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productivity in observational data collected at a single point in time. Identifying

Handling Editor: Eric Lamb causal effects in the presence of these challenges requires new analytical ap-
proaches and repeated observations to determine the temporal ordering of
effects.

2. Though rarely available, data collected at multiple time points within a growing
season can help to disentangle the effects of biodiversity on productivity and
vice versa. Here we advance this understanding using seasonal grassland surveys
from 150 managed grassland sites repeated over 2years, along with statistical
methods that are relatively new in ecology, that aim to infer causal relationships
from observational data. We compare our approach to common methods used in
ecology, that is, mixed-effect models, and to analyses that use observations from
only one point in time within the growing seasons.

3. We find that mixed models overestimated the effect of biodiversity on productiv-
ity by two standard errors as compared to our main models, which find no evi-
dence for a strong positive effect. For the effect of productivity on biodiversity
we found a negative effect using mixed models which was highly sensitive to
the time at which the data was collected within the growing season. In contrast,
our main models found no evidence for an effect. Conventional models overesti-
mated the effects between biodiversity and productivity, likely due to confound-

ing variables.
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1 | INTRODUCTION

Global biodiversity decline (WWF, 2022) has fuelled an ongoing
research debate about the consequences of biodiversity loss for
ecosystem functioning (Adler et al., 2011; Dee et al., 2022; van der
Plas, 2019). A focal topic in this debate is the reciprocal nature of
biodiversity-productivity relationships, in which biodiversity can
affect productivity but productivity also drives biodiversity (Adler
et al., 2011; Grace et al., 2016). In recent decades, numerous ex-
perimental studies concluded that random biodiversity loss reduces
productivity (Cardinale et al., 2012; Tilman et al., 2001). However,
in non-randomly assembled (semi-)natural ecosystems (e.g. managed
grasslands), these relationships are less consistent (Adler et al., 2011;
Dee et al., 2023; Grace et al., 2016), which challenges the generality
of biodiversity effects on productivity (van der Plas, 2019). At the
same time, the direction of the causal relationship between biodi-
versity and productivity has been debated for decades, with many
earlier studies suggesting that biodiversity can also be driven by
changes in productivity (Fraser et al., 2015; Grime, 1973; Gross &
Cardinale, 2007). Yet despite recent evidence suggesting that both
relationships of biodiversity on productivity and of productivity on
biodiversity may co-occur (Grace et al., 2016), their causal effects
remain elusive (Dee et al., 2023).

Teasing apart biodiversity-productivity relationships in natu-
ral and semi-natural ecosystems is challenging. First, confounding
variables, such as land-use intensity can influence both biodiversity
and productivity and modify their relationships (Grace et al., 2007;
Socher et al., 2012). When unaccounted for, confounding variables
can mask or mimic causal effects and lead to incorrect inferences
(i.e. due to statistical bias, reviewed in Dee et al., 2023). Thus, the
degree to which overall relationships in prior observational studies
are positive or negative may be driven by variation in land-use in-
tensity (Freitag et al., 2023; Grace et al., 2007; Socher et al., 2012)
or how these studies control for confounding variables (Dee
et al., 2023). Second, inconsistent biodiversity-productivity rela-

tionships could be caused by their reciprocal relationship (Figure 1a,

4. Synthesis. Understanding the biodiversity-productivity relationships is a focal
topic in ecology, but unravelling their reciprocal nature remains challenging. We
demonstrate that higher-resolution longitudinal data along with methods to con-
trol for a broader suite of confounding variables can be used to resolve recipro-
cal relationships. We highlight future data needs and methods that can help us
to resolve biodiversity-productivity relationships, crucial for reconciling a long-
running debate in ecology and ultimately, to understand how biodiversity and

ecosystem functioning respond to global change.

biodiversity-productivity relationships, causal inference, managed grasslands, reciprocal
relationships, temporal dynamics
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FIGURE 1 (a) Conceptual model showing the reciprocal
relationship between plant biodiversity (B) and productivity (P) and
additional observable confounding factors (i.e. environment and
disturbance) hypothesized for (semi-)natural systems. (b) Statistical
design using temporal sequences of biodiversity and productivity
to unravel reciprocal relationships and to control for observable as
well as unobservable confounding factors (e.g. soil fertility, climate
and land use). (c) Expected changes in biodiversity and productivity
in (semi-)natural systems (e.g. agriculturally managed grasslands).
Size of the arrows indicates the expected relative importance of
relationships suggested by previous findings from (agriculturally
managed) grasslands (Grace et al., 2007; Socher et al., 2012).

Note that depicted hypothesized changes in biodiversity and
productivity are based on findings from classic biodiversity
experiments and can differ under more ‘real-world’ settings (see
Section 4).
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Cardinale et al., 2009; Grace et al., 2007; Willig, 2011). In grass-
lands, high productivity can reduce plant biodiversity through
increased light competition (Hautier et al., 2009) or changes in nu-
trient niche-dimensionality (Harpole et al., 2017). In contrast, stud-
ies focusing on effects of biodiversity on productivity often found
positive relationships in artificial experimental systems (Cardinale
et al., 2012; Loreau et al., 2001; Tilman et al., 2014), mainly due to
increased complementarity (Barry et al., 2018), although more ‘real-
world’ experiments (i.e. species loss experiments) have also found
weaker relationships (Lisner et al., 2023; Sasaki et al., 2017; Smith &
Knapp, 2003). These processes, however, are not mutually exclusive
(Grace et al., 2016) and are hard to tease apart in observational data
when they occur simultaneously (Dee et al., 2022). For instance, a
negative effect of productivity on biodiversity could mask a posi-
tive effect of biodiversity on productivity (Schmid, 2002; van der
Plas, 2019). Hence, to robustly estimate the effect of biodiversity
on productivity and vice versa in (semi-)natural ecosystems, such as
managed grasslands, isolating each direction of their reciprocal rela-
tionship from the other is crucial.

Despite the potential of reciprocal relationships between biodi-
versity and productivity to obscure attempts to isolate the effects
of biodiversity on productivity from productivity on biodiversity
and vice versa, few prior studies either attempt to account for it
explicitly (but see Dee et al., 2023) or to study both directions in a
single study (but see Chen et al., 2018; Grace et al., 2016; Paquette
& Messier, 2011). For instance, of 31 studies reviewed in a com-
prehensive literature synthesis in van der Plas (2019) most do not
address reverse causality (Dee et al., 2022). In a notable exception
that examined effects in both directions of this bidirectional rela-
tionship, Grace et al. (2016) found a positive effect of biodiversity
on productivity, and a negative effect of productivity on biodiversity
in (semi-)natural grassland. However, this study used observations
from single points in time, which creates challenges for determining
the temporal ordering of causal effects. In particular, if productiv-
ity is inferred from plant biodiversity sampled at the same point in
time (or vice versa), their effects will be hard to disentangle, caus-
ing simultaneity bias (Wooldridge, 2012)—even if they do not affect
each other simultaneously. Furthermore, the effects of biodiversity
on productivity (or vice versa) are likely not truly simultaneous and
occur at different time scales (Costanza et al., 2007), for example,
delayed effects which need a longer time to emerge (e.g. effects of
biodiversity on productivity through plant-soil feedback effects).
While some studies focused on long-term (across multiple years)
effects between biodiversity and productivity (Isbell et al., 2018;
Qiu & Cardinale, 2020), less is known about higher resolutions of
temporal dynamics (e.g. within years—the scale at which productiv-
ity can reduce biodiversity through shading, for example) (Dullinger
et al., 2013; Faust et al., 2012; Reich et al., 2012). However, using
data from multiple time points within a year based on seasonal data
allows us not only to estimate reciprocal relationships but also to ex-
plore different temporal dimensions of cause and effect (e.g. delayed
causal effects from on season to another). Having repeated samples
across the same sites over time (allowing analysis of within-site
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changes; longitudinal data hereafter) further enable statistical de-
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signs (i.e. two-way fixed-effect models; Wooldridge, 2012) that
allow for control over a broader suite of observable and importantly,
unobservable confounding variables without needing to know or
measure them (Figure 1b,e.g. measurement error and micro-climate)
(Dee et al., 2023; Larsen et al., 2019). Thus, to deal with the temporal
precedence of effects and to tease out reverse causalities, longitudi-
nal data, that is, surveys repeated both within years (across seasons)
and across years, can be crucial if we aim to identify and estimate
the causal effects between biodiversity and productivity (Dee
etal., 2023; Larsen et al., 2019; Leszczensky & Wolbring, 2022).
Here, we compare the magnitude of the relationship of plant bio-
diversity on productivity with the reciprocal relationship of standing
biomass (resulting from productivity) on biodiversity within managed
grasslands that vary in land-use intensity. We use data collected
over 2years and two seasons per year on plant species richness,
standing biomass and productivity across 150 managed grassland
sites located across Germany. Previous studies observed negative
correlations between biodiversity and productivity in these grass-
lands (Socher et al., 2012), even after controlling for multiple con-
founding variables (Le Provost et al., 2023). Here we build on these
prior studies by using longitudinal data within a growing season,
across years and so-called ‘causal inference’ methods (Figure 1b)
to resolve and compare the relative magnitudes of reciprocal rela-
tionships between biodiversity and productivity. We show, for the
first time, that higher-resolution longitudinal data (interannual, i.e.
seasonal data, as opposed to single annual measurements used in
previous studies) can be used to resolve reciprocal relationships. By
using causal inference tools, we found that within managed grass-
lands, the estimated effects of biodiversity on productivity and vice
versa are weak. When comparing inferences from our design that
can control for more confounding variables to a typical statistical de-
sign in ecology (i.e. mixed-effect models), we find that our estimates
differ both in signs and magnitudes, and that these effects are likely
overestimated (by two standard errors) by conventional statistical
designs. Ultimately, we conclude by highlighting future data needs
and methods that can help us to resolve biodiversity-productivity
relationships that can help to reconcile a long-running debate in
ecology and ultimately, to understand how biodiversity and ecosys-

tem functioning respond to global change.

2 | MATERIALS AND METHODS
2.1 | Studysystem

The grasslands are located within three German regions (north-east:
Schorfheide-Chorin, central: Hainich-Din, south-west: Swabian
Alb) that are part of the Biodiversity Exploratories project (Fischer
etal., 2010). All three regions differ in their climatic and edaphic con-
ditions, with annual mean precipitation and elevation being highest
in the South-west, and temperature and soil fertility (deep fertile
organic soils, but also few sandy soils in the Schorfheide-Chorin)
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being highest in the North-east. All data was collected from per-
manently marked plots (1x1m) within 50 grasslands per region
(150 in total). These grasslands are managed, with plots selected to
span a wide gradient of land-use intensity (see Table S10) typical of
Central European grasslands (Blithgen et al., 2012). Within Central
European grasslands, fertilization, mowing and grazing are the most
common land-use components, and all can be important drivers of
plant biodiversity and productivity (Socher et al., 2012). Field work
permits were issued by the responsible state environmental offices
of Baden-Wurttemberg, Thiringen and Brandenburg (according to
§72 BbgNatSchG).

2.2 | Data collection and processing

In both the spring (April-May) and summer growing season (July-
August) of 2020 and 2021, we estimated standing biomass (gm™)
and species-specific cover (in %) of vascular plant speciesin each of
the 150 grassland plots. Standing biomass was non-destructively
estimated using a rising plate meter, by taking vegetation density
as a proxy for standing biomass (L6pez-Diaz et al., 2011). Biomass
estimations were calibrated using data of biomass measure-
ments from two additional, adjacent (~2m distance) 1 x 1 m grass-
land plots (100 plots per region, 300 in total) collected in spring
2021 (for more information see Andraczek, Weigelt, Hinderling,
et al., 2023). In each grassland plot, we quantified biodiversity as
vascular plant species richness, Evenness and Shannon Diversity
(Jost, 2006). While previous studies predominantly used stand-
ing biomass as a proxy for productivity (which is challenging to
measure in observational studies), we use both standing biomass
(measured at one single point in time) and biomass production
(as increments of standing biomass over time), which we refer
to as productivity hereafter (measured as in Andraczek, Weigelt,
Hinderling, et al., 2023, see Supplement). This distinction is done
to disentangle reciprocal relationships between biodiversity and
productivity, as negative feedback effects of productivity on
biodiversity occur, at least in part, through changes in standing
biomass (Grace et al., 2016). Although various productivity surro-
gates exist (e.g. soil fertility), we used aboveground standing bio-
mass over time, as it is agriculturally most relevant and expected
to respond more rapidly to changes in biodiversity.
Land-use-related information was derived from annual question-
naires of landowners (Vogt et al., 2019, 2023). Within each grassland,
land-use intensity comprises the intensity of fertilization, mowing
and grazing, which are used to generate an index of land-use inten-
sity (LUl hereafter) as a composite variable of standardized measures
of mowing (cuts year™), grazing (Livestock unitsxday ha™year™)
and fertilization (kgNha™year™) intensity (Blithgen et al., 2012).
To consider the effects of past LUI (from the previous year) on bio-
diversity and productivity, LUl was quantified for the years 2019
and 2020. To control for confounding variables, we obtained ex-
isting project data on edaphic conditions (i.e. soil P, soil N, soil pH,
sand/clay content, slope and elevation; see Ostrowski et al., 2023;

Schoning & Apostolakis, 2023; Schoning, Klotzing, Apostolakis,
& Trumbore, 2023; Schoning, Kl6tzing, Apostolakis, Trumbore, &
Schrumpf, 2023), climatic (i.e. mean temperature and precipitation
in months before spring and summer, Hansel et al., 2022) and hydro-
logical variables (i.e. topographic wetness index, Manning, 2023). All
confounding variables (LUI, soil P, soil N, soil pH and climatic vari-
ables) were collected before the biomass and biodiversity measure-
ments to prevent collider bias in estimating causal effects. These
variables were chosen because they are known to be important pre-
dictors of both biodiversity and productivity (Grace et al., 2016; Le
Provost et al., 2023; Socher et al., 2012). Despite our comprehensive
data, other important unmeasured confounding variables still exist,
such as insect herbivory, soil micronutrients, historical land-use,
plant pathogens or soil microbial composition, which motivated our
use of statistical analyses from ‘causal inference’ that can account
for unobservable confounding variables.

To control for different aboveground resource acquisition strat-
egies (i.e. leaf economics) of plants that are known to influence bio-
diversity and productivity in managed grasslands (Allan et al., 2015),
we additionally quantified community weighted means (CWM) of
specific leaf area (SLA hereafter) for all plots, as the mean SLA of
all species in a given plot weighted by relative cover of each spe-
cies. SLA is a key indicator of ‘fast’ leaf economics (Reich, 2014),
and previous studies have shown that the CWM of SLA is strongly
correlated with productivity in our grasslands (Allan et al., 2015;
Neyret et al., 2024). All trait data was obtained from the TRY da-
tabase (Kattge et al., 2020). To quantify competition for light, we
measured light availability as photosynthetically active radiation (in
pmols™*m™) at ground level and 1.5m.

2.3 | Statistical design and comparisons

We estimated the effect of biodiversity on productivity, and of
productivity on biodiversity using longitudinal data including
repeated samples of 150 plots from 58 sites across the grow-
ing season at two time points (i.e. spring and summer) and over
2years, informed by directed acyclic graphs to visualize causal re-
lationships (Figure S4; Arif & MacNeil, 2022, Laubach et al., 2021,
Pearl, 2009). We applied both conventional statistical designs
used in ecology (linear mixed-effects models directly controlling
for confounding variables, Bates et al.,, 2015) and ‘causal infer-
ence’ techniques that aim to estimate causal relationships from
temporal (‘longitudinal’ or ‘panel’) data by controlling for both ob-
served and unobserved confounding variables (Dee et al., 2023;
Larsen et al., 2019; Wooldridge, 2010). These methods are so far
underutilized in ecology (but see e.g. Dee et al.,, 2023; Dudney
et al., 2021; Ratcliffe et al., 2022). We compare inferences from
more conventional (i.e. mixed effect models) with ‘causal infer-
ence’ statistical designs, including their associated ecological con-
clusions and assumptions.

Mixed-effect models statistically control for observable con-
founding variables by including them as covariates in the model,
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but unobservable confounding variables are relegated to the error
term as the ‘random effect’. In our application of these models, we
control for several measured and known confounding variables:
edaphic conditions, climate, management and hydrological variables
(see Figure S4; Table S16). However, mixed models rely on strong
assumptions (VanderWeele, 2012): to interpret an estimated effect
as causal, the random effect should have no systematic correlation
with any variable in the model. When violated, random effects are
biased estimators (see Byrnes & Dee, 2024 for more details). Thus,
these models assume that any omitted variable has no confounding
effect, that is, has no relationship with both the response or effect,
in this case richness and productivity.

Since our data is temporal (measured within the same plot at
multiple points in time), we can use other methods that more flex-
ibly control for observed and unobserved confounding variables
(e.g. surrounding land-management), without the need to measure
them (Dee et al., 2023; Wooldridge, 2010) (for more information
on observable confounding variables which are deemed to be con-
trolled for by the fixed effects in the two-way fixed effect mod-
els, see Figure S4). Specifically, two-way fixed effect estimators
relax the strong assumption that no confounding variables are left
out of the model and therefore are not controlled for. In contrast
to the ‘random effects’ (Bolker et al., 2009), econometric ‘fixed
effects’ are not constrained to any predefined distribution, and
are fixed, estimable and not part of the random term. While this
comes with a cost in statistical power, it requires fewer assump-
tions about confounding variables to be an unbiased estimator
(Wooldridge, 2010). To account for both measured and unmea-
sured confounding variables (e.g. surrounding land management)
influencing biodiversity-productivity relationships, we aggregated
plots into management entities (sites hereafter) based on the re-
spective land manager, reflecting similarities in characteristics
that could be confounding (e.g. pollination or land-use history);
this led to 26 sites in Swabian Alb, 22 sites in Hainich-Din, and
10 sites in Schorfheide-Chorin, with on average 3 plots per site.
Furthermore, we sub-grouped 5 sites depending on their proxim-
ity to each other to address that adjacent plot (managed by the
same farmer) are more similar, with respect to sources of unob-
served heterogeneity (e.g. natural herbivore densities), than more
distant plots managed by the same farmer (on average 2 plots per
sub-site).

However, mixed-effect models and two-way fixed effect models
share one critical assumption: that there are no time-varying con-
founding effects on plot level that affected both biodiversity and
productivity and are left out of the model (i.e. measured or unob-
served). Yet, such confounding variables could exist (e.g. soil micro-
nutrients, soil microbial composition, plant pathogens). In response,
we assess the potential threat of unobserved time-varying con-
founding variables on plot-level for both mixed effect and two-way
fixed effect models, testing if they could substantially change our
results (see Section 2.3.5).

Our implicit assumption in our original models (i.e. both mixed-
effect models and two-way fixed effect models) is that causal
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effects of biodiversity on productivity, and of productivity on bio-
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diversity, are temporally dynamic (due to temporally delayed ef-
fects of, e.g. plant-soil feedbacks), here defined as delayed causal
effects from one season to the next, or 1year to the following
year. However, it is also possible that these effects are not tem-
porally dynamic, and that effects happen at the same time and
are not delayed in time. Hence, to assess how the assumption
of temporal dynamics affected the conclusions, we additionally
modelled the effects between biodiversity and productivity using
linear mixed-effect models and two-way fixed effect models but
only using data measured in the same season (i.e. summer, similar
to previous studies quantifying biodiversity and productivity at
peak biomass).

We implemented all regression models in RStudio (v. 4.3.2) (R
Core Team, 2021), used an In-In model specification and report z-
transformed effect sizes to allow the comparison of the relative
magnitude of the estimated causal effects. To achieve a more even
distribution, LUl was square root transformed.

2.3.1 | Estimating the effect of biodiversity on
productivity

We first estimate the effect of richness in spring on productivity
in summer using a two-way ‘econometric fixed-effect’ estimator
(‘fixed effects’ hereafter, see, e.g. Halaby, 2004; implemented in
fixest package v 0.11.0, Berge, 2018) as in the following equation
(based on Figure 2a):

In(Productivity,mmer (ot ) ~ B IN(RiChnessing o) +5art(LUI ¢ )
1)

+In(Standing biomass,ing (o) + 8, + Hst + Epst:
where p indicates plot and s site, t indexes the respective year and
the respective season in which a variable is quantified indicated by
spring or summer. This equation estimates individual plot effects
on productivity by including time-invariant plot attributes (6p).
Hence, §_ controls for unobserved heterogeneity caused by con-
founding variables which operate at the plot scale but are constant
across time (e.g. soil micronutrients, see Dee et al., 2022). Note
that time-invariant site attributes (e.g. soil depth or elevation; see
Figure S4) are not explicitly included in the equation because they
are subsumed into the time-invariant plot attributes. However, as
other confounding variables may vary over time and operate at
larger spatial scales (e.g. precipitation and management), we addi-
tionally estimate time-varying site attributes (u,). In this case, we
model a year-specific effect for each site on productivity. In par-
ticular, these time-varying site attributes control for confounding
variables, whether they are measured or not, that vary across time
and are site specific, such as weather. As land-use intensity (LUI)
is an important driver of both biodiversity and productivity, we in-
cluded LUI measured at plot level as a confounding variable to test
for an interaction with richness and LUI (e.g. land-use intensity
can change species composition/abundance, and hence, modifies
effects of biodiversity on productivity). To investigate whether
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FIGURE 2 Simplified causal diagram reflecting the assumed relationships that inform our estimation strategy (a) for seasonal lag models
and (b) yearly models estimating causal effects of biodiversity (B) on productivity (P) (green arrow) and standing biomass (SB) on biodiversity
(purple arrow) used for the two-way fixed effect estimation design. Shown are time-invariant plot-level (Confp, 5p) or site-level (Conf),

and time-varying site-level (Conf,

ny) confounding factors (both observable and unobservable). Time indexes respective years in which

variables are quantified: [t] =year 1, [t+ 1] =year 2. Further, all confounding variables are measured a season or year before biodiversity
and productivity was quantified preventing collider bias (see Section 2). For a more detailed directed acyclic graph representing the causal
relationships between biodiversity and productivity and including additional confounding variables that are both observed and unobserved,

see Figure S4.

changes in biodiversity or productivity in response to LUl are due
to changes in community composition, we further run models in-
cluding CWM of SLA instead of LUI (see Figure S4). All variation
that is not explained by the main effects (see Equations 1 and 3),
and the fixed effects (time-invariant or time-varying) will be cap-
tured by the error term (Epst)' To control for static and dynamic ef-
fects we included past standing biomass as an additional covariate

in all models.

2.3.2 | Robustness analyses of estimated effects of
biodiversity on productivity

To assess the sensitivity of our estimated effect of biodiversity on
productivity, we additionally tested for robustness of our results in
several ways. First, while changes in species richness in spring may
have relatively rapid effects on productivity in summer, it is likely
that causal effects require longer to emerge (e.g. from previous to
present year). Hence, we also tested alternative models, in which
species richness in summer of the previous year [t] affects produc-
tivity in summer of the present year [t+ 1] using the following equa-
tion (based on Figure 2b):

In ( Productivitysummer [t+1] ) ~ B In(Richness,mmer (1) +sart (LUl ) 2

+In(Standing biomassying (1) + Hs + Epst:

In contrast to the models testing for seasonal dynamics between
effects of biodiversity on productivity, in yearly models, we did
not include 3, as this model included a lagged independent vari-
able of richness, and hence, including §p would bias estimated
causal effects (Nickell, 1981). Second, for all model specifications
described above, we assessed if estimated effects change when:

(1) using Shannon Diversity instead of richness, (2) controlling for

Evenness, (3) assuming non-linear effects of richness, and (4) clus-
tering standard errors on plot or site level to account for serial
correlation of error terms (e.g. due to temporal dependence, see
Bertrand et al., 2004).

2.3.3 | Estimating the effect of productivity on
biodiversity

We estimate the effect of standing biomass in spring (as proxy for
productivity) on richness in summer (in the same year) as in the fol-

lowing equation (based on Figure 2a):

In(Richnessg,mmer pt) ~ # In(Standing biomass,ing (pt ) +sart(LUl )

+In(RiChNesSqyring (11 ) +6p + Hst +Epsts

@)

where p indicates plot and s site, t indexes the respective year
and the respective season in which variable is quantified indi-
cated by spring or summer, while 3, and u, are the same as above
in Equation (1). As in Equation (1), this assumes no confounding
variables at plot level that are plot specific and vary through time.
To test if effects of LUl mask causal effects of productivity on
biodiversity we included LUI, although we also tested whether
changes in species abundance and/or community composition
explains changes in biodiversity, by including CWM of SLA as a
covariate (for more detailed information see Section 2.3.1). In
addition, we tested for an interaction between standing biomass
and LUI. To control for static and dynamic effects we included
past richness as additional covariate in all models. Note that
within models testing yearly dynamic effects, we use summer
productivity, not standing biomass, as the latter might be biased

due to mowing/grazing.
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2.3.4 | Robustness analyses of estimated effect of
productivity on biodiversity

To assess the robustness of the estimated effect of productivity on
biodiversity, we first tested alternative models (see Section 2.3.2 for
rational), in which productivity in summer of the previous year [t]
affects richness in summer of the present year [t+ 1] using the fol-

lowing equation (based on Figure 2b):

In < Richness mmer [¢+1] ) ~ B In(Productivitymmer 1) +sart(LUl)

+In(Richnessgying (1) + Hs + Epst-

Second, for all model specifications described above, we assessed if
estimated causal effects change when: (1) assuming non-linear ef-
fects of productivity/standing biomass and (2) clustering standard
errors on plot or site level to account for serial correlation of error

terms.

2.3.5 | Sensitivity test

We conducted a sensitivity analysis (using the sensemakr package,
Cinelli & Hazlett, 2020) exploring the robustness of our estimated
effects to potential unobserved confounding variables which are
systematically correlated with biodiversity and productivity follow-
ing methods developed by Altonji et al. (2005) and Oster (2019).
These sensitivity test assesses the extent to which the results (es-
timates) would substantially change due to the presence of such
a confounder, and to what degree depending on the potential im-
portance of the confounder (see also Dee et al. (2023) for another
ecological application and example). Specifically, the sensitivity test
probes the assumption that the observable confounding variables
that drive both the dependent variable (e.g. biodiversity) and the in-
dependent variable (e.g. productivity) are adequately controlled for
in our models. If this assumption is valid, we can assess under which
conditions and unobserved confounding variable could change the
estimated effects in our models (see Tables S16-519). Using this
sensitivity analysis, we can mimic the effect of failing to include a
powerful potential confounding variable in our statistical designs
for both the mixed effect models and the two-way fixed effects
models, while the strength of the potential confounder is relative
to the variation not explained by the covariates included in the re-
spective models (unexplained variance in the mixed-effect models:
30%-50%, two-way fixed effect models: 10%-20%). However, since
sensemakr does not support mixed effect models in the current
version (due to the complexity of mixed effects, e.g. the variabil-
ity within and between groups), we tested the sensitivity based on
linear models. While not fully comprehensive, this can still provide
some insights into the robustness of the fixed effect in our models
to unmeasured confounding variables, because mixed-effect models
and linear models are both making the assumption that the variables
that are confounding are being included in the model. Nevertheless,
in the sensitivity analysis of the linear models the strength of the
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unobserved confounding variable was relative to the unexplained
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variance in the mixed effect models, to address that the random
effects would partly explain some of the unobserved confounding

variables if included. For more detailed information, see supplement.

3 | RESULTS

3.1 | Relationships between biodiversity and
productivity using random effect estimator

Using linear mixed-effect models, while controlling for multiple
environmental and management covariates (see Table S1), we
observed that a high species richness in spring was positively as-
sociated with a high summer productivity (effect size: 0.20; 95%
Cl: 0.04, 0.36, p=0.02, Figure 3a). For the reverse relationship, a
high-standing biomass in spring was associated with a low spe-
cies richness in summer (effect size: -0.16; 95% Cl: -0.28, -0.04,
p=0.01, Figure 3b). Effects of species richness on productivity
were robust when controlling for species Evenness, although rela-
tionships between Shannon diversity and productivity were over-
all weaker (see Tables S11 and S12).

3.1.1 | Relationships between biodiversity and
productivity using two-way fixed effect estimators

Using two-way fixed effect models, seasonal dynamic models (assum-
ing temporal dynamic effects between biodiversity and productivity
mediated from spring to summer) showed that a high species richness
in spring decreased (albeit non-significantly) productivity on aver-
age (effect size: -0.10; 95% Cl: -0.43, 0.24). Yearly dynamic models
(assuming temporal dynamic effects between biodiversity and pro-
ductivity mediated from the previous year to the next year) showed
that a high species richness in summer tended to be associated (albeit
non-significantly) with a high productivity of the following year (effect
size: 0.08; 95% Cl: -0.14, 0.29, Figure 4a). Thus, using two-way fixed-
effect estimators, we observed that estimated effect of biodiversity
on productivity, and productivity on biodiversity were weak, with 95%
confidence intervals of effects always overlapping with O, but that the
strength and direction of these effects slightly differed depending on
whether seasonal or yearly dynamics of causal relationships were as-
sessed (Figure 4; Tables $S2-S5). This was despite observed relatively
large changes in biodiversity and productivity (Figure 5).

For the reverse relationship, the effect of productivity on rich-
ness, standing biomass in spring had virtually no effect on species
richness in summer (effect size: -0.01; 95% CI: -0.14, 0.11), which
was also found when examining the yearly dynamic effects of pro-
ductivity in summer on species richness in spring (effect size: 0.08;
95% Cl: -0.04, 0.19, Figure 4b). The direction and strength of the
estimated effects remained comparable even when controlling for
non-linear relationships, Evenness or when using Shannon Diversity

instead of richness (see Supplement S6-59).
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3.2 | Effect of land-use intensity on
biodiversity and productivity through time

Using two-way fixed effect models, we found strong associations
of LUI on both species richness and productivity, although the
strength of estimated effects of LUI differed when considering

seasonal or yearly dynamics of causal relationships (Figure 4;
Tables S2-S5). Overall, a high LUl was associated with high pro-
ductivity when considering seasonal (effect size: 0.49; 95% Cl:
0.18, 0.80) or yearly dynamics (effect size: 0.25; 95% Cl: -0.10,
0.61) of effects (Figure 4a). However, within-seasonal effects
of LUl on productivity were larger compared to yearly models.
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In contrast, in both seasonal (effect size: -0.25; 95% Cl: -0.41,
-0.10) and yearly models (effect size: -0.25; 95% Cl: -0.56, 0.07)
a high LUl was associated with a low species richness in summer
(Figure 4b). Furthermore, in the yearly dynamic models, we found
a significant negative interaction between productivity in summer
and land-use intensity on species richness in summer (effect size:
-0.20, 95% Cl: -0.35, -0.05, Table S5).

3.3 | Effect of functional composition on
biodiversity and productivity through time

Comparing two-way fixed effect models with SLA instead of LUI
as a covariate revealed that the strength of inferred causal effects
of biodiversity on productivity was partly explained by shifts in
community composition (Tables S2-S5). Originally negative es-
timated causal seasonal dynamic effects of biodiversity on pro-
ductivity became approximately neutral (effect size: 0.05; 95%
Cl: -0.40, 0.49) when including SLA instead of LUIl. Overall, we
observed that a high SLA was associated (albeit non-significantly)
with a high productivity when both considering seasonal (effect
size: 0.23; 95% Cl: -0.10, 0.56) and yearly (effect size: 0.10; 95%
Cl: -0.27, 0.47) dynamic effects. In contrast, a low SLA was as-
sociated with a high species richness in both seasonal (effect size:
-0.07; 95% Cl: -0.35, 0.20) and yearly (effect size: -0.26; 95% Cl:
-0.37, -0.14) models.

3.4 | Sensitivity analysis

The sensitivity analysis revealed that estimated effects of biodiver-
sity on productivity (Figure S5a), and of productivity on biodiversity
(Figure S5b), were not robust against bias from unobserved time-
varying confounding variables in linear models (see Figure S5a,b),
suggesting that linear mixed-effect models are more susceptible
to bias from unobserved confounding variables (which is also more
likely due to the unexplained variance in the mixed effect models
estimating the effect of biodiversity on productivity: ~50%; and
of productivity on biodiversity: ~30%). Specifically, for the linear

models, the estimated upper bound shifted towards positive for
the estimated effect of productivity on biodiversity, and towards
negative for the estimated effect of biodiversity on productivity
(Figure S5a,b), crossing the threshold at which originally significant
effects would become insignificant (as unobserved confounding ef-
fects explain away effects of biodiversity on productivity, or vice
versa). In contrast, for the two-way fixed effect models, the esti-
mated upper bounds were still neutral for effects of productivity on
biodiversity, and vice versa (Figure S5c,d). Hence, we conclude from
the analysis that the neutral effect of productivity on biodiversity,

and vice versa, is robust to a potential unobserved confounder.

4 | DISCUSSION

Causal effects between biodiversity and productivity are likely ob-
scured by their reciprocal relationships, potentially explaining the
high variability of relationships observed in (semi-)natural ecosys-
tems. Despite few attempts to account for their reciprocal nature,
disentangling cause from effect between biodiversity and produc-
tivity remains challenging. Here, we demonstrate a ‘novel’ approach
to resolve reciprocal relationships between biodiversity and pro-
ductivity using higher- resolution longitudinal data (i.e. surveys re-
peated across seasons, as well as across years, within the same sites),
which also allows us to control for a broader suite of confounding
variables than possible in commonly-used approaches (i.e. mixed-
effect models). We show that within managed central European
grasslands, effects of biodiversity on productivity, and productivity
on biodiversity are weak. We also demonstrate that estimates from
conventional statistical designs are less robust to bias from unob-
served confounding variables (see Figure S5), and thus likely fail to
isolate the effects of biodiversity on productivity, and vice versa.
In contrast, our two-way fixed effects models can also control for
unmeasured and unobserved confounding variables (see Figure S5),
contributing to their robustness. Indeed, the estimated effect of bio-
diversity on productivity using standard approaches was more than
two standard errors from our estimated effects from a design that
can control for a broader suite of confounding variables (Figure S3),
and the conclusion drawn would be qualitatively different. Further,
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tests assessing the sensitivity of estimated effects against bias from
unobserved confounding variables reveal that mixed-effect models
are susceptible to bias, while two-way fixed effects are robust.

Previous evidence suggests that the effect of biodiversity on
productivity in managed grasslands are negative (Grace et al., 2007,
Le Provost et al., 2023; Socher et al., 2012), which has been implied
to result from strong negative effects of productivity on biodiver-
sity (and by our naive model in Figure 3). However, we do not find
evidence for a strong negative effect of productivity on biodiversity
in any of our main models. One reason that our results differ from
prior studies is that they rely on observations from single points
in time, making it challenging to account for potential bias due to
reciprocal relationships (Wooldridge, 2012). Similarly, using mixed-
effect models based on higher-resolution longitudinal data, enabling
to resolve the reciprocal relationships between biodiversity and
productivity, we would conclude that plant biodiversity increased
productivity, while increases of standing biomass caused plant bio-
diversity to decline. However, when applying approaches that can
control for a broader suite of confounding variables (Dee et al., 2023;
Halaby, 2004; Wooldridge, 2010), the observed strong negative ef-
fect of productivity on biodiversity disappears. The weak effects
of productivity on biodiversity observed in our study contrast the
strong negative effects found in earlier studies (Grace et al., 2007,
2016; Socher et al., 2012), which are suggested to arise from neg-
ative effects of light competition (Hautier et al., 2009). However,
frequent biomass removal (by mowing and grazing) in our studied
grasslands likely compensated for some of these negative effects
by alleviating light competition (Andraczek, Weigelt, Hinderling,
et al., 2023; Eskelinen et al., 2022; Lamb, 2008). These results indi-
cate that the effects of productivity on biodiversity strongly depend
on management intensity and likely differ in less intensively man-
aged grasslands.

In contrast to many prior experimental studies, we find no ev-
idence for a positive effect of biodiversity on productivity. Classic
grassland experiments often show that the positive relationship of
biodiversity on productivity flattens at a relatively low number of
species (~10 species) (Tilman et al., 2014), suggesting a saturation
of resource use (although observed relationships are often weaker
in more ‘real-world’ experiments, see Lisner et al., 2023; Sasaki
et al., 2017; Smith & Knapp, 2003). By exceeding the number of spe-
cies in many grassland experiments, previous studies suggested that
the relevant functional niche space in managed grasslands is largely
saturated (Freitag et al., 2023; Ladouceur et al., 2020). However, we
also found that the effects of biodiversity on productivity tended to
be negative (albeit non-significant), likely due to shifts in the plant
community composition associated with increases in land-use in-
tensity (Figure S2) (Allan et al., 2015; Boeddinghaus et al., 2019).
Specifically, communities with a high biodiversity were dominated
by species with low SLA and these were typically slow-growing and
small species (Hautier et al., 2009; Vojtech et al., 2007), so that neg-
ative effects of biodiversity on productivity weakened when the
CWM of SLA (i.e. mechanisms of the effect of biodiversity on pro-
ductivity) was accounted for—corroborating our reasoning.

By using higher-resolution seasonal data, we were able to ex-
plore different temporal dynamics between biodiversity and pro-
ductivity. We found that estimated effects between biodiversity and
productivity tended to differ (albeit weakly) when considering sea-
sonal (within a growing season) or yearly (between years) dynamics
effects. Moreover, the typical approach (i.e. mixed-effect models) is
highly sensitive to temporal dynamic effects (see Figure S3), and the
results for the effect on productivity on biodiversity change in sign,
from negative to positive (-0.16 to 0.07), when only using data from
one point in time and ignoring the temporal dependence of effects.
Specifically, this flip in sign of the effect of productivity on biodiver-
sity indicates that conventional models are likely statistically biased
due to unobserved time-varying confounding variables (e.g. unmea-
sured weather shocks). Previous studies suggest that relationships
between biodiversity can be temporally dynamic across years, but
less is known for higher resolutions (i.e. within years) of temporal dy-
namics (Dullinger et al., 2013; Faust et al., 2012; Reich et al., 2012).
Higher resolution longitudinal data could allow crucial insights into
the mechanistic understanding of relationships between biodiver-
sity and productivity, such as delayed effects of plant-soil feedbacks
(Thakur et al., 2021), or temporal partitioning of resources (Barry
et al., 2018) on productivity. However, the relatively limited time
series in our study likely prevented to observe stronger temporal
dynamics between biodiversity and productivity, explaining the
general weak observed differences between seasonal and yearly
dynamics. Nevertheless, our findings emphasize the importance of
data collected at multiple points in time (e.g. in different seasons
and years) to understand the temporal ordering when attempting to
estimate causal effects.

Our results indicate a strong correlation of land-use intensity
(LUI) and both biodiversity and productivity, with LUl being posi-
tively associated with productivity, and negatively with biodiver-
sity. These findings highlight the importance of LUl as one of the
main drivers of biodiversity and productivity in managed grasslands
(Grace et al., 2007; Socher et al., 2012), likely strongly modifying the
relationships between biodiversity and productivity (Andraczek,
Weigelt, Cristébal, et al., 2023). Thus, we did observe a significant
negative interactive effect of LUl and productivity on biodiversity
when considering yearly dynamic effects (Table S5), potentially due
to increased fertilization at higher LUl which amplifies the negative
effects of productivity on biodiversity (Band et al., 2022). Overall, the
correlation of LUI with biodiversity and productivity was strongest
with the seasonal dynamic effects between biodiversity and produc-
tivity, likely because of yearly variability in LUl within the same field.
Interestingly, we found that the negative correlation of LUI and bio-
diversity exceeded the effects of productivity on biodiversity, sug-
gesting a weaker importance of aboveground productivity-mediated
effects (e.g. due to light competition) of LUl on biodiversity, hinting
towards alternative pathways (e.g. changes in belowground compe-
tition or species pool size; Harpole et al., 2016, Smith et al., 2000).

The use of directed acyclic graphs (Arif & MacNeil, 2022) and
two-way fixed effect designs, coupled with sensitivity tests (see
Section 2), enable more robust and transparent causal inference
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compared to conventional statistical designs by controlling for
unobserved confounding variables and increasing transparency
in assumptions required for a causal interpretation of estimates.
However, we acknowledge that there are still uncertainties and
assumptions being made for causal inference. In addition, while
two-way fixed effects designs help to eliminate different sources
of bias from confounding factors, one drawback is that they also
require a larger sample size to obtain precise estimated effects
(as seen when comparing the size of standard errors in the mixed
versus fixed effects models in Figure S3). Estimating the effects
of biodiversity on productivity, and vice versa, from these meth-
ods also relies on changes in biodiversity and productivity over
time—for example, due to changes in land-use intensity, herbivory
pressure, or other natural or human-mediated processes—as the
variation used to estimate effects. Although the observed short-
term changes in biodiversity and productivity in our grasslands
were relatively large (Figure 5), longer time series would be ben-
eficial to improve the statistical power while capturing a broader
range of changes in biodiversity, productivity and their drivers (e.g.
climatic extremes). Nevertheless, our study highlights that more
fine-scale time series can be crucial to unravel the cause from ef-
fect between biodiversity and productivity. Furthermore, changes
in species richness could also have been attributed to phenolog-
ical changes, which would not represent productivity changes in
response to species gains of new species or species loss. Although
we cannot fully tease apart changes due to phenology and other
drivers (e.g. changes in land-use intensity), we observed that
between 2020 and 2021, different species were gained or lost
(Figure S1), and hence, we assume that species changes between
seasons and years were not predominantly attributed to seasonal

patterns of species phenology.

5 | CONCLUSIONS

Understanding the biodiversity-productivity relationships is a major
challenge in ecology. By using higher-resolution longitudinal data
allowing to resolve reciprocal relationships, we found that within
managed grasslands, the relationships between biodiversity and
productivity are weak although showing a tendency to be temporally
dynamic. Hence, higher-resolution longitudinal data is a promising
tool to resolve reciprocal relationships (Dee et al., 2023), also allow-
ing to explore the temporal dynamics of biodiversity-productivity
relationships (Lep$, 2014; van Ruijven & Berendse, 2005). As we
highlight, additional future work using higher-resolution longitudinal
data (higher number of observations per year) could further enable
crucial insights into the temporal precedence of the effects of bio-
diversity on productivity, or vice versa. Furthermore, future stud-
ies should also identify the underlying mechanisms explaining their
temporal dynamics. Thus, experiments manipulating both biodiver-
sity and productivity under more ‘real world’ conditions and at larger
temporal and spatial scales (see, e.g. Freitag et al., 2023; Pichon
et al., 2023), could help to elucidate our mechanistic understanding
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about the temporal ordering of cause and effect between biodiver-
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sity and productivity.

When done rigorously, by carefully assessing the core assump-
tions that allow for inferring causality from experimental data (see
Kimmel et al., 2021); these studies can also help assess the valid-
ity of our causal assumptions. Ultimately, our results show that the
choice of analytical methods can strongly determine the observed
relationships between diversity and productivity, casting doubt over
the true nature of these relationships in a range of environments.
Meanwhile, they also point a way forward by showing that advanc-
ing our understanding of the temporal dependency of causal rela-
tionships between biodiversity and productivity is necessary for us
to resolve the long-running debate about the nature of biodiversity-

productivity relationships.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the
Supporting Information section at the end of this article.

Figure S1: (a) Species loss and (b) species gains in 2020 and 2021,
averaged over all plots and all three regions.

Figure S2: Pearson correlation between Species richness, community
weighted mean of specific leaf area (CWM SLA), and lagged LUI for
spring and summer averaged across 2020 and 2021 and for each
region (Swabian Alb, Schorfheide-Chorin, Hainich-Duin).

Figure S3: Comparison of estimated effects using mixed effect
models and two-way fixed effect models with different assumptions
of temporal delays between cause and effect: either assuming
temporal dynamic effects (for comparability, here only estimates
from seasonal lag models shown) or no temporal dynamic effects
(using data collected in the same season i.e., summer) for models
estimating the effect of (a) species richness on productivity and (b)
productivity on species richness.

Figure S4: Directed acyclic graph (DAG) showing the hypothesized
causal relationships between biodiversity and productivity, and
confounding variables.

Figure S5: Sensitivity analysis.

Table S1: Linear mixed effect model showing the effect of species
richness in spring on productivity and standing biomass in spring on
species richness in summer, including all three regions (Swabian Alb,
Schorfheide-Chorin, Hainich-Diin) and both years 2020 and 2021.
Table S2: Effects of (1) species richness in spring on productivity with
seasonal lag and LUI as additional covariate, (2) with SLA in spring
instead of LUI, and (3) including an interaction between LUl and
species richness in spring, using two-way fixed effect estimation.
Table S3: Effects of (1) standing biomass in spring on species
richness in summer with seasonal lag and LUl as additional covariate,
(2) with SLA in spring instead of LUI, and (3) including an interaction
between LUI and standing biomass in spring, using two-way fixed
effect estimation.

Table S4: Effects of (1) species richness in summer of 2021 on
productivity of 2021 with yearly lag and LUl of 2020 as additional
covariate, (2) with SLA in summer of 2020 instead of LUI in 2020,
and (3) including an interaction between LUl in 2020 and species
richness in summer 2020, using two-way fixed effect estimation.
Table S5: Effects of (1) productivity of 2020 on species richness
in summer of 2021 with yearly lag and LUl of 2020 as additional
covariate, (2) with SLA in summer of 2020 instead of LUl of 2020, and
(3) including an interaction between LUl in 2020 and productivity in
summer 2020, using two-way fixed effect estimation.

Table S6: Column (1) shows the results of the main models estimating
causal effects of species richness in spring on productivity in summer
with seasonal lag.
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Table S7: Column (1) shows the results of the main models estimating
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causal effects of standing biomass in spring on species richness in
summer with seasonal lag.

Table S8: Column (1) shows the results of the main models estimating
causal effects of species richness in summer of 2020 on productivity
of 2021 with yearly lag. Shown are robustness tests, when (2)
controlling for evenness, (3) using effective Shannon Diversity
instead of species richness, (4) clustering standard errors on site
level, (5) clustering standard errors on plot level, and (6) assuming
non-linear (quadratic) richness effects.

Table S9: Column (1) shows the results of the main models estimating
causal effects of productivity of 2020 on species richness in summer
of 2021 with yearly lag. Shown are robustness tests, when (2)
clustering standard errors on plot level, and (3) assuming non-linear
(quadratic) biomass effects.

Table S10: Descriptive information about the averages and ranges
(in brackets) of species richness in spring and summer, productivity
in summer and land-use components (fertilization, mowing and
grazing) collected in each region (Swabian Alb, Schorfheide-Chorin,
Hainich-Dun) for both 2020 and 2021.

Table S$11: Linear mixed effect model showing the effect of Shannon
diversity in spring on productivity and standing biomass in spring on
Shannon Diversity in summer, including all three regions (Swabian Alb,
Schorfheide-Chorin, Hainich-Diin) and both years 2020 and 2021.
Table S12: Linear mixed effect model showing the effect of species
richness in spring on productivity when controlling for Evenness,
including all three regions (Swabian Alb, Schorfheide-Chorin,
Hainich-Dun) and both years 2020 and 2021.

Table S13: Linear mixed effect model showing the effect of species
richness in summer on productivity in summer and standing biomass
in summer on species richness in summer, including all three regions
(Swabian Alb, Schorfheide-Chorin, Hainich-Diin) and both years
2020 and 2021.

Table S14: Effects of species richness in summer on productivity in
summer (omitting temporal dynamic effects) and LUI as additional
covariate using two-way fixed effect estimation.

Table S15: Effects of productivity in summer on species richness in
summer (omitting temporal dynamic effects) and LUI as additional
covariate using two-way fixed effect estimation.

Table S16: Information about confounding variables which are
controlled for in the linear mixed effect models to test the effects of
biodiversity on productivity, or productivity on biodiversity.
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