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We present an expression for the spectral gap, opening up new possibilities for performing and accelerating
spectral calculations of quantum many-body systems. We develop and demonstrate one such possibility in the
context of tensor network simulations. Our approach requires only minor modifications of the widely used simple
update method and is computationally lightweight relative to other approaches. We validate it by computing
spectral gaps of the 2D and 3D transverse-field Ising models and find strong agreement with previously reported
perturbation theory results.
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I. INTRODUCTION

Understanding the behavior of quantum many-body sys-
tems in 2D and 3D lies at the heart of contemporary physics.
One of the key enigmas in this domain is the computation of
the spectral gap, i.e., the energy difference between the ground
state and the first excited state, as the spectral gap serves
as a key parameter characterizing the intrinsic properties of
various quantum phenomena, including superconductivity, su-
perfluidity, spin liquids [1], and quantum annealing [2].

Here, we introduce a numerical method designed to de-
termine the spectral gap in quantum systems. This approach
is computationally lightweight and seamlessly integrates with
widely used imaginary time propagators, enabling its broad
applicability across diverse quantum systems. The computa-
tional efficiency of the method positions it as a versatile tool
to unravel the essential characteristics of quantum systems.

To validate this numerical approach, we apply it to the
well-known 2D transverse-field Ising model. The obtained
results exhibit excellent agreement with existing analytical
solutions derived through perturbation theory, establishing
the reliability of the method. We then expand our calcula-
tions to encompass the 1D Haldane chain, as well as the 3D
transverse-field Ising model. This latter challenge was previ-
ously considered beyond the reach of existing computational
techniques, and as a consequence, estimates of the spectral
gap in 3D have, until now, been confined to series expansions
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[3,4]. We numerically benchmark the results of our method
against these results, showcasing the broad applicability and
computational prowess of this method in addressing intricate
quantum systems.

II. THEORETICAL APPROACH

A. Main theorem

We begin by stating the main analytical result.
Theorem 1. Let H be a self-adjoint Hamiltonian such that

its spectral decomposition reads

H =
N∑

n=0

En�n, (1)

where �n are orthogonal projectors, i.e., H�n = En�n,
�n�m = δmn�n, and E0 < E1 < E2 < · · · < EN are eigenen-
ergies. Also let

|φ(τ )〉 = N e−τH |φ(0)〉 = N
N∑

n=0

e−τEn�n |φ(0)〉 (2)

denote a state |φ(0)〉 propagated in imaginary time τ by
preserving the norm. Here, N is the normalization constant
ensuring that 〈φ(τ )|φ(τ )〉 = 1 for all τ .

For a self-adjoint observable O, if 〈φ(0)| �0O�1 |φ(0)〉 is
not a real number, i.e.,

〈φ(0)| �0O�1 |φ(0)〉 �= 〈φ(0)| �1O�0 |φ(0)〉 , (3)

then as τ → ∞,

ln
∣∣ 〈φ(τ )| [H,O] |φ(τ )〉 ∣∣ = −τ� + O(1),

� = E1 − E0. (4)

Furthermore, if an observable O is such that
〈φ(0)| �0O�1 |φ(0)〉 is real, but 〈φ(0)| �0O�2 |φ(0)〉 is
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nonreal, i.e.,

〈φ(0)| �0O�1 |φ(0)〉 = 〈φ(0)| �1O�0 |φ(0)〉 and

〈φ(0)| �0O�2 |φ(0)〉 �= 〈φ(0)| �2O�0 |φ(0)〉 , (5)

then as τ → ∞,

ln
∣∣ 〈φ(τ )| [H,O] |φ(τ )〉 ∣∣ = −τ (E2 − E0) + O(1). (6)

Proof. We begin

〈φ(0)| e−τH [H,O]e−τH |φ(0)〉

=
N∑

l,k=0

e−τ (El+Ek ) 〈φ(0)| �l (HO − OH )�k |φ(0)〉

=
N∑

l,k=0

e−τ (El+Ek )(El − Ek ) 〈φ(0)| �lO�k |φ(0)〉 . (7)

Under the condition (3), we get

〈φ(0)| e−τH [H,O]e−τH |φ(0)〉
= e−τ (E0+E1 )

[
(E0 − E1) 〈φ(0)| �0O�1 |φ(0)〉

+ (E1 − E0) 〈φ(0)| �1O�0 |φ(0)〉
]

+ O
(
e−τ (E0+E2 )

)

= (E1 − E0)e−τ (E0+E1 ) 〈φ(0)| �1O�0

− �0O�1 |φ(0)〉 [
1 + O

(
e−τ (E2−E1 )

)]
. (8)

Condition (3) also implies that the state |φ(0)〉 has a popula-
tion in the ground state, i.e.,

〈φ(0)| �1O�0 |φ(0)〉 �= 0 �⇒ �0 |φ(0)〉 �= |∅〉 �⇒
〈φ(0)| �0 |φ(0)〉 �= 0, (9)

where |∅〉 denotes the null vector. With this in mind, we can
estimate the normalization constant in Eq. (2) as

N 2 = [〈φ(0)| e−2τH |φ(0)〉]−1

= [
e−2τE0 〈φ(0)| �0 |φ(0)〉 + O

(
e−2τE1

)]−1

= e2τE0O(1), τ → ∞. (10)

Using Eqs. (8) and (10), we obtain

ln
∣∣ 〈φ(τ )| [H,O] |φ(τ )〉 ∣∣
= lnN 2 + ln

∣∣〈φ(0)| e−τH [H,O]e−τH |φ(0)〉∣∣
= 2τE0 + O(1) − τ (E0 + E1)

= −τ (E1 − E0) + O(1), (11)

thereby completing the proof of Eq. (4).
Under the condition (3), the leading term in expansion (7)

reads

〈φ(0)|e−τH [H,O]e−τH |φ(0)〉 = O(1)e−τ (E0+E2 ), (12)

whence Eq. (6) follows. �
We note that Theorem 1 is a modification of the theorem

in Ref. [5] and that previously, other works have targeted
the development of similar, albeit approximate, spectral gap

expressions (see, e.g., Refs. [6,7]). It has also been long rec-
ognized that the energies of the low lying excited states can
be extracted via the multi-exponential fitting of a correlation
function (see, e.g., Refs. [8, Sec.VII.C] and [9]). However,
such a fit is numerically unstable. Importantly, Eq. (4) does
not suffer from this drawback.

In the thermodynamic limit, quantum systems (including
the 2D and 3D transverse-field Ising models studied below)
often have a continuum spectrum in addition to discrete en-
ergies. Equation (4) is also applicable in such systems; E1

is either the first excited state, if the system has at least
two discrete energy levels, or the infimum of the continuous
spectrum, if there is only one bound state.

A practical application of Eq. (4) to estimate the spectral
gap requires a numerical scheme for imaginary time evolution
to calculate the ground state. There are numerous computa-
tional techniques that could be considered for this purpose,
e.g., tensor networks, quantum Monte Carlo [10], and even
quantum computing-based methods [11–16], and exploration
of each would constitute valuable future work.

Here, we specifically consider imaginary time evolution
within tensor networks. Tensor networks, as detailed in
[17–20], are an apt wave-function ansatz for capturing the
entanglement structure of ground states. This approach is par-
ticularly effective in 2D [21] and in 1D using time-evolving
block decimation [22].

For noncritical phenomena in 1D, the matrix product states
(MPS) ansatz [23], integral to the density matrix renormaliza-
tion group (DMRG) [24], is widely utilized. Its extension to
2D and 3D systems is achieved through projected entangled
pair states (PEPS) [18,21,25] and iPEPS—the infinite-size
limit of PEPS. We note that iPEPS have proven effectiveness
in capturing strong correlations in magnetic systems [26,27],
fermionic models [28,29], topological spin liquids [30], finite
temperature systems [31,32], time evolution [33], and excited
states [34].

Here, we apply the simple update method [21,35] for the
imaginary time evolution of iPEPS and observables calcu-
lations [36,37]. We calculate the spectral gap via Eq. (4)
by tracing an expectation value during the imaginary time
evolution.

B. Transverse-field Ising model in 2D and 3D

The Hamiltonian has the following form:

H = −J
∑
〈i j〉

σ z
i σ

z
j − g

∑
i

σ x
i , (13)

where i and j label sites on the square or cubic lattice, 〈i j〉
restricts summation over the nearest neighbor pairs, and σ x

i
and σ z

i are the conventional Pauli matrices acting on the site
i. We focus on the case of ferromagnetic coupling (J > 0). At
zero temperature the system can be in two different phases:
symmetry-broken ferromagnetic phase at small g/J and dis-
ordered paramagnetic phase at large g/J . In 2D, the phase
transition occurs at g/J = 3.04438(2) [38], while in 3D, the
estimates are less precise, g/J ≈ 5.29 [39]. We will use the
following parametrization: in the ferromagnetic phase, we set
J = 1 and measure the gap in units of J . In the paramagnetic
phase, we instead set g = 1.
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The excitations in the model have the following structure:
in the ferromagnetic phase, the vacuum is either all spins
are aligned either up or down. An excitation in this phase is
created by flipping the spin at a single site. In 2D, flipping
one spin creates four domain walls. As a result, in the case of
g = 0, the spectral gap is � = 8J . The series expansion up to
O(g20) for the spectral gap in the ferromagnetic phase in 2D
can be found in Ref. [40].

In the noninteracting case where J = 0, all spins are
aligned along the positive x direction in the ground state. The
elementary excitation corresponds to the spin flip on one site,
with the excitation energy � = 2g, or simply � = 2 due to
the chosen convention in the paramagnetic phase. The series
expansion up to O(J13) for the spectral gap in the paramag-
netic phase can be found in Refs. [41] and [3] in 2D and 3D,
respectively.

It is important to note that in both the ferromagnetic and
paramagnetic phases, the excitation can be obtained from the
ground state by applying the local operator σ

y
i , since this op-

erator reverses the magnetization along both the z and x axes.
More generally, the operator

∑
i σ

y
i is expected to exhibit a

nonzero overlap between the ground state and the first excited
state, regardless of the value of g/J . Furthermore, since σ

y
i

contains the purely imaginary matrix elements and we take
the real valued initial function |φ(0)〉, the operator O = ∑

i σ
y
i

satisfies the condition (3), thereby validating application of
Eq. (4) for the spectral gap.

C. Gapped topological system: 1D Haldane chain

The 1D Haldane model can be viewed as the one-
dimensional antiferromagnetic Heisenberg chain with spin
S = 1. The model Hamiltonian is

H =
∑
i


Si · 
Si+1. (14)

It was conjectured by Haldane that this system is in the
gapped phase [42,43]. This was later confirmed by exten-
sive numerical calculations [44–47] and also by the solution
of the Affleck–Kennedy–Lieb–Tasaki (AKLT) model [48],
which is in the same phase. Furthermore, the gapped phase is
nontrivial—this is the symmetry-protected topological order,
which is protected simultaneously by several symmetries [49].
In the tensor network calculations these topological proper-
ties of the model expose themselves as degeneracies in the
entanglement spectra [49], which we also observe in our cal-
culations.

For the AKLT model the structure of excitations is approx-
imately known, since these are determined by the spin triplets
on the lattice bonds. The excitations (for the AKLT model)
can be created by the operator O = ∑

i S
y
i S

z
i+1 (note that the

additional higher-energy excitations are also created, but they
vanish quickly in imaginary-time evolution). We employ the
same O for the gap extraction in the Haldane chain, since the
Haldane chain and AKLT models are continuously connected.

D. Spectral gap calculations via tensor networks

There are several different ways to calculate the gap
and excitation spectra with tensor networks. The easiest ap-
proach is to add a penalizing ground state projector to the

Hamiltonian and then re-run the ground-state calculation
[50,51]. This approach works well for 1D systems, where
the DMRG optimization can be efficiently employed. An-
other strategy is based on the tensor-network approach for the
excitation ansatz [52–57]. This approach allows to calculate
not only the gap and lowest excited state, but also the dis-
persion relation, certain two-particle bound states [58], the
scattering matrix [59], and topological excitations [55,60].
This approach can also be applied to 2D systems on cylin-
ders [61], helixes [62], or in infinitely extended 2D systems
with the iPEPS excitation ansatz [34,63–65]. There is also an
approach based on the Lanzcos algorithm adaptation to the
MPS [66,67]. Note that the excitation energies can also appear
in the projected Hamiltonian problems in the DMRG sweeps
[68] and may be connected with the ground state transfer ma-
trix spectrum [69,70]. For certain class of models it was also
proposed to estimate the gap by studying phase transitions
upon the introduction into Hamiltonian of additional terms
commuting with the Hamiltonian [71]. For many-body local-
ized systems there are tailored approaches to study not only
the lowest excited states but also eigenstates in the middle of
the spectra [72,73].

The approaches just reviewed are very effective for quasi-
1D systems and for certain 2D systems within the variational
iPEPS methodology. Unfortunately, for 2D systems the com-
putations are rather demanding, since they require either
complex summations of correlation functions with the corner
transfer matrix renormalization group (CTMRG) [34,64] or
automatic differentiation through CTMRG [65]. These ap-
proaches are also currently very difficult to generalize to 3D
and complex graph structures. Here, we show that the spectral
gap can be easily extracted via the simplest algorithm of tensor
network optimization, which is applicable to arbitrary lattice
or network structures. We illustrate this with the spectral gap
estimation for the 3D transverse Ising model.

Our algorithm for calculating the spectral gap runs as fol-
lows: We employ the infinite projected entangled pair states of
the bond dimension D and optimize the randomly initialized
iPEPS wave function (within a predefined periodic unit cell)
with the imaginary time evolution (see Fig. 1). We discretize
the imaginary time propagation of a step dτ and apply either
the Trotterized gates representing exp(−Hdτ ) or a PEPO-
like approximation of the exp(−Hdτ ), constructed via the
WII method [76], to the iPEPS. Following the application of
these gates/PEPO, the bond dimension D of the iPEPS wave
function typically increases and must be truncated back to its
original value. This truncation is performed using the simple
update method, a cost-effective and widely used approach
in iPEPS optimization, especially for gapped nontopological
systems [21,35].

To determine the gap, it is necessary to find the operator
averages of the commutator [H,O] of the Hamiltonian H
and the observable O creating excitations. For example, we
employ O = ∑

i σ
y
i for the Ising model, and O = ∑

i S
y
i S

z
i+1

for the Haldane model.
The precise computation depends on the exact CTMRG

contraction [77–80] at every step of the imaginary time
evolution, rendering the simple update method ineffective
due to CTMRG’s significantly higher computational cost
compared to the simple update’s truncation procedures.
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FIG. 1. Tensor network computations in 2D: (a) the network
diagram of the iPEPS wave function, which consists of the ten-
sors T placed on the sites of the square lattice. Each tensor has
one physical index and four auxiliary virtual indices, which are
geometrically contracted with the bond matrices λ. Both T and
λ are in the superorthogonal canonical form [37,74,75]. (b) The
simple update approximation to the computation of the expectation
value of the two-site operator O [36]. (c) The PEPO optimization
scheme, where we apply the PEPO operator (consisting of elemen-
tary tensors WP) to the iPEPS wave function. The PEPO tensors
approximate the operator exp(−Hdτ ) and then we truncate iPEPS
with a superorthogonalization [74,76]. (d) The iPEPS optimization
with consequent applications of horizontal and vertical MPOs (with
individual tensorsWM ). We construct MPO with theWII method [76]
and also truncate iPEPS according to the superorthogonal canonical
form.

Fortunately, our focus is on gapped systems, where it was
recently demonstrated that the simple update method, with
sufficiently large bond dimensions (D), can accurately deter-
mine observables in these systems [36]. This finding led to
the development of the gPEPS strategy, applying the simple
update method to optimize the iPEPS wave function and to
compute its observables [31,36] (see also a similar discussion
in [37]). This approach has proven successful for challenging
2D problems, some 3D systems, and for simulating the IBM
kicked Ising experiment classically [81,82].

Let us provide some additional comments on differ-
ent computational schemes within the simple update iPEPS
methods:

(1) PEPO scheme: the optimization using the PEPO ap-
plication, where PEPO approximates the exponent of the
Hamiltonian exp(−Hdτ ), and the iPEPS is truncated using
the superorthogonalization canonical form [37,74,75]. The
unit cell consists of one site.

(2) MPO scheme: the optimization is performed by the
consequent applications of horizontal and vertical MPO to the
iPEPS wave function, where the MPOs encode the exponent
of the Hamiltonian. The truncation is performed again using
the superorthogonalization. This approach is faster than the
PEPO scheme. The unit cell consists again of one site.

(3) Gate scheme: the optimization is performed with the
Trotterized gates. This is the most widely used scheme in
practical calculations. Usually, superorthogonalization is not
performed in the truncation procedure, but it can be used as
an additional step between gate applications, which allows for

the further stabilization of the algorithm. The unit cell con-
sists of the two different tensors placed in the checkerboard
pattern. This method is the most unstable in terms of the
gap estimation. In particular, even if the commutator decay
is approximately exponential in the approach, its numerical
derivative at dτ ∼ 10−3 shows sizable fluctuations, which are
absent in the two previous schemes. The gap extraction in the
approach requires in this case an additional data flattening.

Below, we employ the simple update (SU) to obtain the ex-
pectation value of the commutator [H,O], where O = ∑

i σ
y
i

is the observable with nonzero overlap between the first ex-
citation and ground state. The commutator expectation value
is determined after each imaginary time step dτ . We then
plot the logarithmic quantityC(τ ) = ln |〈[H,O]〉(τ )| [see also
Eq. (4)] and determine the interval of τ with a linear de-
pendence. Within this interval, we interpolate the function
C(τ ) = C0 − τ�, which contains the estimate of the spectral
gap �.

Note that the proposed approach may encounter difficulties
when addressing topological excitations, such as anyons in 2D
systems or kinks/domain walls in 1D systems. This challenge
arises because the single topological excitations generally
cannot emerge from a translationally invariant tensor-network
wave function through the action of a local operator. Specifi-
cally, it is not feasible to obtain the domain wall energy in the
1D Ising model inside the ferromagnetic phase. Consequently,
we conclude that addressing topological excitations necessi-
tates more complex approaches. Such methods are akin to
those discussed in Ref. [55] for 1D systems.

Below, we present results obtained using three different
schemes of the simple update iPEPS optimization: PEPO,
MPO, and Trotter gates. Specifically, for the 2D system, we
illustrate the iPEPS wave function, the calculation of observ-
ables, and the application of PEPO/MPO in Fig. 1. Regarding
the application of Trotter gates within the simple update ap-
proach, we direct readers to Refs. [21,35] for further details.

III. RESULTS

As an initial iPEPS wave function |φ(0)〉, we used random
product states with bond dimension D = 1, noting that such
initial states lead to better convergence. Figure 2(a) displays
the dynamics of the commutator expectation value over imag-
inary time τ , plotted on a logarithmic scale. Computations
using all three methods (MPO, PEPO, and Trotterized gates)
are shown. It is clear that all methods result in the exponen-
tial decay of the commutator (evidenced as a linear region
on the graph), with nearly identical slopes, indicative of the
excitation gap. However, the stability and accuracy of these
methods generally vary. For instance, with the Trotter gates,
for large D or, surprisingly, small dτ we observe instabilities.
Such instabilities, which can occur at arbitrary τ , lead to sig-
nificant variations in the numerical derivatives. Consequently,
for methods based on Trotter gates, one needs to use a linear
regression to average out the numerical instabilities to extract
the spectral gap, which makes it difficult to estimate the error
from the time discretization. In contrast, the numerical deriva-
tives obtained with PEPO/MPO methods are always smooth
and stable [Fig. 2(b)], enabling direct estimation of the gap.

023128-4



SPECTRAL GAPS OF TWO- AND THREE-DIMENSIONAL … PHYSICAL REVIEW RESEARCH 6, 023128 (2024)

0

-4

-8

0 1 2 3 4 5 6 7

TG (SU), D = 3

MPO, D = 8

PEPO, D = 8

(a)

-0.5

-1

-1.5
1 2 3 4 5 6 7

(b)

TG (SU), D = 3

MPO, D = 8

PEPO, D = 8

TG (CTMRG), D = 3

FIG. 2. (a) The decay of the expectation value C(τ ) =
ln |〈[H,O]〉(τ )| with the imaginary time τ for the 2D transverse Ising
model in the paramagnetic phase with J = 0.2, dτ = 0.2, and the
iPEPS bond dimension D = 8 for PEPO/MPO and D = 3 for the
Trotter gates (TG). (b) The numerical derivative of the commutator
decay for the same parameters and methods, including TG scheme
with CTMRG at χ = 10 for comparison.

According to Fig. 2(b), the PEPO and MPO methods es-
timate the spectral gap � = 1.074 (almost insensitive to the
step size dτ , with the calculations carried down to dτ =
0.002). As discussed below, the perturbation series expansion
yields � = 1.083 [see Fig. 3(a)]. For Trotter gates, � ≈ 1.073
[see Fig. 2(b)], but only for the specific dτ = 0.2; for dτ <

0.2, the results become sensitive to the step size due to signifi-
cant numerical instabilities, as mentioned in Sec. II D. Below,

0.1 0.2 0.3

1.5

0.5

1

0

(a)

1 2
0

2

4

6

8

Series expansion

2d iPEPS, D = 5

2d iPEPS, D = 9

(b)

FIG. 3. (a) The gap in the paramagnetic phase obtained from the
series expansion [41, Table 1] up to O(J13) and from our approach to
the gap estimation (with the MPO method of evolution). The dashed
line specifies the phase transition point Jc = 0.329. (b) The estimated
spectral gap in the ferromagnetic phase compared with the series
expansion [40, Table 1] up to O(g20 ). The series diverge at g ≈ 1.5,
and at larger g we show only the iPEPS results.

we utilize the MPO method, since it is faster than PEPO
and more reliable than the Trotter gates optimization. We
have also calculated the average values with the much more
accurate CTMRG approach. The results for the gap agree be-
tween the different approaches for the observable calculation,
even though the average values of the observables themselves
may be underestimated for the SU method of observables
calculation.

Next, we benchmark this method of the gap estimation
against the series expansions [41]. In Fig. 3(a), we compare
the gap values computed via the simple update imaginary
time evolution (using MPOs) of the iPEPS wave function with
series expansions in J (g = 1). In the region of J far from the
critical transition point Jc ≈ 0.329, the results from the series
expansions and the simple update show a strong agreement.
However, in the critical region, the predictions diverge, with
the simple update underestimating the transition point, while
the series expansions overestimate it. The iPEPS approach
becomes unreliable in this region due to the simple update’s
reliance on mean-field environments, which are ineffective
amidst long-range correlations. To achieve more accurate re-
sults in the near-critical regime, more complex tensor-network
methods should be employed: either gap extraction from the
full update evolution [83] (complemented with CTMRG for
calculating averages) or employing some type of variational
evolution [84]. Additionally, we compare these results with
D = 5 calculations, noting differences predominantly near the
critical regime. It is important to note that in the critical
region, gap estimation using this approach faces challenges:
first, the commutator decay tends to be polynomial rather than
exponential over the extended periods of τ , and second, the
simple update often inaccurately determines the precise posi-
tion of the transition point, leading to a shifted gap prediction.

In Fig. 3(b) we benchmark our numerical results in the
ferromagnetic phase against the series expansions [40]. Un-
fortunately, the predictions from the series expansions are
reliable only for g < 1.5. Within this range, our results agree
well with the series expansions. We also extend our gap pre-
diction up to g = 2.5, where our estimates begin to diverge
from the more accurate predictions provided by the more
advanced (and computationally demanding) variational iPEPS
approach detailed in Ref. [64].

Next, we present the results for the 3D quantum trans-
verse Ising model. We emphasize that variational calculations
with iPEPS are not currently available in 3D, while MPS
approaches are ineffective due to the rapid growth of
the entanglement entropy in 3D systems. The correspond-
ing 3D tensor-network calculations rely primarily on the
simple update optimization, accompanied by various meth-
ods for subsequent calculation of ground-state observables
[31,36,86,87]. The 3D Ising model has been previously stud-
ied using tensor network methods [39,85], making the simple
update strategy a natural choice for the gap estimation in these
systems.

In Fig. 4(a), we compare the 3D iPEPS estimates of the
spectral gap with the series expansion from Ref. [3] in the
paramagnetic regime. The critical parameter Jc = 0.194 is
suggested by the series expansions [3], with an approximate
Jc = 0.188 from previous iPEPS calculations [39,85]. Our
results for the gap value agree with these predictions, as we
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FIG. 4. The spectral gap estimation for the 3D transverse-field
Ising model: (a) in the paramagnetic phase with D = 4 (circles) and
(b) in the ferromagnetic phase with D = 3 (squares) compared with
the series expansion: up to O(J13) [3, Table 2] and up to O(g20 ) [3,
Table 3], respectively. The vertical lines indicate the estimates of the
critical value Jc = 0.188 [39,85] and Jc = 0.194 [3].

observe a slowdown in the exponential decay in the regime
J > 0.18, where the gap estimation becomes challenging.
Deep in the paramagnetic phase, our results are consistent
with the series expansion predictions. However, in the critical
regime, assessing the accuracy of our results is difficult, since
the series expansions overestimate the gap, predicting �SE >

0 at J = 0.2 (see Fig. 4), which exceeds the critical point
estimated by other series expansions. In Fig. 4(b) we also
show the results in the ferromagnetic phase. As in the 2D case,
the series expansions diverge long before the critical point.
Hence, we compare our results with the series expansions only
for low g, where we find agreement between our results and
the series expansions.

So far, our discussion has focused on Ising systems in
both symmetry-broken and paramagnetic phases. To verify
the applicability of our proposed method to different types
of systems, particularly those with symmetry-protected topo-
logical order, we have extended our analysis to calculate the
gap for the 1D Haldane model, as introduced in Sec. II C.
Our estimated numerical value of the gap, � = 0.410, is in
close agreement with previously published numerical results,
which reported � = 0.410479(1) [44]. The convergence of
the numerical derivative of the commutator expectation value
is illustrated in Fig. 5. It is also worth noting that, for 1D
systems, the simple update method for calculating observables
is exact.

IV. CONCLUSIONS

We have presented a tensor network realization of spectral
gap calculations via Eq. (4). Its implementation is straight-
forward, and only required a few extra lines to be added
to an existing code for the simple update method. The run-
time of our method scales as O(Dz+1), where z is the lattice
connectivity (i.e., z = 4, 6 for our 2D and 3D illustrations,
respectively). Concretely, it takes about 10 min with MPO on
a typical desktop computer to estimate one spectral gap in 3D
[pointmarker corresponding to the bond dimension D = 3 in
Fig. 4(b)]. Our method is complementary to the more power-
ful but computationally very demanding variational iPEPS ap-

TG (SU), D = 40

-0.4

-0.5

16 18 20 22 24 26 28

FIG. 5. The numerical derivative of the expectation value C(τ ) =
ln |〈[H,O]〉(τ )| with the imaginary time τ for the Haldane model.
The operator O = ∑

i S
y
i S

z
i+1.

proach [64], which scales as O(D10) − O(D12); moreover, the
latter method is only applicable to infinite regular 2D lattices
and, unlike our approach, cannot be currently extended to 3D.

Looking ahead, there is significant potential for further
improvement of the methodology presented. For instance, it
can be generalized to arbitrary graphs with low connectivity
[37,82] and to arbitrary unit cells without requiring any sym-
metries in the system. The use of modified environments, such
as cluster environments or nearest-neighbor updates, may lead
to more accurate calculations, at the expense of increased
computational costs. These improvements would result in
more precise calculations, particularly in critical regions. This
work is part of a broader program aimed at using the simple
update method to study gapped systems, which, in particular,
was recently applied to simulate the IBM kicked Ising exper-
iment [81,82].

Finally, we add that although the present work has focused
on the spectral gap as a fundamental property in quantum
and material sciences, it also plays an important role in vi-
bration analysis, graph theory and network analysis, and data
science. Inspired by the interdisciplinary success of tensor net-
works [88–91], adaption of our method to these other domains
should be a subject of subsequent investigations.

The DOE will provide public access to these results of
federally sponsored research in accordance with the DOE
Public Access Plan [92].
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