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Abstract The cohesive zone law represents the constitutive traction versus separation 

response along the crack-tip process zone of a material, which bridges the microscopic fracture 

process to the macroscopic failure behavior. Elucidating the exact functional form of the cohesive 

zone law is a challenging inverse problem since it can only be inferred indirectly from the far-field 

in experiments. Here, we construct the full functional form of the cohesive traction and separation 

relationship along the fracture process zone from far-field stresses and displacements using a physics-

informed neural network (PINN), which is constrained to satisfy the Maxwell-Betti’s reciprocal 

theorem with a reciprocity gap to account for the plastically deforming background material. Our 

numerical studies simulating crack growth under small-scale yielding, mode I loading, show that the 

PINN is robust in inversely extracting the cohesive traction and separation distributions across a wide 

range of simulated cohesive zone shapes, even for those with sharp transitions in the traction-

separation relationships. Using the far-field elastic strain and residual elastic strain measurements 

associated with a fatigue crack for a ZK60 magnesium alloy specimen from synchrotron X-ray 

diffraction experiments, we reconstruct the cohesive traction-separation relationship and observe 

distinct regimes which suggest corresponding transitions in the micromechanical damage 

mechanisms. 
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1. Introduction 

The growth of cracks at locations of high stress concentrations, such as along adhesive joints, grain 

boundaries, and fiber-matrix interfaces, controls the macroscopic fracture and fatigue response of 

engineering materials (Chew et al., 2005; Li and Chew, 2016, 2017; Liu and Shin, 2019; VanSickle 

et al., 2020; Li et al., 2022; Jiang et al., 2023a). However, modeling the fracture and fatigue crack 

growth remains a challenge, since the complicated microscopic adhesive and cohesive damage 

processes at these high stress concentration sites are often inaccessible to direct experimental 

measurements. One well-established mechanistic approach to modeling crack growth or interface 

failure is to introduce an embedded fracture process zone (FPZ) ahead of the crack and to homogenize 

the localized deformation response within the FPZ into equivalent cohesive zone laws (Dugdale, 

1960; Tvergaard and Hutchinson, 1992; Hutchinson and Evans, 2000; Guo et al., 1999; Gladysz and 

Chawla, 2020). These cohesive zone laws govern the relationship between the cohesive-zone 

tractions in equilibrium with the stress fields of the surrounding body and the cohesive-zone 

separations compatible with the deformation fields of the surrounding body (Akhavan-Safar et al., 

2022), and can quantitatively represent detailed micromechanical failure processes, such as the 

nucleation, growth, and coalescence of voids (Allix and Corigliano, 1996; Guo et al., 1999; Cui et 

al., 2020; Muro-Barrios et al., 2022). 

 In the original Dugdale model (Dugdale, 1960), the cohesive traction is assumed to be a 

constant up until complete separation, but subsequent studies heuristically introduced different 

cohesive zone models, including the linear softening model (Hillerborg et al., 1976), a trapezoidal 

model (Tvergaard and Hutchinson, 1992), and an exponential model (Xu and Needleman, 1993; Gao 

and Bower, 2004; He and Xin, 2011). Nevertheless, studies often regard the cohesive strength (peak 



traction) and the energy release rate (area under the traction-separation relation) as two primary 

material parameters governing crack advance and the macroscopic fracture behavior: the functional 

form of the cohesive zone law is assumed a priori, while these primary material parameters are 

calibrated with top-down experiments to best match the fracture resistance curves  (Chen et al., 2003; 

Gustafson and Waas, 2009; Desai et al., 2016; Jemblie et al., 2017; Lélias et al., 2019). More recent 

studies show that the exact shape of the cohesive zone law represents the underlying crack growth 

micromechanics and is a key signature governing the fracture behavior of a material (Chandra et al., 

2002; Kafkalidis and Thouless, 2002; Li and Chandra, 2003; Alfano, 2006; Olden et al., 2008; Alfano 

et al., 2009; Campilho et al., 2013; Chew, 2014; Heidari-Rarani and Ghasemi, 2017). For example, 

hydrogen embrittlement of stainless steel and high impact polystyrene (HIPS) are best represented 

by polynomial and concave-shaped cohesive zone laws, respectively, while crazing-induced ductile 

crack growth in polymethyl methacrylate (PMMA) resulted in a convex-shaped cohesive zone law 

(Hong et al., 2009). Even in the phase field fracture modeling where the crack path is not defined a 

priori, the equivalent cohesive zone law is found to have a shape similar to the governing hyperbole 

stiffness degradation function (Tran and Chew, 2022). 

 Elucidating the full functional form of the cohesive zone law, in addition to the cohesive 

parameters (e.g., peak traction, cohesive energy, complete failure separation), is a highly non-trivial 

inverse problem that is often subjected to ill-conditioning (Elices et al., 2002; Pierron and Lo, 2008). 

Cox and Marshall (1991) and Sørensen and Jacobsen (2003) heuristically determined the cohesive 

zone (or crack-bridging) laws in composite materials utilizing the crack opening displacement and 

the -integral, respectively. Focusing on the crack-tip fields, Hong and Kim (2003) and follow-on 

studies (Chew et al., 2009; Hong et al., 2009; Kim et al., 2012) expressed the elastic fields of a crack 

tip with a cohesive zone in a homogeneous isotropic solid in terms of eigenfunction expansions in a 

complex mathematical form, where the inversion method is based on interaction J-integrals (Chen 



and Shield, 1977). Chew extended this field projection (spectral) method by expressing the unknown 

tractions along an interface bounded by plastically-deforming materials in terms of the Fourier series, 

where the Fourier coefficients were determined using the Maxwell-Betti’s reciprocal theorem with a 

reciprocity gap to account for nonlinear effects (Chew, 2013). Similar inversion methods utilizing 

series solutions were performed to quantify the continuum traction signatures along grain boundaries 

from atomistic stress information in the vicinity (Cui and Chew, 2022). The accuracy of such spectral 

methods requires that the assumed series solution accurately represents the functional form of the 

cohesive traction, and in turn, the cohesive separation, distributions. In the presence of non-periodic 

traction boundary conditions for an assumed periodic (e.g., Fourier) series solution, many terms in 

the series solution would then be needed to capture the sharp transitions or localized details in the 

traction or separation distributions. This significantly increases the sensitivity of the inverse solution 

to small numerical or experimental errors in the far-field measurement data (Chew, 2013; Willis, 

1966).  

 Machine learning techniques based on deep neural network architectures have recently been 

applied to solving inverse problems in mechanics. For example, artificial neural networks (ANNs) 

trained on numerical datasets have successfully predicted the stress hotspots for cracking (Mangal 

and Holm, 2018, 2019; Pierson et al., 2019; Perera and Agrawal, 2023), the locations of dislocations 

from the atomistic stress fields of grain boundaries (Noh and Chew, 2024), the constitutive behavior 

of materials at both the atomistic and continuum scales (Rowe et al., 2020; Shaidu et al., 2021; Zhang 

et al., 2022; Li et al., 2023; Wang et al., 2023), as well as the stochastic crack growth in porous ductile 

materials (Worthington and Chew, 2023). In situations where there is sparse measurement data, a 

variant of deep ANNs, termed as physics-informed neural networks (PINNs), has the unique ability 

to solve both forward and inverse problems by constraining the solution to satisfy some predefined 

physical or governing laws (Cuomo et al., 2022; Rodriguez-Torrado et al., 2022; García-Cervera et 



al., 2023; Seo, 2024). While originally formulated to solve partial differential equations in fluid 

problems, PINNs have recently been applied to the field of solid mechanics and interfacial failure 

modeling (Diao et al., 2023; Tao et al., 2023; Wei et al., 2023).  

  In this work, we inversely uncover the cohesive zone laws for fracture from far-field stress 

and displacement information using PINNs, which are constrained to satisfy Maxwell-Betti’s 

reciprocal theorem. Section 2 details our PINN architecture applied to a small-scale yielding, mode I 

crack-growth problem in the finite element method (FEM). In Section 3, we study the generalizability 

of the PINN to reconstruct different functional forms of the cohesive zone laws in both linear elastic 

and elasto-plastic materials, using measurement data at varying domain sizes in the far-field. The 

PINN is subsequently used in Section 4 to reconstruct the cohesive traction-separation relationship 

for a ZK60 magnesium alloy from the elastic strain fields of a fatigue crack provided by synchrotron 

X-ray diffraction (S-XRD) experiments. Section 5 discusses the implications of our results in the 

context of prior inverse approaches and concludes with a summary. 

2. Problem Formulation 

2.1 Crack growth simulations 

We first assess the ability of PINNs to reconstruct the crack-tip cohesive zone laws from the far-fields 

of a crack growth problem under mode I loading, by generating the crack-tip fields through a forward 

finite element simulation detailed in this subsection (Fig. 1). Our small-scale yielding, finite element 

model comprises of a semi-infinite centerline crack in a homogeneous, isotropic material with elastic 

modulus = 1 GPa and Poisson’s ratio = 0.3 subjected to remote mode I ( ) K-field loading 

under plane strain conditions (Fig. 1a). We consider both a linear elastic material, and an elasto-

plastic material with the plastic response characterized by a  flow theory which obeys a linear 

hardening relationship  

 = +       (1) 



where  is the von Mises stress,  is the initial yield stress,  is the plastic strain, and  is the 

linear hardening constant. Along the remote circular boundary of the finite element mesh, we 

prescribe the elastic asymptotic  plane strain displacement fields 

( , ) =  (3 4 cos ) cos( , ) =  (3 4 cos ) sin  (2) 

where = +   and = tan  for points on the remote boundary (Fig. 1a). We conduct 

finite element simulations of the boundary value problem using the commercial finite element 

software, ABAQUS (Smith, 2009). The finite element mesh consists of 52,452 two-dimensional, 

plane strain 4-noded CPE4 linear elements (Fig. 1c). 

 To simulate crack propagation, we implement a single row of cohesive elements (Fig. 1b) 

located within a highly-refined mesh region ahead of the initial crack tip ( = = 0) comprising 

of uniformly-sized elements, each of dimensions ×  (Fig. 1d). These cohesive elements obey a 

prescribed relationship between the normal cohesive traction  and the normal cohesive separation 

, with  denoting the peak traction,  the final separation (i.e., full damage), and  the area under 

the traction-separation relation (Fig. 1b). Under the conditions of crack advance, the crack growth 

resistance  is related to the mode I stress intensity factor  by  =    (3) 

In a linear elastic medium, = . In an elasto-plastic medium, however,  has combined 

contributions from both the initial or intrinsic fracture energy associated with the process zone , 

and the background plasticity ; small-scale yielding conditions prevail since the plastic zone size 

is small compared to the distance to the remote boundary .  

2.2 Neural network architecture 



In physical experiments, the far-field strain or displacement information (  in Fig. 1d) can be 

obtained with high accuracy using well-established techniques such as high-resolution digital image 

correlation (DIC) or neutron diffraction. However, direct, quantitative measurements within the 

narrow process zone ahead of the crack (  in Fig. 1d) are generally not possible since this is the 

regime where the complicated micromechanics of fracture occur. Here, we seek to extract the 

unknown traction ( ) and separation ( ) distributions for material points located along  

( = 0), from the measured stress ( , ) and displacement information ( , ) along . 

The traction ( ) versus separation ( ) relationship is then obtained by combining the response of all 

material points along the crack face ( ).  

 Fig. 2a depicts the architecture of our PINN, which takes an [ × 1] spatial matrix, , 

representing the  coordinates of  collocation (material) points along , as an input. This input 

matrix is linearly connected to an ANN, comprising of several hidden layers, each with a fixed 

number of nodes per layer. The nodes within each hidden layer apply a series of weighting functions 

and biases to the previous layer before passing them onto the next layer through an activation function 

(Da Silva et al., 2017). The final hidden layer of the network linearly outputs two  [ × 1] spatial 

matrices  and , , representing the cohesive traction  and separation gradient , = , 

respectively, corresponding to each collocation point in . We cumulatively integrate ,  in ,  

using the composite trapezoidal rule to obtain  (and the spatial matrix ), while enforcing the 

separation  to be the same at the common node between  and  at the end of the cohesive 

zone (node b in Fig. 1d).  

 We introduce three separate loss functions ( , , ) in our PINN. The first function 

constrains the output cohesive tractions  to follow the known boundary tractions  at the common 

nodes between  and  (nodes a and b in Fig. 1d) = ( ) ( ) + ( ) ( )  (4) 



The second loss function enforces 0 and , 0 along  to ensure positive separation which 

continuously decays with distance from the crack-tip = ( ( ) | ( )|) + , ( ) +  , ( )                  (5) 

The third loss function is the main driving loss which constraints the output traction and separation 

distributions to satisfy the Maxwell-Betti’s reciprocal theorem. In a linear elastic problem, the 

Maxwell-Betti’s reciprocal theorem relates the unknown tractions ( ) and displacements 

( = /2) along  to the measured tractions ( = ) and displacements ( ) along , i.e.,  = =    (6) 

where  is the outward normal to the boundary,  denoting the value of the integral based on 

measurement data along , and [ , ] and [ , ] denote the real and auxiliary deformation 

fields of the same linear elastic material (Fig. 2b). Thus, the unknown solutions for ( ) and ( ) 

along  should satisfy (6) for all admissible auxiliary fields [ , ]. Augmentations to (6) 

through a reciprocity gap to account for (nonlinear) elasto-plastic effects are detailed later in Section 

3.2. We select two classes of analytical auxiliary fields  and , depicted in Fig. 2b, representing 

the elastic half-space solutions for (i) an imposed periodic sin or cos distribution of normal  surface 

tractions, and (ii) a traction-free surface ( = = 0) but with non-zero periodic sin or cos 

distributions of  and  displacement combinations, as detailed in Appendix A. With these two 

classes of auxiliary fields subjected to sin or cos distributions of tractions or displacements, each 

loading wavenumber  therefore provides 4 independent auxiliary fields. Considering  to range from 

1 to , we would have a total of 4  independent auxiliary fields, which we denote by the superscript 

 in [ , ]. Thus, the third loss function can be expressed as 

=     (7) 



where the integral is evaluated along  using the trapezoidal rule. We consider the relative 

contribution ( ) of each loss component ( ), to obtain the total loss  = + +  (8) 

The total loss in (8) is then backward propagated through the network to update the weights and 

biases of the ANN. The ratios of : : , along with the number of wavenumbers ( ), and hence 

the total number of auxiliary fields (= 4 ), are considered as hyperparameters of our PINN. 

2.3 Hyperparameter study 

We perform hyperparameter testing of the network structure by systematically varying the number 

of hidden layers, the number of nodes within each hidden layer, the learning rate, the type of 

activation function, and the relative weight contribution in the loss function. We evaluate the 

performance of each PINN architecture based on its ability to minimize the loss function . At the 

epoch corresponding to this minimum , we also separately calculate the root mean squared errors 

(RMSE) between the PINN-predicted traction-separation relationship versus the actual cohesive zone 

law implemented in FEM. Our simulations for the hyperparameter studies are based on an exponential 

cohesive zone model that is implemented in Abaqus as a UEL User Element subroutine (Gao, 2016) = exp 1  (9) 

with a peak traction of = 0.003, total separation of = 0.125, and an intrinsic fracture energy of 

= 0.000375. Our FEM crack growth model is loaded to a sufficiently large  to enable crack 

propagation to a distance of = 80 = 640  from the initial crack-tip. Displacement and stress 

data are then taken along a predefined  located at a vertical distance of = 20  from the cohesive 

interface along  (Fig. 1d) at this crack instant for the reconstruction of the cohesive zone laws, 

though the effects of /  are later studied in Fig. 6. 



 In the hyperparameter studies in Table 1, we choose the maximum wavenumber of = 7 

which provides us with a total of 4 = 28 unique auxiliary fields. To increase the convergence rate,  

reduce the number of computations, and avoid the solution from getting trapped at the non-optimal 

local minima, we employ a Stochastic Gradient Descent approach (Shalev-Shwartz and Ben-David, 

2014) where for each epoch, we randomly select only a proportion = 0.214 (6 out of 28) of these 

auxiliary fields to compute the loss function . The loss is then backward propagated through the 

network to update the weights and biases of the neural network before moving to the next epoch, 

where the process is repeated with a new 4  number of auxiliary fields selected at random out of 

the total 4  unique auxiliary fields. Note that if = 1, we recover the traditional Gradient Descent 

(Shalev-Shwartz and Ben-David, 2014). We conduct this training process over 500,000 epochs using 

the Adam Optimizer (Da Silva et al., 2017). 

Our results in Table 1 show that the number of hidden layers, together with the number of 

nodes per hidden layer, in the neural network are the most critical hyperparameters. Fig. 3a compares 

the (exponential) traction-separation law implemented in FEM (symbols) with the predictions of the 

PINN for varying number of layers and nodes per layers (lines). A PINN architecture with more 

layers than nodes per layer (purple line) completely fails to capture traction-separation relationship 

and tends to have extremely high  as shown in Table 1. In contrast, PINN architectures with fewer 

layers tend to capture the peak traction, final separation, and in general, the full functional form of 

the cohesive zone law, with high precision (red/blue/black lines in Fig. 3a). We select an optimal 

network structure comprising of 10 hidden layers with 30 nodes per layer (black line in Fig. 3a), 

which has the second lowest , along with the lowest RMSE in the predicted traction-separation 

response. Our hyperparameter studies in Table 1 and Fig. 3b further show that the cohesive zone 

predictions are optimal with a learning rate of = 2 × 10 . Another important hyperparameter is 

the relative weight contributions in the loss function. Setting 10  relative to = = 1 is 



necessary to maintain low  and RSME values (Table 1, Fig. 3c), implying that satisfying the 

Maxwell-Betti’s reciprocal theorem (  in (7)) is key to ensuring accurate traction-separation 

predictions. Nevertheless, maintaining the boundary tractions (  in (4)) is important, as shown by 

the significant errors introduced by setting = 0 (purple line, Fig. 3c). In comparison, enforcing 

the  constraint in (5) to ensure positive and continuously decaying separations only marginally 

improves  (compare results for = 0 and = 1 with identical ,  values under Weight 

Contribution in Table 1). Based on these studies, we enforce all three loss constraints, and with a 

relative weight contribution of : : = 1: 1: 10 . Finally, while the choice of ELU, ReLU, and 

tanh activation functions does not significantly influence  and the associated RMSE values (Table 

1), it affects the smoothness of the predicted traction-separation response (Fig. 3d) which can be 

important for numerical stability when these cohesive zone law predictions are implemented in FEM. 

As such, we select the ELU activation function for our final PINN architecture. Note that our PINN-

extracted cohesive zone laws in Fig. 3 do not start precisely at 2 = 2 = 0, since 2( ) = 0 lies 

beyond the extraction region of  in Fig. 1d.  

The demonstrated importance of the Maxwell-Betti’s reciprocal theorem governing  in (7) 

introduces two additional hyperparameters that can influence our network performance: (a) the 

number of unique auxiliary fields (4 ), and (b) the proportion  of these 4  terms enforced at each 

epoch in the  constraint. Fig. 4 examines the effects of Stochastic Gradient Descent by comparing 

the loss evolution and the predicted traction-separation laws with increasing epochs for varying  

with a fixed = 7. The use of Stochastic Gradient Descent with = 0.214 in Fig. 4a results in noisy 

 with traction-separation response converging only after epoch (iii).  In contrast, the traditional 

Gradient Descent approach ( = 1) in Fig. 4b is characterized by very smooth loss evolution leading 

to rapid convergence after epoch (ii) in the predicted traction-separation response. One of the distinct 

advantages of Stochastic Gradient Descent is its computational efficiency, since only a smaller subset 



of 4  (out of 4 ) functions are evaluated at each epoch. Interestingly, the predicted traction-

separation response with = 0.214 is noticeably closer to the implemented exponential response in 

FEM, highlighting the Stochastic Gradient Descent’s ability to converge towards the global 

minimum, while the solution for the traditional Gradient Descent ( = 1) can be trapped at a local 

minimum. Further reduction in the number of evaluated functions per epoch to just a single function 

(4 = 1) with = 0.036 in Fig. 4c significantly increases fluctuations in . We now arrive at a 

converged solution at a higher epoch ((iv) and beyond), but with observable differences between the 

predicted and actual cohesive zone laws. 

Conceivably, a larger  will result in better agreement between the reconstructed cohesive 

traction and separation distributions from PINN versus the ground truth data from FEM, since more 

physical constraints are enforced to nudge the solution towards satisfying (7). In reality, our results 

for the converged traction-separation predictions across various combinations of  and  values in 

Fig. 5b-d show no discernable improvement in the PINN predictions beyond 3, regardless of the 

number of enforcing functions, 4 . In fact, even with 4  = 1 in Fig. 5a, where the reciprocal 

theorem is enforced for a single auxiliary field per epoch, we still obtain reasonable predictions with  =  5 and beyond. Close examination shows that the pre- and the post-peak of the cohesive zone 

law are marginally better captured with = 3, 4 = 6 (purple in Fig. 5c,d) and  = 9, 4 = 6 

(blue in Fig. 5d), respectively.  

3. Numerical Reconstruction of Crack-tip Cohesive Zone Laws 
 
3.1 Generalization capabilities 

We have demonstrated the ability of our PINN to numerically reconstruct an exponential cohesive 

zone law along the crack face ( ) from field displacement/stress information at a vertical distance (= 20 ) away (along ). For the PINN approach to be useful, it must be capable of performing 

the reconstruction based on available data at different domain heights from the crack interface. It 



should also be generalizable to different functional forms of the cohesive zone law which are typically 

unknown a-priori in experiments. As in classical inverse problems, using information from the far 

field  generally leads to ill-conditioning, where the extracted results could be highly sensitive to 

numerical (interpolation) errors and uncertainties in the input measurements (Elices et al., 2002; 

Pierron and Lo, 2008). The effects of ill-conditioning are exacerbated with increasing distance  of 

the measurement data from the domain of interest (crack face).  

Fig. 6 depicts the PINN predicted exponential traction-separation relationship for three sets 

of  and  combinations based on measurement data along different / . Note that = 80  

constitutes the exterior of the highly-refined mesh surrounding the propagating crack (green box in 

Fig. 1d), and we use the interpolated stress and displacement information for the non-structured 4-

node elements along  in our computations of (6) to (8) for > 80 . Results show that the PINN 

predictions of the cohesive tractions and separations are very accurate for 40  (= 320 ), and 

follows closely to the ground truth cohesive zone law implemented in FEM (symbols). Accuracy of 

the predictions are slightly reduced with larger domain sizes, but the general functional form of the 

traction-separation relationship is still correctly captured with very accurate , , and  predictions 

even at = 140  (= 1120 ), where the maximum normal stress  along  has dropped by 

60% compared to the peak cohesive traction . Beyond this domain at = 160  (= 1280 ), 

however, our PINNs for = 3 and = 9 in Figs. 6a and 6b fail to capture the cohesive zone relation, 

though the notably better predictions with = 2, = 1 in Fig. 6c suggests that this issue can be 

somewhat mitigated by limiting the enforcement of  to lower-order auxiliary fields.  

Our cohesive zone reconstructions thus far are based on an exponential traction-separation 

relation in (9). Next, we elucidate the ability of our PINN to reconstruct a variety of cohesive zone 

shapes (symbols in Fig. 7) widely adopted in the literature (Dugdale, 1960; Hillerborg et al., 1976; 

Tvergaard and Hutchinson, 1992; Xu and Needleman, 1993; Chen et al., 2003; Li and Chandra, 2003; 



Alfano, 2006; Hong et al., 2009; Heidari-Rarani and Ghasemi, 2017; Tran and Chew, 2022; Akhavan-

Safar et al., 2022): convex (a,b), concave (c,d), Dugdale (e), trapezoidal (f,g), polynomial (h,i), and 

bilinear (j,k,l). We implement each of these cohesive zone laws using a User Element Subroutine, 

and propagate each crack to a crack distance of at least = 20  or until the separation is fully 

developed at the crack wake. Using the numerically-obtained stress and displacements along a 

predefined  located at = 20  from the crack-face, we enforce (7) and (8) with the auxiliary 

fields for = 3 and = 9, using the same number of functions evaluated per epoch of 4 = 6. We 

consider the solution of each PINN to converge when the minimum  remains unchanged for the 

next 200,000 epochs, and we include these converged PINN predictions (red and blue curves) in Fig. 

7. For reference, we also include the predicted traction and separation distributions in Figs. S1 and 

S2 of the Supplementary Materials.  

For cohesive zone laws with convex, concave, polynomial, or bilinear functional forms, our 

PINN predictions based on = 3 and 9 are both in very good agreement with the actual cohesive 

zone laws (symbols), although the former is better able to capture the peak cohesive traction . 

Interestingly, the PINN prediction based on = 9 is able to replicate fairly well the Dugdale-shaped 

cohesive zone law, which is characterized by constant peak traction  for long periods of separation. 

Both PINNs however overestimate the peak tractions for trapezoidal-shaped cohesive zone laws. 

Potentially, an optimal network architecture exists (e.g., different combinations of ,  or even 

different number of hidden layers and nodes per layer) that can better fit the functional forms of these 

cohesive zone relations individually. In practice, one has no information on the shape of the cohesive 

zone law a-priori. Nevertheless, we conclude based on our analyses in Fig. 7 that our PINN 

architecture (assuming = 3,9 with 4 = 6) accurately predicts the full functional form of the 

crack-tip cohesive zone law from far-field measurements. 

3.2 Extensions to elasto-plastic medium  



The Maxwell-Betti’s reciprocal theorem is strictly applicable to linear elastic medium. For an elasto-

plastic material characterized by / = 0.0012 and = 0.15 in (1) with the same exponential 

cohesive zone law in (9), we plot the von Mises stress contours in Fig. 8a at the current loading of =  (= 0.87 ) and after unloading from  to 0. We observe significant build-up of 

residual stress caused by plastic deformation during crack propagation after the crack is fully 

unloaded to = 0. We select 8 material points (cross symbols) surrounding the current crack-tip 

and trace the history of the local equivalent stress ( ) versus equivalent strain ( ) at each of these 

material points in Fig. 8b as the crack is loaded from its undeformed reference state (filled circle 

symbol) to  (cross symbols). While all material points initially follow a stress-strain response 

defined by (1), material points 2, 3, 6, 7 behind the current crack wake are linearly unloaded once the 

crack propagates. 

Neglecting plasticity effects, we first use the optimized PINN architecture from Section 2 and 

extract the equivalent cohesive zone law from measurement data about two distinct domains at =
:  and  located at  = 20  and 80  above the crack face (solid and dash line in Fig. 

8a-top, respectively). Fig. 9a compares the PINN-predicted traction distribution ( ), separation 

distribution ( ), and the traction-separation relationship (solid and dashed curves) versus the 

ground truth exponential cohesive zone law (symbols). Observe that the PINN prediction depends on 

the path (  or ) where the measurement data is taken, suggesting the loss of path-independence 

of the reciprocal theorem. While the corresponding PINN-predicted separation distributions are 

largely similar, an abrupt decrease in separation is observed beyond > 150  due to the constraint 

enforcing  to be the same at the common node b between  and  in Fig. 1d when integrating 

,  to obtain  in Fig. 2a. Together, the traction-separation predictions based on measurement data 

from the outer domain  envelopes the predictions based on the inner domain . The assumption 

of linear elasticity in the reciprocal theorem infers that the traction-separation predictions from each 



domain can be interpreted as the equivalent cohesive zone law with a linear elastic material 

assumption within , where all plasticity effects within the projected domain  are embodied 

within the extracted cohesive zone law. Therefore, the PINN predictions are similar to the actual 

cohesive zone law for smaller / .  For larger / , the predicted cohesive energy (area under the 

traction-separation response) would be higher, since it encompasses both the intrinsic fracture energy 

within the process zone and the background plastic dissipation within . At sufficiently large / , 

where the entire background plasticity is encompassed within , the cohesive energy of the PINN-

predicted cohesive zone law will equate with  in (3).  

The stress  and displacement  fields at the current deformed configuration of =  

are based on the undeformed state (filled circle symbol in Fig. 8b) as reference material configuration. 

Recently, Tran et al. showed that the deformation response of an elasto-plastic material (with linear 

unloading) at its current =  configuration can be reformulated as a linear elastic-equivalent 

material by considering the unloaded configuration to = 0 from  as its new reference 

configuration (Tran et al., 2022). Accordingly, we treat this new unloaded crack at = 0 as the new 

reference configuration; corresponding expressions for stress, strain, and displacements herein are 

denoted with a ‘~’ accent in this new reference configuration. Based on the principle of superposition, 

the current strain relative to this new reference state, , is related to the elastic strain, , and the 

residual elastic strain after unloading to = 0, , by =   (10) 

where both  and  are relative to the original undeformed configuration. The current stress 

relative to this new reference state, , can be expressed as = =   (11) 

where  is the elastic stiffness tensor, and =  is the residual stress after unloading 

to = 0. To illustrate this, we apply (10) and (11) to the same 8 material points in Fig. 8a to compute 



the equivalent von Mises stress ( ) versus strain ( ) relation defined relative to this new reference 

state, and show in Fig. 8c that these material points at =  (cross symbols in Fig. 8c) now 

follow the linear relationship with identical stiffness ( ). When unloaded to = 0 (i.e., the new 

reference state), all material points fully unload to ( , ) = (0,0) as shown by the open circle 

symbol in Fig. 8c. 

Since the current stress ( ) and strain ( ) measurements based on this new reference state 

are fully elastic at = , the Maxwell-Betti’s reciprocal theorem is now valid and can be 

rewritten as (Tran et al., 2022) =     (12) 

Substituting (10) and (11) in (12), we obtain  
 = ( ) =     (13) 

where = , +  is the reciprocity gap to account for background 

plasticity, where  is the displacement component associated with  at the unloaded state. The 

reference state displacement  in (13) is obtained from the elastic strain, , through the finite 

element derivative of shape function (  matrix) with a prescribed displacement boundary condition 

from (2) at the elastic remote boundary which has to be larger than the expected plane strain plastic 

zone size of = ~145  (Anderson, 2017). For a fully-elastic material, = 0, = , which 

reduces (13) to (6), and we recover the original PINN formulation. Based on this augmented PINN 

formulation, termed as PINN– , for elasto-plastic materials, which transforms ( , ) at =  

into ( , ), we show in Fig. 9b that the extracted traction distribution, separation distribution and 

cohesive zone law are now in perfect agreement with ground truth data (symbols), regardless of the 

domain used for the measurement data (comparing the solid and dash lines). 

4. Experimental Reconstruction of Crack-tip Cohesive Zone Law  



The PINN–  approach to reconstructing the crack-tip cohesive zone law in plastically-deforming 

materials in Section 3.2 requires elastic strain information at both the loaded ( = ) and 

unloaded ( = 0) states for computations of  and , respectively. While this information is 

readily available in finite element analysis, it can be challenging to obtain from traditional full-field 

measurement techniques such as digital image correlation (DIC). In our recent work, we have 

conducted both cohesive interface simulations and in situ strain measurements in a ZK60 Mg alloy 

in a compact-tension setup (Xie et al., 2022). Taking advantage of the high penetration capability of 

synchrotron X-ray diffraction (S-XRD), our experiments at Advanced Photon Source, Argonne 

National Laboratory allow us to probe the lattice strain field, as shown in Fig. 10a, whereas the 

Debye-Scherrer ring distortions can be used to obtain the directional strain and the entire in-plane 

strain tensor after a tensorial operation. All these strain components are elastic, and the measurements 

were performed at the crack tip centered about (0,0), with a beam size of 100 m × 100 m with a 

step of 100 m which covers horizontal and vertical distances of 

+3 mm, respectively (Fig. 10a-right). These elastic strain measurements were taken at a series of load 

levels in a loading-unloading steady state fatigue cycle, including the load at = 250 MPa =
 and the fully unloaded configuration at = 0 (Fig. 10a-left). Xie et. al. (2022) calculated the 

plastic zone size  to be ~0.5 mm at = , assuming an initial yield stress of = 145 MPa 

for ZK60.  

 Here, we use our PINN–  formulated in Section 3.2 to reconstruct the crack-tip traction-

separation relationship of ZK60 Mg alloy (valid up to the loading of = ) from the S-XRD-

obtained elastic strain field measurements ( ) at =  (Fig. 10b) and the elastic residual strain 

measurements ( ) at = 0 (Fig. 10c). First, we subtract both these strain fields to obtain  in 

(10), taking care to average  between the region above ( > 0) and below ( < 0) the crack 

face to obtain the expected symmetry and anti-symmetry for ( , ) and = 2 , respectively, 



from the imposed mode I ( ) loading (Fig. 11a). The experimental measurement data is not accurate 

near the “messy” fracture process zone. Accordingly, we omit the strain data near the crack-tip and 

reconstruct the crack-tip cohesive zone law from  data outside this zone of uncertainty. The nodes 

that lie along the boundary (red path in Fig. 11a) are sufficiently far away from the ~0.5 mm estimated 

plastic zone size, such that the displacement field at this outer boundary approximately follows the 

mode I -dominant elastic regime in (2). Assuming an elastic modulus of = 50 GPa and Poisson’s 

ratio of = 0.3 for ZK60, we obtain the displacements of the interior nodes  from  through the 

finite element derivative of shape function (  matrix), as shown in Fig. 11b.  

 The measurement data ( , ) along both  and  in Fig. 11b are subsequently fed into 

our optimized PINN–  architecture (with = 3, = 0.5 and = 9, = 0.17) to extract the traction 

and separation distributions and equivalent cohesive zone law. Regardless of the path taken and the ,  combination invoked for the PINN– , there is almost no discernable difference between the 

predicted traction distributions, as well as the predicted separation distributions (Fig. 11c), which 

suggests the stability and reliability of PINN– . The reconstructed traction distributions increase 

sharply from zero to reach a peak cohesive traction = ~160 MPa centered at 0 mm, before 

decreasing gradually towards a constant = ~95 MPa when > 1.5 mm. Similarly, the separation 

distributions decrease rapidly to ~0.0015 mm slightly ahead of the crack-tip (at 0 mm), before 

tapering gradually to zero at a distance = 2.4 mm ahead of the crack-tip. Together, all four 

corresponding traction-separation relations for ZK60 exhibit a consistent, unique shape with three 

distinct regimes: (1) constant traction of = ~95 MPa for initial separation up to =~0.0015 mm, (2) near instantaneous increase in traction to reach its peak of ~160 MPa at = 0.0022 mm, and (3) near linear (or slightly concave) softening to reach its full separation at =~0.009 mm. 



 To validate the experimental cohesive zone laws in Fig. 11c for ZK60, we create a finite 

element model comprising of a uniform 100 m × 100 m grid of 4-noded CPE4 plane-strain 

elements, each element representing a single pixel in the original experimental data grid (Fig. 10b,c), 

with linear elastic material properties of = 50 GPa, = 0.3. We include the residual strain field 

 (Fig. 10c) as an initial stress in the finite element model (Fig. 12a) and introduce a single row of 

cohesive elements along = 0 (dash red lines) governed by the average traction-separation response 

predicted by PINN–  for = 3, = 0.5 and = 9, = 0.17 along  in Fig. 11c. We subject the 

nodes at the far-field boundary (red path in Fig. 12a) to the same = 250 MPa mm displacement 

boundary conditions in (2). The resulting FEM calculations in Fig. 12b correctly predicts the 

experimental elastic strain field ( , , ) in Fig. 10b, as further illustrated by the very 

comparable strain distributions along several vertical and horizontal cross-sections outside of the 

“messy” fracture process zone shown in Fig. 12c and 12d. The close similarity between the simulated 

and measured , ,  fields suggest that our PINN–  correctly captures the experimental 

cohesive zone relationship of ZK60 up to the loading of = . 

5. Discussions and Conclusion 

Cohesive zone laws are quantitative representations of the complicated fracture process zone ahead 

of a crack-tip. Traditionally, the peak cohesive traction, cohesive energy, and cohesive separation 

have been regarded as phenomenological parameters that can be calibrated to match the crack growth 

response (e.g. -curves) in experiments. However, several studies have now confirmed the 

correlation between the shape of the cohesive zone law and the underlying crack growth 

micromechanics. Constructing the full functional form of the cohesive zone law is a highly non-trivial 

task. Since direct measurements at the scale of the fracture process zone are challenging, one can only 

infer this cohesive traction versus separation relationship based on measurement data at the far-field.  



 Our results here demonstrate that PINNs, which constrain the cohesive tractions and 

separations along the crack face to satisfy the Maxwell-Betti’s reciprocal theorem, can successfully 

construct the cohesive zone law representative of the process zone from measurement data in the far-

field. While this represents a classical inverse problem which suffers from ill-conditioning, our 

numerical studies show that the PINN is capable of stable cohesive zone extraction. In comparison, 

previously-employed spectral (or field projection) methods (Chew, 2013; Cui et al., 2020; Cui and 

Chew, 2022; Tran et al., 2022; Noh and Chew, 2024) rely on series solutions to represent the unknown 

cohesive tractions and separations. The accuracy of such field projection methods depends critically 

on the height  of the analysis domain (Chew, 2013; Tran et al., 2022), where increasing distance of 

the measurement data from the cohesive interface readily leads to singularity in the inversion scheme 

(Willis, 1966; Chew, 2013). Higher-order series solutions are often needed to mitigate “non-periodic 

jumps” at the bounds of the domain in cases where a periodic series solution (e.g., Fourier series) is 

employed, or to capture sharp or highly localized transitions in the traction or separation distributions. 

The conundrum here is that these higher order terms in the series solution often cannot be accurately 

ascertained from field projection method because of ill-conditioning, which significantly limits the 

types of cohesive zone shapes that can be reconstructed. Our PINN approach is found to be 

remarkably stable even when the measurement data is taken at distances far from the cohesive zone 

(Fig. 6). It can also reconstruct with high accuracy a wide variety of cohesive zone shapes – convex, 

concave, trapezoidal, bilinear, polynomial, and exponential – without further optimization of the 

neural network, even those with large “non-periodic jumps” at the boundaries or sharp, localized 

transitions in the traction, separation distributions (Figs. S1 and S2 of the Supplementary Materials), 

and traction-separation profile (Fig. 7). In addition, our PINN approach is found to stably extract the 

explicit form of the cohesive zone law even in the presence of numerical noise introduced in the strain 

field to replicate possible disturbances in a real material (Fig. S3 of the Supplementary Materials). 



More severe forms of such disturbances in the data can be corrected with an equilibrium field 

regularization algorithm (Hong et al. 2009, Chew et al. 2009) prior to performing the PINN.    

Conservative integrals including the - and -integral are widely employed in forward and 

inverse fracture mechanics problems (Chen and Shield, 1977). In our formulation, we expand the use 

of conservation integrals as physics-based constraints through the enforcement of the more general 

Maxwell-Betti’s reciprocal theorem, which is widely applicable to general interface problems, such 

as adhesive joints and interfaces, bio-adhesive properties of cellular structures at the nanoscale, grain 

boundaries, etc. (Zhu et al., 2000; Chew et al., 2005; Desai et al., 2016; Jiang et al., 2023; Wei et al., 

2023). In the absence of noise in the numerical and experimental data, the obtained cohesive traction 

and separation distributions will be unique if they are constrained to satisfy the reciprocal theorem 

for an infinite number of admissible auxiliary fields. Here, we carefully design two classes of 

sinusoidal-based auxiliary fields, each governed by a wavenumber , which allows us to generate an 

entire series of unique auxiliary fields. Ideally, one could constrain the PINN to satisfy the reciprocal 

theorem for a large number of such auxiliary fields (i.e., large number of wavenumbers ). In practice, 

however, any small gains in ensuring solution uniqueness (through the implementation of large ) is 

offset by numerical errors which increases with . This effectively places a limit on  in our PINN, 

as seen from the similar traction-separation predictions between = 3 and = 9 in Fig. 7.  

While the Maxwell-Betti’s reciprocal theorem strictly limits it to elastic problems, we have 

reformulated the reciprocal theorem following (Tran et al., 2022) to treat the background plasticity 

as an initial elastic residual stress, which permits the use of the reciprocal theorem with a reciprocity 

gap to account for this residual elastic stress. Our modified reciprocal theorem is applicable for any 

elasto-plastic material that exhibits linear unloading and reloading along the same path. Since we 

explicitly delineate the cohesive zone from the background plasticity, our extracted cohesive zone 

law only embeds the underlying crack growth micromechanics within the narrow process zone and 



thus represents the intrinsic fracture response of the material. This decoupling between background 

plasticity and process zone damage is applicable to a wide variety of interface problems, including 

the delineation between plasticity within the grain interior and the deformation mechanics at the grain 

boundary (Wei and Anand, 2004), or delineation between matrix material deformation and interfacial 

failure in nanotube-reinforced composites (Bagchi et al., 2018).  

We have applied this augmented PINN–  to inversely reconstruct the cohesive zone law from 

both the elastic strain fields at the current deformed state and the residual elastic strain fields after 

unloading obtained from S-XRD for a ZK60 Mg alloy. We obtain a unique cohesive zone law relation 

comprising of a “Dugdale” type regime characterized by constant traction at small separations 

(presumably associated with damage initiation due to twinning (Grilli et al., 2022; Xie et al., 2022)), 

a sharp increase in traction with further separation, followed by a linear softening regime. By 

implementing this experimentally-obtained cohesive zone law in FEM, we have successfully 

recovered the strain fields from S-XRD, validating our PINN approach. This extracted cohesive zone 

law is associated with a single loading stage of a fatigue crack (valid from = 0 to , and thus 

might not be representative of the full cohesive zone law for monotonic fracture of ZK60. However, 

one can certainly extend this analysis to the higher  to obtain the full cohesive zone law for crack 

growth, or to different loading and unloading stages within a single steady-state fatigue cycle for 

construction of the cohesive zone law for fatigue crack growth with unloading-reloading hysteresis.  

In summary, we have introduced a new PINN capable of reconstructing the interfacial 

tractions and separations in both elastic and elasto-plastic materials from far-field measurement data. 

Compared to prior field projection methods, this neural network approach is remarkably stable even 

when the cohesive zone reconstruction is based on measurement data far from the crack face. Our 

PINN’s ability to capture highly localized details of the traction-separation relation, in concert with 

S-XRD measurements, renders it suitable for providing rich fundamental insights into the crack 



growth micromechanics under complex loading conditions. Although we have only applied this PINN 

approach towards rate-independent, elasto-plastic problems under mode I loading, we remark that 

this PINN approach is very general, and can be easily extended to mixed-mode loading by modifying 

the PINN outputs and the auxiliary fields to include the shear traction/separation contributions, or to 

rate-dependent, temperature-dependent or even stochastic crack growth problems (Wei, 2014) by 

incorporating the relevant reciprocal theorem (e.g., Shivay and Mukhopadhyay, 2021). These are 

subjects of future work. 



Table 1:  Hyperparameter testing of the PINN. Shaded: locally optimal architecture for each 
systematic parametric variation. Bold: final optimized architecture.  

H
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er
s Neural network structure 

Learning 
rate,  

Weight 
contribution 

Activation 
function 

Error 

Hidden 
layers 

Nodes per 
hidden layer    min(L )  (× 10 ) RMSE  

N
eu

ra
l n

et
w

or
k 

st
ru

ct
ur

e 

10 10 0.0001 1 1 10000 ELU 3.13 0.069 
30 10 0.0001 1 1 10000 ELU 2.87 0.098 
40 10 0.0001 1 1 10000 ELU 130810 0.389 
10 15 0.0001 1 1 10000 ELU 1 0.042 
10 20 0.0001 1 1 10000 ELU 0.94 0.078 
20 20 0.0001 1 1 10000 ELU 0.73 0.045 
40 20 0.0001 1 1 10000 ELU 130542 0.389 
10 30 0.0001 1 1 10000 ELU 0.89 0.023 
10 40 0.0001 1 1 10000 ELU 1.19 0.070 
10 80 0.0001 1 1 10000 ELU 1.43 0.076 
20 80 0.0001 1 1 10000 ELU 0.86 0.119 

L
ea

rn
in

g 
ra

te
 

10 30 0.01 1 1 10000 ELU 273.7 0.264 
10 30 0.005 1 1 10000 ELU 75.4 0.199 
10 30 0.001 1 1 10000 ELU 2.05 0.063 
10 30 0.0005 1 1 10000 ELU 3.13 0.101 
10 30 0.00005 1 1 10000 ELU 0.75 0.044 
10 30 0.00003 1 1 10000 ELU 0.82 0.040 
10 30 0.00002 1 1 10000 ELU 0.61 0.040 
10 30 0.00001 1 1 10000 ELU 2.12 0.043 

W
ei

gh
t  

co
nt

ri
bu

tio
n 

10 30 0.00002 0 1 10000 ELU 1.85 0.196 
10 30 0.00002 1 0 10000 ELU 0.62 0.043 
10 30 0.00002 1 1 100000 ELU 0.68 0.071 
10 30 0.00002 1 1 10000 ELU 0.61 0.040 
10 30 0.00002 1 1 1000 ELU 11.89 0.303 
10 30 0.00002 1 1 10 ELU 268.96 0.263 

A
ct

iv
at

io
n 

fu
nc

tio
n 10 30 0.00002 1 1 10000 ELU 0.61 0.040 

10 30 0.00002 1 1 10000 TANH 0.70 0.068 

10 30 0.00002 1 1 10000 RELU 1.05 0.078 
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Appendix A: Analytical auxiliary fields 

The analytical full-field solution for a sinusoidal shear traction ( ) =  of amplitude  

with period  and wavelength  on an upper elastic half-space ( > 0) is well-established 

= 2 ( )= ( )= 1 ( )= (1 + ) 2(1 ) + ( )= (1 + ) (1 2 ) + ( )
   (A1) 

Observe that ( ) = 0 and ( ) =  at = , inferring that the solution for 

a normal sinusoidal surface traction ( ) =  can be obtained by simply substituting 

 and +  in (A1) 

= 1 ( )= 1 + ( )= ( )= (1 + ) ( 1 + 2 ) + ( )= (1 + ) 2(1 ) ( )
   (A2) 

 



We introduce two classes of analytical auxiliary fields for the Maxwell-Betti’s reciprocal 

theorem outlined in Fig. 2b. The first class is a full-field solution ( , ) of an elastic half-space 

subjected to periodic sin or cos distributions of normal tractions ( ) = , explicitly 

provided in (A2). The second class is a field solution ( , ) with traction free surface but non-

zero periodic displacements, obtained by superposing two separate linear elastic fields using principle 

of superposition outlined below (Fig. A1).  

To obtain ( , ), we first apply a normal traction  on the surface located at =
 of a lower half-space, resulting in the following field solution obtained by substituting (), , ,  in (A2) 

= 1 + ( ) ( )= 1 ( ) ( )= ( ) ( )= (1 + ) ( 1 + 2 ) ( ) ( )= (1 + ) 2(1 ) ( ) ( )
   (A3) 

The fields in this lower half-space decay exponentially with , but we still have a sinusoidally 

varying ( , ) field along = 0 (Fig. A1a). We subsequently impose a combination of shear and 

normal tractions  along the = 0 surface of an upper half space, with magnitudes resulting in 

 and  respectively along = 0 (Fig. A1b). The field solution of this upper half space can 

be obtained from a combination of (A1) and (A2). Finally, we superpose the field solutions of both 

this lower (Fig. A1a) and upper half space (Fig. A1b) to obtain  (Fig. A1c), which has a traction-

free surface boundary but with non-zero displacements along = 0.  

 The real and imaginary portion of each class of auxiliary field corresponds to two independent 

auxiliary field solutions from imposing a cos or sin distribution (imaginary or real part, respectively) 



of surface tractions ( = 0 for  in Fig. 2a and =  for  in Fig. A1). Together, both classes of 

auxiliary fields,  and , provides a total of four independent auxiliary fields for each wavenumber 

. Considering the application of  wavenumbers, i.e.,  ranging from 1 to , we have a total of 4  

independent auxiliary fields to be used in the Maxwell-Betti’s reciprocal theorem. 
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Figure Captions 

 

Figure 1: (a) Schematic of the small-scale yielding model with a centerline crack, subjected to remote 
mode I ( ) loading, with a cohesive interface (dashed red line) in front of the crack tip located at = = 0. (b) Schematic of a cohesive zone, and a prescribed normal traction ( )-separation ( ) 
relationship. (c) Finite element mesh of the small-scale yielding model. (d) Close-up view of the 
highly-refined finite element mesh (green box) of uniformly sized ×  elements surrounding the 
initial crack tip (symbol ‘x’).  

Figure 2: (a) Physics-Informed Neural Network (PINN) architecture for the reconstruction of the 
traction ( ) and separation distributions ( ) along the cohesive zone ( ) from far-field 
measurement data, subjected to physical and mechanistic constraints enforced by a loss function. (b) 
Schematic depicting the real field ( ) and two classes of auxiliary fields ( , ) of the Maxwell-
Betti’s reciprocal theorem, which constitutes the primary constraint ( ) linking measurement data 
along  (blue) to traction-separation predictions along  (red). 

Figure 3: Hyperparameter studies on the network structure (a), learning rate (b), weights contribution 
of the loss function (c), and choice of activation function (d), depicting the PINN-predicted (lines) 
versus actual (symbols) exponential cohesive zone law; ‘*’ supercript: locally optimal 
hyperparameters.   

Figure 4: Weighted loss evolution (left) and convergence of the predicted exponential cohesive zone 
law with training epochs (lines, right) to ground truth data (symbols, right) for varying proportion 
( ) of terms enforced per epoch out of a fixed total number of constraints (4  =  28) in the reciprocal 
theorem. 

Figure 5: Predicted exponential cohesive zone law (lines) versus ground truth data (symbols) for 
different ( , ) combinations in the reciprocal theorem. 

Figure 6: Domain size effects ( / ) on the predicted exponential cohesive zone law (lines) versus 
ground truth data (symbols) for different ( , ) combinations in the reciprocal theorem.  

Figure 7: Predicted (lines) versus ground truth data (symbols) for different functional forms of the 
cohesive zone law. 

Figure 8: (a) Von Mises stress contours ( / ) at the current loading =  and after unloading 
(from ) to = 0. (b) Von Mises stress ( / ) versus equivalent strain ( ) for material points 
1-8 in (a) with the undeformed state ( = = 0, circle symbol) as the reference configuration. (c) 
Von Mises stress ( / ) versus equivalent strain ( ) for material points 1-8 in (a), taking the fully 
unloaded material ( = 0, circle symbol) as the reference configuration. 

Figure 9: Traction distribution, separation distribution, and the cohesive zone law predicted by PINN 
(lines) from measurement data along two paths ( ; ) versus actual ground truth data (circle 
symbols). (a) Original PINN formulation for linear-elastic materials. (b) Augmented PINN 
formulation (PINN– ) to account for plastically deforming background material. 

Figure 10: (a) Schematic of the diffraction setup for strain mapping measurement of a fatigue crack 
in a CT specimen using S-XRD, with mapping area in red dash square (Xie et. al., 2022). (b,c) Elastic 



strain measurement ( , , = 2 ) from S-XRD at the last fatigue cycle, where the crack is 
fully unloaded from =  (b) to = 0 (c). 

Figure 11: (a,b) Postprocessed S-XRD experiment elastic strain measurement ( , , = 2 ) 
(a) and numerically reconstructed displacement field ( , ) with assumed  domain at the far-field 
boundary (red box) (b), taking the fully unloaded material (from =  to 0) as the reference 
configuration. (c) Traction distribution, separation distribution, and the cohesive zone law from 
PINN–  based on measurement data along  and  in (b).  

Figure 12: (a) Finite element analysis (FEA) with implementation of the PINN-predicted cohesive 
zone law along the crack front, with initial (residual) elastic strain field at = 0. (b) FEA simulated 
elastic strain field at = . (c,d) Comparison of the S-XRD (symbols) versus FEA (lines) 
measurements of strain distributions along several vertical (c) and horizontal (d) cross-sections near 
the crack-tip, depicted by dashed-dot lines in (b). 

Figure A1: Construction of auxiliary field [ , ] with a traction free surface along = 0 but 
with non-zero displacements (c) by superposing the linear elastic solutions of two sinusoidal, periodic 
traction fields on lower (a) and upper half-spaces (b).  

  

 



Figure 1: (a) Schematic of the small-scale yielding model with a centerline crack, subjected to 
remote mode I ( ) loading, with a cohesive interface (dashed red line) in front of the crack tip 
located at = = 0. (b) Schematic of a cohesive zone, and a prescribed normal traction ( )-
separation ( ) relationship. (c) Finite element mesh of the small-scale yielding model. (d) Close-
up view of the highly-refined finite element mesh (green box) of uniformly sized × elements 
surrounding the initial crack tip (symbol ‘x’). 



Figure 2: (a) Physics-Informed Neural Network (PINN) architecture for the reconstruction of the
traction ( ) and separation distributions ( ) along the cohesive zone ( ) from far-field 
measurement data, subjected to physical and mechanistic constraints enforced by a loss function. 
(b) Schematic depicting the real field ( ) and two classes of auxiliary fields ( , ) of the 
Maxwell-Betti’s reciprocal theorem, which constitutes the primary constraint ( ) linking 
measurement data along (blue) to traction-separation predictions along (red).



 

Figure 3: Hyperparameter studies on the network structure (a), learning rate (b), weights 
contribution of the loss function (c), and choice of activation function (d), depicting the PINN-
predicted (lines) versus actual (symbols) exponential cohesive zone law; ‘*’ supercript: locally 
optimal hyperparameters.   

 

 

  



Figure 4: Weighted loss evolution (left) and convergence of the predicted exponential cohesive 
zone law with training epochs (lines, right) to ground truth data (symbols, right) for varying 
proportion ( ) of terms enforced per epoch out of a fixed total number of constraints (4 = 28) 
in the reciprocal theorem.



 

Figure 5: Predicted exponential cohesive zone law (lines) versus ground truth data (symbols) for 
different ( , ) combinations in the reciprocal theorem. 

 

 

  



 

Figure 6: Domain size effects ( / ) on the predicted exponential cohesive zone law (lines) versus 
ground truth data (symbols) for different ( , ) combinations in the reciprocal theorem.  

 

  



 

Figure 7: Predicted (lines) versus ground truth data (symbols) for different functional forms of the 
cohesive zone law. 

  



Figure 8: (a) Von Mises stress contours ( / ) at the current loading = and after 
unloading (from ) to = 0. (b) Von Mises stress ( / ) versus equivalent strain ( ) for 
material points 1-8 in (a) with the undeformed state ( = = 0, circle symbol) as the reference 
configuration. (c) Von Mises stress ( / ) versus equivalent strain ( ) for material points 1-8 in 
(a), taking the fully unloaded material ( = 0, circle symbol) as the reference configuration.



Figure 9: Traction distribution, separation distribution, and the cohesive zone law predicted by 
PINN (lines) from measurement data along two paths ( ; ) versus actual ground truth data 
(circle symbols). (a) Original PINN formulation for linear-elastic materials. (b) Augmented PINN 
formulation (PINN– ) to account for plastically deforming background material.



 

Figure 10: (a) Schematic of the diffraction setup for strain mapping measurement of a fatigue 
crack in a CT specimen using S-XRD, with mapping area in red dash square (Xie et. al., 2022). 
(b,c) Elastic strain measurement ( , , = 2 ) from S-XRD at the last fatigue cycle, where 
the crack is fully unloaded from =  (b) to = 0 (c). 

  



Figure 11: (a,b) Postprocessed S-XRD experiment elastic strain measurement ( , , =2 ) (a) and numerically reconstructed displacement field ( , ) with assumed domain at the 
far-field boundary (red box) (b), taking the fully unloaded material (from = to 0) as the 
reference configuration. (c) Traction distribution, separation distribution, and the cohesive zone 
law from PINN– based on measurement data along and in (b). 



 

Figure 12: (a) Finite element analysis (FEA) with implementation of the PINN-predicted cohesive 
zone law along the crack front, with initial (residual) elastic strain field at = 0. (b) FEA 
simulated elastic strain field at = . (c,d) Comparison of the S-XRD (symbols) versus FEA 
(lines) measurements of strain distributions along several vertical (c) and horizontal (d) cross-
sections near the crack-tip, depicted by dashed-dot lines in (b).  

 



Figure A1: Construction of auxiliary field [ , ] with a traction free surface along = 0 but 
with non-zero displacements (c) by superposing the linear elastic solutions of two sinusoidal, 
periodic traction fields on lower (a) and upper half-spaces (b). 


