z(X4)

r̂C

ρ̂

r̂Z

ρ̂4

E1
C(X) E1

Z(X)

E1
C(X4) E1

Z(X4)

rC

ρ

rZ

ρ4

induced by the inclusion of skeleta X4 ↪→ X. We will verify that the maps ρ̂4, r̂C, ρ4 and rC are
bijections. This will clearly imply (15) with

h(X) := ker r̂Z ∼= ker rZ .

The isomorphism ker r̂Z ∼= ker rZ follows from the naturality of (3.3).
Consider the commutative diagram from the proof of [20, Thm. 6.7]:

0 E1
Z(X) Ê1

Z(X) H1(X,Z/2) 0

0 E1
C(X) Ê1

C(X) H1(X,Z/2) 0

0 H3(X,Z) H3(X,Z)×tw H
1(X,Z/2) H1(X,Z/2) 0

ρ ρ̂

If we show that ρ4 : E1
C(X4) → E1

Z(X4) is bijective so is ρ̂4. The map ρ is induced by the
map BAut(K) → BAut(Z ⊗ K) which is 4-connected by the computations of [17], see (10).
By Whitehead’s theorem this shows that ρ4 is surjective and that ρ3 : E1

C(X3) → E1
Z(X3) is

bijective. The restriction map r′C : E1
C(X4)→ E1

C(X3) in the commutative diagram below

(17)

E1
C(X4) E1

Z(X4)

E1
C(X3) E1

Z(X3)

r′C

ρ4

r′Z

ρ3
∼=

is injective since it identifies with the map H3(X4,Z) → H3(X3,Z) which is injective since
H3(X4/X3,Z) = 0. It follows that ρ4 is also injective. Next we show that the map r̂C is
bijective. Using the naturality of the exact sequence from Theorem 3.3, since the restriction
map H1(X,Z/2) → H1(X4,Z/2) is bijective, it suffices to show that the restriction map rC :
E1

C(X)→ E1
C(X4) is bijective. This follows from the exact sequence

H3(X/X4,Z)→ H3(X,Z)→ H3(X4,Z)→ H4(X/X4,Z),

since X/X4 is 4-connected. �
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Proposition 3.9. Let P 6= ∅ be a set of prime numbers and let X be a finite CW complex.
Then there are isomorphisms of groups

(a) E1
Z(X) ∼= Ē1

Z(X) ∼= H3(X,Z)⊕ h(X).

(b) Ê1
Z(X) ∼= (H1(X,Z/2)×tw H

3(X,Z))⊕ h(X).
(c) E1

MP
(X) ∼= H1(X, (ZP )×+)⊕ Ē1

MP
(X) ∼= H1(X, (ZP )×+)⊕H3(X,Z)⊗ ZP ⊕ h(X)⊗ ZP

(d) Ê1
MP

(X) ∼= H1(X, (ZP )×+)⊕
(
H1(X,Z/2)×tw H

3(X,ZP )
)
⊕ h(X)⊗ZP with multiplica-

tion on H1(X,Z/2)×H3(X,ZP )

(w, τ) · (w′, τ ′) = (w + w′, τ + τ ′ + βP (w ∪ w′))
for w,w′ ∈ H1(X,Z/2) and τ, τ ′ ∈ H3(X,ZP ), where βP : H2(X,Z/2) → H3(X,ZP ) is
the composition of the Bockstein homomorphism with the coefficient map H3(X,Z) →
H3(X,ZP ).

Proof. The isomorphism (a) follows from (15). Recall that E1
Z(X) ∼= Ē1

Z(X) since Aut(Z ⊗K)
is path connected. Part (b) follows Proposition 3.2 and Proposition 3.8. The isomorphism (c)
follows from (a), Proposition 3.6 and Proposition 3.7.

It remains to deal with (d). Along the way we shall review the proof of Theorem 3.4. If
D′ 7→ D is a unital ∗-monomorphism of strongly self-absorbing C∗-algebras, by [20, Lem. 6.3]
there is a commutative diagram of commutative I-monoids:

GD(n) Ggr
D(n) Z/2

GD′(n) Ggr
D′(n) Z/2

which induces a commutative diagram

0 E1
MP

(X) Ê1
MP

(X) H1(X,Z/2) 0

0 E1
C(X) Ê1

C(X) H1(X,Z/2) 0

0 H3(X,Z) H3(X,Z)×H1(X,Z/2) H1(X,Z/2) 0

Let j : H3(X,Z) = E1
C(X) → E1

MP
(X) be the map induced by unital ∗-homomorphism

C→MP . From the diagram above, Proposition 3.2 and Remark 3.5 we obtain that

(18) Ê1
MP

(X) ∼= H1(X,Z/2)×tw E
1
MP

(X)

where the group structure is given by (w, x) · (w′, x′) = (w + w′, x + x′ + j(β(w ∪ w′))) for
w,w′ ∈ H1(X,Z/2) and x, x′ ∈ E1

MP
(X). Note that the image of j is contained in Ē1

MP
(X)

since E1
C(X) = Ē1

C(X). Using the isomorphism:

E1
MP

(X) ∼= H1(X, (ZP )×+)⊕ Ē1
MP

(X) ∼= H1(X, (ZP )×+)⊕ Ē1
Z(X)⊗ ZP

and the previous discussion, we can identify that map j : E1
C(X)→ E1

MP
(X) with the map

H3(X,Z)→ H1(X, (ZP )×+)⊕H3(X,Z)⊗ ZP ⊕ h(X)⊗ ZP ,

induced by H3(X,Z)→ H3(X,Z)⊗ ZP , h 7→ h⊗ 1. Part (d) follows now from (18). �
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3.2. Comparing E1
Z(X) and bsu1

⊗(X) and proof of Theorem A. In this section we will
identify the summand h(X) of E1

Z(X) from Prop. 3.9 with the first group of the generalised
cohomology theory bsu∗⊗(X). To understand this group note that the spaces BU and BSU both
have two H-space structures: one arising from the direct sum and another one from the tensor
product. To distinguish them we will denote the second one by BU⊗ and BSU⊗, respectively. It
was first observed by Segal in [54] that BU⊗ is in fact an infinite loop space. In particular, there
is a cohomology theory X 7→ bu∗⊗(X), such that bu0

⊗(X) = [X,BU⊗]. This was later understood
by May in [44] to fit into a much richer theory of units for E∞-ring spectra. K-theory provides
such an E∞-ring spectrum KU , which has a unit spectrum gl1(KU), whose 0-connected cover
is sl1(KU) ' bu⊗ and whose 2-connected cover gives bsu⊗.

The results in [44] are phrased in the language of S-modules and S-algebras and not in
terms of symmetric spectra. Thus, in principle the cohomology theories represented by the
spectrum gl1(KUC) constructed in Sec. 2.3 could differ from gl1(KU) for an S-algebra KU
representing topological K-theory. We will see in Sections 5 that this is not the case by proving
a strong uniqueness result. In particular, Corollary 5.3 establishes a natural isomorphism

(19) gl1(KUC)1(X) ∼= gl1(KU)1(X),

which implies the following proposition:

Proposition 3.10. There is a natural isomorphism Ê1
Z(X) ∼= Ê1

C(X)⊕ bsu1
⊗(X).

Proof. Consider the commutative diagram

(20)

Ê1
Z(X) gl1(KUZ)1(X) gl1(KUC)1(X)

Ê1
Z(X4) gl1(KUZ)1(X4) gl1(KUC)1(X4)

r̂Z

∼= ∼=

∼= ∼=

The horizontal arrows are isomorphisms by (4) and (9). It follows that the vertical arrows have
isomorphic kernels. Thus h(X) = ker r̂Z is isomorphic to the kernel of the map gl1(KUC)1(X)→
gl1(KUC)1(X4) and which in its turn, by Corollary 5.3, is isomorphic to the kernel of the map
gl1(KU)1(X) → gl1(KU)1(X4) which is the map bu1

⊗(X) → bu1
⊗(X4) and hence isomorphic to

bsu1
⊗(X). �

As a consequence of the Adams-Priddy result on the uniqueness of bsu which we review in
Sec. 4.1, for a finite CW-complex X there is a (nonnatural) isomorphism

(21) bsu∗⊗(X) ∼= bsu∗⊕(X).

Using this in conjunction with the results from the previous sections, we derive our main result
(Theorem A from introduction) which we restate here for the convenience of the reader.

Theorem 3.11. Let X be a finite CW-complex and let P be a nonempty set of prime numbers.
There are (not natural) isomorphisms

(a) E1
Z(X) ∼= H3(X,Z)⊕ k5(X).

(b) E1
MP

(X) ∼= H1(X, (ZP )×+)⊕H3(X,ZP )⊕ k5(X,ZP )

(c) E1
O∞(X) ∼=

(
H1(X,Z/2)×tw H

3(X,Z)
)
⊕ k5(X).

(d) E1
MP⊗O∞(X) ∼= H1(X, (ZP )×+)⊕

(
H1(X,Z/2)×tw H

3(X,ZP )
)
⊕ k5(X,ZP )

The (twisted) multiplication on H1(X,Z/2)×H3(X,ZP ) is given by

(22) (w, τ) · (w′, τ ′) = (w + w′, τ + τ ′ + βP (w ∪ w′))
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for w,w′ ∈ H1(X,Z/2) and τ, τ ′ ∈ H3(X,ZP ), where βP : H2(X,Z/2) → H3(X,ZP ) is the
composition of the Bockstein homomorphism β with the coefficient map H3(X,Z)→ H3(X,ZP ).
The multiplicaton in (c) is just like in (22) with βP replaced by β : H2(X,Z/2)→ H3(X,Z).

Proof. By (21) we have bsu∗⊗(X) ⊗ ZP ∼= bsu∗⊕(X) ⊗ ZP for any set of primes P . It follows
by (6) that bsu1

⊗(X) ⊗ ZP ∼= k5(X) ⊗ ZP ∼= k5(X,ZP ). Thus the statement follows now from
Propositions 3.10 and 3.4 as h(X) ∼= bsu1

⊗(X) ∼= k5(X). �

The map βP vanishes if H3(X,Z) has no 2-torsion or if 2 ∈ P .
The proof of Theorem 3.11 relies on the isomorphisms (21) and (19) that will discussed in

the next two sections.

4. K-theory as a commutative S-algebra and its units

The tensor product gives topological K-theory the structure of a multiplicative cohomology
theory. The graded commutative multiplication lifts to the level of spectra in the sense of stable
homotopy theory. In fact, K-theory can be represented by an E∞-ring spectrum. There are
several approaches to make this precise. We have already met the commutative symmetric
ring spectrum KUC. As we have seen in the previous sections, KUC is closely linked to the
classification of C∗-algebra bundles. In this section we give a brief overview of K-theory as
a commutative S-algebra. A lot of the results about the infinite loop spaces BU⊕ and BU⊗
are easiest to prove using this approach. We will only give a brief overview of S-modules and
S-algebras here and refer the reader to [24] for a complete reference.

Constructing a symmetric monoidal category of spectra with the sphere spectrum S as its
unit object is quite an intricate endeavour. The category S [L] of (coordinate free) spectra that
are also algebras over the linear isometries operad L has almost all of the desired properties, in
particular a symmetric monoidal structure given by a smash product ∧ (see [24, Section I.5]).
The only defect is that the sphere spectrum is not a unit object. This can be fixed by restricting
to the full subcategory MS ⊂ S [L], on which S acts like a unit, and the objects of MS are
called S-modules [24, Def. II.1.1].

A (commutative) S-algebra is a (commutative) monoid with respect to ∧ in MS . We will
write ComS for the category of commutative S-algebras [24, Section II.3]. Both, MS and ComS ,
are model categories [24, Section VII.4]; the weak equivalences are the morphisms that induce
an isomorphism on π∗.

A commutative S-algebra representing connective K-theory can be constructed from the
bipermutative category of finite-dimensional complex inner product spaces and unitary isomor-
phisms as follows: Let U be the topological category with objects N0, i.e. the natural numbers
including 0, where we think of n ∈ N0 as Cn. The morphism spaces are given by

hom(m,n) =

{
∅ if m 6= n ,

U(n) if m = n ,

where U(0) is the trivial group. The sum and product operations on N0 extend to the morphisms
of U via the block sum ⊕ and the Kronecker product ⊗ of unitary matrices. This gives (U ,⊕,⊗)
the structure of a bipermutative category.

Combining [45, Section 3, discussion on p. 24] and [24, Cor. 3.6] shows that there is a
commutative S-algebra ku associated to U that represents connective complex topological K-
theory as a multiplicative cohomology theory by [44, VIII.2.1]. Its periodic counterpart, the
commutative S-algebra KU , can be constructed by inverting the Bott element β ∈ π2(ku). (In
fact, KU is even a commutative ku-algebra by [24, Thm. VIII.4.3].)
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The 0th space of an Ω-spectrum is an infinite loop space. Extending this observation to the
category S [L] we obtain a functor Ω∞ : S [L]→ T [L] with codomain given by the L-algebras in
the category of based topological spaces T . Let R ∈ ComS ⊂ S [L] be a commutative S-algebra.
The abelian group π0(Ω∞R) turns out to be a ring with respect to the multiplication inherited
from R. The space GL1(R) of units of R is defined by the pullback diagram

(23)

GL1(R) Ω∞R

GL1(π0(Ω∞R)) π0(Ω∞R)

Thus, GL1(R) consists of those components in Ω∞R that are invertible with respect to the
multiplication of R. The space GL1(R) turns out to be an E∞-ring space. As such it gives rise
to a connective spectrum gl1(R) such that Ω∞gl1(R) = GL1(R). This construction can be made
functorial and takes values in the category S Ω of weak Ω-spectra.

In contrast to highly structured spectra a weak Ω-spectrum just consists of a sequence of
based spaces (Xn)n∈N0 together with structure maps Xn → ΩXn+1 that are weak homotopy
equivalences. A map of weak Ω-spectra is a sequence of maps (fn)n∈N0 with fn : Xn → Yn
compatible with the structure maps. An equivalence of weak Ω-spectra X,Y is a chain of such
maps

X Z(1) Z(2) Z(3) . . . Z(k) Y

that are levelwise weak equivalences [47, p. 209]. For details about the functor

gl1 : ComS → S Ω

from commutative S-algebras to the category S Ω we refer the reader to Section 4 and 5 in [5]
which is based on the treatment of units in [44].

If we replace the full group of invertible elements in π0(Ω∞R) in the pullback diagram
defining GL1(R) by the trivial subgroup (consisting only of the unit element of π0(Ω∞R)), then
we obtain the space of special units SL1(R) and a corresponding connective spectrum sl1(R)
(see for example [46, Def. 7.6]). As a spectrum sl1(R)→ gl1(R) is the 0-connected cover.

4.1. Localizations, connective K-theory, bsu⊕ and bsu⊗. Recall that we denote by KU
and ku the commutative S-algebras representing periodic complex K-theory and its connective
counterpart, respectively. The associated unit spectra are gl1(KU) and gl1(ku). The localisation
map ku → KU that inverts the Bott element is a morphism of commutative S-algebras which
induces an equivalence of the underlying infinite loop spaces and therefore also an equivalence

gl1(ku)→ gl1(KU) .

We give some background and explain below how gl1(KU) is related to the spectrum bu⊗
appearing in [44] (and, using slightly different machinery, in [54]). We denote by U the infinite
unitary group, i.e. the colimit over the groups U(n), and by SU the infinite special unitary
group, i.e. the colimit over the groups SU(n). As pointed out in the last section the operations
of direct sum and tensor product on these groups are known to induce H-space structures on
the corresponding classifying spaces. We indicate these structure by using the notation BU⊕,
BSU⊕ and respectively BU⊗, BSU⊗.

Bott periodicity shows that BU⊕ and BSU⊕ are infinite loop spaces. The corresponding
spectra are denoted by bu⊕ and bsu⊕. Note that GL1(π0(Ω∞KU)) ∼= GL1(π0(BU×Z)) ∼= Z/2Z.
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Hence, we obtain

SL1(KU) ' BU⊗ ,
GL1(KU) ' Z/2Z×BU⊗ .

Note that the first equivalence can be used to equip BU⊗ with an infinite loop space structure.
We will therefore denote the spectrum sl1(KU) also by bu⊗. Let bsu⊗ be the 2-connected cover
of the spectrum bu⊗ and note that Ω∞bsu⊗ ' BSU⊗. Denote by BGL1(KU) the first delooping
of GL1(KU), i.e. the first space in the sequence forming the spectrum gl1(KU). Likewise, let
BBSU⊗ be the first delooping of BSU⊗ with respect to the spectrum bsu⊗. By [44, Lem. V.3.1]
(see also [41, p.406]) we have a splitting of infinite loop spaces

(24) BU⊗ ' K(Z, 2)×BSU⊗ .
While it is true that the spaces GL1(KU) and BGL1(KU) also decompose as products

GL1(KU) ' Z/2×BU⊗ ' Z/2×K(Z, 2)×BSU⊗ ,
BGL1(KU) ' K(Z/2, 1)×K(Z, 3)×BBSU⊗ ,

these decompositions do not respect the infinite loop space structure as noted implicitly in [6].
Indeed, as we verify in the paper

[X,BGL1(KU)] ∼= (H1(X,Z/2)×tw H
3(X,Z))⊕ bsu1

⊗(X)

which explains the twisting of the multiplication in Theorem A.
By a classic result of Adams and Priddy [4] (see also [44, Thm. V.4.2], or [46, Cor. 10.3]

for a more general statement), BSU⊕ and BSU⊗ become equivalent as infinite loop spaces on
localization at any prime p.

Theorem 4.1 ([4]). There is an equivalence of infinite loop spaces

(BSU⊕)(p) ' (BSU⊗)(p) .

Thus, the corresponding spectra bsu⊕ and bsu⊗ become equivalent as spectra on localisation
at any prime p. This also turns out to be true for the completions at any prime p, but we will
not need that statement.

If we are only interested in computing the groups bsu∗⊗(X) and neglect naturality, then
we can use the following observation: Let X be a space with the homotopy type of a finite
CW-complex. By Theorem 4.1 there is a natural isomorphism bsu∗⊕(X,Z(p)) ∼= bsu∗⊗(X,Z(p)).
Since Z(p) is flat, by the universal coefficient theorem for generalized cohomology theories [2],
bsu∗⊕(X,Z(p)) ∼= bsu∗⊕(X) ⊗ Z(p) and bsu∗⊗(X,Z(p)) ∼= bsu∗⊗(X) ⊗ Z(p). Two finitely generated
abelian groups which are isomorphic after localization at each prime are necessarily isomorphic as
is apparent from the structure theorem of such groups. Therefore, for every finite CW-complex
there is a (not natural) isomorphism

(25) bsu∗⊗(X) ∼= bsu∗⊕(X).

5. Uniqueness of gl1 for K-theory spectra

We have seen two ways of defining the unit spectrum of topological K-theory: the first
one starting from the S-algebra KU and the second one from the commutative symmetric ring
spectrum KUC. The output of both constructions is a weak Ω-spectrum. Our goal in this
section is to compare them. By [44, VIII.2.1] the spectrum ku represents connective topological
K-theory, so after inverting the Bott element to obtain KU , this spectrum represents periodic
topological K-theory as defined by Atiyah and Hirzebruch. Throughout this section we will use
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both notations, KU∗ and K∗, interchangeably to denote the cohomology theory represented
by KU and similarly, K∗ and KU∗ for the corresponding homology theory. We will prove:

Theorem 5.1. Let F be a commutative symmetric ring spectrum representing complex topolog-
ical K-theory as a multiplicative cohomology theory on finite CW-complexes in the sense that
there exists a natural multiplicative isomorphism F ∗(X) ∼= K∗(X). Suppose also that F is a pos-
itive Ω-spectrum. Then there is an equivalence of weak Ω-spectra between gl1(F ) and gl1(KU).

Remark 5.2. By Lemma 2.1 the commutative symmetric ring spectra KUC, KUZ and KUO∞

satisfy the hypotheses of the theorem.

Corollary 5.3. There is a natural isomorphism of cohomology theories on finite CW complexes

gl1(KUC)∗(X) ∼= gl1(KU)∗(X) .

5.1. Change of categories. In the rest of this section we will work with commutative S-
algebras ([24]) rather than commutative symmetric ring spectra, because we need to use facts
from [24, Chapters V and VIII] whose analogues for symmetric spectra are not written down in
the literature. In subsections 5.2–5.6 we will prove the following:

Theorem 5.4. Let G be a commutative S-algebra that represents complex topological K-theory
as a multiplicative cohomology theory on finite CW-complexes. Then there is a chain of weak
equivalences of commutative S-algebras between G and KU .

In this subsection we show that Theorem 5.4 implies Theorem 5.1.
We will use a fact about the relevant model categories. First recall that if C is a model

category then the homotopy category HoC is obtained by inverting the weak equivalences ([31,
Section 1.2]), so two objects in the model category become isomorphic in the homotopy category
if they are connected by a chain of weak equivalences.

Recall that we write SpΣ for the category of symmetric spectra; we will write ComΣ for
the category of commutative symmetric ring spectra. These categories have model category
structures given in [43, Sections 9 and 15]; the weak equivalences for these model category
stuctures are the stable equivalences.

The category of S-modules is denoted MS . We will write ComS for the category of com-
mutative S-algebras ([24, Section II.3]). These are model categories ([24, Section VII.4]); the
weak equivalences are the morphisms that induce an isomorphism of π∗.

The fact we need is

Proposition 5.5. There is an equivalence of categories

Υ : HoComΣ → HoComS

If F ∈ ComΣ then F and Υ(F ) represent the same cohomology theory on finite CW-complexes.

Proof of Proposition 5.5. Let ComI be the category of commutative orthogonal ring spectra
([43, Example 4.4]). By [43, Theorem 0.7] there is an equivalence of categories

Υ1 : HoComΣ → HoComI

with the property that F and Υ1(F ) represent the same cohomology theory on finite CW-
complexes. By [42, Theorem 1.5] there is an equivalence of categories

Υ2 : HoComI → HoComS ,

and by [42, Theorem 7.13] F and Υ2(F ) represent the same cohomology theory on finite CW-
complexes. �
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Before we continue we explain how Theorem 5.4 implies Theorem 5.1. Let F be as in
Theorem 5.1 and note that Υ(F ) is a commutative S-algebra representing K-theory as a mul-
tiplicative cohomology theory. The functor Υ is the composition of the functors LP and LN in
[40, Prop. 13.9] and [40, Prop. 14.1], respectively. Thus, combining these two propositions we
obtain an equivalence of weak Ω-spectra

gl1(Υ(Fc)) ' gl1(F )

where Fc is a cofibrant replacement of F as a commutative symmetric ring spectrum (which still
represents K-theory as a multiplicative cohomology theory). By Theorem 5.4 there is a chain of
weak equivalences of commutative S-algebras between Υ(Fc) and KU . Since gl1 preserves weak
equivalences, it gives a chain of equivalences of weak Ω-spectra

gl1(F ) ' gl1(Υ(Fc)) ' gl1(KU) .

5.2. Obstruction theory. In subsections 5.3–5.6 we will prove:

Lemma 5.6. Let G be a commutative S-algebra representing complex topological K-theory as a
multiplicative cohomology theory on finite CW-complexes. Then there is an isomorphism from
G to KU in the homotopy category HoMS which makes the diagrams

G ∧G KU ∧KU

G KU

and

S0

G KU

commute in HoMS.

In this subsection we use Lemma 5.6 to prove Theorem 5.4.
We use the obstruction theory of Goerss and Hopkins [27], specifically Corollary 5.9 of [27]

with E = KU and A = KU∗KU .1 Goerss and Hopkins consider the category with objects
the commutative S-algebras X with E∗X ∼= A and morphisms given by E∗ isomorphisms. Let
TM(A) be the classifying space of this category, i.e. the geometric realisation of its nerve. A
path in TM(A) corresponds to a chain of E∗ isomorphisms between the two endpoints. It is
shown in [27, Proposition 5.2] that, up to weak equivalence, the space TM(A) decomposes into
a homotopy limit of intermediate spaces

(26) · · · T Mn(A) TMn−1(A) · · · T M0(A) .

If the homotopy fibre of TMn(A)→ TMn−1(A) at a point Y ∈ TMn−1(A) is non-empty, then
its path-components can be identified with the elements of an André-Quillen type cohomology
group Dn+1

E∗T/E∗E
(A,ΩnA) in the category if E∗E-modules (see the paragraph before Corollary 5.9

in [27] for a detailed explanation). Here, ΩnA denotes A as an A-module with grading shifted
by n and T is an appropriate resolution of the commutative algebra operad. We refer the reader
to [27, Section 4] for the details about the construction of these groups. Finding a path between

1Section 1 of [27] explains that this obstruction theory applies to the category of commutative S-algebras.
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two points of the space TM(A) can therefore be solved by lifting through the tower (26), i.e.
showing that the obstruction groups vanish. We will now apply this to our situation.

First we consider the obstruction groups in Corollary 5.9 of [27]:

Dn+1
E∗T/E∗E

(A,ΩnA).

According to [8, Theorem 2.6], these groups are isomorphic to the Gamma cohomology groups

HΓn+1(A|E∗,ΩnA),

and according to [7, Theorem 6.2] these groups (with our choice of A and E) are 0.
Next we observe that KU∗G is isomorphic to KU∗KU as a commutative algebra in the

category of KU∗KU comodules; this is immediate from Lemma 5.6 and the definition of the
comodule structures ([3, page 281]).

Now [27, Corollary 5.9] and the definition of TM(A) on page 183 of [27] give a diagram of
commutative S-algebras

(27) G→ G1 ← G2 → · · · ← KU

in which each map is a KU∗ isomorphism.
Next we apply KU -localization (see [24, Sections VIII.1 and VIII.2]). Theorem VIII.2.2 of

[24] says that if H is a cell commutative S-algebra (see [24, Definition VII.4.11]) then there is
a KU -localization λ : H → H with the property that H is a commutative S-algebra and λ is a
map of commutative S-algebras. In order to apply this theorem we need to know that for every
commutative S-algebra J there is a cell commutative S-algebra CJ and a weak equivalence of
commutative S-algebras κ : CJ → J , and moreover this construction gives a functor C : ComS →
ComS and a natural transformation κ from C to the identity functor (see [43, Lemma 5.8] and
[24, Lemma VII.5.8]).

Now consider the diagram

(28)

G G1 G2 · · · KU

CG CG1 CG2 · · · CKU

CG CG1 CG2 · · · CKU

λ

κ

λ

κ

λ

κ

λ

κ

The maps in the third row are given by Theorem VIII.2.2 of [24], and the lower half of the
diagram homotopy commutes. Because the κ are weak equivalences, all the maps in the second
row are KU∗-isomorphisms, and because the λ are KU∗-isomorphisms, all the maps in the third
row are KU∗-isomorphisms. Then the maps in the third row are weak equivalences, because a
KU∗-isomorphism between KU -local spectra is a weak equivalence. The map λ : CKU → CKU
is also a weak equivalence, because KU is KU -local, and Lemma 5.6 implies that G is weakly
equivalent (as an S-module) to KU , and therefore CG is KU -local and the map λ : CG→ CG
is a weak equivalence. Now the diagram gives the chain of weak equivalences promised by
Theorem 5.4.

5.3. The S-module Σ∞CP∞+ [b−1]. Let ξ be the canonical complex line bundle over CP∞.
The classifying map for ξ is a homotopy equivalence from CP∞ to the classifying space BS1.
The multiplication of S1 induces an associative and commutative multiplication on BS1 and
this gives a homotopy associative and homotopy commutative multiplication on CP∞. This in
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turn gives a homotopy associative and homotopy commutative multiplication on the S-module
Σ∞CP∞+ (where + denotes a disjoint basepoint).

Next recall that if X is a based CW complex there is a natural isomorphism in the homotopy
category HoMS

ν : Σ∞X+ → Σ∞S0 ∨ Σ∞X

for which the composite

Σ∞X+
ν−→ Σ∞X ∨ Σ∞S0 → Σ∞S0

is induced by the based map

p : X+ → S0

which takes X to the non-basepoint, and the composite

Σ∞X+
ν−→ Σ∞S0 ∨ Σ∞X → Σ∞X

is induced by the based map

q : X+ → X

which is the identity on X. The inverse to ν is the map

Σ∞S0 ∨ Σ∞X
Σ∞p′∨Q−−−−−→ Σ∞X+

where p′ takes the non-basepoint of S0 to the basepoint of X andQ◦Σ∞q is the map 1−Σ∞(p′◦p).
Let

a : S2 → CP∞

be the inclusion of the 2-skeleton and let

b : Σ∞S2 → Σ∞CP∞+

be the composite

Σ∞S2 Σ∞a−−−→ Σ∞CP∞ Q−→ Σ∞CP∞+

Let us define the S-module Σ∞CP∞+ [b−1] to be the telescope

Tel Σ−2nΣ∞CP∞+

where the map

Σ−2nΣ∞CP∞+ → Σ−2n−2Σ∞CP∞+

is left multiplication by Σ−2b : S0 → Σ−2Σ∞CP∞+ (cf. [24, page 94]).

Lemma 5.7. π∗(Σ
∞CP∞+ [b−1]) is 0 in odd degrees and in even degree 2n is a copy of Z generated

by bn.

Proof. π∗(Σ
∞CP∞+ [b−1]) is isomorphic to (π∗Σ

∞CP∞+ )[b−1] (cf. [24, bottom of page 94]), so the
lemma follows from a theorem of Snaith [56, Theorem 2.12 and equation 2.4]. �
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5.4. Equivalences from Σ∞CP∞+ [b−1] to KU and G. First we construct a weak equivalence

η : Σ∞CP∞+ [b−1]→ KU

The canonical bundle ξ over CP∞ restricts to a bundle ξn over CPn, which gives a sequence
of elements xn ∈ K0(CPn), and this sequence gives an element x ∈ K0(CP∞) by [3, Proposition
III.8.1 and Exercise (ii) on page 222]. x gives a map

x̄ : Σ∞CP∞+ → KU

Lemma 5.8. The composite

Σ∞S2 b−→ Σ∞CP∞+
x̄−→ KU

is ±β, where β is the Bott element.

Proof. It suffices to show that the element of K̃0(S2) represented by this composite is a generator.
With the notation of Subsection 5.3, it suffices to show that Q∗ takes the class x2 to a generator
of K̃0(S2). In the direct sum diagram

K̃0(S2) K̃0(S2
+) K̃0(S0)

q∗

Q∗ (p′)∗

p∗

we have

q∗Q∗(x2) = x2 − p∗(p′)∗(x2) = x2 − 1

Now q∗ maps isomorphically to the image of id − p∗(p′)∗ and x2 − 1 generates the image of
id− p∗(p′)∗, so Q∗(x2) is a generator as required. �

Using this lemma, there is a map

Tel Σ−2nΣ∞CP∞+ → KU

whose restriction to Σ−2nΣ∞CP∞+ is the composite

Σ−2nΣ∞CP∞+
Σ−2nx̄−−−−→ Σ−2nKU

β−n·−−−→ KU

for each n, and moreover this map is unique up to homotopy by [3, Proposition III.8.1 and
Exercise (ii) on page 222]. Define

η : Σ∞CP∞+ [b−1]→ KU

to be this map.
Next, using the fact that G represents K-theory on finite CW-complexes, the argument

that constructed η gives a map

ȳ : Σ∞CP∞+ → G

and a weak equivalence

θ : Σ∞CP∞+ [b−1]→ G
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5.5. A product map for CP∞+ [b−1]. In this subsection we construct a map

µ : Σ∞CP∞+ [b−1] ∧ Σ∞CP∞+ [b−1]→ Σ∞CP∞+ [b−1]

in HoMS .
First observe that there is a weak equivalence

Tel ((Σ−2nΣ∞CP∞+ ) ∧ (Σ−2nΣ∞CP∞+ ))
'−→ (Tel Σ−2nΣ∞CP∞+ ) ∧ (Tel Σ−2nΣ∞CP∞+ )

induced by the diagonal map of the unit interval. Next observe that, because the multiplication
of Σ∞CP∞+ is homotopy associative and homotopy commutative, there is a map

m : Tel ((Σ−2nΣ∞CP∞+ ) ∧ (Σ−2nΣ∞CP∞+ ))→ Tel Σ−4nΣ∞CP∞+
whose restriction to (Σ−2nΣ∞CP∞+ ) ∧ (Σ−2nΣ∞CP∞+ ) is the composite

(Σ−2nΣ∞CP∞+ ) ∧ (Σ−2nΣ∞CP∞+ )→ Σ−4n(CP∞+ ∧ CP∞+ )→ Σ−4nΣ∞CP∞+
for each n. Moreover, up to homotopy there is only one map m with this property, by [3,
Proposition III.8.1 and Exercise (ii) on page 222] (using the fact that multiplication by β is a
weak equivalence on the target of m). Now let µ be the composite

Σ∞CP∞+ [b−1] ∧ Σ∞CP∞+ [b−1] = (Tel Σ−2nΣ∞CP∞+ ) ∧ (Tel Σ−2nΣ∞CP∞+ ) '

Tel ((Σ−2nΣ∞CP∞+ ) ∧ (Σ−2nΣ∞CP∞+ ))
m−→ Tel Σ−4nΣ∞CP∞+ ' Σ∞CP∞+ [b−1]

5.6. Proof of Lemma 5.6. To prove Lemma 5.6 it suffices to show that the diagrams

(29)

Σ∞S0

Σ∞CP∞+ [b−1] KU'
η

(30)

Σ∞CP∞+ [b−1] ∧ Σ∞CP∞+ [b−1] KU ∧KU

Σ∞CP∞+ [b−1] KU

η∧η
'

µ

η

'

(31)

Σ∞S0

Σ∞CP∞+ [b−1] G'
θ

and

(32)

Σ∞CP∞+ [b−1] ∧ Σ∞CP∞+ [b−1] G ∧G

Σ∞CP∞+ [b−1] G

θ∧θ
'

µ

θ
'

commute in HoMS .
We will give the proof for diagrams (29) and (30); the proof for the other two diagrams is

the same.
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Lemma 5.9. The diagrams

(33)

Σ∞S0

Σ∞CP∞+ KUx̄

and

(34)

Σ∞CP∞+ ∧ Σ∞CP∞+ KU ∧KU

Σ∞CP∞+ KU

x̄∧x̄

x̄

commute in HoMS.

Proof. Diagram (33) commutes because the restriction of x to CP 0 is the standard generator of
K(CP 0). For diagram (34) we need to show that the pullback of x along the map

Σ∞CP∞+ ∧ Σ∞CP∞+ → Σ∞CP∞+
is the exterior product x× x. For this it suffices, by [3, Proposition III.8.1 and Exercise (ii) on
page 222], to show that the pullback of x along the map

Σ∞CPn+ ∧ Σ∞CPn+ → Σ∞CP∞+
is xn × xn for each n. The map

CPn × CPn → CP∞ × CP∞ → CP∞

factors up to homotopy through CP 2n by cellular approximation, so we have a homotopy com-
mutative diagram

(35)

CPn × CPn CP∞ × CP∞

CP 2n CP∞

In this diagram, the pullback of the bundle ξ along the clockwise composite is isomorphic to
the pullback of the bundle ξ along the counterclockwise composite, so the pullback of ξ2n along
the left vertical arrow is ξn ⊗ ξn. Applying K-theory to diagram (35) gives the commutative
diagram

K0(CPn × CPn) K0(CP∞ × CP∞)

K0(CP 2n) K0(CP∞)

We have just shown that the image of x2n under that left vertical arrow is xn×xn, so the image
of x under the counterclockwise composite is xn × xn as required. �

Now the commutativity of diagram (33) implies that of (29), so it only remains to show
commutativity of diagram (30). By [3, Proposition III.8.1 and Exercise (ii) on page 222] it suffices
to show that the two composites in diagram (30) have homotopic restrictions to (Σ−2nΣ∞CP∞+ )∧
(Σ−2nΣ∞CP∞+ ) for each n, and this follows from Lemma 5.9.
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