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1 Overview

deal.II version 9.6.0 was released August 11, 2024. This paper provides an overview of the new features of

this release and serves as a citable reference for the deal.II software library version 9.6. deal.II is an object-

orientedfinite element library used around theworld in the development of finite element solvers. It is available

for free under the terms of theGNULesser General Public License (LGPL). The deal.II project is in the process of

relicensing the library under the terms of the Apache License 2.0 with LLVM Exception. Downloads are available

at https://www.dealii.org/ and https://github.com/dealii/dealii.

The major changes of this release are:
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– Substantial performance improvements to the matrix-free and multigrid infrastructure (see Section 2.1).

– Additions to the non-matching infrastructure (see Section 2.2). In particular, the new FERemoteEvaluation

class provides support for evaluating finite element shape functions and solutions on parts of the domain

stored by other MPI processes.

– Much work has gone into writing wrappers for Trilinos’ Tpetra stack of linear algebra classes. Tpetra

is Trilinos’ Kokkos-based replacement for the now-deprecated Epetra stack. See Section 2.3 for more on

this.

– Tool classes TaskResult and Lazy that provide ways to compute values on a separate thread or only when

first accessed (see Section 2.4).

– There are five new tutorial programs, on checkpointing simulations (step-83), integrating time-dependent

solvers with external time stepping libraries (step-86, using PETSc’s TS library), advanced point evalua-

tion techniques (step-87), non-matching grids (step-89), and trace-based methods for PDEs on embedded

surfaces (step-90). See Section 2.5 for more details.

– In Section 2.6 we summarize the motivation and approach behind our relicensing e�ort to make deal.II

available under the terms of the Apache License 2.0 with LLVM Exception.

While all of thesemajor changes are discussed in detail in Section 2, there are a number of other noteworthy

changes in the current deal.II release, which we briefly outline in the remainder of this section:

– deal.II now requires and makes use of the C++17 language standard.

– We have continued to make progress in supporting simplex and mixed meshes —mesh types that deal.II

has traditionally not supported at all. Specifically, the current release uses better strategies for refinement

of tetrahedra that result in better-shaped child cells. It also contains support for cubic finite elements on

simplices.

– The FE_NedelecSZ class that contains our implementation of the Nédélec element using the orientation

scheme of [68] now supports the computation of hanging node constraints for locally refined, hexahedral

meshes. That is, the implementation of hanging node constraints now correctly addresses the sign-conflict

that arises for hp quadrilateral and hexahedral Nédélec elements; see [45] for details. The other imple-

mentation of Nédélec elements, in the FE_Nedelec class, already implements hanging node constraints;

therefore, there is no longer a di�erence for the user between the two classes as far as constraints are con-

cerned. However, the special case where, in 3D, more than four cells with di�erent refinement levels share

a common edge is not covered yet.

– The AffineConstraints class stores and processes constraints on degrees of freedom in deal.II. Such

constraints can be of the (homogeneous) form x3 = 1
2
x14 +

1
2
x15 as is common when using hanging node

constraints (here, x3 could represent the value of the solution at a hanging node, and x14 and x15 are the

values of the two adjacent degrees of freedom on the parent edge that contains the hanging node); or they

can be of the (inhomogeneous) form x12 = 42 as is common when using Dirichlet boundary conditions.

Since very early in the history of the library, the AffineConstraints class interface required building such

constraints in multiple steps: First, one declared a degree of freedom as constrained; then one added the

dependencies one after the other (e.g., by adding pairs (1/2, 14) and (1/2, 15) in the hanging node example

above); then one added inhomogeneities (by setting it to 42 in the Dirichlet example above). This piecemeal

approach is cumbersome and prevents the library from performing certain error checking steps because

a constraint is not known to be completely built at any given point. The new add_constraint() function

now allows defining a constraint in one step.

– We refactored the systems for managing relative line and face orientations to significantly improve consis-

tency across several library modules, including finite element classes, periodicity, and the p4est interface.

deal.II has supported using unstructured three-dimensional meshes for a long time. Features like dis-

continuous Galerkin methods and higher-order elements require that lines and faces of adjacent elements

are consistently oriented. For example, consider a line containing two degrees of freedom, which, in ref-

erence coordinates, are located at x1 = 1/3 and x2 = 2/3. If the line is read from left-to-right then we get

points (x1 , x2)whereas if it is read from right-to-left we get (x2 , x1). deal.II guarantees that this order will
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be consistent across all cells sharing that line by storing a flag indicating whether (relative to the vertex

enumeration on the present cell) that particular line is in the standard or reversed orientation. Faces in

3D are treated in a similar way. The only significant di�erence between lines and 3D faces is that, instead

of two possible relative orientations, triangular faces have six and quadrilateral faces have eight possible

orientations.

Historically, di�erent placeswithin the library implemented their own ad-hoc orientation logic, data encod-

ings, and default values. We cleaned up this subsystem and instead of using three di�erent booleans (ori-

entation, rotation, and flip), bitsets, or several other encodings, we now use a single unsigned char which

we named the combined orientation. Since the representation in some library interfaces has changed, most

of the old interfaces have been deprecated and a few (such as the low-level interface to periodic boundary

conditions) had to be incompatibly altered or removed.

– The SolverGMRES class now o�ers a third orthogonalization method, the classical Gram–Schmidt method

with delayed orthogonalization [16]. Furthermore, the solver now specifies the maximal basis size of the

Arnoldi basis, rather than thenumber of auxiliary vectors. Some changes have also beenmade to theGMRES

and F-GMRES implementations, making them use the same underlying kernels as much as possible.

– The new class FE_Hermite implements a Hermite interpolation basis of maximum regularity. These bases

are always of odd polynomial degree p and have regularity r = (p − 1)/2.

The changelog – listingmore than 180 features and bugfixes – contains a complete record of all changes; see [51].

2 Major changes to the library

This release of deal.II contains a number of large and significant changes, whichwewill discuss in this section.

2.1 Updates to the multigrid and matrix-free algorithms

We updated a number of significant parts of the multigrid and matrix-free infrastructure in deal.II. These

changes include:

– Our own implementation of the std::experimental::simd class proposed for inclusion into the C++ stan-

dard, called VectorizedArray, now also supports Arm Neon. Arm Neon is an architecture extension of the

ARMv7, ARMv8, and ARMv9 architecture families, used, e.g., for the Arm Cortex-A and Arm Cortex-R series

of processors or in the Apple 64-bit silicon series (A7–A18, M1–M4 as of 2024). With these instructions, 2

doubles or 4 floats can be processed in one go. Since the matrix-free infrastructure works directly with the

VectorizedArray abstraction as data structure, it automatically benefits from this new implementation.

– The application of the Piola transformation for values and gradients of H(div)-conforming Raviart–Thomas

elements on non-Cartesian cells has been rewritten for better performance. Together with additional

changes in the sum-factorization algorithms, which became more similar to the kernels described in [47],

the matrix-free operator evaluation is now 3–5 times faster in these cases.

– Furthermore, we improved the internal data structures of the tensor-product evaluators as well as the

evaluators for simplex elements. This speeds up the operator evaluation in several scenarios, especially for

simplices (around two times higher throughput for operator evaluation) andmulti-component systems. The

restructuring that led to these optimizations also reduced the compile times and the size of the generated

code slightly.

– In addition, we performed substantial improvements to the global-coarsening multigrid infrastructure:

MGTransferMF (previously: MGTransferGlobalCoarsening) and MGTwoLevelTransfer. They now allow per-

forming local smoothing, which is a key step towards unifying all transfer operators in deal.II. Finally,

MGTwoLevelTransfer can now be set up with an existing MatrixFree object in the case of p-multigrid, re-

ducing the setup costs and memory consumption significantly.
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2.2 Advances in non-matching support

In the non-matching infrastructure of deal.II, we made the following improvements:

– The performance of the non-nested multigrid infrastructure (MGTwoLevelTransferNonNested) has been

improved significantly by avoiding redundant copy operations. Furthermore, support for simplex-shaped

cells and multiple-component elements has been added.

– Several minor performance improvements in deal.II’s evaluator class on sets of unstructured points,

FEPointEvaluation, have beenmade. The changes are particularly useful for evaluating several quantities

on the same set of points, which is enabled by NonMatching::MappingInfo.

– We added the new class FERemoteEvaluation. This is a class to access data in a distributedmatrix-free loop

for non-matching discretizations. Interfaces are named in analogy to FEEvaluation, in order to seamlessly

switch the local evaluator functionality at quadrature points of a computation. The key component is the

underlying MPI communication infrastructure, which is performed via RemotePointEvaluation. Tutorial

step-89 has been added to present its usage in the context of the application to acoustic conservation equa-

tions [35].

– The FECouplingValues class provides a powerful tool for computing integrals of functions that contain fi-

nite element fields defined on di�erent objects, for example if these fields live on separate grids or have

di�erent topological dimensions (e.g., cells, faces, edges). This is particularly useful in the following scenar-

ios:

– Non-local di�erential operators: Evaluating fractional Laplacian or boundary element methods.

– Non-matching discretizations: Integrating data between two independent discretization schemes that

overlap in some areas.

– Bulk-surface coupling: Combining data from a bulk discretization and a surface discretization.

The new class enables the combination of degrees of freedom indices, shape functions, and quadrature

points from two existing FEValuesBase objects. The way this combination is performed is controlled by

user-provided DoFCouplingType and QuadratureCouplingType objects, which define how the degrees of

freedom and quadrature points are combined.

The flexibility o�ered by these coupling types allows users to:

– Rearrange quadrature points in a tensor product structure for double integration.

– Reorder quadrature points to easily access shape function values and gradients from two di�erent

finite element spaces located on the same point.

– Identify and integrate over a reordered subset of the quadrature points.

2.3 Interface to the Trilinos Tpetra stack

deal.II’s parallel linear algebra facilities (apart from matrix-free capabilities) are largely built on wrappers

around functionality provided by the PETSc and Trilinos libraries.

Historically, Trilinos has implemented distributed linear algebra classes for vectors and (sparse) matrices

in its Epetra package that uses MPI as its only source of parallelism. Building on that, there are multiple inter-

connected Trilinos packages, e.g., for (non-)linear solvers and preconditioners, commonly referred to as the

‘Epetra stack’. For sake of brevity we will also refer to the whole stack as Epetra in the following. deal.II’s

interfaces to Trilinos have traditionally been implemented to use it.

However, several years ago, Trilinos also introduced the newer Tpetra (‘templated’ Petra) package that

provides additional shared memory parallelism and GPU capabilities, referred to as MPI+X, by building on

Kokkos. In recent years, new features have only been implemented in Tpetra as it is slated to replace Epetra,

and the latter is indeed nowdeprecatedwith removal slated for 2025. As a consequence, wewill eventually have

to switch all of our Trilinos interfaces to Tpetra; the same is true for the need to switch to Tpetra-based sub-

packages (the ‘Tpetra stack’) that are intended to replace existing Trilinos sub-packages (for example, Ifpack2

instead of Ifpack).
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In the current release, we have put substantial work into this switch, as outlined below. As this is not yet

finished, it is important to note that all these features are optional and their individual availability depends on

the installed Trilinos packages. As an example, a deal.II build will pass with a Trilinos installation without

Ifpack2, but its preconditioners will not be included. In the following list, we omit the common namespace

prefix LinearAlgebra:: on all mentioned TpetraWrappers symbols for readability:

– The TpetraWrappers::Vector class has been overhauled to also allow specifying a memory space, and the

TpetraWrappers::BlockVector class has been added.

– TpetraWrappers::SparseMatrix and TpetraWrappers::SparsityPattern have been implemented mir-

roring the functionality of the TrilinosWrappers::SparseMatrix and TrilinosWrappers::

SparsityPattern classes.

– Various incomplete factorization and relaxation preconditioners (from Ifpack2) have been wrapped, mir-

roring the existing classes in LinearAlgbera::TrilinosWrappers as closely as possible.

– Two new preconditioner variants TpetraWrappers::PreconditionL1Jacobi and TpetraWrappers::

PreconditionL1GaussSeidel, based on [10], have been added.

– TpetraWrappers::SolverDirectKLU2 is now available as a direct solver.

Some functionality in thesewrapper classes is stillmissing,most noticeablywrappers for the algebraic-multigrid

preconditioner MueLu and the iterative solvers from Belos. However, the wrapped Ifpack2 preconditioners can

already be usedwith the iterative solvers of deal.II. To do this youwill need to explicitly specify the vector type

parameter, e.g., SolverCG<LinearAlgebra::TpetraWrappers::Vector<double, MemorySpace::Default> >

The solver and preconditioner classes mentioned above provide reasonable parameter subsets through

AdditionalData objects, just as the existing Epetra wrappers. Additionally, there are new generic classes

TpetraWrappers::SolverDirect and TpetraWrappers::PreconditionIfpackwhich expose the internal inter-

face through a Teuchos::ParameterList and thereby o�ering the full set of parameters for more experienced

Trilinos users. This also allows the use of preconditioners or solvers not (yet) wrapped, e.g., SuperLU_dist or

MUMPS.

The design goal was to introduce as few changes as possible for the user to allow for an easy transition to the

TpetraWrappers classes. However, based on the di�erence between Epetra and Tpetra, the following changes

were necessary:

– The constructor for the class TrilinosWrappers::MPI::Vector only required the IndexSet locally_owned,

which describes the set of indices locally ownedby the current rank. However, if onewants to create a vector

that has read or write access to non-locally owned indices, the constructor of the TpetraWrappers::Vector

requires the IndexSet locally_owned, the IndexSet locally_relevant, and a boolean flag, whether

to initialize the vector in the read-only or the write-only state. This interface is in fact close to the one of

deal.II’s own parallel vector class.

– A vector createdwithout providing the IndexSet locally_relevant is purely local and cannot access non-

local indices. Such a vector cannot be copied to a vector that can access non-local indices, as the IndexSet

locally_relevantmust be provided at creating the vector object.

– Some parameters of existing solver and preconditioner are not available in the Tpetrawrappers, such that

the corresponding AdditionalData objects are not identical. Since there are many preconditioners we will

not list each individual change but instead refer to our Doxygen documentation.

– The incomplete Cholesky (IC) factorization preconditioner is not available in Tpetra.

Another goal was increasing the interoperability of deal.II and Trilinos, allowing users familiar with

both to write ‘pure’ Trilinos code within their applications, e.g., to test or develop a new feature. Therefore,

the internal data is stored as it would be in a Trilinos application code (as Teuchos::RCP) and can be accessed

through member functions.

Finally, all TpetraWrappers classes take Number and MemorySpace template arguments, in order to control

the underlying scalar type and memory space. By default, memory is allocated on the CPU, mirroring the be-
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havior of the TrilinosWrappers, but choosing a di�erent memory space also allows Tpetra to utilize GPUs

if Kokkos is configured with a GPU backend. Furthermore, to fully leverage the GPU backend and unlock its

full potential for users will require further work. The support for di�erent number types in vector and matrix

classes also enables the usage of automatic di�erentiation-based tools in Trilinos, such as NOX. To make the

automatic di�erentiation tools of Trilinos accessible through the Tpetra interface without requiring users to

have an in-depth understanding of Trilinos, additional wrappers for the corresponding Trilinos packages

will be added in future releases.

2.4 More support for advanced programming idioms

Over the years, deal.IIhas accumulatedmany classes and functions that supportmodern programming idioms

and make it easier to write code at higher levels of abstraction.

In the current release, we have added two classes to the list of tools of this kind:

– Lazy<T> is a class that supports the lazy computation and initialization of variables. Its intended use is

for member variables of classes that are sometimes needed, but perhaps not for all uses of an object. For

example, all finite element classes provide interpolation and restriction matrices to support multigrid and

other algorithms. One could (i) always compute and store these matrices in the constructor of the class;

or one could (ii) re-compute these matrices every time they are requested. The first of these approaches

costs memory and compute time even thoughmost places where one creates a finite element object will not

actually query thesematrices; the second of these approaches is costly in places that doquery thesematrices

repeatedly because they are re-computed every time. Lazy<T> provides a middle ground: It provides an

abstraction for an object that is initialized upon first use (that is, the first time the value is requested), and

then stores the computed value for cheap use later on.

(C++ provides functionality via std::async with launch policy std::launch::deferred that can achieve

similar outcomes. But this functionality is more di�cult to use than Lazy<T> because, among other reasons,

the code generating the object has to be specified at the place of construction of the object holding the result,

rather than at the place of use; and because the holder object – std::future – can only be asked once for

its computed value.)

– TaskResult<T> is a class that represents the outcome of a task possibly evaluated on a separate thread. It

can be thought of as a ‘deferred’ result of a computation in that onewants to state ‘This job needs to be done,

do it when convenient, and then put the result of the operation into this variable’. Accessing the variable

then waits for the operation to complete, if it has not already. TaskResult<T> allows classes to e�ciently

compute member variables in the background, assuming that they may not be needed right away but only

later on.

(Similar to above, the same e�ect as TaskResult<T> can be achieved using std::async, this time using the

launch policy std::launch::async. This approach su�ers from the same issue that one can only query

the resulting object once. Moreover, std::async does not integrate with the thread pool that underlies

deal.II’s approach to parallel processing on modern multi-core machines, whereas TaskResult<T> does.)

2.5 New and improved tutorials and code gallery programs

Many of the deal.II tutorial programs were revised in a variety of ways as part of this release: Around 190 of

the more than 1900 (non-merge) commits that went into this release touched the tutorial. In addition, there are

a number of new tutorial programs:

– step-83 demonstrates how one can implement checkpoint/restart functionality in deal.II-based pro-

grams, using the Boost serialization functionality as a foundation. step-83was written by Pasquale Africa,

Wolfgang Bangerth, and Bruno Blais using step-19 as its basis.
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– step-86 is a program that solves the heat equation using PETSc’s TS (time stepping) framework for the so-

lution of ordinary di�erential equations. Written by Wolfgang Bangerth, Luca Heltai, and Stefano Zampini

(King Abdullah University of Science and Technology), it illustrates how PDE solvers for time-dependent

problems can be integrated with existing ODE solver packages to use advanced ODE solver concepts (such

as higher-order time integration methods and adaptive time step control), all without sacrificing the things

that have traditionally led code authors toward writing their own time stepping routines (like wanting to

change the mesh every once in a while, or having to deal with boundary conditions).

– step-87 [61] was contributed by Magdalena Schreter-Fleischhacker and Peter Munch. It presents the ad-

vanced point-evaluation functionalities of deal.II, which are useful for evaluating finite element solutions

at arbitrary points on meshes that can be distributed among processes. The presented mini-examples are

motivated by the application to two-phase flow simulations and demonstrate, for example, the evaluation

of solution quantities at a surface mesh embedded in a background mesh, as needed in the case in front-

tracking.

– step-89was contributed by Johannes Heinz (TUWien), Maximilian Bergbauer (Technical University ofMu-

nich), Marco Feder (SISSA), and PeterMunch. It shows how to apply non-matching and/or Chimeramethods

within matrix-free loops in deal.II.

– step-90 was contributed by Vladimir Yushutin and Timo Heister. It implements the trace finite element

method (TraceFEM). TraceFEM solves PDEs posed on a, possibly evolving, (dim − 1)-dimensional surface Γ

employing a fixed uniform background mesh of a dim-dimensional domain in which the surface is embed-

ded. Such surface PDEs arise in problems involving material films with complex properties and in other

situations in which a non-trivial condition is imposed on either a stationary or a moving interface. The

program considers a steady, complex, non-trivial surface and the prototypical Laplace–Beltrami equation

which is a counterpart of the Poisson problem on flat domains.

In addition, there are three new programs in the code gallery (a collection of user-contributed programs

that often solvemore complicated problems than tutorial programs, and that are intended as starting points for

further research rather than as teaching tools):

– ‘Crystal growth phase field model’, contributed by Umair Hussain;

– ‘Nonlinear heat transfer problem’, contributed by Narasimhan Swaminathan;

– ‘Traveling-wave solutions of a qualitative model for combustion waves’, contributed by Shamil Magomedov.

Furthermore, we added an example to the libCEED library [20]: https://github.com/CEED/libCEED/tree/

main/examples/deal.II. libCEED is a library that provides matrix-free evaluation routines for di�erent hard-

ware. The example shows how to interface the deal.II data structures with the libCEED ones and solves the

BP1-BP6 benchmarks (scalar/vector Laplace/mass matrix with regular integration and over-integration).

2.6 Relicensing to Apache License 2.0 with LLVM exception

The deal.II project is in the process of relicensing the library under the terms of the Apache License 2.0 with

LLVM Exception [6, 52]. To this end we require all new code contributions to be dual licensed under the current

license (GNU Lesser General Public License v2.1 [50]) and the new license (Apache-2.0 with LLVM-exception).

We have chosen to pursue a relicensing e�ort for deal.II because of some long standing problems with the

LGPL v2.1 license. Most notably, despite our clear intent that the strong copyleft principle should only apply

to deal.II source code and not user projects (which should be free to choose their own license freely) this is

not necessarily the case for LGPL v2.1 due to the language used in the library. This makes potential industry

partners that evaluate the use of deal.II for their own projects nervous. Secondly, our previous choice to use an

open source license with strong copyleft was motivated by our hope that we receive back code contributions

from third parties. In practice, however, our observation over the last 10 years is that our choice of license has

not helped achieve this goal: Copyleft only applies when a derived software is sold or published. But almost all
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of our code contributions are voluntary and come from individual contributors with an academic background,

where these considerations do not apply.

We have thus decided to switch away from the LGPL v2.1 license towards a more permissible license. We

settled on the Apache License 2.0 with LLVM-exception in large parts because it is (a) a permissible open source

license with patent clause, (b) considered to be a verbose, well-written license, and (c) has been recently chosen

by other large open source projects, notably LLVM and Kokkos. Our hope going forward is that the new license

makes it easier for industry partners to use the library.

As a first stepwe now require all new code contributions to be dual licensed under the old and new licenses.

As a second step we are in the process of contacting the more than 200 past contributors with copyrighted

contributions to the library. As of September 2024 roughly 80% of the commits and 80% of the 1.88 million

source lines of code have been relicensed.

2.7 Incompatible changes

The 9.6 release includes around 40 incompatible changes; see [51]. Many of these incompatibilities change inter-

nal interfaces that are not usually used in external applications. That said, the following are worth mentioning

since they are more broadly visible:

– deal.II now requires compilers to support C++17, and has started to extensively use C++17 features.

– The CUDAWrappers namespace and its contents — notably things that enable the usage of cuSPARSE algo-

rithms — have been deprecated and will be removed in the next release. Kokkos is now used for device-

specific optimizations.

3 How to cite deal.II

In order to justify thework the developers of deal.II put into this software, we ask that papers using the library

reference one of the deal.II papers. This helps us justify the e�ort we put into this library.

There are various ways to reference deal.II. To acknowledge the use of the current version of the library,

please reference the present document. For up-to-date information and a bibtex entry see

https://www.dealii.org/publications.html

The original deal.II paper containing an overview of its architecture is [14], and amore recent publication

documenting deal.II’s design decisions is available as [8]. If you rely on specific features of the library, please

consider citing any of the following:

– For geometric multigrid: [22, 42, 43, 55];

– For distributed parallel computing: [13];

– For hp-adaptivity: [15, 28];

– For partition-of-unity (PUM) and finite element en-

richment methods: [26];

– For matrix-free and fast assembly techniques: [46,

47];

– For computations on lower-dimensionalmanifolds:

[27];

– For curved geometry representations and mani-

folds: [37];

– For integration with CAD files and tools: [36];

– For boundary element computations: [32];

– For the LinearOperator and PackagedOperation

facilities: [53, 54];

– For uses of the WorkStream interface: [67];

– For uses of the ParameterAcceptor concept, the

MeshWorker::ScratchData base class, and the

ParsedConvergenceTable class: [60];

– For uses of the particle functionality in deal.II:

[30].
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deal.II can interface with many other libraries:

– ADOL-C [33]

– ArborX [48]

– ARPACK [49]

– Assimp [62]

– BLAS and LAPACK [3]

– Boost [19]

– CGAL [64]

– cuSOLVER [23]

– cuSPARSE [24]

– Gmsh [31]

– GSL [29, 34]

– Ginkgo [4, 5]

– HDF5 [65]

– METIS [44]

– MUMPS [1, 2]

– muparser [56]

– OpenCASCADE [57]

– p4est [21]

– PETSc [11, 12]

– ROL [59]

– ScaLAPACK [17]

– SLEPc [38]

– SUNDIALS [40]

– SymEngine [63]

– Taskflow [41]

– TBB [58]

– Trilinos [39, 66]

– UMFPACK [25]

Please consider citing the appropriate references if you use interfaces to these libraries.

The two previous releases of deal.II can be cited as [7, 9].
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