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Abstract The cohesive zone law represents the constitutive traction versus separation
response along the crack-tip process zone of a material, which bridges the microscopic fracture
process to the macroscopic failure behavior. Elucidating the exact functional form of the cohesive
zone law is a challenging inverse problem since it can only be inferred indirectly from the far-field
in experiments. Here, we construct the full functional form of the cohesive traction and separation
relationship along the fracture process zone from far-field stresses and displacements using a physics-
informed neural network (PINN), which is constrained to satisfy the Maxwell-Betti’s reciprocal
theorem with a reciprocity gap to account for the plastically deforming background material. Our
numerical studies simulating crack growth under small-scale yielding, mode I loading, show that the
PINN is robust in inversely extracting the cohesive traction and separation distributions across a wide
range of simulated cohesive zone shapes, even for those with sharp transitions in the traction-
separation relationships. Using the far-field elastic strain and residual elastic strain measurements
associated with a fatigue crack for a ZK60 magnesium alloy specimen from synchrotron X-ray
diffraction experiments, we reconstruct the cohesive traction-separation relationship and observe
distinct regimes which suggest corresponding transitions in the micromechanical damage

mechanisms.
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1. Introduction

The growth of cracks at locations of high stress concentrations, such as along adhesive joints, grain
boundaries, and fiber-matrix interfaces, controls the macroscopic fracture and fatigue response of
engineering materials (Chew et al., 2005; Li and Chew, 2016, 2017; Liu and Shin, 2019; VanSickle
et al., 2020; Li et al., 2022; Jiang et al., 2023a). However, modeling the fracture and fatigue crack
growth remains a challenge, since the complicated microscopic adhesive and cohesive damage
processes at these high stress concentration sites are often inaccessible to direct experimental
measurements. One well-established mechanistic approach to modeling crack growth or interface
failure is to introduce an embedded fracture process zone (FPZ) ahead of the crack and to homogenize
the localized deformation response within the FPZ into equivalent cohesive zone laws (Dugdale,
1960; Tvergaard and Hutchinson, 1992; Hutchinson and Evans, 2000; Guo et al., 1999; Gladysz and
Chawla, 2020). These cohesive zone laws govern the relationship between the cohesive-zone
tractions in equilibrium with the stress fields of the surrounding body and the cohesive-zone
separations compatible with the deformation fields of the surrounding body (Akhavan-Safar et al.,
2022), and can quantitatively represent detailed micromechanical failure processes, such as the
nucleation, growth, and coalescence of voids (Allix and Corigliano, 1996; Guo et al., 1999; Cui et
al., 2020; Muro-Barrios et al., 2022).

In the original Dugdale model (Dugdale, 1960), the cohesive traction is assumed to be a
constant up until complete separation, but subsequent studies heuristically introduced different
cohesive zone models, including the linear softening model (Hillerborg et al., 1976), a trapezoidal
model (Tvergaard and Hutchinson, 1992), and an exponential model (Xu and Needleman, 1993; Gao

and Bower, 2004; He and Xin, 2011). Nevertheless, studies often regard the cohesive strength (peak



traction) and the energy release rate (area under the traction-separation relation) as two primary
material parameters governing crack advance and the macroscopic fracture behavior: the functional
form of the cohesive zone law is assumed a priori, while these primary material parameters are
calibrated with top-down experiments to best match the fracture resistance curves (Chen et al., 2003;
Gustafson and Waas, 2009; Desai et al., 2016; Jemblie et al., 2017; Lélias et al., 2019). More recent
studies show that the exact shape of the cohesive zone law represents the underlying crack growth
micromechanics and is a key signature governing the fracture behavior of a material (Chandra et al.,
2002; Kafkalidis and Thouless, 2002; Li and Chandra, 2003; Alfano, 2006; Olden et al., 2008; Alfano
et al., 2009; Campilho et al., 2013; Chew, 2014; Heidari-Rarani and Ghasemi, 2017). For example,
hydrogen embrittlement of stainless steel and high impact polystyrene (HIPS) are best represented
by polynomial and concave-shaped cohesive zone laws, respectively, while crazing-induced ductile
crack growth in polymethyl methacrylate (PMMA) resulted in a convex-shaped cohesive zone law
(Hong et al., 2009). Even in the phase field fracture modeling where the crack path is not defined a
priori, the equivalent cohesive zone law is found to have a shape similar to the governing hyperbole
stiffness degradation function (Tran and Chew, 2022).

Elucidating the full functional form of the cohesive zone law, in addition to the cohesive
parameters (e.g., peak traction, cohesive energy, complete failure separation), is a highly non-trivial
inverse problem that is often subjected to ill-conditioning (Elices et al., 2002; Pierron and Lo, 2008).
Cox and Marshall (1991) and Serensen and Jacobsen (2003) heuristically determined the cohesive
zone (or crack-bridging) laws in composite materials utilizing the crack opening displacement and
the J-integral, respectively. Focusing on the crack-tip fields, Hong and Kim (2003) and follow-on
studies (Chew et al., 2009; Hong et al., 2009; Kim et al., 2012) expressed the elastic fields of a crack
tip with a cohesive zone in a homogeneous isotropic solid in terms of eigenfunction expansions in a

complex mathematical form, where the inversion method is based on interaction J-integrals (Chen



and Shield, 1977). Chew extended this field projection (spectral) method by expressing the unknown
tractions along an interface bounded by plastically-deforming materials in terms of the Fourier series,
where the Fourier coefficients were determined using the Maxwell-Betti’s reciprocal theorem with a
reciprocity gap to account for nonlinear effects (Chew, 2013). Similar inversion methods utilizing
series solutions were performed to quantify the continuum traction signatures along grain boundaries
from atomistic stress information in the vicinity (Cui and Chew, 2022). The accuracy of such spectral
methods requires that the assumed series solution accurately represents the functional form of the
cohesive traction, and in turn, the cohesive separation, distributions. In the presence of non-periodic
traction boundary conditions for an assumed periodic (e.g., Fourier) series solution, many terms in
the series solution would then be needed to capture the sharp transitions or localized details in the
traction or separation distributions. This significantly increases the sensitivity of the inverse solution
to small numerical or experimental errors in the far-field measurement data (Chew, 2013; Willis,
1966).

Machine learning techniques based on deep neural network architectures have recently been
applied to solving inverse problems in mechanics. For example, artificial neural networks (ANNs)
trained on numerical datasets have successfully predicted the stress hotspots for cracking (Mangal
and Holm, 2018, 2019; Pierson et al., 2019; Perera and Agrawal, 2023), the locations of dislocations
from the atomistic stress fields of grain boundaries (Noh and Chew, 2024), the constitutive behavior
of' materials at both the atomistic and continuum scales (Rowe et al., 2020; Shaidu et al., 2021; Zhang
etal., 2022; Lietal., 2023; Wang et al., 2023), as well as the stochastic crack growth in porous ductile
materials (Worthington and Chew, 2023). In situations where there is sparse measurement data, a
variant of deep ANNSs, termed as physics-informed neural networks (PINNSs), has the unique ability
to solve both forward and inverse problems by constraining the solution to satisfy some predefined

physical or governing laws (Cuomo et al., 2022; Rodriguez-Torrado et al., 2022; Garcia-Cervera et



al., 2023; Seo, 2024). While originally formulated to solve partial differential equations in fluid
problems, PINNs have recently been applied to the field of solid mechanics and interfacial failure
modeling (Diao et al., 2023; Tao et al., 2023; Wei et al., 2023).

In this work, we inversely uncover the cohesive zone laws for fracture from far-field stress
and displacement information using PINNs, which are constrained to satisfy Maxwell-Betti’s
reciprocal theorem. Section 2 details our PINN architecture applied to a small-scale yielding, mode I
crack-growth problem in the finite element method (FEM). In Section 3, we study the generalizability
of the PINN to reconstruct different functional forms of the cohesive zone laws in both linear elastic
and elasto-plastic materials, using measurement data at varying domain sizes in the far-field. The
PINN is subsequently used in Section 4 to reconstruct the cohesive traction-separation relationship
for a ZK60 magnesium alloy from the elastic strain fields of a fatigue crack provided by synchrotron
X-ray diffraction (S-XRD) experiments. Section 5 discusses the implications of our results in the
context of prior inverse approaches and concludes with a summary.

2.  Problem Formulation

2.1 Crack growth simulations

We first assess the ability of PINNSs to reconstruct the crack-tip cohesive zone laws from the far-fields
of a crack growth problem under mode I loading, by generating the crack-tip fields through a forward
finite element simulation detailed in this subsection (Fig. 1). Our small-scale yielding, finite element
model comprises of a semi-infinite centerline crack in a homogeneous, isotropic material with elastic
modulus E = 1 GPa and Poisson’s ratio v = 0.3 subjected to remote mode I (K;) K-field loading
under plane strain conditions (Fig. 1a). We consider both a linear elastic material, and an elasto-
plastic material with the plastic response characterized by a J, flow theory which obeys a linear
hardening relationship

O = 0y + A€P (1)



where o, is the von Mises stress, o), is the initial yield stress, €? is the plastic strain, and A is the
linear hardening constant. Along the remote circular boundary of the finite element mesh, we

prescribe the elastic asymptotic K; plane strain displacement fields

u,(R,0) = K,l%\/g (3—4v —cosh) cosg
1+v |R ) @)
u,(R,0) = K,Tv\/; (3—4v —cos0) sin;

where R = \/x{ + x3 and 0 = tan™? (i—i) for points on the remote boundary (Fig. 1a). We conduct

finite element simulations of the boundary value problem using the commercial finite element
software, ABAQUS (Smith, 2009). The finite element mesh consists of 52,452 two-dimensional,
plane strain 4-noded CPE4 linear elements (Fig. 1c¢).

To simulate crack propagation, we implement a single row of cohesive elements (Fig. 1b)
located within a highly-refined mesh region ahead of the initial crack tip (x; = x, = 0) comprising
of uniformly-sized elements, each of dimensions D X D (Fig. 1d). These cohesive elements obey a
prescribed relationship between the normal cohesive traction t, and the normal cohesive separation
&,, with t, denoting the peak traction, &, the final separation (i.e., full damage), and I, the area under
the traction-separation relation (Fig. 1b). Under the conditions of crack advance, the crack growth

resistance I is related to the mode I stress intensity factor K; by

r=—K’ 3)
In a linear elastic medium, I, = I'. In an elasto-plastic medium, however, I' has combined
contributions from both the initial or intrinsic fracture energy associated with the process zone I,
and the background plasticity [},; small-scale yielding conditions prevail since the plastic zone size

is small compared to the distance to the remote boundary R.

2.2 Neural network architecture



In physical experiments, the far-field strain or displacement information (JR, in Fig. 1d) can be
obtained with high accuracy using well-established techniques such as high-resolution digital image
correlation (DIC) or neutron diffraction. However, direct, quantitative measurements within the
narrow process zone ahead of the crack (dR; in Fig. 1d) are generally not possible since this is the
regime where the complicated micromechanics of fracture occur. Here, we seek to extract the
unknown traction t,(x;) and separation &,(x;) distributions for material points located along dR,
(x2 = 0), from the measured stress 0;;(x;, X;) and displacement information u;(xy, x,) along dR;.
The traction (t,) versus separation (&, ) relationship is then obtained by combining the response of all
material points along the crack face (OR;).

Fig. 2a depicts the architecture of our PINN, which takes an [N X 1] spatial matrix, Xy,
representing the x; coordinates of N collocation (material) points along dR;, as an input. This input
matrix is linearly connected to an ANN, comprising of several hidden layers, each with a fixed
number of nodes per layer. The nodes within each hidden layer apply a series of weighting functions
and biases to the previous layer before passing them onto the next layer through an activation function

(Da Silva et al., 2017). The final hidden layer of the network linearly outputs two [N X 1] spatial

. . . . . . a6
matrices T, and D, ;, representing the cohesive traction t, and separation gradient §,, = a_xz’
1

respectively, corresponding to each collocation point in X;. We cumulatively integrate 6, ; in D3 4
using the composite trapezoidal rule to obtain §, (and the spatial matrix D,), while enforcing the
separation &, to be the same at the common node between dR; and JR, at the end of the cohesive
zone (node b in Fig. 1d).

We introduce three separate loss functions (L4, L,,L3;) in our PINN. The first function
constrains the output cohesive tractions T, to follow the known boundary tractions t, at the common

nodes between dR; and dR, (nodes a and b in Fig. 1d)

Ly = (t2(@) — Ty (@) “+(t(b) — Ty (b)) 4)



The second loss function enforces 6, = 0 and §, ; < 0 along dR, to ensure positive separation which
continuously decays with distance from the crack-tip

Ly =23 {(D2() = IDy()D? + (D21(0) + | Do (D)7} (5)
The third loss function is the main driving loss which constraints the output traction and separation
distributions to satisfy the Maxwell-Betti’s reciprocal theorem. In a linear elastic problem, the
Maxwell-Betti’s reciprocal theorem relates the unknown tractions (t,) and displacements
(u; = 6,/2) along R, to the measured tractions (t; = o;;n;) and displacements (u;) along dR,, i.e.,

faRl t2u2 — tzﬁzdx1 = faRZ 6ijnl'u]' - Uijniﬁde =M (6)

where n; is the outward normal to the boundary, M denoting the value of the integral based on
measurement data along dR,, and S[o;;, u;] and S[6; j» ;] denote the real and auxiliary deformation
fields of the same linear elastic material (Fig. 2b). Thus, the unknown solutions for T, (i) and D, (i)
along dR; should satisfy (6) for all admissible auxiliary fields S[5; j,1j]. Augmentations to (6)
through a reciprocity gap to account for (nonlinear) elasto-plastic effects are detailed later in Section
3.2. We select two classes of analytical auxiliary fields $; and S,, depicted in Fig. 2b, representing
the elastic half-space solutions for (i) an imposed periodic sin or cos distribution of normal £, surface
tractions, and (ii) a traction-free surface (£; = t, = 0) but with non-zero periodic sin or cos
distributions of 1; and #i, displacement combinations, as detailed in Appendix A. With these two
classes of auxiliary fields subjected to sin or cos distributions of tractions or displacements, each
loading wavenumber k therefore provides 4 independent auxiliary fields. Considering k to range from
1 to n, we would have a total of 4n independent auxiliary fields, which we denote by the superscript

~m

min S, 1

ij»U;"]. Thus, the third loss function can be expressed as

Ly ==y {[7 (GED, — 40T, dxy — M) (7)



where the integral is evaluated along dR; using the trapezoidal rule. We consider the relative
contribution (w;) of each loss component (L;), to obtain the total loss

Ly =wiLy + wyly +ws3lsg (8)
The total loss in (8) is then backward propagated through the network to update the weights and
biases of the ANN. The ratios of wy: w,: w3, along with the number of wavenumbers (n), and hence
the total number of auxiliary fields (= 4n), are considered as hyperparameters of our PINN.
2.3 Hyperparameter study
We perform hyperparameter testing of the network structure by systematically varying the number
of hidden layers, the number of nodes within each hidden layer, the learning rate, the type of
activation function, and the relative weight contribution in the loss function. We evaluate the
performance of each PINN architecture based on its ability to minimize the loss function L. At the
epoch corresponding to this minimum L, we also separately calculate the root mean squared errors
(RMSE) between the PINN-predicted traction-separation relationship versus the actual cohesive zone
law implemented in FEM. Our simulations for the hyperparameter studies are based on an exponential

cohesive zone model that is implemented in Abaqus as a UEL User Element subroutine (Gao, 2016)

t, &
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with a peak traction of %0 = 0.003, total separation of ;0 = (0.125, and an intrinsic fracture energy of

;—OD = 0.000375. Our FEM crack growth model is loaded to a sufficiently large Kj to enable crack

propagation to a distance of Aa = 80D = 6404, from the initial crack-tip. Displacement and stress
data are then taken along a predefined R, located at a vertical distance of h = 20D from the cohesive
interface along dR; (Fig. 1d) at this crack instant for the reconstruction of the cohesive zone laws,

though the effects of h/D are later studied in Fig. 6.



In the hyperparameter studies in Table 1, we choose the maximum wavenumber of n = 7
which provides us with a total of 4n = 28 unique auxiliary fields. To increase the convergence rate,
reduce the number of computations, and avoid the solution from getting trapped at the non-optimal
local minima, we employ a Stochastic Gradient Descent approach (Shalev-Shwartz and Ben-David,
2014) where for each epoch, we randomly select only a proportion p = 0.214 (6 out of 28) of these
auxiliary fields to compute the loss function Lg. The loss is then backward propagated through the
network to update the weights and biases of the neural network before moving to the next epoch,
where the process is repeated with a new 4np number of auxiliary fields selected at random out of
the total 4n unique auxiliary fields. Note that if p = 1, we recover the traditional Gradient Descent
(Shalev-Shwartz and Ben-David, 2014). We conduct this training process over 500,000 epochs using
the Adam Optimizer (Da Silva et al., 2017).

Our results in Table 1 show that the number of hidden layers, together with the number of
nodes per hidden layer, in the neural network are the most critical hyperparameters. Fig. 3a compares
the (exponential) traction-separation law implemented in FEM (symbols) with the predictions of the
PINN for varying number of layers and nodes per layers (lines). A PINN architecture with more
layers than nodes per layer (purple line) completely fails to capture traction-separation relationship
and tends to have extremely high L as shown in Table 1. In contrast, PINN architectures with fewer
layers tend to capture the peak traction, final separation, and in general, the full functional form of
the cohesive zone law, with high precision (red/blue/black lines in Fig. 3a). We select an optimal
network structure comprising of 10 hidden layers with 30 nodes per layer (black line in Fig. 3a),
which has the second lowest Lg, along with the lowest RMSE in the predicted traction-separation
response. Our hyperparameter studies in Table 1 and Fig. 3b further show that the cohesive zone
predictions are optimal with a learning rate of [, = 2 X 10~°. Another important hyperparameter is

the relative weight contributions in the loss function. Setting w5 > 10* relative to w; = w, = 1is



necessary to maintain low Lg and RSME values (Table 1, Fig. 3c), implying that satisfying the
Maxwell-Betti’s reciprocal theorem (L; in (7)) is key to ensuring accurate traction-separation
predictions. Nevertheless, maintaining the boundary tractions (L; in (4)) is important, as shown by
the significant errors introduced by setting w; = 0 (purple line, Fig. 3c). In comparison, enforcing
the L, constraint in (5) to ensure positive and continuously decaying separations only marginally
improves L, (compare results for w, = 0 and w, = 1 with identical w;, w; values under Weight
Contribution in Table 1). Based on these studies, we enforce all three loss constraints, and with a
relative weight contribution of wy: w,: w5 = 1: 1: 10%. Finally, while the choice of ELU, ReLU, and
tanh activation functions does not significantly influence L, and the associated RMSE values (Table
1), it affects the smoothness of the predicted traction-separation response (Fig. 3d) which can be
important for numerical stability when these cohesive zone law predictions are implemented in FEM.
As such, we select the ELU activation function for our final PINN architecture. Note that our PINN-
extracted cohesive zone laws in Fig. 3 do not start precisely at t, = §, = 0, since t,(x;) = 0 lies
beyond the extraction region of dR; in Fig. 1d.

The demonstrated importance of the Maxwell-Betti’s reciprocal theorem governing L5 in (7)
introduces two additional hyperparameters that can influence our network performance: (a) the
number of unique auxiliary fields (4n), and (b) the proportion p of these 4n terms enforced at each
epoch in the L3 constraint. Fig. 4 examines the effects of Stochastic Gradient Descent by comparing
the loss evolution and the predicted traction-separation laws with increasing epochs for varying p
with a fixed n = 7. The use of Stochastic Gradient Descent with p = 0.214 in Fig. 4a results in noisy
L¢ with traction-separation response converging only after epoch (iii). In contrast, the traditional
Gradient Descent approach (p = 1) in Fig. 4b is characterized by very smooth loss evolution leading
to rapid convergence after epoch (ii) in the predicted traction-separation response. One of the distinct

advantages of Stochastic Gradient Descent is its computational efficiency, since only a smaller subset



of 4np (out of 4n) functions are evaluated at each epoch. Interestingly, the predicted traction-
separation response with p = 0.214 is noticeably closer to the implemented exponential response in
FEM, highlighting the Stochastic Gradient Descent’s ability to converge towards the global
minimum, while the solution for the traditional Gradient Descent (p = 1) can be trapped at a local
minimum. Further reduction in the number of evaluated functions per epoch to just a single function
(4np = 1) with p = 0.036 in Fig. 4c significantly increases fluctuations in L;. We now arrive at a
converged solution at a higher epoch ((iv) and beyond), but with observable differences between the
predicted and actual cohesive zone laws.

Conceivably, a larger n will result in better agreement between the reconstructed cohesive
traction and separation distributions from PINN versus the ground truth data from FEM, since more
physical constraints are enforced to nudge the solution towards satisfying (7). In reality, our results
for the converged traction-separation predictions across various combinations of p and n values in
Fig. 5b-d show no discernable improvement in the PINN predictions beyond n > 3, regardless of the
number of enforcing functions, 4np. In fact, even with 4np = 1 in Fig. 5a, where the reciprocal
theorem is enforced for a single auxiliary field per epoch, we still obtain reasonable predictions with
n = 5 and beyond. Close examination shows that the pre- and the post-peak of the cohesive zone
law are marginally better captured with n = 3,4np = 6 (purple in Fig. Sc,d) and n = 9,4np =6
(blue in Fig. 5d), respectively.

3. Numerical Reconstruction of Crack-tip Cohesive Zone Laws

3.1 Generalization capabilities

We have demonstrated the ability of our PINN to numerically reconstruct an exponential cohesive
zone law along the crack face (0R;) from field displacement/stress information at a vertical distance
h(= 20D) away (along dR,). For the PINN approach to be useful, it must be capable of performing

the reconstruction based on available data at different domain heights from the crack interface. It



should also be generalizable to different functional forms of the cohesive zone law which are typically
unknown a-priori in experiments. As in classical inverse problems, using information from the far
field dR, generally leads to ill-conditioning, where the extracted results could be highly sensitive to
numerical (interpolation) errors and uncertainties in the input measurements (Elices et al., 2002;
Pierron and Lo, 2008). The effects of ill-conditioning are exacerbated with increasing distance h of
the measurement data from the domain of interest (crack face).

Fig. 6 depicts the PINN predicted exponential traction-separation relationship for three sets
of n and p combinations based on measurement data along different h/D. Note that h = 80D
constitutes the exterior of the highly-refined mesh surrounding the propagating crack (green box in
Fig. 1d), and we use the interpolated stress and displacement information for the non-structured 4-
node elements along dR, in our computations of (6) to (8) for h > 80D. Results show that the PINN
predictions of the cohesive tractions and separations are very accurate for h < 40D (= 320 §;), and
follows closely to the ground truth cohesive zone law implemented in FEM (symbols). Accuracy of
the predictions are slightly reduced with larger domain sizes, but the general functional form of the
traction-separation relationship is still correctly captured with very accurate t,, §,, and Iy predictions
even at h = 140D (= 1120 §,), where the maximum normal stress g,, along dR, has dropped by
60% compared to the peak cohesive traction t,. Beyond this domain at h = 160D (= 12804),
however, our PINNs forn = 3 and n = 9 in Figs. 6a and 6b fail to capture the cohesive zone relation,
though the notably better predictions with n = 2,p = 1 in Fig. 6¢ suggests that this issue can be
somewhat mitigated by limiting the enforcement of L5 to lower-order auxiliary fields.

Our cohesive zone reconstructions thus far are based on an exponential traction-separation
relation in (9). Next, we elucidate the ability of our PINN to reconstruct a variety of cohesive zone
shapes (symbols in Fig. 7) widely adopted in the literature (Dugdale, 1960; Hillerborg et al., 1976;

Tvergaard and Hutchinson, 1992; Xu and Needleman, 1993; Chen et al., 2003; Li and Chandra, 2003;



Alfano, 2006; Hong et al., 2009; Heidari-Rarani and Ghasemi, 2017; Tran and Chew, 2022; Akhavan-
Safar et al., 2022): convex (a,b), concave (c,d), Dugdale (e), trapezoidal (f,g), polynomial (h,i), and
bilinear (j,k,1). We implement each of these cohesive zone laws using a User Element Subroutine,
and propagate each crack to a crack distance of at least Aa = 20D or until the separation is fully
developed at the crack wake. Using the numerically-obtained stress and displacements along a
predefined dR, located at h = 20D from the crack-face, we enforce (7) and (8) with the auxiliary
fields for n = 3 and n = 9, using the same number of functions evaluated per epoch of 4np = 6. We
consider the solution of each PINN to converge when the minimum L remains unchanged for the
next 200,000 epochs, and we include these converged PINN predictions (red and blue curves) in Fig.
7. For reference, we also include the predicted traction and separation distributions in Figs. S1 and
S2 of the Supplementary Materials.

For cohesive zone laws with convex, concave, polynomial, or bilinear functional forms, our
PINN predictions based on n = 3 and 9 are both in very good agreement with the actual cohesive
zone laws (symbols), although the former is better able to capture the peak cohesive traction t.
Interestingly, the PINN prediction based on n = 9 is able to replicate fairly well the Dugdale-shaped
cohesive zone law, which is characterized by constant peak traction t, for long periods of separation.
Both PINNs however overestimate the peak tractions for trapezoidal-shaped cohesive zone laws.
Potentially, an optimal network architecture exists (e.g., different combinations of n,p or even
different number of hidden layers and nodes per layer) that can better fit the functional forms of these
cohesive zone relations individually. In practice, one has no information on the shape of the cohesive
zone law a-priori. Nevertheless, we conclude based on our analyses in Fig. 7 that our PINN
architecture (assuming n = 3,9 with 4np = 6) accurately predicts the full functional form of the
crack-tip cohesive zone law from far-field measurements.

3.2 Extensions to elasto-plastic medium



The Maxwell-Betti’s reciprocal theorem is strictly applicable to linear elastic medium. For an elasto-
plastic material characterized by o, /E = 0.0012 and A = 0.15in (1) with the same exponential
cohesive zone law in (9), we plot the von Mises stress contours in Fig. 8a at the current loading of
K; = K;ax (= 0.87ED) and after unloading from K,,,, to 0. We observe significant build-up of
residual stress caused by plastic deformation during crack propagation after the crack is fully
unloaded to K; = 0. We select 8 material points (cross symbols) surrounding the current crack-tip
and trace the history of the local equivalent stress (g,) versus equivalent strain (&,) at each of these
material points in Fig. 8b as the crack is loaded from its undeformed reference state (filled circle
symbol) to K4, (cross symbols). While all material points initially follow a stress-strain response
defined by (1), material points 2, 3, 6, 7 behind the current crack wake are linearly unloaded once the
crack propagates.

Neglecting plasticity effects, we first use the optimized PINN architecture from Section 2 and
extract the equivalent cohesive zone law from measurement data about two distinct domains at K; =
Konax: ORS and ORY located at h = 20D and 80D above the crack face (solid and dash line in Fig.
8a-top, respectively). Fig. 9a compares the PINN-predicted traction distribution t,(x;), separation
distribution §,(x,), and the traction-separation relationship (solid and dashed curves) versus the
ground truth exponential cohesive zone law (symbols). Observe that the PINN prediction depends on
the path (ORS or dRY) where the measurement data is taken, suggesting the loss of path-independence
of the reciprocal theorem. While the corresponding PINN-predicted separation distributions are
largely similar, an abrupt decrease in separation is observed beyond x; > 150D due to the constraint
enforcing §, to be the same at the common node b between dR; and dR, in Fig. 1d when integrating

D, ; to obtain D, in Fig. 2a. Together, the traction-separation predictions based on measurement data

from the outer domain AR} envelopes the predictions based on the inner domain dR%. The assumption

of linear elasticity in the reciprocal theorem infers that the traction-separation predictions from each



domain can be interpreted as the equivalent cohesive zone law with a linear elastic material
assumption within dR, where all plasticity effects within the projected domain dR are embodied
within the extracted cohesive zone law. Therefore, the PINN predictions are similar to the actual
cohesive zone law for smaller h/D. For larger h/D, the predicted cohesive energy (area under the
traction-separation response) would be higher, since it encompasses both the intrinsic fracture energy
within the process zone and the background plastic dissipation within dR. At sufficiently large h/D,
where the entire background plasticity is encompassed within dR, the cohesive energy of the PINN-
predicted cohesive zone law will equate with I in (3).

The stress 0;; and displacement u; fields at the current deformed configuration of K; = Ky
are based on the undeformed state (filled circle symbol in Fig. 8b) as reference material configuration.
Recently, Tran et al. showed that the deformation response of an elasto-plastic material (with linear
unloading) at its current K; = K,,,,, configuration can be reformulated as a linear elastic-equivalent
material by considering the unloaded configuration to K; = 0 from K,,,, as its new reference
configuration (Tran et al., 2022). Accordingly, we treat this new unloaded crack at K; = 0 as the new
reference configuration; corresponding expressions for stress, strain, and displacements herein are
denoted with a ‘~’ accent in this new reference configuration. Based on the principle of superposition,
the current strain relative to this new reference state, &;;, is related to the elastic strain, eiejl, and the
residual elastic strain after unloading to K; = 0, &/7%, by

~ e.l_

=& — & (10)

where both el-e]-l and g/** are relative to the original undeformed configuration. The current stress
relative to this new reference state, g;;, can be expressed as

6ij = Ciju&ij = 0y — 0if° (11)
where Cyjy, is the elastic stiffness tensor, and 0;*° = Cyjy €[ is the residual stress after unloading

to K; = 0. To illustrate this, we apply (10) and (11) to the same 8 material points in Fig. 8a to compute



the equivalent von Mises stress (G, ) versus strain (&,) relation defined relative to this new reference
state, and show in Fig. 8c that these material points at K; = K,,,,, (cross symbols in Fig. 8c) now
follow the linear relationship with identical stiffness (E'). When unloaded to K; = 0 (i.e., the new
reference state), all material points fully unload to (&,,6,) = (0,0) as shown by the open circle
symbol in Fig. 8c.

Since the current stress (G;;) and strain (£;;) measurements based on this new reference state
are fully elastic at K; = K,,,4,, the Maxwell-Betti’s reciprocal theorem is now valid and can be
rewritten as (Tran et al., 2022)

faR1 G;nitl; — 6;n;;dS = faRz G;ntl; — 6;;m;;dS (12)
Substituting (10) and (11) in (12), we obtain

faRl taup — tallpdx; = faRZ(gijaj — 03U)ndS — Jp =M (13)

where Jp = fR o0, dV + faRl t,ub®*dx, is the reciprocity gap to account for background

plasticity, where u3* is the displacement component associated with &/ at the unloaded state. The

reference state displacement #; in (13) is obtained from the elastic strain, &;;, through the finite
element derivative of shape function (B matrix) with a prescribed displacement boundary condition
from (2) at the elastic remote boundary which has to be larger than the expected plane strain plastic
zone size of r, = ~145D (Anderson, 2017). For a fully-elastic material, Jp = 0, @%; = u;, which
reduces (13) to (6), and we recover the original PINN formulation. Based on this augmented PINN
formulation, termed as PINN—J, for elasto-plastic materials, which transforms (u;, 0;;) at K; = Ky
into (i, 6;j), we show in Fig. 9b that the extracted traction distribution, separation distribution and
cohesive zone law are now in perfect agreement with ground truth data (symbols), regardless of the
domain used for the measurement data (comparing the solid and dash lines).

4. Experimental Reconstruction of Crack-tip Cohesive Zone Law



The PINN—J approach to reconstructing the crack-tip cohesive zone law in plastically-deforming

materials in Section 3.2 requires elastic strain information at both the loaded (K; = K,;,,4,) and

res

unloaded (K; = 0) states for computations of el-ejl and &,

respectively. While this information is
readily available in finite element analysis, it can be challenging to obtain from traditional full-field
measurement techniques such as digital image correlation (DIC). In our recent work, we have
conducted both cohesive interface simulations and in situ strain measurements in a ZK60 Mg alloy
in a compact-tension setup (Xie et al., 2022). Taking advantage of the high penetration capability of
synchrotron X-ray diffraction (S-XRD), our experiments at Advanced Photon Source, Argonne
National Laboratory allow us to probe the lattice strain field, as shown in Fig. 10a, whereas the
Debye-Scherrer ring distortions can be used to obtain the directional strain and the entire in-plane
strain tensor after a tensorial operation. All these strain components are elastic, and the measurements
were performed at the crack tip centered about (0,0), with a beam size of 100 pm % 100 um with a
step of 100 um which covers horizontal and vertical distances of —1.5 mm to +3.5 mm and —2 mm to
+3 mm, respectively (Fig. 10a-right). These elastic strain measurements were taken at a series of load
levels in a loading-unloading steady state fatigue cycle, including the load at K; = 250 MPaymm =
K4y and the fully unloaded configuration at K; = 0 (Fig. 10a-left). Xie et. al. (2022) calculated the
plastic zone size 7, to be ~0.5 mm at K; = K45, assuming an initial yield stress of g, = 145 MPa
for ZK60.

Here, we use our PINN—J formulated in Section 3.2 to reconstruct the crack-tip traction-
separation relationship of ZK60 Mg alloy (valid up to the loading of K; = Kj;,4,) from the S-XRD-
obtained elastic strain field measurements (eiejl) at K; = K4, (Fig. 10b) and the elastic residual strain
measurements (&) at K; = 0 (Fig. 10c). First, we subtract both these strain fields to obtain &; in
(10), taking care to average |€i j| between the region above (x, > 0) and below (x, < 0) the crack

face to obtain the expected symmetry and anti-symmetry for (€;4, &,) and y;, = 2§ ,, respectively,



from the imposed mode I (K;) loading (Fig. 11a). The experimental measurement data is not accurate
near the “messy” fracture process zone. Accordingly, we omit the strain data near the crack-tip and
reconstruct the crack-tip cohesive zone law from &;; data outside this zone of uncertainty. The nodes
that lie along the boundary (red path in Fig. 11a) are sufficiently far away from the ~0.5 mm estimated
plastic zone size, such that the displacement field at this outer boundary approximately follows the
mode I K-dominant elastic regime in (2). Assuming an elastic modulus of E = 50 GPa and Poisson’s
ratio of v = 0.3 for ZK60, we obtain the displacements of the interior nodes %; from &;; through the
finite element derivative of shape function (B matrix), as shown in Fig. 11b.

The measurement data (ii;, ;) along both dR% and ORY in Fig. 11b are subsequently fed into
our optimized PINN—/ architecture (withn = 3,p = 0.5andn = 9,p = 0.17) to extract the traction
and separation distributions and equivalent cohesive zone law. Regardless of the path taken and the
n,p combination invoked for the PINN—/, there is almost no discernable difference between the
predicted traction distributions, as well as the predicted separation distributions (Fig. 11¢), which
suggests the stability and reliability of PINN—J;. The reconstructed traction distributions increase
sharply from zero to reach a peak cohesive traction £, = ~160 MPa centered at x; =~ 0 mm, before
decreasing gradually towards a constant t, = ~95 MPa when x; > 1.5 mm. Similarly, the separation
distributions decrease rapidly to ~0.0015 mm slightly ahead of the crack-tip (at x; ® 0 mm), before
tapering gradually to zero at a distance x; = 2.4 mm ahead of the crack-tip. Together, all four
corresponding traction-separation relations for ZK60 exhibit a consistent, unique shape with three
distinct regimes: (1) constant traction of t, = ~95 MPa for initial separation up to &, =
~0.0015 mm, (2) near instantaneous increase in traction to reach its peak of ~160 MPa at §, =
0.0022 mm, and (3) near linear (or slightly concave) softening to reach its full separation at §, =

~0.009 mm.



To validate the experimental cohesive zone laws in Fig. 11c for ZK60, we create a finite
element model comprising of a uniform 100 um x 100 pm grid of 4-noded CPE4 plane-strain
elements, each element representing a single pixel in the original experimental data grid (Fig. 10b,c),
with linear elastic material properties of E = 50 GPa, v = 0.3. We include the residual strain field

res

(Fig. 10c) as an initial stress in the finite element model (Fig. 12a) and introduce a single row of
cohesive elements along x, = 0 (dash red lines) governed by the average traction-separation response

predicted by PINN—J; forn = 3,p = 0.5andn = 9,p = 0.17 along AR} in Fig. 11c. We subject the

nodes at the far-field boundary (red path in Fig. 12a) to the same K; = 250 MPay/mm displacement
boundary conditions in (2). The resulting FEM calculations in Fig. 12b correctly predicts the
experimental elastic strain field (i, e5t,y¢) in Fig. 10b, as further illustrated by the very
comparable strain distributions along several vertical and horizontal cross-sections outside of the
“messy” fracture process zone shown in Fig. 12c and 12d. The close similarity between the simulated
and measured ¢, e85,y fields suggest that our PINN—/; correctly captures the experimental
cohesive zone relationship of ZK60 up to the loading of K; = K,y 4x-

5. Discussions and Conclusion

Cohesive zone laws are quantitative representations of the complicated fracture process zone ahead
of a crack-tip. Traditionally, the peak cohesive traction, cohesive energy, and cohesive separation
have been regarded as phenomenological parameters that can be calibrated to match the crack growth
response (e.g. R-curves) in experiments. However, several studies have now confirmed the
correlation between the shape of the cohesive zone law and the underlying crack growth
micromechanics. Constructing the full functional form of the cohesive zone law is a highly non-trivial
task. Since direct measurements at the scale of the fracture process zone are challenging, one can only

infer this cohesive traction versus separation relationship based on measurement data at the far-field.



Our results here demonstrate that PINNs, which constrain the cohesive tractions and
separations along the crack face to satisfy the Maxwell-Betti’s reciprocal theorem, can successfully
construct the cohesive zone law representative of the process zone from measurement data in the far-
field. While this represents a classical inverse problem which suffers from ill-conditioning, our
numerical studies show that the PINN is capable of stable cohesive zone extraction. In comparison,
previously-employed spectral (or field projection) methods (Chew, 2013; Cui et al., 2020; Cui and
Chew, 2022; Tran et al., 2022; Noh and Chew, 2024) rely on series solutions to represent the unknown
cohesive tractions and separations. The accuracy of such field projection methods depends critically
on the height h of the analysis domain (Chew, 2013; Tran et al., 2022), where increasing distance of
the measurement data from the cohesive interface readily leads to singularity in the inversion scheme
(Willis, 1966; Chew, 2013). Higher-order series solutions are often needed to mitigate “non-periodic
jumps” at the bounds of the domain in cases where a periodic series solution (e.g., Fourier series) is
employed, or to capture sharp or highly localized transitions in the traction or separation distributions.
The conundrum here is that these higher order terms in the series solution often cannot be accurately
ascertained from field projection method because of ill-conditioning, which significantly limits the
types of cohesive zone shapes that can be reconstructed. Our PINN approach is found to be
remarkably stable even when the measurement data is taken at distances far from the cohesive zone
(Fig. 6). It can also reconstruct with high accuracy a wide variety of cohesive zone shapes — convex,
concave, trapezoidal, bilinear, polynomial, and exponential — without further optimization of the
neural network, even those with large “non-periodic jumps” at the boundaries or sharp, localized
transitions in the traction, separation distributions (Figs. S1 and S2 of the Supplementary Materials),
and traction-separation profile (Fig. 7). In addition, our PINN approach is found to stably extract the
explicit form of the cohesive zone law even in the presence of numerical noise introduced in the strain

field to replicate possible disturbances in a real material (Fig. S3 of the Supplementary Materials).



More severe forms of such disturbances in the data can be corrected with an equilibrium field
regularization algorithm (Hong et al. 2009, Chew et al. 2009) prior to performing the PINN.

Conservative integrals including the /- and M-integral are widely employed in forward and
inverse fracture mechanics problems (Chen and Shield, 1977). In our formulation, we expand the use
of conservation integrals as physics-based constraints through the enforcement of the more general
Maxwell-Betti’s reciprocal theorem, which is widely applicable to general interface problems, such
as adhesive joints and interfaces, bio-adhesive properties of cellular structures at the nanoscale, grain
boundaries, etc. (Zhu et al., 2000; Chew et al., 2005; Desai et al., 2016; Jiang et al., 2023; Wei et al.,
2023). In the absence of noise in the numerical and experimental data, the obtained cohesive traction
and separation distributions will be unique if they are constrained to satisfy the reciprocal theorem
for an infinite number of admissible auxiliary fields. Here, we carefully design two classes of
sinusoidal-based auxiliary fields, each governed by a wavenumber k, which allows us to generate an
entire series of unique auxiliary fields. Ideally, one could constrain the PINN to satisfy the reciprocal
theorem for a large number of such auxiliary fields (i.e., large number of wavenumbers n). In practice,
however, any small gains in ensuring solution uniqueness (through the implementation of large n) is
offset by numerical errors which increases with n. This effectively places a limit on n in our PINN,
as seen from the similar traction-separation predictions between n = 3 and n = 9 in Fig. 7.

While the Maxwell-Betti’s reciprocal theorem strictly limits it to elastic problems, we have
reformulated the reciprocal theorem following (Tran et al., 2022) to treat the background plasticity
as an initial elastic residual stress, which permits the use of the reciprocal theorem with a reciprocity
gap to account for this residual elastic stress. Our modified reciprocal theorem is applicable for any
elasto-plastic material that exhibits linear unloading and reloading along the same path. Since we
explicitly delineate the cohesive zone from the background plasticity, our extracted cohesive zone

law only embeds the underlying crack growth micromechanics within the narrow process zone and



thus represents the intrinsic fracture response of the material. This decoupling between background
plasticity and process zone damage is applicable to a wide variety of interface problems, including
the delineation between plasticity within the grain interior and the deformation mechanics at the grain
boundary (Wei and Anand, 2004), or delineation between matrix material deformation and interfacial
failure in nanotube-reinforced composites (Bagchi et al., 2018).

We have applied this augmented PINN—/; to inversely reconstruct the cohesive zone law from
both the elastic strain fields at the current deformed state and the residual elastic strain fields after
unloading obtained from S-XRD for a ZK60 Mg alloy. We obtain a unique cohesive zone law relation
comprising of a “Dugdale” type regime characterized by constant traction at small separations
(presumably associated with damage initiation due to twinning (Grilli et al., 2022; Xie et al., 2022)),
a sharp increase in traction with further separation, followed by a linear softening regime. By
implementing this experimentally-obtained cohesive zone law in FEM, we have successfully
recovered the strain fields from S-XRD, validating our PINN approach. This extracted cohesive zone
law is associated with a single loading stage of a fatigue crack (valid from K; = 0 to K, 4, and thus
might not be representative of the full cohesive zone law for monotonic fracture of ZK60. However,
one can certainly extend this analysis to the higher K; to obtain the full cohesive zone law for crack
growth, or to different loading and unloading stages within a single steady-state fatigue cycle for
construction of the cohesive zone law for fatigue crack growth with unloading-reloading hysteresis.

In summary, we have introduced a new PINN capable of reconstructing the interfacial
tractions and separations in both elastic and elasto-plastic materials from far-field measurement data.
Compared to prior field projection methods, this neural network approach is remarkably stable even
when the cohesive zone reconstruction is based on measurement data far from the crack face. Our
PINN’s ability to capture highly localized details of the traction-separation relation, in concert with

S-XRD measurements, renders it suitable for providing rich fundamental insights into the crack



growth micromechanics under complex loading conditions. Although we have only applied this PINN
approach towards rate-independent, elasto-plastic problems under mode I loading, we remark that
this PINN approach is very general, and can be easily extended to mixed-mode loading by modifying
the PINN outputs and the auxiliary fields to include the shear traction/separation contributions, or to
rate-dependent, temperature-dependent or even stochastic crack growth problems (Wei, 2014) by
incorporating the relevant reciprocal theorem (e.g., Shivay and Mukhopadhyay, 2021). These are

subjects of future work.



Table 1: Hyperparameter testing of the PINN. Shaded: locally optimal architecture for each
systematic parametric variation. Bold: final optimized architecture.
. E Neural network structure . cm?t‘;ei:)glilttion o Error
é % Hidden Nodes per L:;tl;:mlng Affltlll‘c,ztlit:l)ln min(Lg)/w
= § layers hidden lgyer T W | ws (x 10‘512) * | RMSE
10 10 0.0001 1 1 10000 ELU 3.13 0.069
30 10 0.0001 1 1 10000 ELU 2.87 0.098
E 40 10 0.0001 1 1 10000 ELU 130810 0.389
E 10 15 0.0001 1 1 10000 ELU 1 0.042
z 10 20 0.0001 1 1 10000 ELU 0.94 0.078
E 20 20 0.0001 1 1 10000 ELU 0.73 0.045
E 40 20 0.0001 1 1 10000 ELU 130542 0.389
E 10 30 0.0001 1 1 10000 ELU 0.89 0.023
E 10 40 0.0001 1 1 10000 ELU 1.19 0.070
10 80 0.0001 1 1 10000 ELU 1.43 0.076
20 80 0.0001 1 1 10000 ELU 0.86 0.119
10 30 0.01 1 1 10000 ELU 273.7 0.264
10 30 0.005 1 1 10000 ELU 75.4 0.199
‘3 10 30 0.001 1 1 10000 ELU 2.05 0.063
;;0 10 30 0.0005 1 1 10000 ELU 3.13 0.101
g 10 30 0.00005 1 1 10000 ELU 0.75 0.044
E 10 30 0.00003 1 1 10000 ELU 0.82 0.040
10 30 0.00002 1 1 10000 ELU 0.61 0.040
10 30 0.00001 1 1 10000 ELU 2.12 0.043
10 30 0.00002 0 1 10000 ELU 1.85 0.196
s 10 30 0.00002 1 0 10000 ELU 0.62 0.043
%E 10 30 0.00002 1 1 | 100000 ELU 0.68 0.071
= £ 10 30 0.00002 | 1 | 1 | 10000 ELU 0.61 0.040
3 10 30 0.00002 1 1 1000 ELU 11.89 0.303
10 30 0.00002 1 1 10 ELU 268.96 0.263
; £ 10 30 0.00002 1 1 | 10000 ELU 0.61 0.040
E é 10 30 0.00002 1 1 10000 TANH 0.70 0.068
< 2 10 30 0.00002 1 1 10000 RELU 1.05 0.078
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Appendix A: Analytical auxiliary fields

2km
The analytical full-field solution for a sinusoidal shear traction t;(x;) = —gpe’ & ** of amplitude o,
with period L and wavelength k on an upper elastic half-space (x, > 0) is well-established

2km,,
0,1 = —ioy (2 — 22 o7 (r1—%2)
11 0

. 2kmxy 2Ky —
0-22 = _10-0 z e L (lxl XZ)

2kt .
01y = 0, (1 _ Zk:xZ) eT(lxl_xz) (Al)
_ L oo _ 2k7tx2 _"(ixl_xz)
= (1 +v) 2 (-2(1 - v) + 222

__L 90 _ 2kn’x2 2K i3y —x5)
u2—2kn(1+v)E((1 2v) +i )eL

2km

Observe that g1,(x;) = 0 and 0,,(x,) = —ie"lo,e' L ** atx, = inferring that the solution for
12(X1 22 (X1 0 2 g

L
2kn’

X1

2km
a normal sinusoidal surface traction t,(x;) = aoe L "' can be obtained by simply substituting

. L .
oy, — —ieogy and x, = x, + 7o n (A1)

2KTTX 2K e —
0-11 = O-O (1 - L 2) e L (lxl xz)
2kmx 2K i —
0,7 = O (1 + 2) e L (i1 —x2)
= anxz _71' ix:—x
017 = _lo-oTe L (i1 —x2) (A2)

=L % (i(— -Zkﬂ 2 iy —xt2)
ul_an(1+V)E(l( 14+ 2v) +i )eL

_ L ) _ kac2 Zk—n(ixl—xz)
uz—an(1+v)E( 2(1-v) — )eL



We introduce two classes of analytical auxiliary fields for the Maxwell-Betti’s reciprocal

theorem outlined in Fig. 2b. The first class is a full-field solution $; (&; j, ;) of an elastic half-space

.2km
subjected to periodic sin or cos distributions of normal tractions &,(x;) = —gge' L 1, explicitly

provided in (A2). The second class is a field solution S, (&; j» ;) with traction free surface but non-

zero periodic displacements, obtained by superposing two separate linear elastic fields using principle

of superposition outlined below (Fig. A1).

. 2k
To obtain $,(6;, U;), we first apply a normal traction goe’ L ** on the surface located at x, =

H of a lower half-space, resulting in the following field solution obtained by substituting x, = (H —

X3), 011 = —0y1, 023 = —03;, Uy = —Uy in (A2)

2km(x2—H)\ 2T (i +x,—H
011 = 0, (1 + (Lz ))e T (ix1+x,—H)
2kmt(xs—H)\ X" lix 43, —H
Oyp = —0, (1 _ (Lz ))e 7 —(x1+x2—H)
. 2km(xp—H) 2K -
Oy = 10'()%6 o (x1+x2—H) (A3)

Uy = ﬁ 1+v) % (i(—l +2v) — i—an(iz_H)) eZan(ixﬁxz_H)
Uy = ﬁ (1+v) % (2(1 —v) — —an(zZ_H)) o 1 Wt az=H)

The fields in this lower half-space decay exponentially with x,, but we still have a sinusoidally
varying (G4, 0,5 ) field along x, = 0 (Fig. Ala). We subsequently impose a combination of shear and
normal tractions £; along the x, = 0 surface of an upper half space, with magnitudes resulting in
—01, and —d5, respectively along x, = 0 (Fig. A1b). The field solution of this upper half space can
be obtained from a combination of (A1) and (A2). Finally, we superpose the field solutions of both
this lower (Fig. Ala) and upper half space (Fig. A1b) to obtain S, (Fig. Alc), which has a traction-
free surface boundary but with non-zero displacements along x, = 0.

The real and imaginary portion of each class of auxiliary field corresponds to two independent

auxiliary field solutions from imposing a cos or sin distribution (imaginary or real part, respectively)



of surface tractions (x, = 0 for S, in Fig. 2a and x, = H for S, in Fig. A1). Together, both classes of
auxiliary fields, S; and S,, provides a total of four independent auxiliary fields for each wavenumber
k. Considering the application of n wavenumbers, i.e., k ranging from 1 to n, we have a total of 4n

independent auxiliary fields to be used in the Maxwell-Betti’s reciprocal theorem.
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Figure Captions

Figure 1: (a) Schematic of the small-scale yielding model with a centerline crack, subjected to remote
mode I (K;) loading, with a cohesive interface (dashed red line) in front of the crack tip located at
x; = x, = 0. (b) Schematic of a cohesive zone, and a prescribed normal traction (t,)-separation ()
relationship. (¢) Finite element mesh of the small-scale yielding model. (d) Close-up view of the
highly-refined finite element mesh (green box) of uniformly sized D X D elements surrounding the
initial crack tip (symbol ‘x’).

Figure 2: (a) Physics-Informed Neural Network (PINN) architecture for the reconstruction of the
traction (T,) and separation distributions (D;) along the cohesive zone (X;) from far-field
measurement data, subjected to physical and mechanistic constraints enforced by a loss function. (b)
Schematic depicting the real field (S) and two classes of auxiliary fields (S;,S,) of the Maxwell-
Betti’s reciprocal theorem, which constitutes the primary constraint (L3) linking measurement data
along dR, (blue) to traction-separation predictions along dR; (red).

Figure 3: Hyperparameter studies on the network structure (a), learning rate (b), weights contribution
of the loss function (c¢), and choice of activation function (d), depicting the PINN-predicted (lines)
versus actual (symbols) exponential cohesive zone law; ‘*° supercript: locally optimal
hyperparameters.

Figure 4: Weighted loss evolution (/eff) and convergence of the predicted exponential cohesive zone
law with training epochs (lines, right) to ground truth data (symbols, right) for varying proportion
(p) of terms enforced per epoch out of a fixed total number of constraints (4n = 28) in the reciprocal
theorem.

Figure 5: Predicted exponential cohesive zone law (lines) versus ground truth data (symbols) for
different (n, p) combinations in the reciprocal theorem.

Figure 6: Domain size effects (h/D) on the predicted exponential cohesive zone law (lines) versus
ground truth data (symbols) for different (n, p) combinations in the reciprocal theorem.

Figure 7: Predicted (lines) versus ground truth data (symbols) for different functional forms of the
cohesive zone law.

Figure 8: (a) Von Mises stress contours (0, /E) at the current loading K; = K, 4, and after unloading
(from K,,,,,) to K; = 0. (b) Von Mises stress (0, /E) versus equivalent strain (&,) for material points
1-8 in (a) with the undeformed state (g, = €, = 0, circle symbol) as the reference configuration. (c¢)
Von Mises stress (6, /F) versus equivalent strain (€,) for material points 1-8 in (a), taking the fully
unloaded material (K; = 0, circle symbol) as the reference configuration.

Figure 9: Traction distribution, separation distribution, and the cohesive zone law predicted by PINN
(lines) from measurement data along two paths (OR}; dRY) versus actual ground truth data (circle
symbols). (a) Original PINN formulation for linear-elastic materials. (b) Augmented PINN
formulation (PINN—/) to account for plastically deforming background material.

Figure 10: (a) Schematic of the diffraction setup for strain mapping measurement of a fatigue crack
in a CT specimen using S-XRD, with mapping area in red dash square (Xie et. al., 2022). (b,c) Elastic



strain measurement (e85, £55, y£4 = 2&8L) from S-XRD at the last fatigue cycle, where the crack is
fully unloaded from K; = K,,,4, (b) to K; = 0 (¢).

Figure 11: (a,b) Postprocessed S-XRD experiment elastic strain measurement (&34, &2, 12 = 2&;15)
(a) and numerically reconstructed displacement field (ii4, @i,) with assumed K; domain at the far-field
boundary (red box) (b), taking the fully unloaded material (from K; = K,,,,, to 0) as the reference
configuration. (¢) Traction distribution, separation distribution, and the cohesive zone law from
PINN—/, based on measurement data along R, and dR% in (b).

Figure 12: (a) Finite element analysis (FEA) with implementation of the PINN-predicted cohesive
zone law along the crack front, with initial (residual) elastic strain field at K; = 0. (b) FEA simulated
elastic strain field at K; = K,,,4,. (¢,d) Comparison of the S-XRD (symbols) versus FEA (lines)
measurements of strain distributions along several vertical (¢) and horizontal (d) cross-sections near
the crack-tip, depicted by dashed-dot lines in (b).

Figure A1l: Construction of auxiliary field S,[5; j, 1] with a traction free surface along x, = 0 but

with non-zero displacements (¢) by superposing the linear elastic solutions of two sinusoidal, periodic
traction fields on lower (a) and upper half-spaces (b).
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Figure 1: (a) Schematic of the small-scale yielding model with a centerline crack, subjected to
remote mode I (K;) loading, with a cohesive interface (dashed red line) in front of the crack tip
located at x; = x, = 0. (b) Schematic of a cohesive zone, and a prescribed normal traction (¢,)-
separation (&) relationship. (¢) Finite element mesh of the small-scale yielding model. (d) Close-
up view of the highly-refined finite element mesh (green box) of uniformly sized D X D elements
surrounding the initial crack tip (symbol ‘x”).
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Figure 2: (a) Physics-Informed Neural Network (PINN) architecture for the reconstruction of the
traction (T,) and separation distributions (D,) along the cohesive zone (X;) from far-field
measurement data, subjected to physical and mechanistic constraints enforced by a loss function.
(b) Schematic depicting the real field (S) and two classes of auxiliary fields (S;,S,) of the
Maxwell-Betti’s reciprocal theorem, which constitutes the primary constraint (L3) linking
measurement data along dR, (blue) to traction-separation predictions along dR; (red).
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Figure 3: Hyperparameter studies on the network structure (a), learning rate (b), weights
contribution of the loss function (¢), and choice of activation function (d), depicting the PINN-
predicted (lines) versus actual (symbols) exponential cohesive zone law; ‘*’ supercript: locally
optimal hyperparameters.
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Figure 5: Predicted exponential cohesive zone law (lines) versus ground truth data (symbols) for
different (n, p) combinations in the reciprocal theorem.
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Figure 6: Domain size effects (h/D) on the predicted exponential cohesive zone law (lines) versus
ground truth data (symbols) for different (n, p) combinations in the reciprocal theorem.
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Figure 7: Predicted (lines) versus ground truth data (symbols) for different functional forms of the
cohesive zone law.
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Figure 8: (a) Von Mises stress contours (o,/E) at the current loading K; = K,,,,, and after
unloading (from K,,,,) to K; = 0. (b) Von Mises stress (0, /E) versus equivalent strain (&,) for
material points 1-8 in (a) with the undeformed state (o, = €, = 0, circle symbol) as the reference
configuration. (¢) Von Mises stress (6, /E) versus equivalent strain (€,) for material points 1-8 in
(a), taking the fully unloaded material (K; = 0, circle symbol) as the reference configuration.
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Figure 9: Traction distribution, separation distribution, and the cohesive zone law predicted by
PINN (lines) from measurement data along two paths (9R5; OR%) versus actual ground truth data
(circle symbols). (a) Original PINN formulation for linear-elastic materials. (b) Augmented PINN
formulation (PINN—/) to account for plastically deforming background material.
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Figure 10: (a) Schematic of the diffraction setup for strain mapping measurement of a fatigue

crack in a CT specimen using S-XRD, with mapping area in red dash square (Xie et. al., 2022).
(b,c) Elastic strain measurement (£, £55, y&4 = 2e£}) from S-XRD at the last fatigue cycle, where

the crack is fully unloaded from K; = K,,,4, (b) to K; = 0 (¢).
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Figure 11: (a,b) Postprocessed S-XRD experiment elastic strain measurement (€;4, &35, V12 =
2&;,) (a) and numerically reconstructed displacement field (i, 1i,) with assumed K; domain at the
far-field boundary (red box) (b), taking the fully unloaded material (from K; = K,,,4, to 0) as the
reference configuration. (¢) Traction distribution, separation distribution, and the cohesive zone
law from PINN—/; based on measurement data along dR5 and dRY in (b).
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Figure 12: (a) Finite element analysis (FEA) with implementation of the PINN-predicted cohesive
zone law along the crack front, with initial (residual) elastic strain field at K; = 0. (b) FEA
simulated elastic strain field at K; = K,,,4,. (¢,d) Comparison of the S-XRD (symbols) versus FEA
(lines) measurements of strain distributions along several vertical (¢) and horizontal (d) cross-
sections near the crack-tip, depicted by dashed-dot lines in (b).
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Figure Al: Construction of auxiliary field $,[5; j,» ;] with a traction free surface along x, = 0 but
with non-zero displacements (¢) by superposing the linear elastic solutions of two sinusoidal,
periodic traction fields on lower (a) and upper half-spaces (b).



