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Abstract

The application of machine learning to the study of coronal mass ejections (CMEs) and their
impacts on Earth has seen significant growth recently. Understanding and forecasting CME
geoeffectiveness are crucial for protecting infrastructure in space and ensuring the resilience
of technological systems on Earth. Here we present GeoCME, a deep-learning framework
designed to predict, deterministically or probabilistically, whether a CME event that arrives
at Earth will cause a geomagnetic storm. A geomagnetic storm is defined as a disturbance of
the Earth’s magnetosphere during which the minimum Dst index value is less than —50 nT.
GeoCME is trained on observations from the instruments including LASCO C2, EIT, and
MDI on board the Solar and Heliospheric Observatory (SOHO), focusing on a dataset that
includes 136 halo/partial halo CMEs in Solar Cycle 23. Using ensemble and transfer learn-
ing techniques, GeoCME is capable of extracting features hidden in the SOHO observations
and making predictions based on the learned features. Our experimental results demonstrate
the good performance of GeoCME, achieving a Matthew’s correlation coefficient of 0.807
and a true skill statistics score of 0.714 when the tool is used as a deterministic prediction
model. When the tool is used as a probabilistic forecasting model, it achieves a Brier score
of 0.094 and a Brier skill score of 0.493. These results are promising, showing that the
proposed GeoCME can help enhance our understanding of CME-triggered solar-terrestrial
interactions.
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1. Introduction

The impacts of geomagnetic storms on Earth have been investigated by many researchers
(e.g., Wanliss and Showalter 2006; Newell et al. 2007; Baker et al. 2013; Schrijver et al.
2015; Augusto et al. 2018; Joshi et al. 2018; Haines et al. 2019; Wu et al. 2019; Abunin
et al. 2020; Chertok 2020; Mishra et al. 2021; Besliu-Ionescu, Maris Muntean, and Dobrica
2022; Pal, Nandy, and Kilpua 2022; Raghav et al. 2023; Zhang et al. 2023; Hayakawa, Ebi-
hara, and Pevtsov 2024; Melkumyan et al. 2024). These storms can affect the accuracy of
technological systems, such as satellites and communication systems, that rely on precise
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measurements of the Earth’s magnetic field. They can also affect power grids by inducing
electrical currents that can damage or disrupt the operation of the grids. In general, geomag-
netic storms occur due to the interaction between radiation and plasma released by the Sun
into the heliosphere and magnetic fields in the plasma environment near Earth (Wanliss and
Showalter 2006). The degree of severity exhibited by a storm is assessed through geomag-
netic indices, such as the Kp index (Planetary K-index), the AE (Auroral Electrojet) index,
and the Dst (Disturbance Storm Time) index. Mayaud (1980) discussed the meaning of these
indices. Other geomagnetic indices, such as the SYM-H and ASY-H indices, are similar to
the Dst index, but are available in high resolution, with intervals as short as 1 minute or 5
minutes (Wanliss and Showalter 2006).

Coronal mass ejections (CMEs), which carry strong southward-directed magnetic
fields, may cause intense geomagnetic storms (Vourlidas, Patsourakos, and Savani 2019;
Baratashvili et al. 2022; Martini¢ et al. 2023). Predicting whether a CME will hit Earth and
when it will reach Earth is a challenging task. Efforts to tackle this task include the use of
empirical models (e.g., Brueckner et al. 1998; Manoharan et al. 2004; Gopalswamy et al.
2005), drag-based models (e.g., Vr$nak and Gopalswamy 2002; Dumbovié et al. 2021),
physics-based models (e.g., Fry et al. 2001; Moon et al. 2002), and machine-learning mod-
els (e.g., Liu et al. 2018; Alobaid et al. 2022; Guastavino et al. 2023; Yang et al. 2023;
Chierichini et al. 2024), among others (e.g., Zhao and Dryer 2014; Singh et al. 2023).
Machine-learning models have also been used to predict the geoeffectiveness of CMEs. For
example, Besliu-Ionescu et al. (2019) adopted logistic regression with numerical CME pa-
rameters to make predictions. Fu et al. (2021) presented a deep neural network to predict
the geoeffectiveness and arrival time of CMEs. The authors used data from SOHO’s Large
Angle and Spectrometric Coronagraph (LASCO), C2 Field-of-View (FOV), and Extreme
Ultraviolet Imaging Telescope (EIT), along with SDO’s Atmospheric Imaging Assembly
(AIA) observations. Pricopi et al. (2022) explored several machine-learning methods such
as logistic regression, k-nearest neighbors, and support vector machines, together with solar
onset parameters, to predict the geoeffectiveness of CMEs.

The aforementioned studies predict CMEs that reach Earth and cause geomagnetic
storms as “geoeffective,” and predict all others, including CMEs that do not reach Earth, as
“nongeoeffective.” In contrast, we focus on CME:s that arrive at Earth and predict whether
they will cause geomagnetic storms. Since the problem we attempt to solve here differs
from those addressed in previous works, the way we collect data for model training and
testing is different from those used in previous works. The criterion for a disturbance of the
Earth’s magnetosphere to be considered a geomagnetic storm is that its minimum Dst value
must be less than —50 nT (Gonzalez et al. 1994; Telloni 2022). The Dst index, measured in
nanoteslas (nT), is a key indicator used in space weather research to quantify the intensity
of geomagnetic storms (Mayaud 1980). It reflects the effect of geomagnetic disturbances
caused by solar activity on Earth, where lower Dst values correspond to stronger storms.

Our work is based on SOHO observations, including LASCO C2 and EIT images, as
well as Michelson Doppler Imager (MDI) magnetograms. Our goal is to understand whether
machine learning can capture any possible connection between the SOHO observations and
CME geoeffectiveness. We propose a deep-learning framework, named GeoCME, to achieve
this goal. Our main assumption is that the CMEs at hand have already arrived at Earth. In
practice, how do we know whether a CME can reach Earth? This question can be answered
using existing CME arrival prediction methods (e.g., Sudar, Vr$nak, and Dumbovié 2016;
Liu et al. 2018; Amerstorfer et al. 2021; Dumbovi¢ et al. 2021; Kaportseva and Shugay
2021; Baratashvili et al. 2022; Guastavino et al. 2023; Chierichini et al. 2024). Thus the use
of GeoCME is a two-step process. In the first step, we use the existing methods mentioned
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Figure 1 Chart showing the total counts of halo/partial halo CMEs among all CMEs during Solar Cycle 23
(1996 —2008) according to the SOHO/LASCO CME catalog.

above to predict whether a CME would arrive at Earth. If the CME is predicted to reach
Earth, then in the second step, we use GeoCME to predict whether the CME will cause a
geomagnetic storm, i.e., whether the CME is geoeffective.

The remainder of this paper is organized as follows. Section 2 describes the data used
in our study. Section 3 presents the architecture and configuration details of GeoCME. Sec-
tion 4 reports the experimental results. Section 5 presents a discussion and concludes the

paper.

2. Data

We focused on halo/partial halo CMEs in Solar Cycle 23 (Michalek et al. 2006; Gopal-
swamy, Yashiro, and Akiyama 2007; Gopalswamy 2009). Figure 1 shows the total counts of
halo/partial halo CMEs in Cycle 23 according to the SOHO/LASCO CME catalog (Yashiro
et al. 2004). The CME events used in our study were obtained from the list of interplanetary
coronal mass ejections (ICMEs), known as the RC list, compiled and maintained by Richard-
son and Cane (2010). We chose 145 CME events within the RC list that occurred in Solar
Cycle 23 and arrived at Earth (i.e., with arrival-time data). We used the SOHO/LASCO CME
catalog to identify and select 141 halo/partial halo CME events among the 145 CME events.
The RC list shows the minimum Dst index value caused by a CME during its interplane-
tary interaction with the Earth’s magnetosphere. We excluded those CME events without
Dst index values, which resulted in a total of 136 halo/partial-halo CME events. Figure 2
shows the distribution of the minimum Dst values caused by the 136 events. As mentioned
in the previous section, a value of —50 nT was used for the Dst index to determine the geo-
effectiveness of CMEs (Gonzalez et al. 1994; Telloni 2022). As a consequence, among the
136 halo/partial halo CME events analyzed, 101 were identified as geoeffective, whereas 35
were classified as nongeoeffective. Figure 3 provides a breakdown analysis of the geoeffec-
tive and nongeoeffective CME events in our dataset. These events were distributed over 10
years, from 1997 to 2006.

When training and testing our GeoCME framework, we used three types of SOHO data,
namely LASCO C2, EIT 195 A, and MDI magnetogram images. Figure 4 shows the SOHO
observations on the CME event that occurred at 08:06:00 UT on 17 September 2002, which
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Figure 2 Distribution of the Dst index values caused by the 136 halo/partial halo CME events in our dataset.
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Figure 3 Breakdown analysis of the geoeffective and nongeoeffective CME events in our dataset, where a

solid circle represents a geoeffective CME event, and a cross mark represents a nongeoeffective CME event.
These events were distributed over 10 years, from 1997 to 2006.
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Figure4 SOHO observations on the CME event that occurred at 08:06:00 UT on 17 September 2002. Shown
from left to right are a LASCO C2 image, an EIT 195 A image, and a full-disk MDI magnetogram.

are, from left to right, LASCO C2, EIT, and MDI, respectively. LASCO C2 coronagraph
captures images of the Sun from 1.5 to 6 R® (Brueckner et al. 1995). We constructed base-
difference images for LASCO C2 by subtracting the preevent image (base) from subsequent
images of the event to enhance the visibility of dynamic solar features while minimizing
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static background information. This technique is widely used to improve machine learning
of CME image features in LASCO C2 observations (Wang et al. 2019; Alobaid et al. 2023).

Our data collection process follows a systematic approach centered on CME appearance
times, as listed in the SOHO/LASCO CME catalog. For LASCO C2, we collected images
10 minutes before a CME event and up to 4 hours after the event (Fu et al. 2021), averaging
12.34 images per event, totaling 1679 images. EIT images were collected from 4 hours
before the event to the event time, with an average of 7.59 images per event, resulting in
1033 images. MDI magnetograms included the last three observations before the event,
averaging 2.9 images per event for a total of 395 images. In total, this dataset contains 3,107
images.

3. Methodology
3.1. Transfer Learning

We addressed the challenge of working with a relatively small dataset with 3,107 images
by using transfer learning. The transfer-learning approach involved evaluating the efficacy
of several pretrained deep-learning models, including ResNet (He et al. 2016), InceptionNet
(Szegedy et al. 2016, 2017), VGG (Simonyan and Zisserman 2015), MobileNet (Sandler
et al. 2018), DenseNet (Huang et al. 2017), Xception (Chollet 2017), and EfficientNet (Tan
and Le 2019). These pretrained models were originally designed to perform representa-
tion learning, feature extraction, and image classification. Our experiments revealed that
ResNet152 and InceptionResNetV2, both pretrained on the ImageNet dataset (Deng et al.
2009), achieved the best results in geoeffective CME prediction.

Residual blocks in ResNet152 and inception modules in InceptionResNetV2 are core
components that enhance the performance of convolutional neural networks. Residual
blocks help train very deep networks by allowing gradients to flow more easily through
shortcut connections, thus solving the vanishing-gradient problem. Inception modules, on
the other hand, use parallel convolutional filters of different sizes to capture image features
at multiple scales. InceptionResNet combines residual blocks and inception modules, inte-
grating residual connections with the inception structure to leverage the strengths of both.
Figure 5 shows a residual block (He et al. 2016) in ResNet152 and an InceptionResNet mod-
ule (Szegedy et al. 2016) in InceptionResNetV2. These components improve the accuracy
and efficiency of deep neural networks, making them suitable for complex tasks such as
recognizing patterns of solar imagery.

Our transfer-learning approach, where a pretrained image classification model is adapted
to a new task (i.e., geoeffective CME prediction), provides an effective way to build a new
model to specific needs without the substantial training data usually required for complex
deep-learning models.

3.2. The Ensemble Model

To further improve feature extraction capabilities, we combined ResNet152 and Inception-
ResNetV2, referred to as base models, into an integrated framework (GeoCME). This en-
semble approach aimed to capitalize on the strengths of each base model, thereby enhancing
the overall performance of the feature extraction process and, subsequently, the accuracy of
geoeffective CME prediction. Figure 6 illustrates the architecture of the GeoCME frame-
work, and Table 1 presents its configuration details. Table 2 summarizes the parameters of
the base models used in GeoCME.
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Figure 5 Tllustration of a residual block (left) and an InceptionResNet module (right). The residual block
consists of two 3 x 3 convolutional layers followed by a residual connection that allows gradients to flow
directly through the network, improving training efficiency. The InceptionResNet module includes parallel
convolutional paths with 1 x 1 and 3 x 3 filters, which, combined with a residual connection, capture image
features at multiple scales to maintain efficient gradient flow.
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Figure 6 Illustration of the GeoCME architecture. The ensemble model consists of three equal pipelines
(left, middle, right), each dedicated to one of the three SOHO instruments (LASCO C2, EIT, and MDI),
respectively. Each pipeline begins with two base models, namely ResNet152 (RN) and InceptionResNetV2
(IRN), followed by a concatenation layer that combines the output values of the two base models. This
concatenation layer is succeeded by three convolutional blocks, followed by two dense layers with 1024
neurons and 1 neuron, respectively, with a dropout layer between them. Each pipeline ends with an ensemble
layer that produces the output of the corresponding SOHO instrument. Finally, the output values of the three
pipelines corresponding to the three SOHO instruments are fed to another ensemble layer to produce the final
result.

For a given CME event, we feed the event’s image from each instrument (LASCO C2,
EIT, MDI) into the two base models, ResNet152 (RN) and InceptionResNetV2 (IRN). For
each instrument, the output values of the two base models are fed into a concatenation
layer. The concatenated features pass through three convolutional blocks (ConvBlock), each
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Table 1 Configuration details of the GeoCME framework.

Layer Kernel no. Kernel size Regularization Activation Output
ConvBlock 1 64 3x3 Batch Norm LeakyReLU 8 x 8 x 64
ConvBlock 2 128 3x3 Batch Norm LeakyReLU 8 x 8 x 128
ConvBlock 3 256 3x3 Batch Norm LeakyReLU 8 x 8 x 256
Dense 1 - - Batch Norm LeakyReLU 1024

Dense 2 - - - Sigmoid 1

Table2 Base model parameters.

Base model Layer number Parameter number
ResNet152 152 58.50 M
InceptionResNetV2 164 5439M

equipped with a 2D convolution layer with 64, 128, and 256 filters. Each convolutional block
has a kernel size of 3 x 3, paired with LeakyReLU activation and batch normalization for
stability. The features are flattened and processed through a dense layer of 1024 neurons. To
avoid overfitting, a dropout layer with a rate of 0.3 is placed after the dense layer of 1024
neurons. The dropout layer is followed by another dense layer with 1 neuron.

As shown in Figure 6, each SOHO instrument (LASCO C2, EIT, MDI) uses the pipeline
described above to produce one prediction per image. For a CME event with multiple images
from the same instrument, an ensemble layer calculates the mean of all output values of the
images from the same instrument for the CME event. At this stage, we have one predicted
value per instrument for the CME event. The final ensemble layer then calculates the mean
of the three predicted values from the three instruments to get the final output for the CME
event. This final output is the probability that the CME event will be geoeffective, i.e., the
CME event will cause a geomagnetic storm. We implemented a threshold of 0.6 in the
output layer to obtain a deterministic model. If the probability is greater than or equal to the
threshold, then the GeoCME model predicts that the CME event is geoeffective; otherwise,
the model predicts that the CME event is nongeoeffective.

We have an imbalanced dataset at hand, which contains a positive (or majority) class with
101 geoeffective CME events and a negative (or minority) class with 35 nongeoeffective
CME events. We use the Weighted Binary Cross Entropy (WBCE) loss function to combat
the imbalance issue within the dataset (Goodfellow, Bengio, and Courville 2016; Liu et al.
2020; Abduallah et al. 2022). Let N denote the number of events in the training or validation
set. Let wy denote the weight for the negative (or minority) class, and let w; denote the
weight for the positive (or majority) class. The weight assignment is based on the ratio
of sizes between the majority and minority classes, with a higher weight assigned to the
minority class:

1 < . .
WBCE = —— ; [woy; log(Fi) + wi (1 — yp) log(1 — 3], (1

where y; denotes the label of the ith event, with y; = 1 for a geoeffective CME and y; =0
for a nongeoeffective CME, and y; represents the predicted probability for the ith event
being positive. The WBCE method ensures that the minority class is emphasized more in
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Table 3 Hyperparameters for
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Figure7 Training and validation learning curves showing GeoCME is a well-fit model for geoeffective CME
prediction.

the loss calculation, effectively addressing the imbalance issue in our dataset. During model
training, we use adaptive moment estimation (Adam) as optimizer (Goodfellow, Bengio, and
Courville 2016) with a batch size of 32 and a total of 100 epochs. Table 3 summarizes the
hyperparameters used in model training. These hyperparameter values are obtained by using
the grid search capability from the Python machine learning library, scikit-learn (Pedregosa
et al. 2011). The validation set used for tuning the hyperparameters is described below.

4. Results
4.1. Experimental Setup

We adopted an 80:20 scheme to train and test the GeoCME framework. Specifically, we
used 80% of the CME events from each of the “geoeffective” and “nongeoeffective” classes
for model training and used the remaining 20% of the events from each class for model
testing. Furthermore, we allocated 10% of the training data for each class for validation, so
that the performance of our model was regularly evaluated against unseen data throughout
the training process. Figure 7 presents the GeoCME training and validation learning curves.
The downward and convergence trends in the learning curves demonstrate the effectiveness
of GeoCME learning and its capacity to generalize successfully to new data. We note that
the two base models of GeoCME (ResNet152 and InceptionResNetV2) are pretrained on
the extensive ImageNet dataset. We used a relatively small amount of new training data to
retrain the two complex models for our use through transfer learning. Because the complex
models have been well pretrained and GeoCME is a fusion of them, we see that the learning
curves of GeoCME converge well in Figure 7.

In the experimental study, we adopted two metrics to evaluate GeoCME’s performance,
Matthew’s Correlation Coefficient (MCC) and True Skill Statistics (TSS). Given a CME
event E, we define E as a true positive (TP) if the model predicts E as positive (i.e., geoef-
fective), and E is indeed positive. We define E as a true negative (TN) if the model predicts
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Figure8 GeoCME'’s metric values for varying thresholds based on the validation set. The best metric values
are obtained when the threshold is set to 0.6.

E as negative (i.e., nongeoeffective), and E is indeed negative. We say that E is a false
positive (FP) if the model predicts E as positive while E is actually negative; E is a false
negative (FN) if the model predicts E as negative while E is actually positive. When the
context is clear, we also use TP (TN, FP, and FN, respectively) to represent the total number
of true positives (true negatives, false positives, and false negatives, respectively) produced
by the model. The MCC and TSS are defined as follows (Liu et al. 2019; Abduallah et al.
2022):

TP x TN — FP x FN

MCC = )
/(TP + FP)(TP + FN) (TN + FP) (TN + FN)

(@)

TP FP

TSS = — .
TP+FN FP+TN

3

As mentioned above, we implemented a threshold in the GeoCME output layer to obtain
a deterministic prediction model. If the probability produced by GeoCME for a given CME
event is greater than or equal to the threshold, then the model predicts that the CME event is
geoeffective; otherwise, the model predicts that the CME event is nongeoeffective. Figure 8
presents GeoCME’s metric values for varying thresholds based on the validation set. The
best metric values are obtained when the threshold is set to 0.6. As a consequence, we used
the 0.6 threshold in our study.

4.2. Performance Evaluation

We conducted ablation tests to analyze and evaluate the components of our GeoCME
framework. GeoCME contains two pretrained base models (see Figure 6), ResNet152 (RN)
and InceptionResNetV2 (IRN). We considered three variants of GeoCME: GeoCME-RN-
IRN, GeoCME-RN, and GeoCME-IRN.GeoCME-RN-IRN denotes GeoCME with the RN
and IRN models removed. This subnet contains only the inherent structure of GeoCME
without the pretrained models used for feature extraction. Thus there is no transfer learn-
ing in GeoCME-RN-IRN. GeoCME-RN denotes GeoCME with the RN models removed.
GeoCME-IRN denotes GeoCME with the IRN models removed. Figure 9 compares the
performance of the four networks used as deterministic prediction models.

We can see in Figure 9 that the variants (GeoCME-RN, GeoCME-IRN, and GeoCME-
RN-IRN), each missing a key component or more, achieved varied performance levels. The
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Figure 9 Results of the ablation tests for assessing four networks (GeoCME-RN-IRN, GeoCME-RN,
GeoCME-IRN, and GeoCME) used as deterministic prediction models where GeoCME-RN-IRN represents
GeoCME with RN and IRN models removed, GeoCME-RN represents GeoCME with RN models removed,
GeoCME-IRN represents GeoCME with IRN models removed, and GeoCME represents the full model. (Top)
MCC of the networks tested. (Bottom) TSS of the networks tested. GeoCME achieves the best performance
among all tested networks.

GeoCME framework, which integrates all its components, shows the best performance by
achieving the highest MCC of 0.807 and the highest TSS of 0.714. GeoCME-RN-IRN,
which lacks both the ResNet and InceptionResNet base models, exhibits the most signifi-
cant drop in prediction accuracy, with the lowest MCC of 0.365 and the lowest TSS of 0.380.
This highlights the impact of excluding transfer learning on GeoCME’s performance. Fur-
thermore, GeoCME-RN performs better than GeoCME-IRN, emphasizing the importance
of InceptionResNet in improving the prediction accuracy.

Figure 10 presents the confusion matrix obtained by GeoCME, which provides a break-
down analysis of errors that occur when the model makes predictions in the test set. There
are 28 CME events in the test set. Approximately (21 + 2)/28 = 82% of the events in the test
set are predicted to be geoeffective. Approximately 2/(21 + 2) = 8.7% of the predictions are
false alarms (false positives). The model’s FP value is 2, indicating that it is a relatively sen-
sitive model in the sense that it predicts two CME events as positive, although these events do
not cause geomagnetic storms. However, the model does not miss any geomagnetic storms,
as reflected by the fact that the model’s FN value is zero.

Each CME event E is accompanied by images from three distinct SOHO instruments
(LASCO C2, EIT, and MDI). To evaluate the effectiveness of these images, we conducted
additional experiments, in which we considered the following seven cases.

e FE has only LASCO C2 images (denoted C2).
e FE has only EIT images (denoted EIT).
e FE has only MDI magnetogram images (denoted MDI).
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Figure 10 The confusion matrix
obtained by GeoCME used as a
deterministic prediction model on
the test set.

E has only LASCO C2 and EIT images (denoted C2+EIT).

E has only LASCO C2 and MDI images (denoted C2+MDI).

E has only EIT and MDI images (denoted EIT4+MDI).

E has all the images of the three instruments (denoted C2+EIT+MDI).

For each case, we custom-built GeoCME to use the provided data. Figure 11 presents the
MCC and TSS results for the seven cases using GeoCME as a deterministic prediction
model. Note that the C2+EIT+MDI case in Figure 11 is equivalent to GeoCME in Fig-
ure 9. We can see in Figure 11 that the combination of LASCO C2, EIT, and MDI images
produces the most accurate results with a MCC of 0.807 and a TSS of 0.714 as also shown
in Figure 9, indicating that the use of the three types of images together leads to the best per-
formance. When the three types of data are used individually and separately, EIT produces
the best results, with an MCC of 0.657 and a TSS of 0.50, followed by MDI, and LASCO
C2 is the least effective.

4.3. Probabilistic Forecasting

Our proposed GeoCME can be easily converted from a deterministic prediction model to
a probabilistic forecasting model as follows. Instead of comparing the probability (ranging
from O to 1) produced by the GeoCME model with a predetermined threshold (which is
set to 0.6 in our work), the model simply outputs the probability. For a given CME event,
this output now represents a probabilistic estimate of how likely the event will be geoeffec-
tive, that is, how likely it will cause a geomagnetic storm with the minimum Dst value less
than —50 nT.

We use the Brier score (BS; Brier 1950) and the Brier skill score (BSS; Wilks 2010) to
assess the performance of a model. The Brier score quantifies the accuracy of the proba-
bilistic forecasts produced by the model by calculating the squared difference between the
predicted probabilities and actual outcomes. Mathematically, the Brier score is calculated
by the formula

1 & .
BS =2 (i =5 “
i=1

where N is the number of CME events in the test set, y; is the actual outcome for the ith
event (with 1 representing “geoeffective” and 0 representing “nongeoeffective”), and y; is
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Figure 11 Results of the ablation tests for assessing seven cases (C2, EIT, MDI, C2+EIT, C2+MDI,
EIT+MDI, C2+4-EIT4+MDI) using GeoCME as a deterministic prediction model where C2 represents the
LASCO C2 images, EIT represents the EIT images, MDI represents the MDI magnetogram images, C2+EIT
represents the combination of LASCO C2 and EIT images, C2+MDI represents the combination of LASCO
C2 and MDI images, EIT+MDI represents the combination of EIT and MDI images, and C2+EIT+MDI
represents the combination of LASCO C2, EIT, and MDI images. (Top) MCC of the seven cases tested. (Bot-
tom) TSS of the seven cases tested. C24+EIT+MDI achieves the best performance among all tested cases.

the predicted probability for the ith event. BS values range from 0O to 1, with a perfect score
of 0.

The Brier skill score provides a measure of the model’s skill relative to a baseline pre-
diction, calculated as

B
BSS:I——S 5)

N .
# Z,‘;](yi - y)2

where y = ﬁ Z,N: | yi represents the average of the actual outcomes for the events in the test
set. BSS values range from minus infinity to 1, with the perfect score being 1. A BSS of 0
indicates that the model has the same accuracy as the baseline model, and a negative BSS
indicates that the model performs worse than the baseline.

Figure 12 compares the four networks, namely GeoCME-RN-IRN, GeoCME-RN,
GeoCME-IRN, and GeoCME, described in Section 4.2, where the four networks are now
used as probabilistic forecasting models. We can see in Figure 12 that the GeoCME model
again performs the best, achieving the lowest BS of 0.094 and the highest BSS of 0.493.
GeoCME-RN-IRN, in which both ResNet and InceptionResNet were removed, performs the
worst, as reflected by the highest BS of 0.239 and the lowest BSS of 0.225. These results are
consistent with those shown in Figure 9, where the four networks were used as deterministic
models.
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Figure 12 Results of the ablation tests for assessing four networks (GeoCME-RN-IRN, GeoCME-RN,
GeoCME-IRN, and GeoCME) used as probabilistic forecasting models where GeoCME-RN-IRN represents
GeoCME with RN and IRN models removed, GeoCME-RN represents GeoCME with RN models removed,
GeoCME-IRN represents GeoCME with IRN models removed, and GeoCME represents the full model. (Top)
BS of the networks tested. (Bottom) BSS of the networks tested. GeoCME achieves the best performance
among all tested networks.

Figure 13 presents the BS and BSS results for the seven cases (C2, EIT, MDI, C2+EIT,
C2+-MDI, EIT+MDI, C2+EIT+MDI) defined in Section 4.2, this time using GeoCME as
a probabilistic forecasting model. We can see in Figure 13 that the combination of LASCO
C2, EIT, and MDI images again produces the most accurate results with a BS of 0.094 and a
BSS of 0.493, indicating that the use of all data from the three instruments together achieves
the best performance. When the three types of data are used individually and separately, EIT
yields the best results, with a BS of 0.125 and a BSS of 0.310, followed by MDI, and LASCO
C2 is the least effective. These findings are consistent with those shown in Figure 11, where
GeoCME was used as a deterministic prediction model.

5. Discussion and Conclusions

We presented GeoCME, a deterministic model that employs ensemble and transfer learning
techniques to predict whether a CME event reaching Earth will be geoeffective. Here a ge-
omagnetic storm is defined as a disturbance of the Earth’s magnetosphere during which the
minimum value of the Dst index is less than —50 nT. Moreover, we converted the determin-
istic model to a probabilistic forecasting model, which estimates the probability that a CME
event will be geoeffective. The GeoCME framework used LASCO C2, EIT 195 A, and MDI
magnetogram images collected by SOHO to make predictions. Our experiments showed that
the GeoCME framework can capture the hidden relationships between the SOHO observa-
tions and the CME geoeffectiveness, achieving reasonably good performance. Specifically,
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Figure 13 Results of the ablation tests for assessing seven cases (C2, EIT, MDI, C2+EIT, C2+MDI,
EIT4+MDI, C2+4-EIT+MDI) using GeoCME as a probabilistic forecasting model where C2 represents the
LASCO C2 images, EIT represents the EIT images, MDI represents the MDI magnetogram images, C2+EIT
represents the combination of LASCO C2 and EIT images, C2+MDI represents the combination of LASCO
C2 and MDI images, EIT+MDI represents the combination of EIT and MDI images, and C2+EIT+MDI
represents the combination of LASCO C2, EIT, and MDI images. (Top) BS of the seven cases tested. (Bot-
tom) BSS of the seven cases tested. C2+EIT+MDI achieves the best performance among all tested cases.

when used as a deterministic prediction model, GeoCME achieves an MCC of 0.807 and a
TSS of 0.714. Approximately 82% of the events in the test set are predicted to be geoeffec-
tive. Approximately 8.7% of the predictions are false alarms. When used as a probabilistic
forecasting model, GeoCME achieves a BS of 0.094 and a BSS of 0.493. Our experiments
also showed that using all three types of solar image together (LASCO C2, EIT, and MDI)
performs better than using one or two types of solar image.

We adopted an 80:20 scheme in our dataset that covers CME events from 1997 to 2006
for model training and testing, as described in Section 4.1. In additional experiments, we
conducted a five-fold cross-validation to further evaluate the GeoCME framework. Specif-
ically, we divide the dataset into five equally sized subsets or folds, where every two folds
have roughly the same number of geoeffective (nongeoeffective, respectively) CMEs. There
are 101 geoeffective CMEs and 35 nongeoeffective CMEs in the dataset. Thus each fold con-
tains approximately 20 geoeffective CMEs and 7 nongeoeffective CMEs. In each run, one
fold is used as the test set, and the union of the other four folds is used as the training set.
There are five folds and hence five runs. We calculate the average metric values for the five
runs. The five-fold cross-validation process yields an average MCC of 0.782 and an average
TSS of 0.673 when GeoCME is used as a deterministic prediction model, and an average BS
of 0.107 and an average BSS of 0.461 when GeoCME is used as a probabilistic prediction
model. Furthermore, in terms of the average metric values, GeoCME outperforms its sub-
nets (GeoCME-RN-IRN, GeoCME-RN, and GeoCME-IRN) and performs the best when all
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three types of solar image together (LASCO C2, EIT, and MDI) are used in model training
and testing. These results are consistent with those obtained from the 80:20 scheme.

Our work relies on existing methods (e.g., Sudar, Vr$nak, and Dumbovi¢ 2016; Liu
et al. 2018; Amerstorfer et al. 2021; Dumbovié et al. 2021; Kaportseva and Shugay 2021;
Baratashvili et al. 2022; Guastavino et al. 2023; Chierichini et al. 2024) to predict whether a
CME event would arrive at Earth. When a CME event is predicted to arrive at Earth, we then
use the proposed GeoCME to predict whether the CME event will be geoeffective, that is,
whether it will cause a geomagnetic storm. Unlike other studies (Besliu-Ionescu et al. 2019;
Pricopi et al. 2022), which used CME or solar onset parameters, GeoCME uses solar images
to make predictions. The input of GeoCME is composed of directly observed images, which
avoids the sophisticated calculation of parameters. Thus GeoCME has the potential for op-
erational utilization. On the basis of our experimental results, we conclude that GeoCME is
a feasible tool for predicting geoeffective CMEs, deterministically or probabilistically.
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