

Metabolomic and morphological trait diversity display contrasting patterns in temperate forest tree communities

Jonathan J. Henn ^{1,2} | Brian E. Sedio ^{3,4} | Christopher P. Catano ^{5,6} |
 Emily Dewald-Wang ^{5,7} | Dilys Vela Díaz ^{5,8} | James A. Lutz ⁹ |
 Sean M. McMahon ¹⁰ | Geoffrey Parker ¹⁰ | Jonathan A. Myers ⁵ |
 Marko J. Spasojevic ¹

¹Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, California, USA

²Institute of Alpine and Arctic Research, University of Colorado Boulder, Boulder, Colorado, USA

³Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA

⁴Smithsonian Tropical Research Institute, Panama, Panama

⁵Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA

⁶Department of Botany & Plant Sciences, University of California Riverside, Riverside, California, USA

⁷Department of Integrative Biology, University of California, Berkeley, Berkeley, California, USA

⁸Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, USA

⁹Wildland Resources Department, Utah State University, Logan, Utah, USA

¹⁰Smithsonian Environmental Research Center, Edgewater, Maryland, USA

Correspondence

Jonathan J. Henn

Email: henn.jonathan@gmail.com

Funding information

Smithsonian Forest Global Earth Observatory (ForestGEO); University of Washington; Washington University in St. Louis; Center for Tropical Forest Science of the Smithsonian Tropical Research Institute; Utah State University; International Center for Advanced Renewable Energy and Sustainability (I-CARES); Division of Environmental Biology at the National Science Foundation, Grant/Award Numbers: 1557094, 2240430, 2240431; National Science Foundation; Tyson Research Center

Handling Editor: Julia A. Jones

Abstract

Studies of community assembly often explore the role of niche selection in limiting the diversity of functional traits (underdispersion) or increasing the diversity of functional traits (overdispersion) within local communities. While these patterns have primarily been explored with morphological functional traits related to environmental tolerances and resource acquisition, plant metabolomics may provide an additional functional dimension of community assembly to expand our understanding of how niche selection changes along environmental gradients. Here, we examine how the functional diversity of leaf secondary metabolites and traditional morphological plant traits changes along local environmental gradients in three temperate forest ecosystems across North America. Specifically, we asked whether co-occurring tree species exhibit local-scale over- or underdispersion of metabolomic and morphological traits, and whether differences in trait dispersion among local communities are associated with environmental gradients of soil resources and topography. Across tree species, we find that most metabolomic traits are not correlated with morphological traits, adding a unique dimension to functional trait space. Within forest plots, metabolomic traits tended to be overdispersed

while morphological traits tended to be underdispersed. Additionally, local environmental gradients had site-specific effects on metabolomic and morphological trait dispersion patterns. Taken together, these results show that different suites of traits can result in contrasting patterns of functional diversity along environmental gradients and suggest that multiple community assembly mechanisms operate simultaneously to structure functional diversity in temperate forest ecosystems.

KEY WORDS

biotic interactions, chemical ecology, environmental gradients, ForestGEO, functional traits, metabolomics, plant–enemy interactions, species sorting, temperate forest

INTRODUCTION

A long-standing goal in ecology is to determine the relative roles of different community assembly processes in structuring ecological communities (Chase, 2003; Pavoine & Bonsall, 2011; Weiher et al., 2011). Over the last few decades, there has been a surge of interest in exploring assembly processes using patterns of functional trait diversity (Mason et al., 2013; Purschke et al., 2013; Spasojevic & Suding, 2012). Although limited by observational inference, functional trait approaches have proven effective for helping to identify multiple processes structuring communities, especially in ecosystems where ecological processes operate over longer timescales and organisms have long lifespans (i.e., forests, tundra) (Coyle et al., 2014; Lasky et al., 2015; Muscarella et al., 2016; Schrader et al., 2021). In plant ecology, classic approaches viewed trait-community assembly as a balance between niche selection arising from environmental filtering and competition (Weiher & Keddy, 1995), where environmental filtering results in communities of ecologically similar species with a narrow range of functional strategies adapted to the environmental conditions or limitations (underdispersion; Kraft et al., 2015), while competition via limiting similarity results in communities with a wider range of functional strategies, thus minimizing overlap in strategies (overdispersion; MacArthur & Levins, 1967; Weiher & Keddy, 1995). While initially promising, advances to trait-based community assembly highlighted that multiple processes of niche selection can result in similar patterns of functional diversity within communities (D'Andrea & Ostling, 2016; Mayfield & Levine, 2010; Spasojevic & Suding, 2012). For example, stabilizing niche differences and equalizing fitness processes can both result in a narrow range of functional strategies or evenly spaced clumps of species along trait axes because interactions can result in nearly random outcomes for very similar species that do not favor a single species (D'Andrea et al., 2019; Holt, 2006;

Scheffer & Van Nes, 2006). In addition, competition and facilitation can both result in divergent functional strategies in local communities by allowing the coexistence of species with very different functional strategies (Danet et al., 2018). Despite these limitations, many trait-based studies have still sought to infer pattern from process, but few studies have successfully developed robust trait-based predictions for the myriad of biotic interactions that structure plant communities (Albrecht et al., 2018; Larios et al., 2017).

While biotic drivers of niche selection including species interactions within and across trophic levels have been demonstrated to influence plant community assembly (Espelta et al., 2020; Kokkoris et al., 1999; Loiola et al., 2012; Weiher et al., 1998), the inferences drawn about community assembly processes from patterns of functional trait diversity have primarily focused on morphological traits (Bhaskar et al., 2014; Spasojevic & Suding, 2012). These include traits related to carbon economy and resource acquisition (specific leaf area, leaf dry matter content, leaf nitrogen), plant stature (height, wood density), and dispersal (seed mass) (Chaturvedi et al., 2024; Díaz et al., 2016; Westoby, 1998). For example, the global analysis of plant form and function (Díaz et al., 2016) drawn from the TRY plant trait database (Kattge et al., 2020) includes no traits strongly involved in multitrophic interactions, like herbivory and plant–pathogen interactions, likely due to fewer data on these traits or because current databases are not structured for complex and diverse data like metabolomics. Because of this under-representation of traits directly related to multitrophic interactions, most trait-based assembly frameworks have largely remained focused on niche selection associated with resource competition and environmental tolerances. However, herbivores and pathogens are important forces in structuring plant communities (Becerra, 2007; Bever et al., 2015; Janzen, 1970; Terborgh, 2012).

Interactions between plants and specialist insect herbivores are thought to have generated high diversity in

species richness, prevalence of coniferous species, climate and soil resource gradients. Specifically, we ask how do patterns of metabolomic and morphological trait functional diversity differ at the local community scale? We expect that tree communities will tend to be overdispersed for leaf secondary metabolites related to defense against enemies, signaling the potential importance of specialized natural enemies in structuring tree communities (Endara et al., 2022), but underdispersed for morphological traits, potentially indicative of species sorting among habitats that differ in environmental conditions (Ding et al., 2019; Menezes et al., 2020; Muscarella et al., 2016). We also ask how do these functional diversity patterns change along local-scale environmental gradients of soil resources and topography? We expect that differences in trait dispersion among local communities will be associated with changes in resource availability along local topographic and edaphic (topo-edaphic) gradients where more resource-rich conditions will be associated with more overdispersion or less underdispersion in both morphological and metabolomic traits potentially due to reduced resource limitation and stronger species interactions (Chapman & McEwan, 2018; de la Riva et al., 2018; Ding et al., 2019; Muscarella et al., 2016).

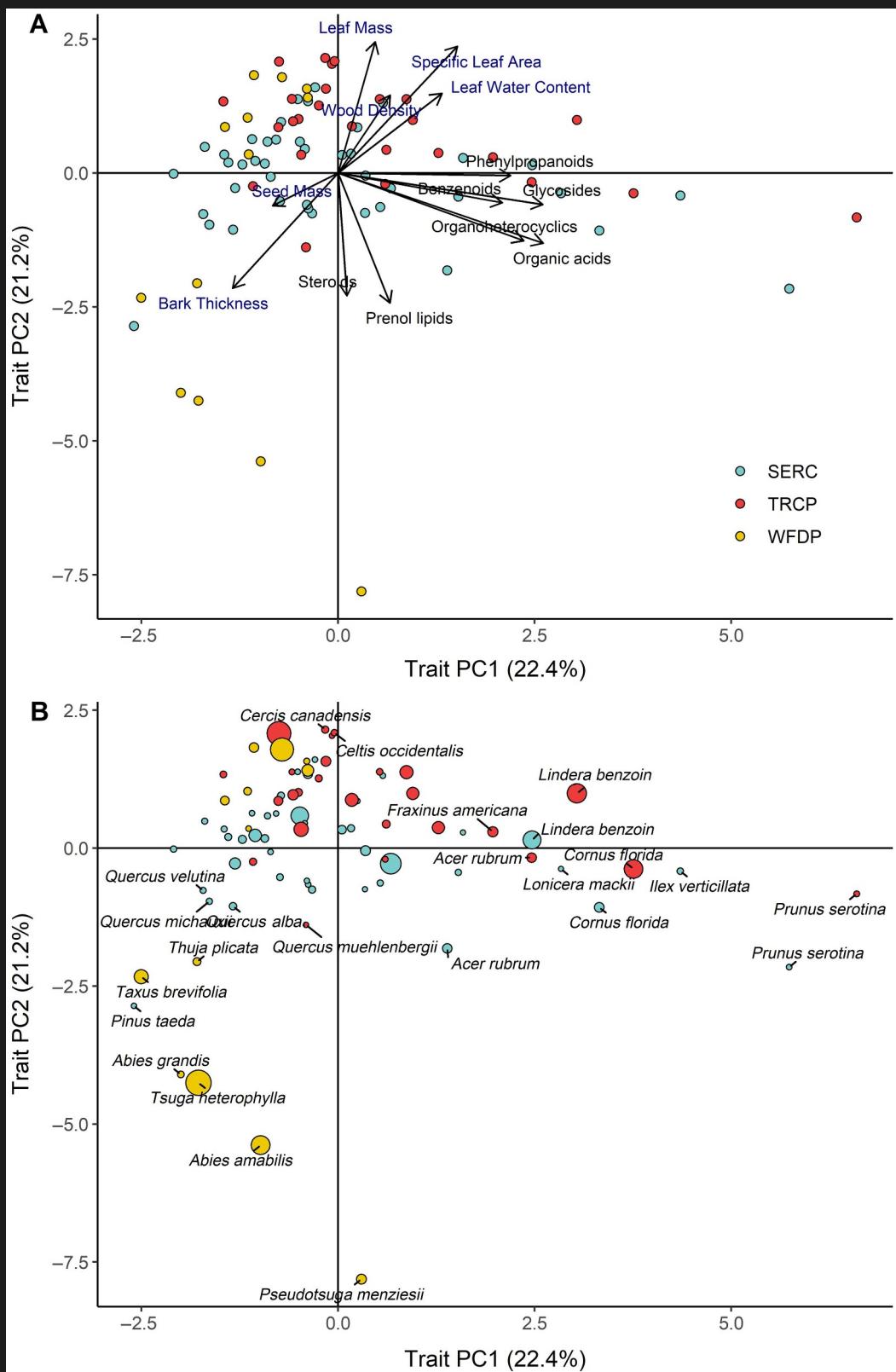
MATERIALS AND METHODS

Study sites

Our three study sites (Table 1) are part of a global network of forest-ecology plots coordinated through the Smithsonian Forest Global Earth Observatory (ForestGEO; N = 640; Anderson-Teixeira et al. 2015). These sites are a subset of those in Sedio et al. (2021) and were chosen (1) based on the availability of fine-scale environmental (soils) data and morphological trait data collected within each plot using standardized methods, and (2) to span a wide range of tree species richness and climate conditions in North America. To quantify local environmental gradients within each forest plot, we measured 14 soil variables and 5 topographic

Wind River Forest Dynamics Plot (WFDP) is a 25.6 ha (800 × 320 m) forest-dynamics plot containing 22 woody species >1 cm dbh and located in a Douglas fir-western hemlock dominated coniferous forest in southwestern Washington (USA; 45.8197 N, −121.9558 W; mean annual temperature 16.8°C; mean annual precipitation 2493 mm). Additional information about the WFDP plot is available in Lutz et al. (2013). The Tyson Research Center Plot (TRCP) is a 20-ha (480 × 420 m) forest-dynamics plot containing 42 woody species >1 cm dbh and located in an oak-hickory-dominated deciduous forest on the northeastern edge of the Missouri Ozarks (USA; 38.5178 N, −90.5575 W; mean annual temperature 13.5°C; mean annual precipitation 957 mm). Additional information about the TRCP is available in Spasojevic, Yablon, et al. (2014) and LaManna et al. (2016). The Smithsonian Environmental Research Center (SERC) plot is a 16-ha (400 × 400 m) forest-dynamics plot containing 85 woody species >1 cm dbh (42 used in this study) and located in a tulip poplar-beech-oak-sycamore deciduous forest in Maryland (USA; 38.8891 N, −121.9958 W; mean annual temperature 14.1°C; mean annual precipitation 1128 mm). Additional information about SERC is available in McMahon and Parker (2015). For this study, we used WFDP tree-census data from 2013, TRCP tree-census data from 2013, and SERC tree-census data from 2013 (McMahon & Parker, 2015). At all three sites, all free-standing stems of woody species greater than 1 cm dbh have been identified, tagged, measured, and mapped following CTFS-ForestGEO protocols (Condit, 1995). Each forest plot is subdivided into 20 × 20 m quadrats (WFDP: 50, TRCP: 50, SERC: 50). Each quadrat contains 10 stems of woody species >1 cm dbh. The mean number of stems per quadrat is 5.5 (SD = 1.3) for WFDP, 8.3 (SD = 2.4) for TRCP, and 7.7 (SD = 2.0) for SERC.

Environmental heterogeneity


TABLE 1 Characteristics of the three forest-dynamics plots.

Plot name	Lat	Lon	Forest type (dominant genera)	Plot size (ha)	No. species (no. with complete trait measures)	No. trees (percentage with complete trait measures)	Mean no. species/quadrat (SD)
Wind River (WFDP)	45.81	−121.95	Needle-leaf evergreen (fir-hemlock)	25.6	22 (13)	31,162 (99.6)	5.5 (1.3)
Tyson Research Center (TRCP)	38.51	−90.55	Broadleaf deciduous (oak-hickory)	20	42 (26)	31,800 (98.0)	8.3 (2.4)
Smithsonian Environmental Research Center (SERC)	38.88	−76.55	Broadleaf deciduous (tulip poplar, oak, beech, ash, sycamore, elm)	16	85 (42)	33,500 (97.7)	7.7 (2.0)

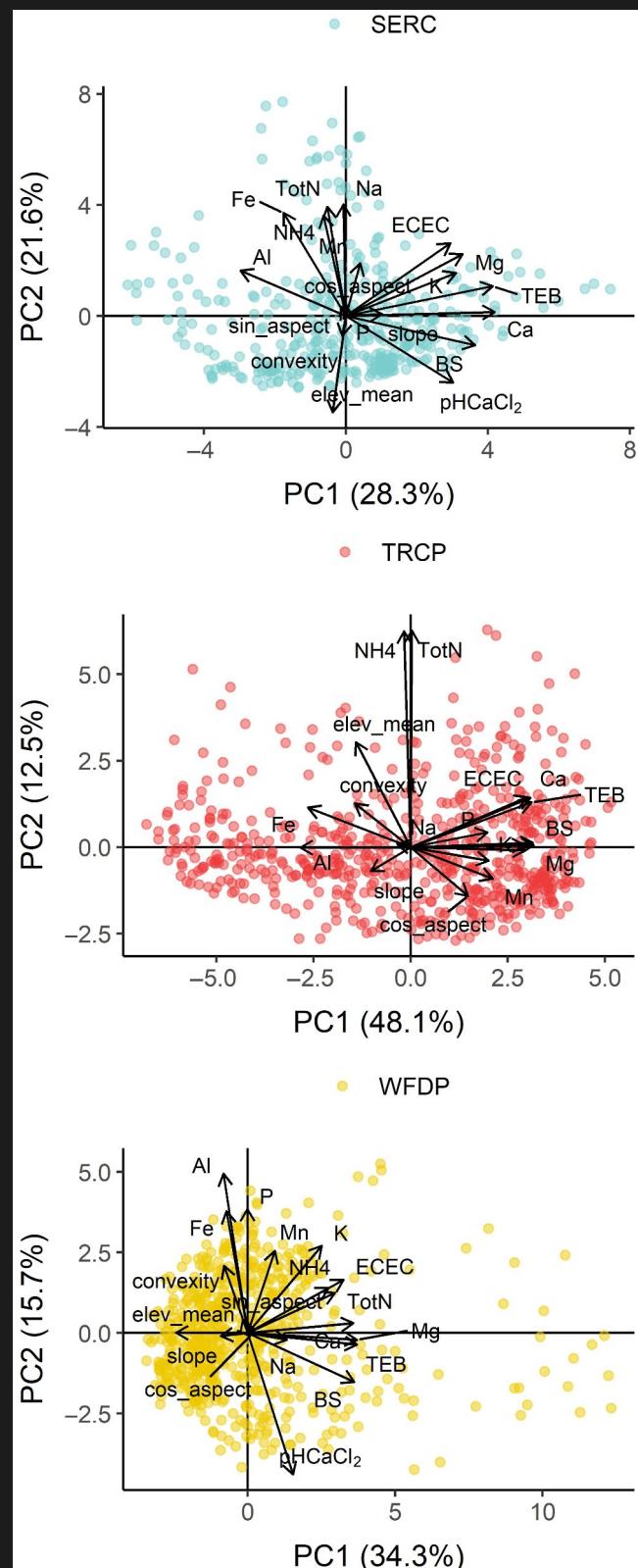
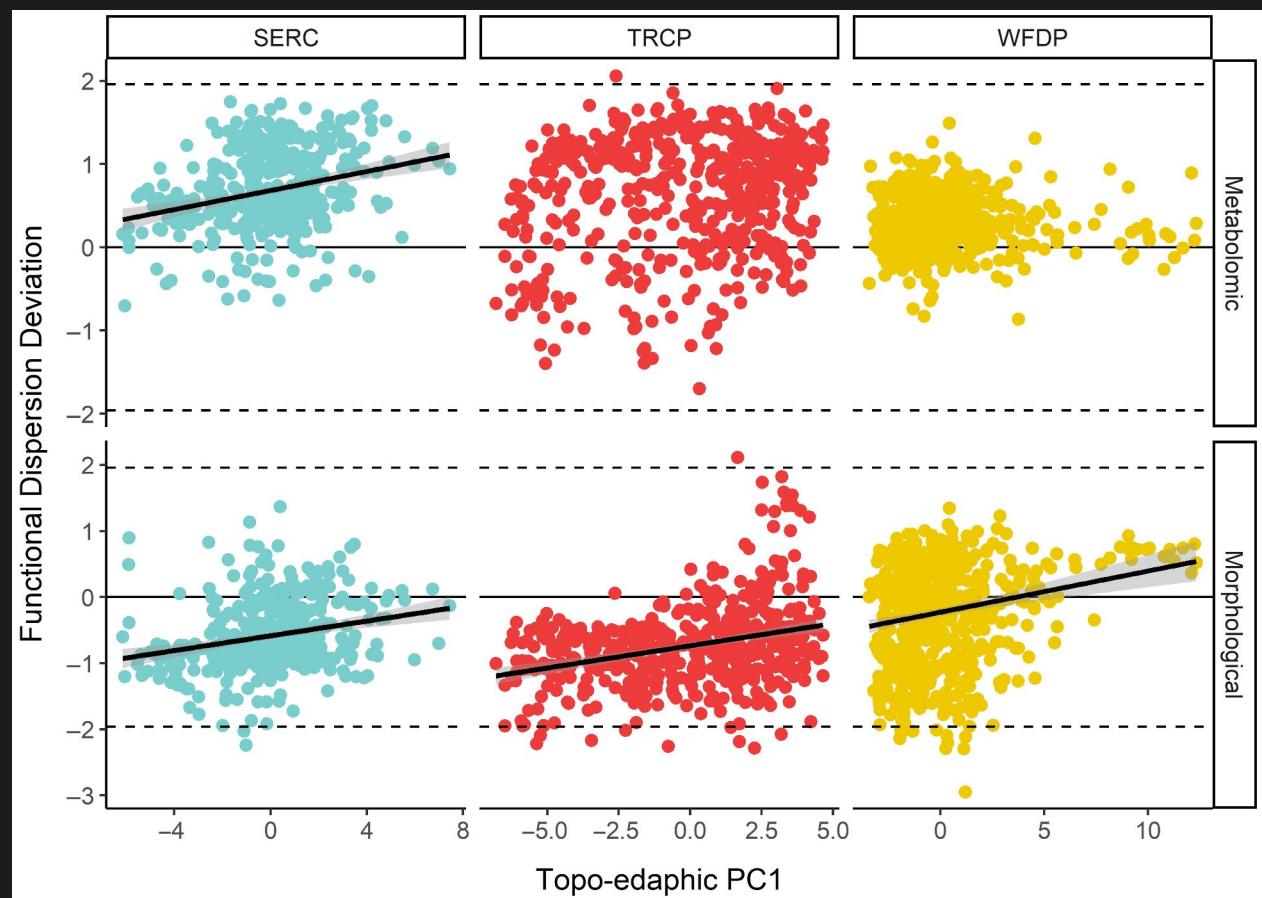


FIGURE 1 Species morphological and metabolomic traits separate them in multivariate functional space. Each point represents a species and the site where it is found is indicated by point color. Point positions are the first two axis scores from a principal components analysis (PCA) including all traits. In (A), the text color of trait labels indicates whether traits are metabolomic (dark blue) or morphological (black). In (B), the size of the point is proportional to the relative abundance of that species in the forest plot and labels indicate species names for some species. Percentage numbers on each axis represent the proportion of the total variation related to each axis. All trait values were scaled and centered prior to analysis. See Table 1 for identification of site abbreviations.


morphological and metabolomic traits revealed patterns that would have been overlooked by a focus on only traditional morphological functional traits. Specifically, we found that metabolomic traits are largely orthogonal

to other commonly measured morphological traits. Greater than expected variability in community-weighted metabolomic trait values point towards a potential scenario where biotic pressure from species-specific natural enemies drives the diversification of chemical defense production among co-occurring tree species, while lower than expected variability in community-weighted morphological trait values suggests the importance of environmental filtering in physiological structures. There are, however, challenges to these interpretations, especially as chemical compounds associated with defense can also be produced for other functions, making it important for future research to explicitly measure natural enemy interactions and communities to confirm their role in forest tree community assembly.

In multivariate trait space, the morphological and metabolomic traits largely occupied different axes of variation, suggesting that they provide different information about functional trait strategies and their drivers (Walker et al. 2023). This is consistent with the results from Sedio et al. (2021), who found similar patterns for the same species but for a different subset of sites and chemical compounds, as well as Kergunteuil et al. (2018) who found that morphological traits varied orthogonally with secondary metabolites in alpine plants. Importantly, in our study and others, not all metabolomic traits are completely orthogonal. For example, in studies of intra-specific variation or variation across a few closely related species, Izhaki et al. (2002) and Labarrere et al. (2019) found that metabolomic and morphological traits were correlated, which could reflect plant defense syndromes that involve both morphological and metabolomic traits (Agrawal & Fishbein, 2006). In our study, a few metabolomic classes such as steroids and prenolipids/terpenoids aligned more closely with the morphological traits. Orthogonal variation between metabolomic and morphological traits could be due to the relatively weak

FIGURE 2 Topographical and edaphic characteristics covary differently between sites. Each site has a different principal components analysis (PCA) to capture differences in the most important drivers of environmental gradients between sites. Each point represents a quadrat at a given site (number of quadrats = 399 at SERC, 506 at TRCP, and 640 at WFDP) and colors represent sites. The numbers on each axis represent the percentage of the total variation related to each axis. AI, aluminum; BS, base saturation; Ca, calcium; cos_aspect, cos(aspect); ECEC, effective cation exchange capacity; elev_mean, mean elevation; Fe, iron; Mg, magnesium; Mn, manganese; Na, sodium; NH4, ammonium; P, phosphorus; pHCaCl₂ pH of calcium chloride; sin_aspect, sin(aspect); TEB, total exchangeable bases; TotN, total nitrogen. See Table 1 for identification of site abbreviations.

FIGURE 3 Standardized effect size of functional dispersion (FDis) deviations from null expectations at three forest sites for metabolomic and morphological suites of traits that vary along the main topographical and edaphic (topo-edaphic) gradient at each site (PC1, for more information on the principal components, see Figure 2; Appendix S1: Table S2). Each point represents a quadrat (number of quadrats = 399 at SERC, 506 at TRCP, and 640 at WFDP) and each color represents a site. Black lines indicate linear model fits for the generalized least squares relationship between the SES FDis deviation and PC1. Dashed lines indicate significance thresholds where any points falling beyond the dashed line were significantly different from null expectations, with $p < 0.05$. Each panel includes text that indicates the proportion of quadrats that were overdispersed or underdispersed and the average value of all the quadrat deviation values. See Table 1 for identification of site abbreviations.

TABLE 2 Slope estimates for change in functional dispersion deviations along the first two topo-edaphic principal component (PC) axes.

Site	Metabolomic traits						Morphological traits					
	PC1			PC2			PC1			PC2		
	Est.	SE	p	Est.	SE	p	Est.	SE	p	Est.	SE	p
SERC	0.03	0.02	0.05	-0.02	0.02	0.44	0.05	0.02	0.008	-0.01	0.02	0.56
TRCP	0.02	0.02	0.44	-0.05	0.04	0.18	0.06	0.02	<0.001	-0.04	0.03	0.2
WFDP	-0.007	0.008	0.41	0.007	0.01	0.50	0.07	0.02	0.006	-0.08	0.03	0.003

Note: Values reported are the slope estimates (Est.) with SEs and p values testing whether the slope is different from zero. See Table 1 for identification of site abbreviations.

phylogenetic signal that is often detected in metabolomes while some morphological traits are more phylogenetically conserved (Sedio et al., 2021; Westbrook et al., 2011). The fact that many metabolomic traits vary

orthogonally to morphological traits suggests that these two classes of traits can generate independent patterns of community-level functional diversity. Further, the morphological traits collected here are not generally

Brian E. Sedio led metabolomic trait data collection and Marko J. Spasojevic led soils and morphological trait data collection with the help of Christopher P. Catano, Emily Dewald-Wang, Dilys Vela Díaz, and Jonathan A. Myers. Jonathan J. Henn led data analysis and writing. All authors contributed critically to the drafts and gave final approval for publication.

ACKNOWLEDGMENTS

We thank Kendal Becker, Jack Dwenger, Dev Harrington, Sean Jeronimo, Tania Romero, Jessica Shue, Rick Swing, and Maranda Walton for assistance with field and laboratory work. We thank Rafael D'Andrea for a constructive and helpful review. We thank Claire Baldeck and James Dalling for assistance with soil-sampling protocols and for kriging soils data. Funding for the Tyson Research Center Forest Dynamics Plot was provided by the International Center for Advanced Renewable Energy and Sustainability (I-CARES) at Washington University in St. Louis, the Smithsonian Forest Global Earth Observatory (ForestGEO), and Tyson Research Center. We thank the Tyson Research Center staff for providing logistical support. The Wind River Forest Dynamics Plot is a collaborative project of Utah State University, the University of Montana, the University of Washington, and Washington State University. Funding was provided by the Center for Tropical Forest Science of the Smithsonian Tropical Research Institute, Utah State University, and the University of Washington. We acknowledge the Gifford Pinchot National Forest and the Wind River Field Station for providing logistical support, and the students, volunteers, and staff individually listed at <http://www.wfdp.org> for data collection. Financial support for this study was also provided by grants from the ForestGEO Grants Program (to Marko J. Spasojevic and Jonathan A. Myers), the Division of Environmental Biology at the National Science Foundation (DEB Award 1557094 to Jonathan A. Myers and Marko J. Spasojevic, DEB Award 2240431 to Jonathan A. Myers and James A. Lutz, DEB Award 2240430 to Brian E. Sedio and Jonathan A. Myers), and an Environmental Studies Grant for Student Research at Washington University in St. Louis (to Emily Dewald-Wang and Jonathan A. Myers).

CONFLICT OF INTEREST STATEMENT

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

All data and code (Henn, 2024) are available from Zenodo: <https://doi.org/10.5281/zenodo.14277911>.

ORCID

Jonathan J. Henn <https://orcid.org/0000-0003-1551-9238>

Brian E. Sedio <https://orcid.org/0000-0002-1723-9822>
Christopher P. Catano <https://orcid.org/0000-0002-4060-7291>
James A. Lutz <https://orcid.org/0000-0002-2560-0710>
Marko J. Spasojevic <https://orcid.org/0000-0003-1808-0048>

REFERENCES

Adams, J. M., Y. Zhang, M. Basri, and N. Shukor. 2009. "Do Tropical Forest Leaves Suffer More Insect Herbivory? A Comparison of Tropical Versus Temperate Herbivory, Estimated from Leaf Litter." *Ecological Research* 24:1381–92. <https://doi.org/10.1007/S11284-009-0623-4/FIGURES/5>

Agrawal, A. A., and M. Fishbein. 2006. "Plant Defense Syndromes." *Ecology* 87: 132–149. <https://doi.org/10.1890/0012-9658>.

Albrecht, J., A. Classen, M. G. R. Vollstadt, A. Mayr, N. P. Molle, D. Schellenberger Costa, H. I. Dulle, et al. 2018. "Plant and Animal Functional Diversity Drive Mutualistic Network Assembly across an Elevational Gradient." *Nature Communications* 9: 1–10. <https://doi.org/10.1038/s41467-018-05610-w>

Anderson-Teixeira, K. J., S. J. Davies, A. C. Bennett, E. B. Gonzalez-Akre, H. C. Muller-Landau, S. Joseph Wright, K. Abu Salim, et al. 2015. "CTFS-ForestGEO: A Worldwide Network Monitoring Forests in an Era of Global Change." *Global Change Biology* 21: 528–549. <https://doi.org/10.1111/GCB.12712>

Bal, T. L., A. J. Storer, M. F. Jurgensen, P. V. Doskey, and M. C. Amacher. 2015. "Nutrient Stress Predisposes and Contributes to Sugar Maple Dieback across its Northern Range: A Review." *Forestry: An International Journal of Forest Research* 88: 64–83. <https://doi.org/10.1093/FORESTRY/CPU051>

Barabas, G., R. D'Andrea, R. Rael, G. Meszna, and A. Ostling. 2013. "Emergent Neutrality or Hidden Niches?" *Oikos* 122: 1565–72. <https://doi.org/10.1111/J.1600-0706.2013.00298.X>

Becerra, J. X. 1997. "Insects on Plants: Macroevolutionary Chemical Trends in Host Use." *Science* 276:253–56. <https://doi.org/10.1126/SCIENCE.276.5310.253/ASSET/86B740E0-EEAD-404C-9835-9EAF82542370/ASSETS/GRAPHIC/SE1274927004.JPG>

Becerra, J. X. 2007. "The Impact of Herbivore-Plant Coevolution on Plant Community Structure." *Proceedings of the National Academy of Sciences of the United States of America* 104: 7483–88. <https://doi.org/10.1073/PNAS.0608253104>

Bever, J. D., S. A. Mangan, and H. M. Alexander. 2015. "Maintenance of Plant Species Diversity by Pathogens." *Annual Review of Ecology, Evolution, and Systematics* 46: 305–325. <https://doi.org/10.1146/ANNUREV-ECOLSYS-112414-054306>

Bhaskar, R., T. E. Dawson, and P. Balvanera. 2014. "Community Assembly and Functional Diversity along Succession Post-Management." *Functional Ecology* 28: 1256–65. <https://doi.org/10.1111/1365-2435.12257>

Botta-Dukat, Z. 2018. "Cautionary Note on Calculating Standardized Effect Size (SES) in Randomization Test." *Community Ecology* 19: 77–83. <https://doi.org/10.1556/168.2018.19.1.8>

Cadotte, M. W. 2007. "Concurrent Niche and Neutral Processes in the Competition Colonization Model of Species Coexistence." *Proceedings of the Royal Society B: Biological Sciences* 274: 2739–44. <https://doi.org/10.1098/RSPB.2007.0925>

Westbrook, J. W., K. Kitajima, J. G. Burleigh, W. J. Kress, D. L. Erickson, and S.J. Wright. 2011. "What Makes a Leaf Tough? Patterns of Correlated Evolution between Leaf Toughness Traits and Demographic Rates among 197 Shade-Tolerant Woody Species in a Neotropical Forest." *American Naturalist* 177: 800–811. https://doi.org/10.1086/659963/SUPPL_FILE/52142APB.PDF.

Westoby, M. 1998. "A Leaf-Height-Seed (LHS) Plant Ecology Strategy Scheme." *Plant and Soil* 199: 213–227. <https://doi.org/10.1023/A:1004327224729>.

Wetzel, W. C., and S.R. Whitehead. 2020. "The Many Dimensions of Phytochemical Diversity: Linking Theory to Practice." *Ecology Letters* 23: 16–32. <https://doi.org/10.1111/ELE.13422>.

Yuan, Z., A. Gazol, F. Lin, X. Wang, J. Ye, Y. Suo, S. Fang, J. Mellard, and Z. Hao. 2016. "Scale-Dependent Effect of Biotic Interactions and Environmental Conditions in Community Assembly: Insight from a Large Temperate Forest Plot." *Plant Ecology* 217: 1003–14. <https://doi.org/10.1007/S11258-016-0626-5/FIGURES/3>

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Henn, Jonathan J., Brian E. Sedio, Christopher P. Catano, Emily Dewald-Wang, Dilys Vela Díaz, James A. Lutz, Sean M. McMahon, Geoffrey Parker, Jonathan A. Myers, and Marko J. Spasojevic. 2024. "Metabolomic and Morphological Trait Diversity Display Contrasting Patterns in Temperate Forest Tree Communities." *Ecosphere* 15(12): e70137. <https://doi.org/10.1002/ecs2.70137>